文档库 最新最全的文档下载
当前位置:文档库 › 工件测量技术实验

工件测量技术实验

工件测量技术实验
工件测量技术实验

工件测量技术实验

一、课时安排

4H

其中:测量原理介绍0.5H

常用量具介绍及演示1H

学生测量实验2H

实训报告0.5H

二、实训目的和要求

实习目的:

(1)通过实训建立机械工程中互换性技术测量的概念;

(2)掌握基本几何量及其精度、形位精度、表面粗糙度、螺纹中径等参数的精密测量方法;

(3)掌握各种常用精密量具的测量原理及其使用方法。

实习要求:

能用基本的精密量具正确测出所给工件的基本几何量及其精度、形位精度、表面粗糙度、螺纹中径等参数。

三、技术测量实训主要内容

(一)测量原理介绍(0.5H)

地点:测量实验室

(二)常用量具介绍及演示(1H)

地点:测量实验室

(三)学生测量实验(2H)

地点:测量实验室

分组:分四组,顺序轮换

(四)实习报告(0.5H)

地点:测量实验室

四、实验内容、工具及量具

五、实验基本步骤

1、根据所给测量项目选择适当的量具;

2、熟悉所选量具并进行测量;

3、记录测量数据;

4、按顺序进行组间轮换,完成所有给定项目的测量;

5、完成实训报告。

六、技术测量相关知识

(一)互换性技术测量的概念

1、互换性的概念

在机械制造业中,同一规格的一批零件或部件,任取其一,不需任何挑选或

修理就能装在机器上,并达到预定的使用性能要求,这样的一批零件或部件就称为具有互换性的零、部件。例如日常生活中经常遇到的自行车或手表零件损坏以后,修理人员很快就可用同样规格的零件换上继续使用。

机械制造业中的互换性,通常包括几何参数(如尺寸、几何形状等)和机械性能(如硬度、强度、弹性等)的互换性,这里仅讨论几何参数的互换性。

为了满足互换性要求,最好是相同规格的零、部件做得完全一致,但实际上零件实际几何参数相对于理想几何参数的变动(误差)总是客观存在的。实际几何参数完全一致是不可能的,也是没有必要的。

考虑到工件的使用功能要求,加工、装配及综合经济效益,通过一定的检测手段和工艺措施把这些误差控制在一定范围内,是完全可能的。这些允许的零件几何参数的变动量,就称为公差。与上述几何参数误差相对应的公差类型有尺寸(角度)公差、形状公差、位置公差和表面粗糙度。零件几何参数在规定的公差范围内,即可满足其互换性要求。

2、测量的概念

研究测量、保证量值统一和准确性的学科称为计量学。计量学研究的范围包括:长度、温度、力学、电学、无线电、时间、频率、放射性、光学、声学、物质等十大类。广义的长度是指几何量,即包括长度、角度、几何形状、几何要素的相对位置和表面粗糙度等内容。

测量就是将被测量和一个作为测量的标准量进行比较,从而确定二者比值的过程。

测量过程包括测量对象、测量单位、测量方法及测量精度四个要素。

测量对象:从几何量的特性来分,测量对象包括长度、角度、形位误差和表面粗糙度等;从被测零件的特点来分,可分为方形零件、轴类零件、锥体零件、

箱体零件、凸轮、花键、螺纹、齿轮、各种刀具等。对于它们的特性、被测参数的定义和有关标准都必须有清晰而明确的理解,才能正确地进行测量。

测量单位:我国采用以国际单位制为基础的法定计量单位。在长度计量中米(m)是基本单位,机械制造业中常用毫米(mm)和微米(μm);角度单位采用度(°)、分(’)、秒(”)、弧度(rad)和微弧度(μrad)。

测量方法:是指在特定的对象下测量某一被测量时,参与测量过程的各组成因素和测量条件的总和。组成因素包括测量时确定的测量方法(如是直接测量还是间接测量,是绝对测量还是相对测量等)、测量基面及定位方法、瞄准形式和瞄准方法、测量结果的显示方法等。测量条件如测量环境及温度等。确定测量方法的诸因素中,被测对象的特性和被测量的特性起决定性作用。被测对象的特性是指它的精度、大小、形状、重量、材料、批量等;被测量的特性是指它本身参数的特点,以及在同一被测对象中它和其它参数之间的关系等。

测量精度:它是指用相应测量方法进行比较,其结果和可靠程度,也即测量结果离开真值的程度。任何测量过程总是不可避免地会出现测量误差,误差大说明测量结果离真值远,精度低。任何测量结果的可靠有效值都是由测量误差确定。研究、分析测量方法总误差,是分析它的测量精度的前提。

(二)量具的测量原理

⒈基本尺寸、角度测量

长度尺寸主要包括长度、外径、内径、深度等几何量,测量工具主要有游标卡尺、千分尺、百分表等。

(1)游标卡尺是一种常用的量具,具有结构简单、使用方便、精度中等和测量的尺寸范围大等特点,可以用它来测量零件的外径、内径、长度、宽度、厚度、深度和孔距等,应用范围很广。

如图1为测量范围为0~125mm的游标卡尺,制成带有刀口形的上下量爪和带有深度尺的型式。

图1. 游标卡尺

1-尺身;2-上量爪;3-尺框;4-紧固螺钉;5-深度尺;6-游标;7-下量爪零件尺寸的整数部分,可在游标零线左边的主尺刻线上读出来,而比1mm小的小数部分,可借助游标读数机构来读出,现把游标卡尺的读数原理和读数方法介绍如下。

如图2(a)所示,主尺刻线间距(每格)为1mm,当游标零线与主尺零线对准(两爪合并)时,游标上的第10刻线正好指向等于主尺上的9mm,而游标上的其他刻线都不会与主尺上任何一条刻线对准。

游标每格间距=9mm÷10=0.9mm

主尺每格间距与游标每格间距相差=1mm-0.9mm=0.1mm

0.1mm即为此游标卡尺上游标所读出的最小数值,再也不能读出比0.1mm小的数值。

当游标向右移动0.1mm时,则游标零线后的第1根刻线与主尺刻线对准。当游标向右移动0.2mm时,则游标零线后的第2根刻线与主尺刻线对准,依次类推。若游标向右移动0.5mm,如图2(b),则游标上的第5根刻线与主尺刻线对准。由此可知,游标向右移动不足1mm的距离,虽不能直接从主尺读出,但可以由游标的某一根刻线与主尺刻线对准时,该游标刻线的次序数乘其读数值而读出其小数

值。例如,图2(b)的尺寸即为:5×0.1=0.5(mm)。

图2. 游标读数原理

(2)外径千分尺常简称为千分尺,它是比游标卡尺更精密的长度测量仪器,常见的一种如图所示,它的量程是0-25毫米,分度值是0.01毫米。外径千分尺的结构由固定的尺架、测砧、测微螺杆、固定套管、微分筒、测力装置、锁紧装置等组成。固定套管上有一条水平线,这条线上、下各有一列间距为1毫米的刻度线,上面的刻度线恰好在下面二相邻刻度线中间。微分筒上的刻度线是将圆周分为50等分的水平线,它是旋转运动的。

从读数方式上来看,常用的外径千分尺有普通式、带表示和电子数显式三种类型。

根据螺旋运动原理,当微分筒(又称可动刻度筒)旋转一周时,测微螺杆前进或后退一个螺距─0.5毫米。这样,当微分筒旋转一个分度后,它转过了1/50周,这时螺杆沿轴线移动了1/50×0.5毫米=0.01毫米,因此,使用千分尺可以准确读出0.01毫米的数值。

外径千分尺的零位校准

使用千分尺时先要检查其零位是否校准,因此先松开锁紧装置,清除油污,特别是测砧与测微螺杆间接触面要清洗干净。检查微分筒的端面是否与固定套管上的零刻度线重合,若不重合应先旋转旋钮,直至螺杆要接近测砧时,旋转

测力装置,当螺杆刚好与测砧接触时会听到喀喀声,这时停止转动。如两零线仍不重合(两零线重合的标志是:微分筒的端面与固定刻度的零线重合,且可动刻度的零线与固定刻度的水平横线重合),可将固定套管上的小螺丝松动,用专用扳手调节套管的位置,使两零线对齐,再把小螺丝拧紧。不同厂家生产的千分尺的调零方法不一样,这里仅是其中一种调零的方法。

检查千分尺零位是否校准时,要使螺杆和测砧接触,偶尔会发生向后旋转测力装置两者不分离的情形。这时可用左手手心用力顶住尺架上测砧的左侧,右手手心顶住测力装置,再用手指沿逆时针方向旋转旋钮,可以使螺杆和测砧分开。

图3. 外径千分尺

(3)内径千分尺用于内尺寸精密测量(分单体式和接杆式)

其正确测量方法:

1)内径千分尺在测量及其使用时,必需用尺寸最大的接杆与其测微头连接,依次顺接到测量触头,以减少连接后的轴线弯曲。

2)测量时应看测微头固定和松开时的变化量。

3)在日常生产中,用内径尺测量孔时,将其测量触头测量面支撑在被测表面上,调整微分筒,使微分筒一侧的测量面在孔的径向截面内摆动,找出最小尺寸。然后拧紧固定螺钉取出并读数,也有不拧紧螺钉直接读数的。这样就存在着姿态测量问题。姿态测量:即测量时与使用时的一致性。例如:测量 75~600/0.01mm的内径尺时,接长杆与测微头连接后尺寸大于 125 mm 时。其拧紧与

不拧紧固定螺钉时读数值相差 0.008 mm 既为姿态测量误差。

4)内径千分尺测量时支承位置要正确。接长后的大尺寸内径尺重力变形,涉及到直线度、平行度、垂直度等形位误差。其刚度的大小,具体可反映在“自然挠度”上。理论和实验结果表明由工件截面形状所决定的刚度对支承后的重力变形影响很大。如不同截面形状的内径尺其长度 L 虽相同,当支承在(2/9)L 处时,都能使内径尺的实测值误差符合要求。但支承点稍有不同,其直线度变化值就较大。所以在国家标准中将支承位置移到最大支承距离位置时的直线度变化值称为“自然挠度”。为保证刚性,在我国国家标准中规定了内径尺的支承点要在(2/9)L 处和在离端面 200 mm 处,即测量时变化量最小。并将内径尺每转90°检测一次,其示值误差均不应超过要求。

图4. 内径千分尺

(4)内径百分表

内径百分表是内量杠杆式测量架和百分表的组合,如图5所示。用以测量或检验零件的内孔、深孔直径及其形状精度。

内径百分表测量架的内部结构,由图5可见。在三通管3的一端装着活动测量头1,另一端装着可换测量头2,垂直管口一端,通过连杆4装有百分表5。活动测头1的移动,使传动杠杆7回转,通过活动杆6,推动百分表的测量杆,使百分表指针产生回转。由于杠杆7的两侧触点是等距离的,当活动测头移动1mm时,

活动杆也移动1mm,推动百分表指针回转一圈。所以,活动测头的移动量,可以在百分表上读出来。

两触点量具在测量内径时,不容易找正孔的直径方向,定心护桥8和弹簧9就起了一个帮助找正直径位置的作用,使内径百分表的两个测量头正好在内孔直径的两端。活动测头的测量压力由活动杆6上的弹簧控制,保证测量压力一致。

内径百分表活动测头的移动量,小尺寸的只有0~1mm,大尺寸的可有0~3mm,它的测量范围是由更换或调整可换测头的长度来达到的。因此,每个内径百分表都附有成套的可换测头。国产内径百分表的读数值为0.01mm,测量范围有 10~18;18~35;35~50;50~100;100~160mm;160~250;250~450。

图5. 内径百分表

用内径百分表测量内径是一种比较量法,测量前应根据被测孔径的大小,在专用的环规或百分尺上调整好尺寸后才能使用。调整内径百分尺的尺寸时,选用可换测头的长度及其伸出的距离 (大尺寸内径百分表的可换测头,是用螺纹旋上去的,故可调整伸出的距离,小尺寸的不能调整 ),应使被测尺寸在活动测头总

移动量的中间位置。

内径百分表的示值误差比较大,如测量范围为35~50mm的,示值误差为±0.015mm。为此,使用时应当经常的在专用环规或百分尺上校对尺寸(习惯上称校对零位),必要时可在如图5所示的由块规附件装夹好的块规组上校对零位,并增加测量次数,以便提高测量精度。

内径百分表的指针摆动读数,刻度盘上每一格为0.01mm,盘上刻有100格,即指针每转一圈为1mm。

(5)深度千分尺

深度百分尺如图6所示,用以测量孔深、槽深和台阶高度等。它的结构,除用基座代替尺架和测砧外,与外径百分尺没有什么区别。深度百分尺的读数范围(mm):0~25,25~100,100~150, 读数值(mm)为0.01。它的测量杆6制成可更换的形式, 更换后,用锁紧装置4锁紧。深度百分尺校对零位可在精密平面上进行。即当基座端面与测量杆端面位于同一平面时,微分筒的零线正好对准。当更换测量杆时,一般零位不会改变。深度百分尺测量孔深时,应把基座5的测量面紧贴在被测孔的端面上。零件的这一端面应与孔的中心线垂直,且应当光洁平整,使深度百分尺的测量杆与被测孔的中心线平行,保证测量精度。此时,测量杆端面到基座端面的距离,就是孔的深度。

图6. 深度百分尺

1-测力装置;2-微分筒;3-固定套筒;4-锁紧装置;5-底板;6-测量杆

(6)万能角度尺是用来测量精密零件内外角度或进行角度划线的角度量具。 万能角度尺的读数机构,如图7所示。是由刻有基本角度刻线的尺座1,和固定在扇形板6上的游标3组成。扇形板可在尺座上回转移动(有制动器5),形成了和游标卡尺相似的游标读数机构。

万能角度尺尺座上的刻度线每格1o。由于游标上刻有30格,所占的总角度为29o,因此,两者每格刻线的度数差是

230

130291'=?=?-? 即万能角度尺的精度为2′。

图7. 万能角度尺

万能角度尺的读数方法,和游标卡尺相同,先读出游标零线前的角度是几度,再从游标上读出角度“分”的数值,两者相加就是被测零件的角度数值。在万能角度上,基尺4是固定在尺座上的,角尺2是用卡块7固定在扇形板上,可移动尺8是用卡块固定在角尺上。若把角尺2拆下,也可把直尺8固定在扇形板上。由于角尺2和直尺8可以移动和拆换,使万能角度尺可以测量0o~320o的任何角度,如图8所示。

图8. 万能量角尺的应用

由图8可见,角尺和直尺全装上时,可测量0o~50的外角度,仅装上直尺时,可测量50o~140o的角度,仅装上角尺时,可测量140o~230’的角度,把角尺和直尺全拆下时,可测量230o~320o的角度(即可测量40o~130o的内角度)。

万能量角尺的尺座上,基本角度的刻线只有0~90o,如果测量的零件角度大于90o,则在读数时,应加上一个基数(90o;180o;270o;)。当零件角度为:>90o~180o,被测角度=90o+量角尺读数,>180o~270o,被测角度=180o+量角尺读数,>270o~320o被测角度=270o+量角尺读数。

用万能角度尺测量零件角度时,应使基尺与零件角度的母线方向一致,且零件应与量角尺的两个测量面的全长上接触良好,以免产生测量误差。

(7)偏摆检查仪

新型偏摆检查仪测量轴类及盘套类零件的圆跳动,配有一对莫氏4#的硬度顶尖,提高了新型偏摆检查仪的测量精度,怎大了对被测零件的支撑重量,可测量高精度零件的径向、端面和斜向圆跳动。表架设计精巧合理,上下、前后、左右调节平稳自如,操作方便,表架刚性好,提高了检测仪器的灵敏性。

用途:广泛用于对轴类、盘类产品及零部件的测量,主要检测其径向跳动、

椭圆度、端面精度误差。优点:采用花岗石仪座提高了基准平面的精度,缩小了仪器自身的精度误差。活动表座可在仪座的任何位置进行测量。

使用方法:拧紧偏心轴手把,首先将固定顶尖座在仪座上固定。按被测零件长度将活动顶尖座固定在合适的位置。压下球头手柄,装入零件,用两顶尖顶住零件中心孔。拧紧紧固手把,将顶尖固定。将活动表座放在放在所需位置。配合百分麦(千分麦)即可进行检测工作。

图9. 偏摆检查仪

(8)百分表

百分表是用来校正零件或夹具的安装位置检验零件的形状精度或相互位置精度的。百分表的外形如图10所示。8为测量杆,6为指针,表盘3上刻有100个等分格,其刻度值(即读数值)为0.01mm。当指针转一圈时,小指针即转动一小格,转数指示盘5的刻度值为1mm。用手转动表圈4时,表盘3也跟着转动,可使指针对准任一刻线。测量杆8是沿着套筒7上下移动的,套筒8可作为安装百分表用。9是测量头,2是手提测量杆用的圆头。

图10. 百分表图11. 百分表的内部结构

图11是百分表内部机构的示意图。带有齿条的测量杆1的直线移动,通过齿轮传动(Z1 、Z2 、 Z3),转变为指针2的回转运动。齿轮Z4和弹簧3使齿轮传动的间隙始终在一个方向,起着稳定指针位置的作用。弹簧4是控制百分表的测量压力的。百分表内的齿轮传动机构,使测量杆直线移动1mm时,指针正好回转一圈。

由于百分表和千分表的测量杆是作直线移动的,可用来测量长度尺寸,所以它们也是长度测量工具。目前,国产百分表的测量范围(即测量杆的最大移动量),有0~3mm;0~5mm; 0~10mm的三种。读数值为0,001mm的千分表,测量范围为0~1mm。

由于千分表的读数精度比百分表高,所以百分表适用于尺寸精度为IT6~IT8级零件的校正和检验;千分表则适用于尺寸精度为IT5~IT7级零件的校正和检验。百分表和千分表按其制造精度,可分为0、1和2级三种,0级精度较高。使用时,应按照零件的形状和精度要求,选用合适的百分表或千分表的精度等级和测量范围。

使用百分表和千分表时,必须注意以下几点;

1)使用前,应检查测量杆活动的灵活性。即轻轻推动测量杆时,测量杆在套筒内的移动要灵活,没有任何轧卡现象,且每次放松后,指针能回复到原来的刻度位置。

2)使用百分表或千分表时,必须把它固定在可靠的夹持架上(如固定在万能表架或磁性表座上,图5-3所示),夹持架要安放平稳,免使测量结果不准确或摔坏百分表。用夹持百分表的套筒来固定百分表时,夹紧力不要过大,以免因套筒变形而使测量杆活动不灵活。

图12. 安装在专用夹持架上的百分表

用百分表或千分表测量零件时,测量杆必须垂直于被测量表面。图13所示。即使测量杆的轴线与被测量尺寸的方向一致,否则将使测量杆活动不灵活或使测量结果不准确。

测量时,不要使测量杆的行程超过它的测量范围;不要使测量头突然撞在零件上;不要使百分表和千分表受到剧烈的振动和撞击,亦不要把零件强迫推入测量头下,免得损坏百分表和千分表的机件而失去精度。因此,用百分表测量表面粗糙或有显著凹凸不平的零件是错误的。

图13. 百分表安装方法

图14. 百分表尺寸校正与检验方法

用百分表校正或测量零件时,如图14所示。应当使测量杆有一定的初始测力。即在测量头与零件表面接触时,测量杆应有0.3~1mm的压缩量(千分表可小一点,有0.1mm即可),使指针转过半圈左右,然后转动表圈,使表盘的零位刻线对准指

针。轻轻地拉动手提测量杆的圆头,拉起和放松几次,检查指针所指的零位有无改变。当指针的零位稳定后,再开始测量或校正零件的工作。如果是校正零件,此时开始改变零件的相对位置,读出指针的偏摆值,就是零件安装的偏差数值。

检查工件平整度或平行度时,如图15所示。将工件放在平台上,使测量头与工件表面接触,调整指针使摆动 1/3~1/2转,然后把刻度盘零位对准指针,跟着慢慢地移动表座或工件,当指针顺时针摆动时,说明了工件偏高,反时针摆动,则说明了工件偏低了。

当进行轴测的时候,就是以指针摆动最大数字为读数(最高点),测量孔的时候,就是以指针摆动最小数字(最低点)为读数。

检验工件的偏心度时,如果偏心距较小,可按图16所示方法测量偏心距,把被测轴装在两顶尖之间,使百分表的测量头接触在偏心部位上(最高点),用手转动轴,百分表上指示出的最大数字和最小数字(最低点)之差的1/2就等于偏心距的实际尺寸。偏心套的偏心距也可用上述方法来测量,但必须将偏心套装在心轴上进行测量。

(a) (b)

a) 工件放在V形铁上 b) 工件放在专用检验架上

图15. 轴类零件圆度、圆柱度及跳动

图16. 在两顶尖上测量偏心距的方法

(9)螺纹千分尺

螺纹千分尺如图17所示。主要用于测量普通螺纹的中径。

螺纹千分尺的结构与外径百分尺相似,所不同的是它有两个特殊的可调换的量头1和2,其角度与螺纹牙形角相同的。

图17. 螺纹千分尺

1、2-量头 3-校正规

电子测量实验指导书

《电子测量》课程实验指导书 光电工程学院 2016年8月

实验一 频率的数字测量技术 一、实验目的 1、通过实验,进一步了解数字式频率计的工作原理。 2、熟悉数字式频率计的正确操作。 3、掌握减小测量误差及对测量误差进行分析的方法。 二、实验内容 1、利用通用计数器测量低频信号发生器的部分技术指标。 2、利用通用计数器测量脉冲参数。 3、利用通用计数器校准示波器的时基因数(或扫描速度)。 三、预备知识 1、通用计数器的原理及其基本功能及误差分析 2、通用计数器测量各种参数的工作原理 3、利用通用计数器测量信号发生器的频率技术指标 频率标称误差的定义是: %10000?-=?f f f f f x f x -通用计数器测得值 f 0-信号发生器的频率标称值 频率稳定误差的定义是: t f f f f f x x t /)( min max -=? t---规定的时间间隔 f xmax 选定的一组时间间隔内,计数器示值的最大值 f xmin 选定的一组时间间隔内,计数器示值的最小值

四、使用仪器及设备 1、通用计数器(GFC-8010H)一台 2、低频信号发生器(DF-1641) 一台 3、脉冲信号发生器一台 4、脉冲示波器(GOS-6021) 一台 五实验方法 1、实验准备工作 要求按规定进行预热、外观检查,然后进行自校,仪器工作正常后,才能进行以下的实验。 2、等精度测量(次数、显示值需由实验人员自行列表) 具体要求是: (1)任选一台待测的低频信号发生器,等精度测量某一频率(例如,1kHz 或其他指定值)10次、间隔30秒。 (2)通用计数器各功能选择,闸门时间、周期倍乘、时标.记忆等开关,以及输入电平指示、显示时间调节等旋钮的位置,均由实验人员自已选择或调节。 (3)列表记录。 3、测量低频信号发生器的频率标称误差及稳定误差。 具体要求是: (1)按表1所列的各频率值测量其标称误差并记录有关数据,间隔10秒测量,测量三次的均值作为显示结果fx。(测量功能可选择频率或周 期,周期倍乘取1。) 表1频率标称误差的测量

《电子测量技术》实验一范文

实验一数字存储示波器的使用 一、实验目的 1、熟悉数字存储示波器的工作原理; 2、掌握数字存储示波器的使用方法。 二、实验原理 1.数字存储示波器的组成原理 数字示波器将输入信号数字化(时域取样和幅度量化)后,经由D/A转换器再重建波形。数字示波器具有记忆、存贮被观察信号功能,又称为数字存贮示波器。 当处于存储工作模式时,其工作过程一般分为存储和显示两个阶段。在存储工作阶段将模拟信号转换成数字化信号,在逻辑控制电路的控制下依次写入到RAM中。 在显示工作阶段,将数字信号从存储器中读出转换成模拟信号,经垂直放大器放大加到CRT的Y偏转板。同时,CPU的读地址计数脉冲加至D/A转换器,得到一个阶梯波扫描电压,驱动CRT的X偏转板,如图2.1所示。 图2.1 数字存储示波器的组成原理图 2.数字存储示波器的工作方式 (1)数字存储器的功能 随机存储器RAM包括信号数据存储器、参考波形存储器、测量数据存储器和显示缓冲存储器四种。 (2)触发工作方式

1)常态触发 —同模拟示波器基本一样。 2)预置触发 —可观测触发点前后不同段落上的波形。 (3)测量与计算工作方式 数字存储示波器对波形参数的测量分为自动测量和手动测量两种。一般参数的测量为自 动测量,特殊值的测量使用手动光标进行测量。 (4)面板按键操作方式 数字存储示波器的面板按键分为立即执行键和菜单键两种。 3.数字存储示波器的显示方式 (1)存储显示 ——适于一般信号的观测。 (2)抹迹显示 ——适于观测一长串波形中在一定条件下才会发生的瞬态信号。 (3)卷动显示 ——适于观测缓变信号中随机出现的突发信号。 (4)放大显示 ——适于观测信号波形细节。 (5)X —Y 显示 图2.2 数字存储示波器的显示方式 (6)显示的内插 插入技术可以解决点显示中视觉错误的问题。 主要有线性插入和曲线插入两种方式。 4. 实时采样和等效时间采样 在现在为止我们所介绍的波形数字化方法称为实时采样,这时所有的采样点都是按照一个固定的次序来采集的,这个波形采样的次序和采样点在示波器屏幕上出现的次序是相同的,只要一个触发事件就可以启动全部的采样动作。如图2.3所示。 (a) 卷动显示 (b) 放大显示

精密测量实验指导书汇总情况

实验一技术测量基础 一、实验目的 1. 掌握内外尺寸测量的测量方法 2.掌握常用尺寸测量仪器的测量原理、操作使用。 二、实验内容概述 机械零件的尺寸测量是一项很重要的技术指标。因此,尺寸的测量在技术测量中占有非常重要的地位。尺寸的测量可分为绝对测量和相对测量。绝对测量是指从测量器具的读数装置上可直接读得被测量的尺寸数值,例如用外径千分尺、游标卡尺和测长仪等测量长度尺寸。相对测量是指从测量器具的读数装置上得到的是被测量相对标准量的偏差值,例如用内径百分表测量内孔的直径。 三、实验设备及测量原理 3.1、游标尺 游标尺由主尺和游标组成。主尺的刻线间距为lmm,游标的刻线间距比主尺的刻线间距小,其刻线差值(分度值)有0.1、0.02、0.05mm三种。在生产中直接用游标尺测量工件的外径、内径、宽度、深度及高度尺寸,应用相当广泛。 游标尺按用途分有,游标卡尺、游标深度尺和游标高度尺(附图l—1)三种。 附图l—1游标尺 (a)-游标卡尺 1-主尺;2框架;3-调节螺母;4-螺杠;5-游框;6-游标;7、8、9、10-量爪;11、12-锁紧螺母 (b)-游标深度尺 1-主尺;2-调节螺母;3-游框;4-横尺;5、7-锁紧螺母;6-游标 (c)-游标高度尺 1-底座;2-游框;3、4-锁紧螺母;5-主尺;6、9-量爪;7-调节螺母;8-游标 附图1—2和附图l—3所示的是数显卡尺和数显高度尺。

附图1-2 数显卡尺 附图1-3 数显高度尺 1.刻度原理 设游标的刻线间距数为n ,刻线间距为b ,主尺的刻线间距数为n-1,刻线间距为a(a=1mm),则游标长度 L=nb=(n-1)a 1n b a n -= 游标分度值 1n a i a b a a n n -=-=- = 如分度值为0.1mm 的游标尺。取主尺上的9格(9mm)长度,在游标上刻成10格,则游标 的刻线间距为 910 mm ,游标分度值i=1- 910 =0.1mm 。 为了使游标的刻线间距不致过小,读数时清晰方便,可把游标的刻线间距增大,如分度值i=0.1mm 的游标尺。游标的刻线间距数仍为n =10格,主尺的刻线间距数为(2n —1)=19格,游标的刻线间距1910 b =mm=1.9mm,则游标分度值 () 21220.1n a i a b a a mm n n -=-=- = = 游标长度 ()21L nb n a ==- 写成一般式: ()1L nb rn a =-- 式中,r ——游标模数。 2.度数方法 游标尺是利用游标的一个刻线间距与主尺一或二个刻线间距的微小差值(游标分度值)及其累积数来估计主尺上的小数读数的。若游标零线正好对准主尺刻线,则游标尺仅最未一根刻线与主尺刻线重合;若游标零线与主尺刻线错开,则游标尺的某一刻线将和主尺的某一根刻线重合。其读数方法(如附图l-4)的右边部分所示。先确定主尺零刻线(上)与游标零刻线(下)错开的格数,读出整数,然后在游标上找三根刻线,中间的一根应与主尺的某一刻线对齐、两旁的两刻线均偏向中间刻线,游标对齐刻线的序号乘上游标分度值,即为主尺上的小数读数(若游标上直接标出读数,则可直接读数而不必计算)。二者相加为所测尺寸。 附图1—4 游标尺的刻度原理与读数方法

《电子测量》课件—电子测量实验指导书.doc

《测量技术基础》实验指导书 张海燕编 计算机与信息学院 二O 一三年十月 实验一、示波器的基本原理及其应用 实验目的

1、了解通用示波器和数字实时示波器的基本组成和工作原理 2、掌握通用示波器和数字实时示波器测量电压、时间、相位的基本方法 3、掌握示波器的基本应用 实验仪器 1、双踪小波器一 台 2、数字示波器一台 3、函数信号发生器一 台 4、移相器一 个 三、实验内容 1、掌握通用示波器、数字实时示波器的基本组成和工作原理,主要控制旋 钮的作用以及测量电压、时间、相位差的基本方法。 2、示波器X轴、Y轴偏转系统的灵活应用 向X轴、Y轴输入2KHz的正弦信号,分别显示下列图形: (1)一个光点(调节各控制旋钮使光点亮度适中,聚焦良好) (2)一条垂直线 (3)一条水平线 (4)一条45°斜线 (5)在示波器屏幕上分别显示10个、3个、1个周期波形。 以上各步骤除调出图形外,应记录或说明各主要控制旋钮所放置的位置或范围。 3、电压测量 由信号发生器输出IKHz的脉冲信号,测量其幅值。 (1)直接测量法 直接从示波器屏幕上量出被测电压波形的高度,然后换算成电压值。若已知Y 通道的偏转灵敏度为Vy, Y轴通道处于“校正”位置,被测电压波形峰-峰高度为h,则可求被测电压值:Vp-p二Dy*h

(2)比较测量法 比较测量法就是用已知电压值(一般为峰-峰值)的信号波形与被测信号电压波形比较,并算出测量值。 4、时间的测量 测量一个脉冲信号的时间参数。目前,示波器是测量脉冲时间参数的主要工具。 (1)记录数据 (2)在坐标纸上画出观察到的波形,标上参数。 5、相位差的测量 (1)线性扫描法 利用示波器的多波形显示,是测量信号间相位差的最直观、最简便的方法。 自己设计一个相移网络,将信号发生器输出的正弦信号直接加入YA通道,经相移网络输出的信号加入YB通道,相移网络参数(C=O.OluF, R=1.2K),根据测量数据计算vl、v2的相位差仞。

电子测量技术与仪器电子版实验报告

《电子测量技术与仪器》 实验报告

实验一仪器使用总论 一、实验目的: 1,通过老师的讲解以及自己的学习了解实验的常规仪器,常用设备,以及耗材; 2,掌握以后做实验所用仪器的功能和使用方法; 3,知道模拟示波器,数字示波器的使用方法以及区别,优缺点; 4,知道以后实验中该注意的事项,该注意的问题,实验室的秩序。 二、实验设备: 模拟示波器,数字示波器, 三、实验内容 1,实验中参观的仪器:模拟示波器,数字示波器,万用表,交流毫伏表。 2,起到的作用: 1)万用表:主要用来测量电阻值、电压、电流,有的可测频率、三极管、温度等。 2)示波器:便于人们研究各种电现象的变化过程,能把肉眼看不到的信号变换成看得 见的图像,还可以利用示波器观察各种不同信号幅度随时间变化的波形图线,测试各种不同的电量。能产生某些特定的周期性时间图形,如正弦波、方波、三角波等,频率可调。 3)交流毫伏表:是用来测量正弦电压的交流电压表,主要用于测量毫伏级以下的豪 伏电压等。 3,模拟示波器、数字示波器的区别: 1),模拟示波器,操作简单,操作都在一个面板上,数字示波器往往要较长处理时间。 2),垂直分辨率高,连续而且无限制,数字示波器一般只有8 位至 10 位。 3),模拟示波器数据更新快,可以每秒捕捉几十万个波形,而数字示波器只能每秒 捕捉几十个波形。 4),模拟示波器可以实施带宽和实时显示,即连续波形和单次波形的带宽相同,而数 字示波器的带宽和取样率密切相关,取样率不高时需借助内插计算,容易出现混淆波形。5),如果某一个事件只发生一次,那么模拟示波器一般是不能应付的,而数字示波器 能够捕捉这种罕见一次性事件,并且长时间的将它显示出来。 4,仪器的使用中的注意事项: 1),共地,保证所有仪器的接地电位相同。 2),函数发生器输出端不能短接,且不能接到带有较高电压的的两端。 3),信号发生器的微调应从零开始增加,毫伏表的档位要适当。 4),用示波器进行测量时,校准旋钮应顺时针旋转到校准位置。 5),所有仪器要轻拿轻放。 6)用电脑做实验时,注意对实验室电脑的爱护,做完实验记得关机。 7)示波器使用时注意接口正确。

精密测量技术课程试验教学大纲

精密测量技术课程试验教学大纲 一、课程概况 英文名:Precision Measurement Technology 开课单位:机械学院 课程编码:2010422 学分学时:2.5学分,40学时 授课对象:测控技术及仪器专业 先修课程:互换性与技术测量、误差理论与实验设计,工程光学,测控仪器设计 试验课程主要内容: 精密测量技术试验教学课程在是在理论学习的基础上,通过试验手段进一步巩固和掌握一些常用仪器的测量原理及测量方法,培养学生的实际动手和操作能力。主要包括:基本长度量的测量方法,形状和位置误差的测量方法,机械零件综合参数测量方法等。通过对基本测量方法和测量仪器的实际操作,使学生能能综合运用光、机、电方面的知识,初步解决生产中存在的测量技术问题,并为掌握高精度的复杂测量问题提供有利的条件。 二、试验课程内容 1.基本长度量测量方法(3学时) 试验1。卧式光学比较仪测量内孔直径(1学时) 试验二。接触式干涉仪测量长度尺寸(1学时) 试验三。用万能工具显微镜测量孔距(1学时) 2.形状和位置误差的测量(4学时) 试验四。箱体位置误差的测量(1学时) 试验用五。合象水平仪测直线度误差(1学时) 试验六。平面度误差的测量与评定(1学时) 试验七。表面粗糙度的测量(1学时) 3.综合测量实验(3学时) 实验八。圆柱齿轮参数和误差测量(1学时) 实验九。用工具显微镜测量螺纹各项参数(1学时) 实验十。三坐标测量机的使用(1学时)

实验内容: 用工具显微镜测量螺纹各项参数 一、实验目的 1、了解工具显微镜的测量原理及结构特点。 2、掌握用大型工具显微镜测量外螺纹中径,螺距和牙型半角的方法。 二、实验设备 大型工具显微镜,螺纹量规。 图2-1-1为大型工具显微镜外形图。它由下列四部分构成:(1)底座——用来支撑整个量仪;(2)工作台——用来承放被测工件,可以作纵向和横向移动,移动的距离可以通过工作台的千分尺11和7的示值反映出来,还可以绕自身的轴线旋转;(3)显微镜系统——用来把被测工件的轮廓放大投影成像,通过目镜 l 来瞄准,通过角度示值目镜18读取角度值; (4)立柱——用来 安装显微镜筒等光学部件。 在工具显微镜上用影像法测量外螺纹 是利用光线投射将被测螺纹牙型轮廓放大投影成像于目镜中,用目镜中的虚线来瞄准轮廓影像,并通过该量仪的工作台纵向、横向千分尺(相当于直角坐标系的x 、y 坐标)和角度读数目镜来实现螺纹中径、螺距和牙型半角的测量。 大型工具显微镜的光学系统如图2-1-2所示。由光源 l 发出的光束经光圈2、滤光片3、反射镜4、聚光镜5和玻璃工作台6,将被测工件的轮廓经物镜组7、反射棱镜8投影到目镜10的焦平面米字线分划板9上,从而在目镜10中观察到放大的轮廓影像,从角度示值目镜11中读取角度值。另外,也可以用反射光源照亮被测工件;以该工件的被测表面上的反射光线,经物镜组7、反射棱镜8投影到目镜10的焦平面米字线分划板9上,同样可在目镜10中观察到放大轮廓影像。 1.测量过程的初始操作 (1)接通电源,松开圆工作台锁紧装 置,摇动手轮9,把工作台6的圆周刻度对 准示值零位。把被测工件安放在玻璃台面或 牢固安装在两个顶尖10之间。 (2)根据被测件直径尺寸大小,参照量仪说明书调整光阑大小,或按表2-1提供的对 图2-1-1 大型工具显微镜 1-目镜;2-米字线旋转手轮;3-角度读数目镜光源;4-显微镜筒;5-顶尖座;6-圆工作台;7-横向千分尺手轮;8-底座 9--圆工作台手轮;10-顶尖;11-纵向千分尺手轮;12-立柱倾斜手轮;13-连接座;14-立柱;15-支臂;16-锁紧螺钉;17-升降手轮;18-角度目镜 图2-1-2 大型工具显微镜光路图

互换性与技术测量实验报告

《互换性与技术测量》实验报告 机械工程基础实验室 技术测量室编 年级 班级 姓名 实验名称及目录: 实验一、尺寸测量 实验1—1、轴的测量 实验1—2、孔的测量 实验二、形位误差测量 实验2—1、直线度误差的测量 实验2—2、平行度误差、平面度误差测量 实验三、表面粗糙度测量、螺纹测量 实验3—1、表面粗糙度的测量 实验3—2、螺纹中径、螺距及牙形半角的测量实验四、齿轮测量 实验4—1、直齿圆柱齿轮公法线的测量 实验4—2、直齿圆柱齿轮齿厚偏差的测量

一、实验目的 三、被测零件: 四、测量示意图: 七、测量数据分析并判断被测零件是否合格; 八、思考题: 1、用立式光学计测量塞规属于什么测量方法? 2、绝对测量和相对测量各有什么特点? 3、什么是分度值?刻度间距? 4、仪器的测量范围和刻度尺的示值范围有何不同?

一、实验目的 三、被测零件: 四、测量示意图:六、测量数据记录:(单位:mm) 七、测量数据分析并判断被测零件是否合格; 八、思考题: 1、用内径千分尺和内径量表测量孔的直径是,各属于哪种测量方法? 2、内径量表测量孔时“转折点”意味着什么?一旦“零位”确定,百分表指针超过“零 位”发生转折,示值为正还是负?百分表指针不过“零位”发生转折,示值为正还是负? 3、组合量块组的原则是什么?

实验报告:直线度误差的测量(形状公差的测量) 一、实验目的: 二、实验仪器: 四、测量示意图:(要求画出简单的仪器的测量原理图和被测面的测量截面图) 六、作图:分别用最小区域法和两端点连线法求直线度误差值,并作出合格性结论。 七、思考题: 1、以本实验为例,试比较按最小区域法和两端点连线法评定的直线度误差值何者更合理? 2、用作图法求直线度误差值时,如前所述,总是按平行于纵坐标计量,而不是按垂直于两条平行包容直线的距离计量,原因何在?

电子测量技术实验指导书.doc

电子测量技术实验指导书

第一部分绪论 本指导书是根据《电子测量技术》课程实验教学大纲编写的,适用于电子信息工程专业。 一、本课程实验的作用与任务 电子测量技术实验是电子测量技术课程的重要环节,对更好地学习电子测量技术课程有很大的帮助。 通过实验,使学生具有初步分析、处理电子测量技术实验中出现的各种问题的能力,并且锻炼学生独立完成电子技术实验的能力,从而使学生具备初步的工程实践能力。 二、本课程实验的基础知识 本课程实验需要掌握电子测量的内容和特点,误差的概念、来源以及分类,测量数据的处理方法,信号发生器的性能指标,电子示波器的性能,电子计数法测量频率、电子计数法测量周期以及电子计数法测量时间间隔的原理,相位差测量、电压测量以及阻抗测量的原理等基础知识。

三、本课程实验教学项目及其教学要求 序 号 实验项目名称 学 时 教学目标、要求 1 电阻、电压等精度测量 2 掌握电阻电压的测量方法及其误差分析方法,掌握数字万用表、示波器的正确使用方法。 2 函数信号有效值测量 2 掌握函数信号发生器、示波器、DVM 的使用方法;理解不同检波方式表头测量不同波形时的换算关系。 3 频率测量实验 2 掌握EE16XX 系列函数发生器、频率计的使用方法,理解频率测量中的闸门概念。 4 波形信号参数测量 2 掌握波形参数:峰峰值、平均值、脉冲上升时间等参数的测量方 法,掌握示波器、函数信号发生器的使用方法;理解不同波形相应参数的不同含义。 合 计 8

第二部分基本实验指导 实验一电阻、电压等精度测量 一、实验目的 掌握电阻电压的测量方法及其误差分析方法,掌握数字万用表、示波器的正确使用方法。 二、实验原理 (1)示波器 通用电子示波器的工作原理,它是一种对电压敏感的电子仪器。应该说,在示波器荧光屏上进行的所有测量,都归结为对电压的测量。不言而喻,电子示波器则就是测量电压的显示仪器。用电子示波器测量电压,其原理就是基于被测量的未知电压使电子束产生正比的偏转。当只测量电压数值大小的时候,可以在X 轴上不加入扫描信号。被测电压为直流的情况下,其电子束光点的偏移量正比于待测电压的大小。当被测电压为正负半波对称的正弦电压或其他各种波形的交变电压时,其电子束的偏转高度正比于被测电压振幅值的两倍,即双峰值,亦称双巅值。 (2) 数字万用表 数字万用表是在直流数字电压表的基础上扩展而成的。为了能测量交流电

精密测量技术

《精密测量技术》课程教学大纲 Precision Measurement Technology 课程代码:M106103 总学时:54 学分:3 一、课程的地位与任务 本课程为测控技术与仪器专业光电检测与控制方向的专业必修课,通过该课程的学习,融会贯通各门专业基础课程,系统掌握各类几何量测量的基本原理和方法,了解现代计量测试新技术。通过本课程学习,培养学生具有计量测试的基本知识,能够依据被测量的技术要求拟定合理的测量方案,实施测量并分析处理测量结果,完成一个测试的全过程,从而具有初步解决工程测量中几何参量精密测试问题的能力。 二、课程的基本内容 第一章绪论4学时 1、精密测量技术的发展概况 2、公差基础知识 3、测量的基本概念 4、测量方法的选择 第二章长度尺寸的测量12学时 1、长度的基准与标准 2、量块的检定 3、线纹尺的检定 4、光滑极限量规 5、轴类零件测量 6、孔类零件测量 7、大尺寸测量及新技术发展 8、微小尺寸测量及纳米测量技术 第三章角度测量6学时 1、角度的实用基准 2、角度和锥度的测量 3、小角度测量技术 4、新型角度传感器 第四章表面粗糙度的测量6学时 1、表面粗糙度的评定参数

2、表面粗糙度的测量方法 3、微观形貌测量新技术的发展 第五章形位误差测量12学时 1、直线度误差测量及准直技术的新发展 2、平面度误差测量 3、圆度误差测量 4、平行度位置误差测量 5、垂直度位置误差测量 6、同轴度位置误差测量 7、误差分离技术 8、形位公差与尺寸公差的关系 第六章螺纹测量6学时 1、螺纹测量基础 2、普通螺纹的综合检验 3、螺纹的单项测量 4、丝杠的测量 第七章圆柱齿轮测量8学时 1、概述 2、齿轮单项测量 3、齿轮综合测量 4、齿轮整体误差测量 三、课程的基本要求 1、了解精密计量与测试发展概况,熟悉量值传递系统,掌握长度计量检定基本内容。 2、理解几何量测量的基本原则,对拟定测试方案的全过程有一个全面的认识。 3、掌握工程测量中各种几何量参数的测量原理、数据分析及误差分析,了解各种常用仪器的技术指标。 4、了解几何量计量测试新技术的发展状况。 课内54学时,课外自学内容16学时; 每章完成习题2-4题 四、课程实践环节 由专业实验和生产实习两个环节完成。专业实验为开放性实验计2学分;生产实习为综合性训练及生产实践计4学分。 五、先修课程及推荐教材 先修课程:《物理光学》,《应用光学》,《传感器原理》,《机械设计

互换性与技术测量实验报告

实验一量块的使用 一、实验目的 1、能正确进行量块组合,并掌握量块的正确使用方法; 2、加深对量值传递系统的理解; 3、进一步理解不同等级量块的区别; 二、实验仪器设备 量块;千分表;测量平板;千分尺校正棒。 三、实验原理 1量块的测量平面十分光洁和平整,当用力推合两块量块使它们的测量平面互相紧密接触时,两块量块便能粘合在一起,量块的这种特性称为研合性。利用量块的研合性,就可以把各种尺寸不同的量块组合成量块组。 四、实验内容与步骤 (一)实验内容 采用合理的量块组合,测量千分尺校正棒。 (二)实验步骤 1 用千分表测量千分尺校正棒 2 据所需要的测量尺寸,自量块盒中挑选出最少块数的量块。(每一个尺寸所拼凑的量块数目不得超过 4~5 块,因为量块本身也具有一定程度的误差,量块的块数越多,便会积累成较大的误差。) 3量块使用时应研合,将量块沿着它的测量面的长度反向,先将端缘部分测量面接触,使初步产生粘合力,然后将任一量块沿着另一个量块的测量面按平行方向推滑前进,最后达到两测量面彼此全部

研合在一起。 4正常情况下,在研合过程中,手指能感到研合力,两量块不必用力就能贴附在一起。如研合立力不大,可在推进研合时稍加一些力使其研合。推合时用力要适当,不得使用强力特别在使用小尺寸的量块时更应该注意,以免使量块扭弯和变形。 5如果量块的研合性不好,以致研合有困难时,可以将任意一量块的测量面上滴一点汽油,使量块测量面上沾有一层油膜,来加强它的黏结力,但不可使用汗手擦拭量块测量面,量块使用完毕后应立即用煤油清洗。 6量块研合的顺序是:先将小尺寸量块研合,再将研合好的量块与中等尺寸量块研合,最后与大尺寸量块研合。 7. 记录数据; 六思考题 量块按“等”测量与按“级”测量哪个精度比较高?

《电子测量技术基础》实验指导书加文档

《电子测量技术基础》实验指导书 电子信息工程系 2010-12-22

目录 实验一电压表的使用及交流电压的测量 (1) 实验二通用计数器的实验 (5) 实验三示波器测试技术与示波器的使用 (13)

实验一 电压表的使用及交流电压的测量 一、 实验目的 1、掌握低频电压的测量原理及测量方法 2、掌握高频电压的测量原理及测量方法 二、 实验仪器 1、F05A 型数字合成函数信号发生器 2、DF2170D 型交流毫伏表 3、AS2271A 型超高频毫伏表 三、 实验原理 1、用交流毫伏表(均值电压表)测量低频电压 均值电压表常用来测量1MHZ 以下的低频信号电压。均值电压表的组成如图1-1所示。称放大—检波式电压表,即先放大后检波。检波器的基本电路如图1-2所示。 图1-1 均值电压表的组成 图1-2 平均值检波器 均值电压表的直流输出 1||T x U u dt T =? 恰好为|u x |的平均值,因此均值电压表的表头偏转正比于被测电压的平均值。 均值电压表虽然是均值响应,但仍以正弦电压有效值刻度,因此,当被测信号为正弦信号时,其读数直接就是正弦电压的有效值。当被测信号为非正弦信号 时,就需要如下换算: 11.1α U K Ux F = 其中K F —为被测波形的波形系数。

2、用超高频毫伏表(峰值电压表)测量高频电压 峰值电压表又称检波—放大式电压表,即被测交流电压先检波后放大,然后再驱动直流电压表。峰值电压表的组成见图1-3所示。 图1-3 检波—放大式电压表 在峰值电压表中,常采用二极管峰值检波器,即检波器是峰值响应的。峰值电压表的表头偏转正比于被测电压(任意波形)的峰值,除特殊测量需要(例如脉冲电压表)外,峰值电压表是按正弦电压有效值刻度的,即: P P U U K α= 式中U α—正弦电压有效值 K P —正弦电压的波峰因数 这样,当用峰值电压表测量任意波形的电压时,只有把读数乘以2=p K 时,才等于被测电压的峰值。被测电压的有效值为: x P U U K α = 式中K p —被测电压的波峰因数 四、 实验内容 1、用函数发生器分别产生峰—峰值为5V 、频率为1KHz 、100KHz 的正弦波、方波和三角波电压,用均值电压表分别予以测量,计算它们的峰值、均值和有效值,并计算误差,结果填入表1-1。 2、用函数发生器分别产生峰—峰值为1V 、频率为100KHz 、1MHz 的正弦波、方波和三角波电压,用峰值电压表分别予以测量,计算它们的均值、峰值和有效值,并计算误差,结果填入表1-2。 五、 实验注意事项 1、AS2271A 型超高频毫伏表 (1)接通电源,预热5分钟; (2)平衡调节——把探头接到探头插座上,探头插入本仪器提供的T 型接头内并

实验报告全站仪精密角度测量实验报告范文_0787

2020 实验报告全站仪精密角度测量实验报告范文_0787 EDUCATION WORD

实验报告全站仪精密角度测量实验报告范文 _0787 前言语料:温馨提醒,教育,就是实现上述社会功能的最重要的一个独立出来的过程。其目的,就是把之前无数个人有价值的观察、体验、思考中的精华,以浓缩、 系统化、易于理解记忆掌握的方式,传递给当下的无数个人,让个人从中获益,丰 富自己的人生体验,也支撑整个社会的运作和发展。 本文内容如下:【下载该文档后使用Word打开】 为期四天的综合实验结束了,在这四天里我们主要做了全站仪综合实验,回弹综合实验和钢筋位置及楼板检测实验。在全站仪的综合试验中我们学习了坐标测量,面积测量以及放样,在回弹综合实验中我们主要学习了用回弹法测量混凝土强度,在钢筋位置及楼板检测实验中我们主要学习了用钢筋仪检测板、柱钢筋位置及保护层厚度的检测。虽然只有四天的综合实验,但是我感觉自己收获了不少知识。在暑假认知实习的时候自己也接触到了全站仪,但是没有自己操作过,这次实验自己学会用全站仪。这次的综合实验都是在施工现场最常用了,做好,学好这些实验对我们工程管理专业的学生来讲非常重要,因为只有掌握好技术才能进行好管理。这次的实验自己也是用心学习了,虽然只做了三天,可是收益匪浅,在老师和组长的带领下,我们组员一起学习,

研究,最终将实验进行好。记忆最深的是我们那天早上用全站仪放样,整整一个上午,然后用钉子打好桩,我们总共放了十二个点,等待着老师下午的验收。可是下午去的时候,只看到操场的跑道上躺着一堆堆的钉子,后来老师说不检查了,其实我们挺失落的,但是我们真的学到了知识,这比什么都重要!通过实验,使我们对理论知识有了更深的认识,也锻炼了我们的操作能力。 通过本次综合性的试验,我了解到综合实验的应用,特别是在两天的全站仪测量试验,刚开始拿到仪器时还手忙脚乱不知所措。但经过坐标测量、面积测量、点放样,我基本了解一些:全站仪是一种光机电算一体化的高新技术测量仪,测距部分有发射,接受与瞄准组成共轴系统,测角部分由电子测角系统完成,是一种具有高精度,高效率,各种测量功能的外业数据采集设备,大大减轻外业人员的劳动强度。作为在实际施工中最常见、最基本的测量仪器,了解其基本功能,熟练掌握其基本操作,将对今后的工作产生积极影响。 通过本次试验,我了解到钢筋保护层厚度,钢筋位置和钢筋直径的检测方法,认识到钢筋仪工作的基本原理和使用方法。钢筋仪的基本操作方法较为简单,在检测过程中使用方便,操作简洁。由于本次试验为提供检测构件的相关施工图纸,故无法对检测结果进行综合性分析,也无法对被检测构件的钢筋保护层厚度等各项指标进行检测。但通过实际操作和后期试验总结,对工程检测过程有了感性的认识。

《互换性与技术测量》实验指导书(三个实验,前两个必做,最后一个演示和选做)

实验一直线度误差的测量 一、实验目的 掌握按“节距法”测量直线度误差的方法。 二、测量原理及数据处理 对于很小表面的直线度误差的测量常按“节距法”,应是将被测平面分为若干段,用小角度度量仪(水平仪、自准直仪)测出各段对水平线的倾斜角度,然后通过计算或图解来求得轮廓线的直线度误差。本实验用合像水平仪。 具体测量方法如下: 将被测表面全长分为n段,每段长l=L/N应是桥板的跨距。将桥板置于第一段,桥板的两支承点放在分段点处,并把水平仪放在桥板上,使两者相对固定(用橡皮泥粘住)记下读数a1(单位为格)。然后将桥板沿放测表面移动,逐段测量下去,直至最后一段(第n段)。如图1每次移l,并要使支承点首尾相接,记下每段读数(单位为格)a1、a2、……a n。最后按下列步骤(见例)列表计算出各测量点对两端点连线的直线度偏差Δh i,并取最大负偏差的绝对值之和作为所求之直线度误差。 [例]设有一机床导轨,长2米(L=2000mm),采用桥板跨距l=250mm,用分度值c=0.02mm/m的水平仪,按节距法测得各点的读数a i(格)如表1。 表1

也可用作图法求出直线度误差,如图2。 作图法是在坐标纸上,以导轨长度为微坐标,各点读数累积为纵坐标,将测量得到的各点读数累积后标在坐标上,并将这些坐标点连成折线,以两端点连线作为评定基准,取最大正偏差与最大负偏差的绝对值之和,再换算为线值(μ),即为所求之直线度误差。 测量导轨直线度误差时,数据处理的根据,可由下图看出:(图3) A i — 导轨实际轮廓上的被测量点(i =0、1、2、……、n ); a i — 各段上水平仪的读数(格); Y i — 前后两测量点(i -1,i )的高度差; h i — 各测点(A i )到水平线(通过首点A 0)的距离(μ),显然 1 'i n i i h y == ∑

电子测量实验指导书

指导书 %%%大学信息工程学院 2012.09 实验一直流稳压电源的输出指示准确度和纹波系数的测量一实验目的 1掌握万用表和直流稳压电源的使用方法; 2掌握直流稳压电源输出指示准确度和纹波系数的测量方法。 二实验仪器 YB1719型直流稳压电源一台; TDS 1002型数字示波器一台; 万用表一个。

三预习要求 详细阅读有关万用表和直流稳压电源的使用方法及注意事项。 四实验内容和步骤 1直流稳压电源的输出指示准确度的测量 1)测量原理 输出指示准确度是直流稳压电源的一个技术指标,一般用百分数表示。万用表的读数即测量值 U 1 ,直流稳压电源的输出刻度指示值为 U 2 ,则输出指示准确度A 如下: U 2 U1 A 2 1 100% U1 2)实验步骤 a 将直流稳压电源的输出电压调节旋钮逆时针调节到较小位置,万用表的量程也置于适当的档位; b 接通万用表及直流稳压电源的电源开关,调节万用表为适当量程,从小到大调节稳压电源的输出电压调节旋钮,即调节稳压电源输出电压,分别读取电源电压指示值 U2 和万用表的读数 U 1 ,并计入表1-1; c 按公式计算每次测量的指示准确度 A U ,最后计算 A U 的平均值; d 按上述步骤,测试电流输出指示值 I 2 ,万用表读数 I 1 ,并计算电流输出指示准确度 A I 及其平均值,完成表1-2。 表1-1 电压输出指示准确度的测量

表1-2 电流输出指示准确度的测量 2直流稳压电源纹波系数的测量 1)测量原理 纹波系数是反映直流稳压电源输出中交流成分大小的物理量,纹波系数定义为: U 2 U1 其中,U 2表示直流稳压电源输出纹波电压的峰- 峰值,U 1为直流稳压电源输 出电压的最大额定值。纹波系数越小,说明直流稳压电源直流输出的特性越好。 2)实验步骤 a 将直流稳压电源的输出电压调节旋钮逆时针旋转调节到较小位置; b 打开直流稳压电源和示波器的电源开关,示波器的耦合方式置为“交流耦合”方式; c 将直流稳压电源的正极和负极分别与示波器的探头和地端相接触,调节稳压电源的输出电压为最大额定值,调节示波器使稳压电源的输出纹波能比较清晰地显示在屏幕中间,观察纹波波形并记录其波形和峰- 峰值,计入表1-3 ; d 按公式计算纹波系数。

精密测量技术 (2)

精密测量技术 一、背景研究 随着社会的发展,普通机械加工的加工误差从过去的mm级向“m级发展,精密加工则从10 p,m级向炉级发展,超精密加工正在向nm级工艺发展。由此,制造业对精密测量仪器的需求越来越广泛,同时误差要求也越来越高。精密测量是精密加工中的重要组成部分,精密加工的误差要依靠测量准确度来保证。目前,对于测量误差已经由“m级向nm级提升,而且这种趋势一年比一年迅猛[1]。 二、概述 现代精密测量技术是一门集光学、电子、传感器、图像、制造及计算机技术为一体的综合性交叉学科,它和精密超精密加工技术相辅相成,为精密超精密加工提供了评价和检测手段;精密超精密加工水平的提高又为精密测量提供了有力的仪器保障。现代测量技术涉及广泛的学科领域,它的发展需要众多相关学科的支持,在现代工业制造技术和科学研究中,测量仪器具有精密化、集成化、智能化的发展趋势,作为下世纪的重点发展目标,各国在微/ 纳米测量技术领域开展了广泛的应用研究[1]。 三、测量技术及应用特点 3.1扫描探针显微镜 1981年美国IBM公司研制成功的扫描隧道显微镜(STM),将人们带到了微观世界。STM具有极高的空间分辨率(平行和垂直于表面的分辨率分别达到0.1nm 和0.01nm,即可分辨出单个原子),广泛应用于表面科学、材料科学和生命科学等研究领域,在一定程度上推动了纳米技术的产生和发展。与此同时,基于STM相似

原理与结构,相继产生了一系列利用探针与样品的不同相互作用来探测表面或界 面纳米尺度上表现出来性质的扫描探针显微镜(SPM),用来获取通过STM无法获取的有关表面结构和性质的各种信息,成为人类认识微观世界的有力工具。下面 介绍几种具有代表性的扫描探针显微镜。 (1)原子力显微镜(AFM):AFM利用微探针在样品表面划过时带动高敏感性的微悬臂梁随表面起伏而上下运动,通过光学方法或隧道电流检测出微悬臂梁的 位移,实现探针尖端原子与表面原子间排斥力检测,从而得到表面形貌信息。利用类似AFM的工作原理,检测被测表面特性对受迫振动力敏元件产生的影响,在探 针与表面10~100nm距离范围,可探测到样品表面存在的静电力、磁力、范德华力等作用力,相继开发磁力显微镜、静电力显微镜、摩擦力显微镜等,统称为扫描力显微镜。 (2)光子扫描隧道显微镜(PSTM): PSTM的原理和工作方式与STM相似,后者 利用电子隧道效应,而前者利用光子隧道效应探测样品表面附近被全内反射所激 起的瞬衰场,其强度随距界面的距离成函数关系,获得表面结构信息。 (3)其它显微镜:如扫描隧道电位仪(STP)可用来探测纳米尺度的电位变化;扫 描离子电导显微镜(SICM)适用于进行生物学和电生理学研究;扫描热显微镜(STM)已经获得血红细胞的表面结构;弹道电子发射显微镜(BEEM)则是目前唯一 能够在纳米尺度上无损检测表面和界面结构的先进分析仪器,国内也已研制成功。 3.2纳米测量的扫描X射线干涉技术 以SPM为基础的观测技术只能给出纳米级分辨率,不能给出表面结构准确的 纳米尺寸,是因为到目前为止缺少一种简便的纳米精度(0.10~0.01nm)尺寸测量 的定标手段。美国NIST和德国PTB分别测得硅(220)晶体的晶面间距为 192015.560±0.012fm和192015.902±0.019fm(飞米fm也叫费米,是长度单位,1fm相 当于10~15m)。日本NRLM在恒温下对220晶间距进行稳定性测试,发现其18 天的变化不超过0.1fm。实验充分说明单晶硅的晶面间距有较好的稳定性。扫描 X射线干涉测量技术是微/纳米测量中一项新技术,它正是利用单晶硅的晶面间

互换性与技术测量实验指导书.

互换性实验指导书 机械工程学院

实验一量块的使用 一、实验目的 1、能正确进行量块组合,并掌握量块的正确使用方法; 2、加深对量值传递系统的理解; 3、进一步理解不同等级量块的区别; 二、实验仪器设备 量块;千分表;测量平板;被测件。 三、实验原理 量块的测量平面十分光洁和平整,当用力推合两块量块使它们的测量平面互相紧密接触时,两块量块便能粘合在一起,量块的这种特性称为研合性。利用量块的研合性,就可以把各种尺寸不同的量块组合成量块组。 四、实验内容与步骤 (一)实验内容 采用合理的量块组合,测量被测零件尺寸高度。 (二)实验步骤 1.用游标卡尺测量被测件 2.据所需要的测量尺寸,自量块盒中挑选出最少块数的量块。(每一个尺寸所拼凑的量块数目不得超过 4块,因为量块本身也具有一定程度的误差,量块的块数越多,便会积累成较大的误差。) 3.量块使用时应研合,将量块沿着它的测量面的长度反向,先将端缘部分测量面接触,使初步产生粘合力,然后将任一量块沿着另一个量块的测量面按平行方向推滑前进,最后达到两测量面彼此全部研合在一起。

4.将研合后的量块与被测件同时放到测量平板上,在测量平板上移动指示表的测量架,使指示表的测头与量块上工作表面相接触,转动指示表的刻度盘,调整指示表示值零位。 5.抬起指示表测头,将被测件放在指示表测头下,取下量块,记录下指示表的读数。 6.量块的尺寸与指示表的读数之和就是被测件的尺寸。 7. 记录数据; 五、思考题 量块按“等”测量与按“级”测量哪个精度比较高?

实验二常用量具的使用 一、实验目的 1、正确掌握千分尺、内径百分表、游标卡尺的正确使用方法; 2、掌握对测量数据的处理方法; 3、对比不同量具之间测量精度的区别。 二、实验仪器设备 外径千分尺;内径百分表;游标卡尺;轴承等。 三、实验原理 分度值的大小反映仪器的精密程度。一般来说,分度值越小,仪器越精密,仪器本身的“允许误差”(尺寸偏差)相应也越小。学习使用这些仪器,要注意掌握它们的构造特点、规格性能、读数原理、使用方法以及维护知识等,并注意要以后的实验中恰当地选择使用。 四、实验内容及实验步骤 (一)实验内容 1、熟悉仪器的结构原理及操作使用方法。 2、用外径千分尺、内径百分表、游标卡尺测量轴承内、外径。 3、对所测数据进行误差处理,得出最终测量结果。 (二)实验步骤 1、用游标卡尺测量轴承外径的同一部位5次(等精度测量),将测量值记入下表中,并完成后面的计算: ⑴平均值:将5次测量值相加后除以5,作为该测量点的实际值。 ⑵变化量:测量值中的最大值与最小值之差。 入上表中,并完成后面的计算: ⑴平均值:将5次测量值相加后除以5,作为该测量点的实际值。 ⑵变化量:测量值中的最大值与最小值之差。 ⑶测量结果:按规范的测量结果表达式写出测量结果。 3、内径百分表测量步骤: (1)内径百分表在每次使用前,首先要用标准环规、夹持的量块或外径千分尺对零,环规、夹持的量块和外径千分尺的尺寸与被测工件的基本尺寸相等。 (2)内径百分表在对零时,用手拿着隔热手柄,使测头进入测量面内,摆动直管,测头在X方向和Y方向(仅在量块夹中使用)上下摆动。观察百分表的示

电子测量实验指导书

《电子测量实验》 指导书 %%%大学信息工程学院 2012.09

实验一 直流稳压电源的输出指示准确度和纹波系数的测量 一 实验目的 1 掌握万用表和直流稳压电源的使用方法; 2 掌握直流稳压电源输出指示准确度和纹波系数的测量方法。 二 实验仪器 YB1719型直流稳压电源一台; TDS 1002型数字示波器一台; 万用表一个。 三 预习要求 详细阅读有关万用表和直流稳压电源的使用方法及注意事项。 四 实验内容和步骤 1 直流稳压电源的输出指示准确度的测量 1) 测量原理 输出指示准确度是直流稳压电源的一个技术指标,一般用百分数表示。万用表的读数即测量值1U ,直流稳压电源的输出刻度指示值为2U ,则输出指示准确度A 如下:

2) 实验步骤 a 将直流稳压电源的输出电压调节旋钮逆时针调节到较小位置,万用表的量程也置于适当的档位; b 接通万用表及直流稳压电源的电源开关,调节万用表为适当量程,从小到大调节稳压电源的输出电压调节旋钮,即调节稳压电源输出电压,分别读取电源电压指示值2U 和万用表的读数1U ,并计入表1-1; c 按公式计算每次测量的指示准确度U A ,最后计算U A 的平均值; d 按上述步骤,测试电流输出指示值2I ,万用表读数1I ,并计算电流输出指示准确度I A 及其平均值,完成表1-2。 表1-1 电压输出指示准确度的测量 表1-2 电流输出指示准确度的测量

2 直流稳压电源纹波系数的测量 1) 测量原理 纹波系数是反映直流稳压电源输出中交流成分大小的物理量,纹波系数定义为: 其中,2U 表示直流稳压电源输出纹波电压的峰-峰值,1U 为直流稳压电源输出电压的最大额定值。纹波系数越小,说明直流稳压电源直流输出的特性越好。 2) 实验步骤 a 将直流稳压电源的输出电压调节旋钮逆时针旋转调节到较小位置; b 打开直流稳压电源和示波器的电源开关,示波器的耦合方式置为“交流耦合”方式; c 将直流稳压电源的正极和负极分别与示波器的探头和地端相接触,调节稳压电源的输出电压为最大额定值,调节示波器使稳压电源的输出纹波能比较清晰地显示在屏幕中间,观察纹波波形并记录其波形和峰-峰值,计入表1-3; d 按公式计算纹波系数 。 表1-3 直流稳压电源纹波系数的测量

相关文档
相关文档 最新文档