文档库 最新最全的文档下载
当前位置:文档库 › 压力传感器数据采集

压力传感器数据采集

压力传感器数据采集
压力传感器数据采集

题目:压力传感器数据采集

摘要

压力传感器是自动控制中使用最多的测量装置之一。在大型的化工项目中,几乎包含了所有压力传感器的应用:差压、绝压、表压、高压、微差压、高温、低温,以及各种材质及特殊加工的远传法兰式压力传感器。近年来压力传感器在市场上大热,在各类消费产品中都可以看到传感器的应用,既丰富了产品的功能又提高了产品的方便性和易用性,成为吸引消费者关注的新亮点。压力传感器具有全密封不锈钢焊接结构、小体积、高灵敏度、零点满度可调节应可用于液压、压铸、中央空调系统、恒压供水、机车制动系统轻工、机械、冶金、石化、环保、空压机等其他自动控制系统。

无线技术能在短距离内用发射、接收模块代替有线电缆的连接。本文给出了一种基于无线技术的智能压力传感器数据采集系统,由数据采集发射端和接收端两部分组成。主要介绍了硬件结构设计、软件系统工作流程及测试结果,并且应用多项式标准化拟合的方法对压力值作了热零点漂移补偿,提高了

传感器的测量精度及温度稳定性。该系统可以在一些特殊的场所实现信号的采集、处理和发送,解决了复杂的现场连线,并且具有成本低、可靠性好、实用性强等优点。

关键词:压力传感器无线技术数据采集

Abstract

Pressure sensor is one of the most frequently used measuring devices in automatic control. In large-scale chemical projects, including almost all the pressure sensor application: differential pressure, absolute pressure, gauge pressure, high pressure, differential pressure, high temperature, low temperature, and a variety of materials and special processing transmission flange type pressure sensor. In recent years, pressure sensor in the market hot, in a wide range of consumer products can see sensor application, not only enrich the functions of the product and improve the products of the convenience and ease of use, become to attract consumer attention, a new bright spot. The pressure sensor has the whole sealing stainless steel welded structure, small volume, high sensitivity, zero full adjustable should be used for hydraulic, die-casting, central air-conditioning system, constant pressure water supply, locomotive brake system light industry, machinery, metallurgy, petrochemical, environmental protection, air compressor and other automatic control system.

Wireless technology can be used in a short distance to transmit and receive module instead of cable connection. In this paper, a data acquisition system based on wireless technology is presented, which is composed of two parts, the transmitter and receiver. This paper mainly introduces the hardware structure design, software system work flow and test results, and applies the method of polynomial fitting. The thermal zero drift compensation is used to improve the measurement accuracy and temperature stability of the sensor. The system can realize the signal acquisition, processing and transmission in some special places, which can solve the complicated scene connection, and has the advantages of low cost, good reliability and strong practicability.

Key words: pressure sensor, wireless technology, data collection

目录

一、实验目的 (1)

二、实验条件 (1)

2.1开发软件 (1)

2.2实验设备 (1)

三、实验设计原理与步骤 (1)

3.1 压力传感器信号采集设计原理 (1)

3.2 传感器的选用条件 (1)

3.3 压力传感器的特点 (2)

3.4 A/D转换原理 (2)

3.5 无线发射部分 (3)

3.6 无线接收部分 (4)

3.7 软件部分设计 (5)

四、实验结果分析及总结 (7)

参考文献 (8)

一、实验目的

1、由于压力控制在生产过程中起着决定性的安全作用,因此有必要准确测量压力。通过压力传感器将需要测量的位置的压力信号转化为电信号。

2、通过本次实验,同学们可以加深对A/D转换器、单片机及系统仿真软件的了解。

二、实验条件

2.1开发软件

Keil C51 是Keil software 公司出品的51系列兼容单片机C语言软件开发系统。Keil C51软件提供了丰富的库数据和功能强大的集成开发调试工具μVision2全是windows界面。keil C51生成的目标代码的效率之高,多数语句生成的汇编代码很紧凑,容易理解。在开发大型软件时更能体现高级语言的优势。Keil的版本目前是V7版本,他是很优秀的8051C编译器。

2.2实验设备

(1)传感器

(2)程控放大器

(3)A/D转换器 ICL7135

(4)无线发射与接收电路

(5)计算机

三、实验设计原理与步骤

3.1 压力传感器信号采集设计原理

数据采集系统是指将温度、压力、流量、位移等模拟量进行采集、量化转换成数字量后,以便由计算机进行存储、处理、显示或打印的装置。

图一为压力传感器通过无线来进行信号采集的系统图。

3.2 传感器的选用条件

(1)转换范围与被测量实际变化范围相一致

(2)转换精度转换速度应符合整机要求

(3)能满足被测介质和使用环境的特殊要求

(4)能满足用户对可靠性和可维护性的要求

3.3 压力传感器的特点

(1).传感器的量程和功能都得到了进一步扩展,能实现对基本参数和特殊参数的测量,满足不同场合的需要。

(2).传感器的灵敏度和测量精度也同时得到了提高,对于微弱信号测量,各种信号的校正和补偿都可以实现,测量数据可以根据需要进行存储。

(3).数据测量的稳定性和可能性得到提升,减小外界环境对压力传感器输出干扰,可以对测量有选择性地进行。

(4).能够实现自我诊断功能,对发生故障的部位能及时且准确地进行锁定,故障状态迅速识别,解决一些通过硬件不能实现的问题。

(5).信号输出形式和接口选择更为多样,通信距离得到更大提高。

3.4 A/D转换原理

ICL7135是高精度四位半 CMOS双积分型 A /D 转换器 ,具有如下特点: (1)转换速度为 3 ~ 10次/s ,分辨率相当于 14 位二进制数, 转换误差为±1 LSB ,转换精度高。(2)量程范围0 ~ 1. 999 9 V 。(3)对输入的模拟信号过(欠)量程能够识别 ; 具有自动转换和自动调零功能 ,可保证零点在常温下的长期稳定

性。(4)与单片机可直接连接,不需地址选择信号。当ICL7135工作于双极性情况时 ,时钟最高频率为 125 kHz ,可采用 555定时器作为 ICL7135的CLK 时钟输入。当 ICL7135的积分器在积分过程中(对信号积分和反向积分),其 BUSY 端输出高电平 ,积分器反向积分过零后输出低电平。ICL7135的 POL 端为极性输出端。当输入信号为正时POL 输出高电平; 当输入信号为负时 POL 输出为低电平。B1 、 B2 、 B4 、 B8是 BCD 码输出端。A /D 转换器的基准电压的精度和稳定性是影响转换精度的主要因素。为保证ICL7135的转换精度 ,我们采用高准确度、低温漂的带隙基准电压源 MC1403向其提供 1 V 的基准电压。A /D 转换器与单片机的基本连线见图 2 。

3.5 无线发射部分

发射电路部分由 PT2262 编码器和 F05 发射模块组成。其中 PT2262是一种 CMOS 工艺制造的低功耗低价位通用编码电路 ,能将数据和地址编译成代码的波形。它最大有 12位(A0 ~ A11)三态地址端管脚(悬空 ,接高电平,接低电平),共有 531441 种地址代码。最大有 6 位(D0 ~D5)数据端管脚, 设定的地址码和数据码从 17 脚串行输出。

F05具有较宽的工作电压范围及低功耗特性 ,当发射电压为 3 V 时 ,发射电流约 2 mA ,发射功率较小, 12 V 为最佳工作电压 , 具有较好的发射效果, 发射电流约 5 ~8 mA ,大于 12 V 直流功耗增大 ,有效发射功率不再明显提高。F05系列采用 AM 方式调制以降低功耗 ,数据信号停止,发射电流降为零。数据电平应接近 F05的实际工作电压以获得较高的调制效果 , F05 对过宽的调制信

号易引起调制效率下降, 收发距离变近。当高电平脉冲宽度在0. 08 ~ 1 ms 时发射效果较好,大于 1 ms后效率开始下降;当低电平区大于 10 ms ,接收到的数据第一位极易被干扰(即零电平干扰)而引起不解码。如采用 CPU 编译码可在数据识别位前加一些乱码以抑制零电平干扰 ,若是通用编解码器 ,可调整振荡电阻使每组码中间的低电平区小于10 ms 。平时 F05输入端应处于低电平状态 ,输入的数据信号应是正逻辑电平, 幅度最高不应超过 F05 的工作电压。F05 应垂直安装在印刷电路板边部,应离开周围器件5 mm 以上 ,以免受分布参数影响而停振。发射部分电路见图3。

图3 发射电路部分设计

3.6 无线接收部分

接收电路部分主要由P T2272解码器和 J05接收模块组成。其中 PT2272最多可有 12位(A0 ~ A11)三态地址端管脚,任意组合可提供 531441地址码,最多可有6位(D0 ~D5)数据端输出管脚, 17 脚为解码有效指示输出, PT2272分为锁存型输出或非锁存型输出。J05接收模块采用超外差 ,二次变频结构 ,所有的射频接收、混频、滤波、数据解调,放大整形全部在芯片内完成,接收功能高度集成化。具有二种工作方式选择,以适合解调不同的数据速率。当第3脚悬空(内部已上拉为高电平)时,射频接收带宽较宽,可适应发射频率精度误差较大的

声表谐振器稳频的发射机及一般的 LC 发射机。当第3脚接地时,射频接收带宽较窄 ,解调滤波器带宽较大 ,但要求配套的发射机必须具有较高的频率精度及稳定度 ,发射频率必须由晶体或精度较高的声表谐振器稳频。接收部分电路见图4。

图 4 接收部分电路设计

3.7 软件部分设计

智能压力传感器前端系统软件包括初始化程序、压力和温度的数据采集程序、数字滤波程序、测量算法程序、发送程序等部分组成。系统初始化程序包括堆栈指针的设置、中断源控制字设置和有关工作单元的初始化等。本系统采用的是复合滤波方法 ,此法首先将 n 次采样值按大小排队,然后去掉最大值和最小值 ,再对剩下的 n- 2个采样值求算术平均值。复合滤波法既可以去掉脉冲干扰,又可以对采样值进行平滑加工 ,它兼有中值滤波和算术平均滤波的优点。关于温度引起的压力传感器热零点漂移现象 ,我们采用的是非线性函数多项式拟合的规范化方法。在程序中通过拟合出的规范化多项式 ,对压力值进行温度漂移的补偿计算。最后得到的压力值数据经 P1 口发送到 PT 2262数据端, 由PT2262编码送 F05发射数据。接收端的软件实

现比较简单,主要是解码器 PT2272将 J05接收来的数据发送到单片机的P1 口,经单片机处理后由 P2 口发送给 LED 显示。

图5 接收端程序流程图

四、实验结果分析及总结

测试时将数据采集发射电路与信号接收装置相距20 m左右,将压力传感器置于恒温槽中 ,在不同的温度下进行了分组压力测试,实验结果如表 1所示。

从实验结果可以看出,由于在智能传感器系统中融入了温度信息 ,并且应用多项式拟合的算法对压力值进行了零点漂移补偿计算 ,所以基本消除了温度对压力传感器输出信号的影响。

该压力传感器系统由于采用了无线技术来传送采集到的数据信息 ,因此应用起来更加灵活可靠。尤其在一些环境恶劣的场所,较之传统的有线压力监测系统更具优势,有利于实现远程监测。该压力传感器无线数据采集系统具有广泛的应用前景。

实验中总是遇到各种问题,此时我们需要及时翻阅资料询问老师,将问题迅速解决,不把问题留到明天。只有这样我们才能更快的进步,更快的解决问题。在进行数据采集部分时,我们还考虑到温度对实验的影响,并且进行数据处理计算,消除温度对信号的影响,使数据更加精确。

参考文献

[1]《智能无线数据采集系统》苏亚杜晨红孙以材张超河北工业大学

[2]《基于 AT89C2051 单片机压力传感与检测系统》林延畅, 颜志国, 刘佳明

[3]《智能仪表技术》北京师范大学出版社柳桂国,葛鲁波

[4]《无线信号传输装置及传输方法》张默晗,张北,王天亮

[5]《电子测量技术基础》张永瑞

[6]《无间断无线信号传输方法及装置》李羿承,林俊嘉

常用压力传感器原理分析

常用压力传感器原理分析 振膜式谐振压力传感器 振膜式压力传感器结构如图(a)所示。振膜为一个平膜片,且与环形壳体做成整体结构,它和基座构成密封的压力测量室,被测压力 p经过导压管进入压力测量室内。参考压力室可以通大气用于测量表压,也可以抽成真空测量绝压。装于基座顶部的电磁线圈作为激振源给膜片提供激振力,当激振 频率与膜片固有频率一致时,膜片产生谐振。没有压力时,膜片是平的,其谐振频率为 f0;当有压力作用时,膜片受力变形,其张紧力增加,则相应的谐振频率也随之增加,频率随压力变化且为单值函数关系。 在膜片上粘贴有应变片,它可以输出一个与谐振频率相同的信号。此信号经放大器放大后,再反馈给激振线圈以维持膜片的连续振动,构成一个闭环正反馈自激振荡系统。如图(b)所示 压电式压力传感器 某些电介质沿着某一个方向受力而发生机械变形(压缩或伸长)时,其内部将发生极化现象,而在其某些表面上会产生电荷。当外力去掉后,它又会重新回到不带电 的状态,此现象称为“压电效应”。常用的压电材料有天然的压电晶体(如石英晶体)和压电陶瓷(如钛酸钡)两大类,它们的压电机理并不相同,压电陶瓷是人造 多晶体,压电常数比石英晶体高,但机械性能和稳定性不如石英晶体好。它们都具有较好特性,均是较理想的压电材料。 压电式压力传感器是利用压电材料的压电效应将被测压力转换为电信号的。由压电材料制成的压电元件受到压力作用时产生的电荷量与作用力之间呈线性关系: Q=kSp 式中 Q为电荷量;k为压电常数;S为作用面积;p为压力。通过测量电荷量可知被测压力大小。 图1为一种压电式压力传感器的结构示意图。压电元件夹于两个弹性膜片之间,压电元件的一个侧面与膜片接触并接地,另一侧面通过引线将电荷量引出。被测压力 均匀作用在膜片上,使压电元件受力而产生电荷。电荷量一般用电荷放大器或电压放大器放大,转换为电压或电流输出,输出信号与被测压力值相对应。 除在校准用的标准压力传感器或高精度压力传感器中采用石英晶体做压电元件外,一般压电式压力传感器的压电元件材料多为压电陶瓷,也有用高分子材料(如聚偏二氟乙稀)或复合材料的合成膜的。

电阻应变片压力传感器设计

《电阻应变片的压力传感器设计》 题目电阻应变片的压力传感器设计时间 201608 班级 2014级 姓名 序号 指导教师 教研室主任 系教学主任 2016年08月 前言

随着科学技术的迅猛发展,非物理量的测试与控制技术,已越来越广泛地应用于航天、航空、交通运输、冶金、机械制造、石化、轻工、技术监督与测试等技术领域,而且也正逐步引入人们的日常生活中去。传感器技术是实现测试与自动控制的重要环节。在测试系统中,被作为一次仪表定位,其主要特征是能准确传递和检测出某一形态的信息,并将其转换成另一形态的信息。 传感器是指那些对被测对象的某一确定的信息具有感受(或响应)与检出功能,并使之按照一定规律转换成与之对应的可输出信号的元器件或装置。其中电阻应变式传感器是被广泛用于电子秤和各种新型机构的测力装置,其精度和范围度是根据需要来选定的。因此,应根据测量对象的要求,恰当地选择精度和范围度是至关重要的。但无论何种条件、场合使用的传感器,均要求其性能稳定,数据可靠,经久耐用。 随着技术的进步,由称重传感器制作的电子衡器已广泛地应用到各行各业,实现了对物料的快速、准确的称量,特别是随着微处理机的出现,工业生产过程自动化程度化的不断提高,称重传感器已成为过程控制中的一种必需的装置,从以前不能称重的大型罐、料斗等重量计测以及吊车秤、汽车秤等计测控制,到混合分配多种原料的配料系统、生产工艺中的自动检测和粉粒体进料量控制等,都应用了称重传感器,目前,称重传感器几乎运用到了所有的称重领域。 本次课程设计的是一个大量程称重传感器,测量范围为1t到100t。 本次课程设计的称重传感器就是利用应变片阻值的变化量来确定弹性元件的微小应变,从而利用力,受力面积及应变之间的关系来确定力的大小,进而求得产生作用力的物体的质量。应变片阻值的变化可以通过后续的处理电路求得。 传感器的设计主要包括弹性元件的设计和处理电路的设计。由于传感器输出的信号是微弱信号,故需要对其进行放大处理;由于传感器输出的信号里混有干扰信号,故需要对其进行检波滤波;由于传感器输出的信号通常都伴随着很大的共模电压(包括干扰电压),故需要设计共模抑制电路。除此之外,还要设计调零电路。 目录

MEMS压力传感器原理与应用.

MEMS压力传感器原理与应用 摘要:简述MEMS压力传感器的结构与工作原理,以及应用技术,MEMS压力传感器Die的设计、生产成本分析,从系统应用到销售链。 关键词:MEMS压力传感器 惠斯顿电桥 硅薄膜应力杯 硅压阻式压力传感器硅电容式压力传感器 MEMS(微电子机械系统)是指集微型传感器、执行器以及信号处理和控制电路、接口电路、通信和电源于一体的微型机电系统。 MEMS压力传感器可以用类似集成电路(IC)设计技术和制造工艺,进行高精度、低成本的大批量生产,从而为消费电子和工业过程控制产品用低廉的成本大量使用MEMS传感器打开方便之门,使压力控制变得简单易用和智能化。传统的机械量压力传感器是基于金属弹性体受力变形,由机械量弹性变形到电量转换输出,因此它不可能如MEMS压力传感器那样做得像IC那么微小,成本也远远高于MEMS压力传感器。相对于传统的机械量传感器,MEMS压力传感器的尺寸更小,最大的不超过1cm,使性价比相对于传统“机械”制造技术大幅度提高。 MEMS压力传感器原理 目前的MEMS压力传感器有硅压阻式压力传感器和硅电容式压力传感器,两者 都是在硅片上生成的微机械电子传感器。 硅压阻式压力传感器是采用高精密半导体电阻应变片组成惠斯顿电桥作为力电变换测量电路的,具有较高的测量精度、较低的功耗,极低的成本。惠斯顿电桥的压阻式传感器,如无压力变化,其输出为零,几乎不耗电。其电原理如图1所示。硅压阻式压力传感器其应变片电桥的光刻版本如图2。 MEMS硅压阻式压力传感器采用周边固定的圆形的应力杯硅薄膜内壁,采用MEMS技术直接将四个高精密半导体应变片刻制在其表面应力最大处,组成惠斯顿测量电桥,作为力电变换测量电路,将压力这个物理量直接变换成电量,其测量精度能达0.01%~0.03%FS。硅压阻式压力传感器结构如图3所示,上下二层是玻璃体,中间是硅片,硅片中部做成一应力杯,其应力硅薄膜上部有一真空

JJG 860—94压力传感器(静态)检定规程

压力传感器(静态)检定规程 JJG 860—94 本规程主要起草人:许新民(航空工业总公司第304研究所) 郭春山(中国计量科学研究院) 张首君(中国计量科学研究院) 参加起草人:陈景文(航空工业总公司第304研究所) 目次 一概述 二技术要求 三检定条件 四检定项目和检定方法 五检定结果处理和检定周期 附录1 压力传感器检定记录格式 附录2 检定证书内容格式(1) 附录3 检定证书内容格式(2) 压力传感器(静态)检定规程 本检定规程适用于新制造、使用中和修理后的压力传感器的静态检定。 一概述 压力传感器是一种能感受压力,并按照一定的规律将压力转换成可用输出信号(一般为电信号)的器件或装置,通常由压力敏感元件和转换元件组成。 按压力测试的不同类型,压力传感器可分为表压传感器、差压传感器和绝压传感器等。 二技术要求 1压力传感器的准确度等级和允许基本误差应符合表1规定。 表1 2压力传感器的配套应完整,外观不应有影响计量性能的锈蚀和损伤。各部件应装配牢固,不应有松动,脱焊或接触不良等现象。 3压力传感器在外壳上或外壳的铭牌上应清楚地标明其型号和编号。压力传感器的名称、

测量范围、准确度等级、制造厂家、制造日期及工作电源可在外壳或铭牌上标明,或在相应的技术文件中说明。 4差压传感器的高压(+)和低压(-)接嘴应有明确的永久性标志。 5压力传感器的电源端和信号输出端应有明确的区别标志。 6重复性误差。压力传感器的重复性误差不得大于允许基本误差的绝对值。 7回程误差。压力传感器的回程误差不得大于允许基本误差的绝对值。 8线性误差。压力传感器的线性误差的绝对值不得大于允许基本误差的绝对值。非线性压力传感器对此不作要求。 三检定条件 9 压力标准器 压力标准器选择的基本原则是其基本误差的绝对值应小于被检压力传感器基本误差绝对值的1/3。准确度等级为0.05级的压力传感器允许采用一等标准器(±0.02%)作为压力标准器。 压力标准器可选用工作基准活塞式压力计、工作基准微压计、标准活塞式压力计、标准活塞式压力真空计、气体活塞式压力计、标准浮球式压力计、标准液体压力计、补偿式微压计、数字式压力计、精密压力表及其他相应准确度等级的压力计量标准器。 10 检定设备 10.1激励电源。激励电源应按压力传感器要求配套,除非压力传感器对激励电源稳定性无特殊要求,否则其稳定度应为被检压力传感器允许基本误差绝对值的1/5~1/10,可选用精密稳压电源、稳流电源、干电池或蓄电池等。 10.2读数记录装置。检定压力传感器用的读数记录装置基本误差的绝对值应小于被检压力传感器允许基本误差绝对值的1/5~1/10,可选用数字式电压表、数字式频率计、电流表等。 10.3其他设备。真空计、数字式气压计(或标准气压表)、温度计、湿度计、精密电阻箱等。 10.4与压力标准器配套使用的加压(或抽空)系统应在示值检定范围内连续可调。 11 环境条件 11.1检定时的环境温度视被检压力传感器的准确度等级而定,应符合下列要求: 0.01、0.02级20±1℃ 0.05级20±2℃ 0.1、0.2、0.5级20±3℃ 其他等级20±5℃ 11.2检定前,压力传感器应在检定的环境温度下放置2h以上,方可进行检定。 11.3相对湿度:小于80% 大气压力:86~106kPa 四检定项目和检定方法 12 外观检查 12.1使用中的压力传感器应有前次检定证书,新制造的或修理后的压力传感器应有出厂合格证书。 12.2检查压力传感器的外观应符合本规程第2~5条要求。

电感式压力传感器设计

机械工程测试技术基础题目:电感式压力传感器设计 班级 13机械自动化1班 学号 姓名 指导教师李红星 成绩

目录 一、概述 (2) 1.1、相关背景和应用简介 (2) 二、设计内容 (3) 1.主要参数 (3) 2.选用的元件和工作原理 (3) 3.测量方法 (5) 4.外观设计 (6) 课程设计小结 (7) 参考文献 (7)

一、概述 1.相关背景和应用简介 压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。 电感式传感器是利用电磁感应把被测的物理量如位移,压力,流量,振动等转换成线圈的自感系数和互感系数的变化,再由电路转换为电压或电流的变化量输出,实现非电量到电量的转换。 本次课程设计的电感式压力传感器为自感型,是由于磁性材料和磁导率不同,当压力作用于膜片时,气隙大小发生改变,气隙的改变影响线圈电感的变化,处理电路可以把这个电感的变化转化成相应的信号输出,从而达到测量压力的目的。电感式压力传感器的优点在于灵敏度高、测量范围大;缺点就是不能应用于高频动态环境。本次课程设计由于所学知识的欠缺,只说明电感式压力传感器的主要参数、选用的原件和工作原理、测量方法和外观设计。

二、设计内容 1.主要参数 量程:0~100KG. 综合精度:0.5%(线性、滞后、重复性). 灵敏度:1.0---1.5mV/V. 工作环境温度:—10O C~50O C. 适用对象:电子称,平台秤。 外壳材质:合金钢。 特殊要求:不得用于高频动态环境。 2.选用的元件和工作原理 选用的元件:线圈,铁心,衔铁,连接导线,合金钢外壳。工作原理: 1-线圈2-铁心3-衔铁 (a)可变磁阻结构 (b)特性曲线

压力传感器提升抗干扰性的方法

尤其是压电式压力传感器和电容式压力传感器很容易受干扰。压力传感器抗干扰措施一般从结构上下手。智能压力传感器还可以从软件上着手解决。 改进压力传感器的结构,在一定程度上可避免干扰的引入,可有如下途径:将信号处理电路与传感器的敏感元件做成一个整体,即一体化。这样,需传输的信号增强,提高了抗干扰能力。同时,因为是一体化的,也就减少了干扰的引入;集成化传感器具有结构紧凑、功能强的特点,有利于提高抗干扰能力;智能化传感器可以从多方面在软件上采取抗干扰措施,如数字滤波、定时自校、特性补偿等措施。 压力传感器一旦抗干扰性差容易受外界干扰,那么它的价值就打了折扣,其应用范围受到很大的限制。压力传感器是传感器中应用最多的传感器之一,其广泛应用在工业、农业以及服务业。在各种环境下都有应用,所以抗干扰性必须要相当可靠。目前压力传感器已能适应很多环境在使用但是在有的环境中压力传感器的抗干扰性还是不够好,我们必须从多角度,结合高新科技来使得压力传感器的抗干扰性进一步提高。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.wendangku.net/doc/f914257941.html,/

传感器的标定与校准

标定与校准的概念 新研制或生产的传感器需要对其技术性能进行全面的检定,以确定其基本的静、动态特性,包括灵敏度、重复性、非线性、迟滞、精度及固有频率等。 例如,对于一个压电式压力传感器,在受力后将输出电荷信号,即压力信号经传感器转换为电荷信号。但是,究竟多大压力能使传感器产生多少电荷呢?换句话说,我们测出了一定大小的电荷信号,但它所表示的加在传感器上的压力是多大呢? 这个问题只靠传感器本身是无法确定的,必须依靠专用的标准设备来确定传感器的输入――输出转换关系,这个过程就称为标定。简单地说,利用标准器具对传感器进行标度的过程称为标定。具体到压电式压力传感器来说,我们用专用的标定设备,如活塞式压力计,产生一个大小已知的标准力,作用在传感器上,传感器将输出一个相应的电荷信号,这时,再用精度已知的标准检测设备测量这个电荷信号,得到电荷信号的大小,由此得到一组输入――输出关系,这样的一系列过程就是对压电式压力传感器的标定过程,如图1-19所示。 图1-19 压电式压力传感器输入――输出关系 校准在某种程度上说也是一种标定,它是指传感器在经过一段时间储存或使用后,需要对其进行复测,以检测传感器的基本性能是否发生变化,判断它是否可以继续使用。因此,校准是指传感器在使用中或存储后进行的性能复测。在校准过程中,传感器的某些指标发生了变化,应对其进行修正。 标定与校准在本质上是相同的,校准实际上就是再次的标定,因此,下面都以标定为例作介绍。 1.7.2 标定的基本方法 标定的基本方法是,利用标准设备产生已知的非电量(如标准力、位移、压力等),作为输入量输入到待标定的传感器,然后将得到的传感器的输出量与输入的标准量作比较,从而得到一系列的标定数据或曲线。例如,上述的压电式压力传感器,利用标准设备产生已知大小的标准压力,输入传感器后,得到相应的输出信号,这样就可以得到其标定曲线,根据标定曲线确定拟合直线,可作为测量的依据,如图1-20所示。

智能压力传感器的设计

密级: NANCHANG UNIVERSITY 学士学位论文 THESIS OF BACHELOR (2009—2013年) 题目智能化压力传感器的设计 学院:环化学院系测控系 专业班级:测控技术与仪器093班 学生姓名:钟刚学号: 5801209114 指导教师:刘诚职称:讲师 起讫日期: 2013.3.15—2013.6.6 南昌大学 学士学位论文原创性申明 本人郑重申明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式表明。本人完全意识到本申明的法律后果由本人承担。

作者签名:日期: 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权南昌大学可以将本论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 保密□,在年解密后适用本授权书。 本学位论文属于 不保密□。 (请在以上相应方框内打“√”) 作者签名:日期: 导师签名:日期:

传感器及转换器形成系统的“前端”,没有它,许多现代化的电子系统都无法正常工作。传感器已广泛的应用于工业控制系统和能源工业装置当中(如石油和天然气的生产、配电工业)。它们也是制造录音机和录像机这些原始设备产品的重要内在组成部分。大多数这些数字电子系统之所以具有普遍性和强大优势是得益于传感器广泛应用于这些电子电路中。 本课题将深入研究智能压力传感器系统理论及其在压力测试方面的应用,对新型智能压力传感器系统的智能化功能、智能化软件和硬件配置进行全面的设计。提出了一种差动电容式传感器的前置电路,基于电容/ 电压转换的原理,对微小电容变化量进行测量。电路输出的直流电压与差动电容变化量成线性关系,且能对偏差电容和电路的漂移进行自动补偿。 完善智能化软件,实现温度补偿、自动校准、总线数字通讯、自动增益控制等多种智能化特性,使智能化程度尽可能的提高。 关键词:传感器;压力;智能化。

压力传感器(大学物理)

一、实验目的 1. 了解应变压力传感器的组成、结构及工作参数。 2. 了解非电量的转换及测量方法——电桥法。 3. 掌握非平衡电桥的测量技术。 4. 掌握应变压力传感器灵敏度及物体重量的测量。 5. 了解多个应变压力传感器的线性组成、调整与定标。 二、实验原理 压力传感器是把一种非电量转换成电信号的传感器。弹性体在压力(重量)作用下产生形变(应变),导致(按电桥方式联接)粘贴于弹性体中的应变片,产生电阻变化的过程。 压力传感器的主要指标是它的最大载重(压力)、灵敏度、输出输入电阻值、工作电压(激励电压)(VIN)、输出电压(VOUT)范围。 压力传感器是由特殊工艺材料制成的弹性体、电阻应变片、温度补偿电路组成;并采用非平衡电桥方式联接,最后密封在弹性体中。 弹性体: 一般由合金材料冶炼制成,加工成S 型、长条形、圆柱型等。为了产生一定弹性,挖空或部分挖空其内部。 电阻应变片: 金属导体的电阻R 与其电阻率ρ、长度L 、截面A 的大小有关。 A L R ρ = (1) 导体在承受机械形变过程中,电阻率、长度、截面都要发生变化,从而导致其电阻变化。 A A L L R R ?- ?+ ?=?ρ ρ (2) 这样就把所承爱的应力转变成应变,进而转换成电阻的变化。因此电阻应变片能将弹性体上应力的变化转换为电阻的变化。 电阻应变片的结构:电阻应变片一般由基底片、敏感栅、引线及履盖片用粘合剂粘合而成。 电阻应变片的结构如图1所示: 1-敏感栅(金属电阻丝) 2-基底片 3-覆盖层 4-引出线 图1 电阻丝应变片结构示意图 敏感栅:是感应弹性应变的敏感部分。敏感栅由直径约0.01~0.05毫米高电阻系数的细丝弯曲成栅状,它实际上是一个电阻元件,是电阻应变片感受构件应变的敏感部分.敏感栅用粘合剂固定在基底片上。b ×l 称为应变片的使用面积(应变片工作宽度,应变片标距(工作基长)l ),应变片的规格一般以使用面积和电阻值来表示,如3×10平方毫米,350欧姆。 基底片:基底将构件上的应变准确地传递到敏感栅上去.因此基底必须做得很薄,一般为0.03~0.06毫米,使它能与试件及敏感栅牢固地粘结在一起,另外它还具有良好的绝缘性、抗潮性和耐热性.基底材料有纸、胶膜和玻璃纤维布等。 引出线的作用是将敏感栅电阻元件与测量电路相连接,一般由0.1-0.2毫米低阻镀锡钢丝制成,并与敏感栅两输出端相焊接,覆盖片起保护作用.

基于电阻应变片的压力传感器设计

前言 随着科学技术的迅猛发展,非物理量的测试与控制技术,已越来越广泛地应用于航天、航空、交通运输、冶金、机械制造、石化、轻工、技术监督与测试等技术领域,而且也正逐步引入人们的日常生活中去。传感器技术是实现测试与自动控制的重要环节。在测试系统中,被作为一次仪表定位,其主要特征是能准确传递和检测出某一形态的信息,并将其转换成另一形态的信息。 传感器是指那些对被测对象的某一确定的信息具有感受(或响应)与检出功能,并使之按照一定规律转换成与之对应的可输出信号的元器件或装置。其中电阻应变式传感器是被广泛用于电子秤和各种新型机构的测力装置,其精度和范围度是根据需要来选定的。因此,应根据测量对象的要求,恰当地选择精度和范围度是至关重要的。但无论何种条件、场合使用的传感器,均要求其性能稳定,数据可靠,经久耐用。 随着技术的进步,由称重传感器制作的电子衡器已广泛地应用到各行各业,实现了对物料的快速、准确的称量,特别是随着微处理机的出现,工业生产过程自动化程度化的不断提高,称重传感器已成为过程控制中的一种必需的装置,从以前不能称重的大型罐、料斗等重量计测以及吊车秤、汽车秤等计测控制,到混合分配多种原料的配料系统、生产工艺中的自动检测和粉粒体进料量控制等,都应用了称重传感器,目前,称重传感器几乎运用到了所有的称重领域。 本次课程设计的是一个大量程称重传感器,测量范围为1t到100t。 本次课程设计的称重传感器就是利用应变片阻值的变化量来确定弹性元件的微小应变,从而利用力,受力面积及应变之间的关系来确定力的大小,进而求得产生作用力的物体的质量。应变片阻值的变化可以通过后续的处理电路求得。 传感器的设计主要包括弹性元件的设计和处理电路的设计。由于传感器输出的信号是微弱信号,故需要对其进行放大处理;由于传感器输出的信号里混有干扰信号,故需要对其进行检波滤波;由于传感器输出的信号通常都伴随着很大的共模电压(包括干扰电压),故需要设计共模抑制电路。除此之外,还要设计调零电路。

手机侧边压力传感器校准方法与制作流程

本技术公开了一种手机侧边压力传感器校准方法,该方法通过按压两个传感器中间的点,获取两个传感器端的压力值,以此为基础,把相邻两个压力传感器的校准系数比例关系,再根据相邻压力传感器的比例关系,最终得到所有传感器间的比例关系,通过该比例关系进行压力传感器的校准。通过本技术可以在没有专业校准设备的情况下,获得各传感器的相对校准系数,由此实现快速、准确地校准。 技术要求 1.一种手机侧边压力传感器校准方法,其特征在于该方法通过按压两个传感器中间的点,获取两个传感器端的压力值,以此为基础,把相邻两个压力传感器的校准系数比例关 系,再根据相邻压力传感器的比例关系,最终得到所有传感器间的比例关系,通过该比 例关系进行压力传感器的校准。 2.如权利要求1所述的手机侧边压力传感器校准方法,其特征在于该方法包括如下步骤: 101、启动校准功能后,用户按压第一传感器和第二传感器中间位置201,分别读出四个 压力传感器的信号值为A1,A2,A3,A4; 102、按压第二传感器和第三传感器中间位置202得到B1,B2,B3,B4;

103、按压第三传感器和第四传感器中间位置203,等到C1,C2,C3,C4; 104、计算,获取各传感器的相对校准系数。 105、然后通过相对校准系数,可以精确获知用户按压了什么位置,以此进行校准。 3.如权利要求2所述的手机侧边压力传感器校准方法,其特征在于所述104步骤中,利用公式P1=R1*A1,其中P1为传感器1处的压力值,R1为传感器101的校准系数,A1为传感器101输出的信号量; 当按压两个传感器中间位置201时,传感器101与102感受到的压力值是相同的即: P1=P2R1*A1=R2*A2R2=R1*A1/A2 依此类推: 当按压两个传感器中间位置202时,P2=P3R2*B2=R3*B3R3=R2*B2/B3 当按压两个传感器中间位置203时,P3=P4R3*C3=R4*C4R4=P3*C3/C4 由于测定按压位置的识别只有两个通道间的压力比例相关,与压力大小无关。 因此我们可以设定R1为1.0,则: R1=1.0; R2=A1/A2; R3=(A1/A2)*(B2/B3); R4=(A1/A2)*(B2/B3)*(C3/C4)。 技术说明书 一种手机侧边压力传感器校准方法 技术领域

压力传感器原理

目录 1 概述 2 工作原理 1. 2.1 电阻应变片 2. 2.2 陶瓷型 3 选型要点 4 常见故障 5 四个无法避免的误差 6 抗干扰措施 7 八大发展趋势 将压力转换为电信号输出的传感器。通常把压力测量仪表中的电测式仪表称为压力传感器。压力传感器一般由弹性敏感元件和位移敏感元件(或应变计)组成。弹性敏感元件的作用是使被测压力作用于某个面积上并转换为位移或应变,然后由位移敏感元件或应变计转换为与压力成一定关系的电信号。有时把这两种元件的功能集于一体。压力传感器广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。 力学传感器的种类繁多,但常用的压力传感器有电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器,光纤压力传感器等。应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。 压力传感器是使用最为广泛的一种传感器。传统的压力传感器以机械结构型的器件为主,以弹性元件的形变指示压力,但这种结构尺寸大、质量轻,不能提供电学输出。随着半导体技术的发展,半导体压力传感器也应运而生。其特点是体积小、质量轻、准确度高、温度特性好。特别是随着MEMS技术的发展,半导体传感器向着微型化发展,而且其功耗小、可靠性高。 压阻式应变压力传感器的主要由电阻应变片按照惠斯通电桥原理组成。 电阻应变片

一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变 电阻应变片内部结构 片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变, 使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。 金属电阻应变片的内部结构 如图所示,是电阻应变片的结构示意图,它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 惠斯通原理

电阻应变式压力传感器设计说明

传感器与检测技术电阻应变式压力传感器的设计 学院:信息技术学院 指导老师:蔡杰 班级:B1106 :佳林 学号:0915110629

目录 一、设计任务分析 (2) 二、方案设计 (2) 2.1原理简述 (2) 2.2应变片检测原理 (3) 2.3弹性元件的选择及设计 (4) 2.4应变片的选择及设计 (5) 三、单元电路的设计 (6) 3.1电桥电路的设计 (6) 3.2放大电路的设计 (6) 3.3移相器的设计 (7) 3.4过零比较器的设计 (8) 3.5相敏检波电路的设计 (9) 3.6低通滤波器的设计 (9) 四、误差分析 (10) 五、心得体会 (10) 六、致 (11)

电阻应变式压力传感器的设计 一、设计任务分析 采用电阻应变片设计一种电阻应变式质量(压力)传感器,具体要求如下: 1.正确选取电阻应变片的型号、数量、粘贴方式并连接成交流电桥; 2.选取适当形式的弹性元件,完成其机械结构设计、材料选择和受力分析, 3.并根据测试极限围进行校核; 4.完成传感器的外观与装配设计; 5.完成应变电桥输出信号的后续电路(包括放大电路、相敏检波电路、低通 滤波电路)的设计和相关电路参数计算,并绘制传感器电路原理图; 二、方案设计 2.1原理简述 电阻应变式传感器为本设计的主要部件,传感器中的弹性元件感受物体的重 力并将其转化为应变片的电阻变化,再利用交流全桥测量原理得到一定大小的输 出电压,通过电路输出电压和标准重量的线性关系,建立具体的数学模型,在显 示表头中将电压(V)改为质量(kg)即可实现对物品质量的称重。 本设计所测质量围是0-10kg,同时也将后续处理电路的电压处理为与之对 应的0-10V。由于采用了交流电桥,所以后续电路包括放大电路,相敏检波电路, 移相电路,波形变换电路,低通滤波电路(显示电路本次未设计)。 原理框图如图一所示。 (质量)压力电阻应变片交流电桥5KHZ交流 放大器移相器数显表头 过零比较器 相敏检波 低通滤波

温度压力计的标定算法及软件实现

本文由zhangyufei_123贡献 doc1。 温度压力计的标定算法及软件实现 1.引言 存 储式井温压力计是一种高精度、高分辨率的井下温度和压力测试系统。它可 以完成对井下温度和压力情况的长时间持续监测,尤其适用于测试油井流压、静 压和压力 恢复的任务中。但是国内存储试压力计的大都采用最小二乘法标定仪 器,精确度不高,万分之 5 也很难达到。本文从压力计的标定算法入手,采用离 散点数据逼近的 原理,利用更高次的数值逼近的算法,提高压力计的测量精度。 2.存储式井温压力计简介 存储式井温压力计系统(以后简称压力计系统)可以相对独立的分为硬件系统和 软件系统两部分。 软硬件系统之间是基于特定的通讯协议并通过串口进行数据 交换。 软件系统负责标定硬件系统,对硬件系统设置参数,读取硬件采集的数据并进行 数据解释处理。串口通讯程序是整个软件的最底层,数据处理、图形绘制和仪器 标定都是通过它与硬件仪器交换数据的,这段程序与通讯协议有关。 硬件系统工作于井下,由 PIC 单片机芯片控制压力、温度传感器采样数据,并将 数据存储于存储芯片中或直接发送给软件系统, 该单片机的程序严格按照通讯协 议编写,与软件系统的串口通讯程序进行互操作。 在 数据处理过程中有下列名词。测量数据就是原始数据,是直接由硬件仪器采 集的通过二进制转化为十进制的计数值数据。工程数据,就是将原始数据带入一 定的公式 计算后,得到的与原始数据对应的一个数据。标准数据则是在标定过 程中使用的,如标准压力,标准温度等。在数据处理过程中,我们测量的工程数 据都是标准数据 的逼近值。 3.压力计系统的数据处理公式 仪器采集的数据是原始数据,原始数据向工程数据的转化是软件的主要任务,转 化过程利用数学公式表示为: Ve = f (Vo ) 表示原始值; 表示工程值; ( )表示函数关系式。 通过实验数据来确定上述公式的函数关系式 f()的过程就是仪器标定的过程。将 试井中测量的原始数据利用函数关系式 f()计算出工程数据的过程就是数据解 释的过程。 通常温度传感器的稳定性比较好,受外界干扰的因素少,通过实验温度原始数据 与工程数据的对应关系满足线性关系。 Vte = K * (Vto ? B) (公式 1) 根据上述公式,试验只需要从试验数据中选取两组值,即可计算出关系式中的常 数系数 K 和 B 得值。因此对温度的标定非常简单。 压 力的标定是比较复杂的。由于压力传感器的一般采用电气特性的设计原理, 不管采用电位器的特性,还是电阻应变片的特性,在高温下,都会随温度的升高 而使恒定 的压力在经过传感器采集后产生飘移,这就是温飘现象。这种现象的 存在,如果不对其进行补偿,肯定会影响到压力测量的准确度以及精度。 表 1 中的数据是已实现的标定软件在标定过程中记录的测量数据, 首行首列都是 标定用到的标准数据,表中为试验采集的测量数据。表中数据可以看出压力传感 器采 集的数据受到温度的影响,产生温飘现象。所以在计算压力工程值的过程 中必须考虑到温度对工程值的影响,需要温度对其进行补偿。 利用离散数据的最佳平方逼近理论, 当 ( 是未知数的个数, 是参与运算的向 量的维数)时的最佳平方逼近公式: 温度值 C) 30.0000 (。 压力(MPa) 频率 1 (KHz) 0.0000 2.0052 5.0000 2.1103 10.0000 2.2203 20.0000 2.4387 30.0000 2.6560 40.0000 2.8740 50.0000 3.0910 55.0000 3.2000 60.0000 3.3080 表 1 压力标定实验数据表 50.0000 频率 2 (KHz) 1.9960 2.1037 2.02133 2.4325 2.6527 2.8718 3.0910 3.2008 3.3100 80.0000 频率 3 (KHz) 1.9790 2.0892 2.2007 2.4238 2.6475 2.8697 3.0938 3.2050 3.3158 100.0000 频率 4 (KHz) 1.9667 2.0782 2.1915 2.4170 2.6432 2.8683 3.0942 3.2067 3.3190 120.0000 频率 5 (KHz) 1.9550 2.0670 2.1812 2.4100 2.6390 2.8665 3.0957 3.2095 3.3232 利用矩阵的运算可以计算出系数 的值。最后得出: , 就是压力值 Y 的最佳平方逼近。因此在压力数据处理中,测量并利用公式 2 计算 出的 值来近似表示标准的压力值,因此公式中 的取值越接近 , 对 Y 的逼近程 度越高,但同时对逼近离散点之间的值的逼近有一定的负面影响,因此 的取值 应该综合考虑这方面的影响。而标定的过程就是利用公式 2 确定 系数的过程。 4.

压力传感器结构设计与特性仿真

压力传感器结构设计与特性仿真 发表时间:2019-01-02T16:17:06.307Z 来源:《知识-力量》2019年3月中作者:胡媛元杜西亮 [导读] 本文设计了一种压阻式压力传感器,利用薄膜力学、挠度理论等相关知识分别计算出两种结构的最佳尺寸以及可以达到的最大理论应力,设计出一种双岛-梁膜结构。 (黑龙江大学,黑龙江哈尔滨 150000) 摘要:本文设计了一种压阻式压力传感器,利用薄膜力学、挠度理论等相关知识分别计算出两种结构的最佳尺寸以及可以达到的最大理论应力,设计出一种双岛-梁膜结构。用ANSYS有限元仿真软件静态仿真得到该结构可达到的最大应力为404.73MPa、最大位移为8.543μm,经分析该双岛-梁膜结构的灵敏度较高,并用控制变量法优化双岛-梁膜结构的尺寸。 关键词:压力传感器;灵敏度;双岛梁膜;ANSYS仿真 1.前言 MEMS压阻式压力传感器属于微型传感器的范畴,它广泛应用于汽车工业领域、航空航天领域及生物医疗领域。压阻式压力传感器以其高灵敏度、良好的线性度及可重复性而著名。压力传感器是整个传感装置领域消费数量最多、使用最广泛的器件之一,尤其是在工业自动化、环境保护和医疗器械等领域应用时,对传感器性能如灵敏度、线性度具有迫切的需求。因此,研究更高性能的微压力传感器具有重要意义。 2.压阻式压力传感器理论分析与结构设计 压阻式压力传感器的工作原理主要是利用半导体材料如硅、锗的压阻效应。压阻效应是指当半导体材料在某个方向上受到外界应力的作用时,引起其材料内部能带结构发生变化,能谷的能量振动,将带来载流子相对能量的变化,从而使半导体电阻率发生一定变化。 压阻式压力传感器的测量方法是将作用在弹性膜片上的压力转化为膜片的应变,应变将造成膜片上电阻值的变化。一般需将电阻的变化转化为电压的变化,并采用惠斯通电桥来测量这种变化。 3.优化结构的设计与仿真 3.1 双岛-梁膜结构设计 优化结构采用双岛-梁膜结构,在厚硅梁背面有两个岛,在该结构的前面,一个硅梁跨越硅岛并将硅膜分成两个对称的部分。在双岛-梁膜结构压力传感器中,双岛把应力集中到两岛之间以及岛与边框间极窄的膜区中,然后通过膜与梁的复合,将应力进一步集中到梁区。按照设计好的尺寸在ANSYS有限元分析软件中画出硅杯模型,并在硅膜表面施加200kPa的压力,进行静态仿真,得到应力云图、应变云图及位移云图后,分析出灵敏度的变化。然后找到应力最大的位置,放置压敏电阻,最后计算出双岛-梁膜结构的灵敏度。 3.2 压敏电阻设计 为了使电阻更大程度地处在应力集中的位置,将电阻设计成折弯形状,一般压敏电阻的单位表面积最大功耗为Pmax=5 10-3mW/μm2,尤其是当电阻条上覆盖着钝化膜时,更应该减小最大功耗。采用折弯型电阻,将其分成每段为150μm的四段,由于折弯电阻的末端靠近引线接触孔,所以会降低电阻的阻值,为了减小两端的负阻效应,通常使用硼注入或金属条连接。因此,电阻条长度为150μm,拐角端处尺寸为40μm,相邻电阻条间距为30μm,中间过渡宽度也为30μm,扩散结深为2μm。当压阻式压力传感器处于一定的压力下,为了得到最大的电压输出,膜的设计应尽可能大些,电阻的放置要尽可能合理。根据压敏电阻的分析过程,设计好压敏电阻尺寸。 压敏电阻应该放置在压阻系数最大的晶面上与应力最大的位置,此时可得到最大输出电压。所以,四个P型硅压敏电阻放置在(100)晶面的<110>晶向上,此时压阻系数最大。通过应力分布曲线,可以清晰找到应力最大值的位置,即大致在薄膜边缘中点处和两岛中间处。 3.3 参数改变后的仿真结果 现在通过控制变量法改变中间小梁的宽度,两岛间距固定为1000μm,观察应力最大位置的纵横应力差绝对值以及最大形变的变化。仿真结果如图(a)、图(b)所示。可以看出,随着小梁宽度的增加,中间应力差、边缘应力差均下降,而应力差越小,输出电压越小,灵敏度越低,所以在充分考虑到折弯电阻条的尺寸后,初步选择小梁宽度为100μm。 通过改变两岛间距这一变量,找到灵敏度与两岛间距的关系。小梁宽度固定为100μm,只改变两岛之间距离。仿真结果如图(c)所示,得到了不同两岛间距纵横应力差绝对值分布曲线。随着中间小梁宽度变化中间应力差、边缘应力差、最大形变的关系曲线如图(d)所示。可以看出两岛间距对纵横应力差影响不显著,且最大形变值相近,即灵敏度、线性度相近,但比较最大应力值,两岛间距为1000μm时最大应力为404.73MPa,所以,选择两岛间距为1000μm,小梁宽度为100μm时,灵敏度最高,线性度较好。 4.优化后的结构尺寸 该双岛-梁膜结构的尺寸为:E型硅杯为4000 4000 540μm,薄膜尺寸为3000 3000 40μm,大岛为300 300 150μm,小岛为150 150 30μm,中间小梁宽度为100μm,大梁为1300 1500 60μm,两岛间距为1000μm。 5.结语 本文提出了双岛-梁膜结构,理论得出了该结构的理想尺寸为:E型硅杯为4000 4000 540μm,薄膜尺寸为3000 3000 40μm,大岛为300

智能压力传感器的设计

前言 (1) 1 压力传感器 (1) 1.1压力传感器的简介 (1) 1.2 压力传感器的种类 (1) 1.3压力传感器的结构与特点 (1) 2 智能压力传感器 (1) 2.1智能压力传感器的构造 (1) 2.2智能压力传感器的作用 (2) 2.3智能压力传感器的优势 (2) 与传统传感器相比,智能压力传感器的特点是: (2) 2.4智能压力传感器的前景 (3) 3 智能压力传感器的系统设计 (3) 3.1系统结构整体设计 (3) 3.2系统的特点 (3) 4 系统硬件设计 (4) 4.1前端传感器模块 (4) 4.2信号调理电路模块 (5) 4.3 A/D转换模块 (5) 4.4微处理器 (8) 4.5显示模块 (9) 4.6温度补偿模块 (11) 4.7 硬件设计原理图 (11) 5软件程序设计 (16) 5.1软件程序语言介绍 (16) 5.2程序流程图 (16) 5.3 C语言程序设计 (16) 6问题与探究 (16) 7总结................................................................................... 错误!未定义书签。

参考文献 (17)

淮南师范学院2014届本科毕业论文 前言 压力传感器是目前最为大众常见所知的传统传感器,这种传感器以压力形变为指标体现压力变化,这种结构传感器存在质量大,敏感度低,不能和电路器件相连使用等缺陷。随便科技的进步,半导体的迅猛发展,半导体压力传感器的诞生弥补了这些不足,半导体压力传感器,不仅体积小,重量轻,而且可以和电路元器件配套使用,从而大大的提高了智能化和可操作性。压力传感器大大的推动了传感器的发展,让人们能够更好的实现压力体现发展。 1 压力传感器 1.1压力传感器的简介 压力传感器是最为普遍的一种传感器,大多使用在各种自动化环境中,涉及到电力石化,军工科技,船舶制造,数码产品等多方面。一般压力传感器都是用模拟信号转换成输出信号,将输出信号转换为数值表现。这种转换方式大大的提高了工作效率。进而为智能化提供了强有力的发展基础。 1.2 压力传感器的种类 压力传感器通常分为以下几种:1;电容式,2;电阻式,3;压电式,4;电感式,5;智能式。智能式传感器是通过和微处理器相连,与传感器相结合,从而产生了智能化效果,它具有信号处理,信号记忆和逻辑思辨的能力。 1.3压力传感器的结构与特点 本次论文采用差压式电容传感器,电容式传感器灵敏度高,性价比高,操作简单,质量高,过载能力强,在极端环境下,能够稳定工作,提供持续的传感能力,保证了整个元器件工作,并把环境影响降到最低,特点鲜明。 2 智能压力传感器 2.1智能压力传感器的构造 智能压力传感器是利用精密机械制造工艺和集成电路原理,将智能芯片和传感器紧密结合在一个半导体原件上,与传统传感器相比,智能式传感器体积更小,质量小,适用范围更大。整个智能压力传感器结构如下图所示;

压力传感器标定与校准

压力传感器检定: 1.静态检定 2.动态检定 我们把压力传感器的特性分成两类静态特性和动态特性。压力传感器静态特性的 主要指标是灵敏度、线性度、迟滞、重复性、精度、温度漂移和零点漂移等等。一般 我们校准压力传感器都是校准其静态特性,这是因为我们将压力传感器理想化,认为 其固有频率相当大而且本身无阻尼,这时压力传感器的静态特性和动态特性是一样的。然而在被测压力随时间变化的情况下,压力传感器的输出能否追随输入压力的快速变 化是一个很重要的问题。有的压力传感器尽管其静态特性非常好,但由于不能很好地 追随输入压力的快速变化而导致严重的误差,有时甚至出现高达百分之百的动态误差。所以我们必须要进行压力传感器动态特性的校准,认真分析其动态响应特性。压力传 感器动态特性可以用它的上升时间、固有频率、幅频特性、相频特性等参数来描述。 迟滞e H:正行程与反行程之间的曲线的不重合度; 线性度e L(非线性误差):输入输出校准曲线(实际)与选定的拟合直线之间的吻合程度; 重复性e R:正行程或反行程曲线多次测量时曲线的一致程度;

置信系数a=2(95.4%)或a=3(99.73%) 贝塞尔公式 线性度、迟滞反映系统误差;重复性反映偶然误差。 误差(三者反应系统总误差)e S:e S=±√e H2+e L2+e R2 或e S=e H+e L+e R 根据检定规程一《压力传感器静态》,在校准精密线性压力传感器时给出的校准曲线有二种最小二乘直线和端点平移线。 动态检定: 1.瞬态激励法(阶跃信号激励) 2.正弦激励法(正弦信号激励) 动态检定指标、参数:频率响应、谐振频率、自振频率、阻尼比、上升时间、建立时间、过冲量、灵敏度。 正弦激励法:正弦压力信号输入法是一种间接的检定方法,即被检定的压力传感器和一个“参考”压力传感器相比较,而“参考”压力传感器具有理想的动态性能。正弦压力激励法在高频、高压时,正弦信号往往严重畸变。因此一般只能用于小压力或低频范围的检定。

相关文档