文档库 最新最全的文档下载
当前位置:文档库 › 2019届人教版 机械能守恒定律和动量守恒定律结合问题 单元测试

2019届人教版 机械能守恒定律和动量守恒定律结合问题 单元测试

2019届人教版    机械能守恒定律和动量守恒定律结合问题   单元测试
2019届人教版    机械能守恒定律和动量守恒定律结合问题   单元测试

2019年高考第一轮复习:机械能守恒定律和动量守恒定律结合问题

提高练习

难度(★★★★☆)

一、多选题

1.如图所示,左侧MG为光滑半圆形轨道,与水平光滑轨道平滑相连,半径为2m;水平轨道分为两段,MN 为长L=1.5m的光滑水平轨道,NP部分粗糙且足够长,在水平轨道靠近Ⅳ点处放着两个物块A、B,中间夹着炸药,存储了60J的化学能,某时刻引爆炸药。已知两滑块与NP间的动摩擦因素μ=0.5,A、B的质量分别为m A=3g,m B=5g。A、B可视为质点,假设化学能全部转化为机械能,且之后的所有碰撞均为弹性碰撞。重力加速度g取10m/s2。则关于A、B的运动,下列说法正确的是

A.爆炸过程中,A、B组成的系统动量守恒,机械能守恒

B.爆炸过程中,B受到的冲量大小为15N·s

C.A、B碰撞后向同一方向运动

D.最终A、B停止运动后的距离为1m

【答案】BD

【解析】爆炸过程中,A、B组成的系统爆炸产生的内力远大于外力,则系统的动量守恒;因爆炸产生能量,则系统的机械能增加,选项A错误;对爆炸过程,取向左为正方向,由动量守恒定律得:m A v A-m B v B=0,由

能量守恒定律得:1

2m A v A2+1

2

m B v B2=60J,解得:v A=5m/s,v B=3m/s;B受到的冲量为:I B=m B v B=5×3=15N?s,

故B正确;根据能量守恒可知:1

2

m A v A2=m A g ,解得h=1.25m<2m,即A运动到半圆形轨道一部分,然后又

返回;对B根据能量守恒可知:1

2

m B v B2=μm B gx B1,解得x B1=0.9m;当A追上B 时,对A根据能量守恒可

知:1

2m A v A2=1

2

m A v A′2+μm A gx B1,解得v A′=4m/s;A、B组成的系统碰撞过程动量守恒、能量守恒,则:

m A v A′=m A v A1+m B v B1;1

2m A v A′2=1

2

m A v A12+1

2

m B v B12;解得:v A1=?1m/s,v B1=3m/s,即A、B碰撞

后向相反方向运动,故C错误;对A根据能量守恒可知:1

2

m A v A12=μm A gx A1,解得x A1=0.1m;对B根据能量

守恒可知:1

2m B v B12=μm B gx B2,解得x B2=0.9m;AB之间的距离x=x A1+x B2=1m,故D正确。故选BD。

2.如图所示,一块足够长的木板,放在光滑水平面上,在木板上自左向右放有序号是1、2、3、……、n的木块,所有木块的质量均为m,与木块间的动摩擦因数都相同.开始时,木板静止不动,第1、2、3、……、n 号木块的初速度分别为v0、2v0、3v0、……、nv0,v0方向向右,木板的质量与所有木块的总质量相等,最终所有木块与木板以共同速度匀速运动,则()

A.所有木块与木板一起匀速运动的速度为n+1

4

v0

B.所有木块与木板一起匀速运动的速度为n+1

2

v0

C.若n=9,则第8号木块在整个运动过程中的最小速度为22

9

v0

D.若n=9,则第8号木块在整个运动过程中的最小速度为35

16v0

【答案】AC

【解析】AB:根据动量守恒有:mv0+2mv0+3mv0+???+nmv0=2nmv n,解得:v n=n+1

4v0

故A正确B错误

CD:设经过t1时间,第1块木块与木板的速度相同,设此时木板的速度为v1,则:对第1个木块:?μmgt1=mv1?mv0

对木板:nμmgt1=nmv1?0,

联立解得:v1=1

2v0μmgt1=1

2

mv0

设再经过t2时间,第2块木块与木板的速度相同,设此时木板的速度为v2,则:对第2个木块:?μmg(t1+t2)=mv2?m(2v0)

对木板和第1个木块:(n?1)μmgt2=(n+1)m(v2?v1),

解得:v2=2n?1

2n v0μmgt2=n+1

2n

mv0

再经过t3时间,第3块木块与木板的速度相同,设此时木板的速度为v3,则:对第3个木块:?μmg(t1+t2+t3)=mv3?m(3v0)

对木板和第1、2个木块:(n?2)μmgt3=(n+2)m(v3?v2),

再经过t k时间,第块木块与木板的速度相同,设此时木板的速度为v k,则:

对第个木块:?μmg(t1+t2+t3+???+t k)=mv k?m(kv0)

对木板和第1、2、3…、-1个木块:(n+1?k)μmgt3=(n+k?1)m(v k?v k?1),

解得:v k=(2n+1?k)

4n

kv0,将n=9,k=8代入:v8=22

9

v0

故C正确D错误

3.如图所示,小球A质量为m,系在细线的一端,线的另一端固定在O点,O点到光滑水平面的距离为h.物块B和C的质量分别是5m和3m,B与C用轻弹簧拴接,置于光滑的水平面上,且B物块位于O点正下方.现拉动小球使细线水平伸直,小球由静止释放,运动到最低点时与物块B发生正碰(碰撞时间极短),反弹后上升到最高点时到水平面的距离为

16

.小球与物块均视为质点,不计空气阻力,重力加速度为g,则()

A.碰撞后小球A反弹的速度大小为2g

4

B.碰撞过程B物块受到的冲量大小m

C.碰后轻弹簧获得的最大弹性势能15

128

mg

D.小球C的最大速度大小为5

16

2g

【答案】ACD

【解析】

【详解】

A、设小球运动到最低点与物块B碰撞前的速度大小为v1,取小球运动到最低点时的重力势能为零,根据机

械能守恒定律有:mg =1

2

mv12,解得:v1=2g

设碰撞后小球反弹的速度大小为v1′,同理有:mg

16

=1

2

mv′12;解得v′1=2g

4

,选项A正确。

B、设碰撞后物块B的速度大小为v2,取水平向右为正方向,由动量守恒定律有:mv1=-mv1′+5mv2;解得:

v2=2g

4

;由动量定理可得,碰撞过程B物块受到的冲量为:I=5mv2=5

4

m2g ,选项B错误。

C、碰撞后当B物块与C物块速度相等时轻弹簧的弹性势能最大,据动量守恒定律有5mv2=8mv3;据机械能

守恒定律E Pm=1

2

×5mv22?1

2

×8mv32;解得:E Pm=15

128

mg ;选项C正确。

D、对B物块与C物块在弹簧回到原长时,C物块有最大速度;据动量守恒和机械能守恒可解得v C=52g

16

;选项D正确。

4.如图所示,一质量为0.5 g的一块橡皮泥自距小车上表面1.25m高处由静止下落,恰好落入质量为2 g、速度为2.5m/s沿光滑水平地面运动的小车上,并与小车一起沿水平地面运动,取g=10m/s2,不计空气阻力,下列说法正确的是()

A.橡皮泥下落的时间为0.3s

B.橡皮泥与小车一起在水平地面上运动的速度大小为2m/s

C.橡皮泥落入小车的过程中,橡皮泥与小车组成的系统动量守恒

D.整个过程中,橡皮泥与小车组成的系统损失的机械能为7.5J

【答案】

BD

【解析】橡皮泥下落的时间为:t =

2 g

2×1.2510

=0.5s .故A 错误;橡皮泥与小车在水平方向的动量守恒,

选取向右为正方向,则有:m 1v 0=(m 1+m 2)v ,所以共同速度为:v =

m 1v 0m 1+m 2

=2×2.5

2+0.5=2m /s ,故B 正确;橡

皮泥落入小车的过程中,橡皮泥与小车组成的系统在水平方向的动量守恒,但竖直方向的动量不守恒。故C 错误;在整个的过程中,系统损失的机械能等于橡皮泥的重力势能与二者损失的动能,得:△E =

m 2gh +[12

m 1v 02?1

2

(m 1+m 2)v 2],代入数据可得:△E=7.5J .故D 正确。故选BD 。

5.如图所示,质量为m 的小车静置于光滑水平面上,小车右端带有光滑圆弧轨道,一质量也为m 的小球以水平速度v 0从左端冲上小车,到达某一高度h 后又能回到小车左端,重力加速度为g ,不计一切摩擦,以下说法正确的是(

A . 小球回到小车左端时速度为v 0

B . 小球回到小车左端时速度为0

C . =v 0

22g D . =

v 024g

【答案】BD

【解析】设小球回到小车左端时时速度为v 1,小车的速度为v 2,选取水平向右为正方向,整个过程中系统的

水平动量守恒,得:mv 0=mv 1+mv 2;由机械能守恒得:12mv 02=12mv 12+1

2mv 22;联立解得:v 1=0,v 2=v 0,故A 错误,故B 正确。当小球与小车的速度相等时,小球弧形槽上升到最大高度,设最大高度为h ,则:mv 0=2m ?v ;

12

mv 02=1

2

?2mv 2 +mgh ;联立解得:h=v 02

4g

,故C 错误,D 正确。故选BD 。

二、单选题

6.质量分别为3m 和m 的两个物体,用一根细绳相连,中间夹着一根被压缩的轻弹簧,在光滑的水平面上以速度v 0匀速运动.某时刻剪断细绳,质量为m 的物体离开弹簧时速度变为v= 2v 0,如图所示.则在这一过程中弹簧做的功和两物体之间转移的动能分别是

A . 8

3mv 02

23mv 02 B . mv 02 32mv 02

C .

12

mv 02 3

2mv 02 D . 2

3mv 02 5

6mv 02

【答案】D

【解析】细线断裂过程,系统的合外力为零,总动量守恒,根据动量守恒定律就可以求出物体m 离开弹簧时物体3m 的速度,根据动能定理分别求出弹簧对两个物体做的功,两者之和即可得到弹簧在这个过程中做的总功。

设3m 的物体离开弹簧时的速度为υ',根据动量守恒定律,则有: (3m +m )v 0=m ·2v 0+3mv ′

解得:v ′=2

3

v 0

根据动能定理,弹簧对两个物体做的功分别为:

W 1=12m (2v 0)2?12mv 02=32mv 02

W 2=12×3m (23v 0)2?12×3mv 02=?56

mv 02

所以弹簧做的总功:W=W 1+W 2=23mv 02

m 的物体动能的增量为:1

2m (2v 0)2?

12

mv 02

=

3

2

mv 02

此过程中弹簧的弹性势能的减小量为弹簧弹力做的功即为2

3mv 02

由机械能守恒可知,所以两物体之间转移的动能为:32mv 02?23mv 0

2

=5

6mv 02

。 故应选D 。

7.3个质量分别为m 1、m 2、m 3的小球,半径相同,并排悬挂在长度相同的3根竖直绳上,彼此恰好相互接触。现把质量为m 1的小球拉开一些,如图中虚线所示,然后释放,经球1与球2、球2与球3相碰之后,3个球的动量相等。若各球间碰撞时均为弹性碰撞,且碰撞时间极短,不计空气阻力,则m 1∶m 2∶m 3为( )

A . 6∶3∶1

B . 2∶3∶1

C . 2∶1∶1

D . 3∶2∶1 【答案】A 【解析】 【详解】

因为各球间发生的碰撞是弹性碰撞,则碰撞过程机械能守恒,动量守恒。因碰撞后三个小球的动量相等设为p ,则总动量为3p 。由机械能守恒得(3p )22m 1

=p 22m 1

+p 22m 2

+p 2

2m 3

,即9m 1

=1m 1

+1m 2

+1

m 3

,代入四个选项的的质量比值

关系,只有A 项符合,故选A 。

8.如图,两滑块A 、B 在光滑水平面上沿同直线相向运动,滑块 A 的质量为m ,速度大小为2v 0,方向向右,滑块B 的质量为2m ,速度大小为v 0,方向向左,两滑块发生弹性碰撞后的运动状态是

A . A 和

B 都向左运动

B . A 向左运动,B 向右运动

C . A 静止,B 向右运动

D . A 和B 都向右运动 【答案】B

【解析】两球碰撞过程动量守恒,以两球组成的系统为研究对象,取水平向右方向为正方向,碰撞前,A 、B 的速度分别为:v A =2v 0、v B =v 0。碰撞前系统总动量:P =m A v A +m B v B =m ×2v 0+2m ×(-v 0)=0,P =0,系统总动量为0,系统动量守恒,则碰撞前后系统总动量都是0;由于碰撞是弹性碰撞,则碰撞后二者的速度不能等于0,运动的方向一定相反;故B 正确,A 、C 、D 错误。故选B 。

三、解答题

9.在一种新的“子母球”表演中,让同一竖直线上的小球A 和小球B ,从距水平地面高度为ph (p >1)和h 的地方同时由静止释放,如图所示。球A 的质量为m ,球B 的质量为3m 。设球与地面碰撞后速度大小不变,方向相反,重力加速度大小为g ,忽略球的直径、空气阻力及碰撞时间。

(1)求球B 第一次落地时球A 的速度大小;

(2)若球B 在第一次上升过程中就能与球A 相碰,求p 的取值范围;

【答案】(1)02v gh =

2)15p <<

【解析】

试题分析:(1)由于两球同时释放,所以球B 第一次落地时A 球下落的高度为h ,设此时A 球的速度大小为

0v ,由202v gh =可得,02v gh =

(2)球B 第一次落地并与地发生弹性碰撞后做竖直上抛运动。

若球B 上升到最大高度h 处时刚好与球A 发生碰撞,设此时球A 自由下落的时间t A ,则

2

1()22

A t g h =,

此时球A 自由下落的高度2

12

A A h gt =

。 联立以上两式,可得4A h h =,则5A ph h h h =+=,

所以p=5。若球B 在第一次上升过程中就能与球A 相碰,则p 的取值范围应为15p <<。 考点:考查了竖直上抛运动 10.(19分)如图所示,一个物块A (可看成质点)放在足够长的平板小车B 的右端,A 、B 一起以v 0的水平初速度沿光滑水平面向左滑行.左边有一固定的竖直墙壁,小车B 与墙壁相碰,碰撞时间极短,且碰撞前、后无动能损失.已知物块A 与小车B 的水平上表面间的动摩擦因数为μ,重力加速度为g .

(1)若A 、B 的质量均为m ,求小车与墙壁碰撞后的运动过程中,物块A 所受摩擦力的冲量大小和方向; (2)若A 、B 的质量比为 ,且 <1,求物块A 在小车B 上发生相对运动的过程中物块A 对地的位移大小; (3)若A 、B 的质量比为 ,且 =2,求小车第一次与墙壁碰撞后的运动过程所经历的总时间. 【答案】(1)I =mv 0,方向水平向右 ;(2)s =

2kv 0

2μg (1+k )2

; (3)t 总=

2v 0μg

【解析】试题分析:(1)设小车B 与墙碰撞后物块A 与小车B 所达到的共同速度大小为v ,设向右为正方向,

则由动量守恒定律得:mv 0?mv 0=2m )v 解得:v =0(2分)

对物块A ,由动量定理得摩擦力对物块A 的冲量I =0?(?mv 0)=mv 0(2分),冲量方向水平向右.(1分) (2)设A 和B 的质量分别为 m 和m ,小车B 与墙碰撞后物块A 与小车B 所达到的共同速度大小为v ′,木块A 的位移大小为s .设向右为正方向,则由动量守恒定律得: mv 0?kmv 0=(m +km )v ′(1分)

解得:v ′=1?k

1+k v 0(1分)

对木块A 由动能定理:?μkmgs =1

2kmv ′2

?1

2mv 02

(2分)

代入数据解得s =

2kv 0

2μg (1+k )(2分)

(3)当 =2时,根据题意由于摩擦的存在,经B 与墙壁多次碰撞后最终A 、B 一起停在墙角.A 与B 发生相

对运动的时间t 0可等效为A 一直做匀减速运动到速度等于0的时间,在A 与B 发生相对滑动的整个过程,对A 应用动量定理:?2mgμt 0=0?2mv 0(2分)

解得时间:t 0=v 0

μg (1分) 设第1次碰后A 、B 达到的共同速度为v 1,B 碰墙后,A 、B 组成的系统,没有外力作用,水平方向动量守恒,设水平向右为正方向,由动量守恒定律得:mv 0?2mv 0=(2m +m )v 1

即v 1=?1

3

v 0(负号表示v 1的方向向左)

第1次碰后小车B 向左匀速运动的位移等于向右匀减速运动到速度大小为v 1,这段运动的位移s 1 对小车B ,由动能定理得:?μ?2mgs 1=

1

2kmv 12?12mv 02

,解得s 1=2v 0

29μg

第1次碰后小车B 向左匀速运动时间t 1=s 1v 1

=2v 0

3μg (2分)

设第2次碰后共速为v 2,由动量守恒定律,得mv 1?2mv 1=(2m +m )v 2,即v 2=

v 13

=?v

3

2

第2次碰后小车B 向左匀速运动的位移等于向右匀减速运动到速度大小为v 2,这段运动的位移s 2,

对小车B ,由动能定理得?μ?2mgs 2=1

2kmv 22?1

2mv 12

,解得s 2=192

2v 0

2μg

第2次碰后小车B 向左匀速运动时间t 2=s 2v 2

=2v

032μg

同理,设第3次碰后共速为v 3,碰后小车B 向左匀速运动的位移为s 3, 则由动量守恒定律,得v 3=

v 23

=?v

03

3,s 3

=1932v 0

2μg

第3次碰后小车B 向左匀速运动时间t 3=s 3v 3

=2v 0

3μg

由此类推,第n 次碰墙后小车B 向左匀速运动时间t n =

2v 03n μg

第1次碰墙后小车B 向左匀速运动时间即B 从第一次撞墙后每次向左匀速运动时间为首项为t 1,末项为t n ,

公比为1

3的无穷等比数列.

即B 从第一次与墙壁碰撞后匀速运动的总时间:t 匀=t 1+t 2+t 3+?+t n =v

μg (2分)

所以,从第一次B 与墙壁碰撞后运动的总时间t 总=t 0+t 匀=2v

0μg (1分)

11.如图所示,质量为2m 的木板A 静止在光滑水平面上,其左端与固定台阶相距S ,长木板的右端固定一半径为R 光滑的四分之一圆弧,圆弧的下端与木板水平相切但不相连。质量为m 的滑块B (可视为质点)以初速度gR v 20=

从圆弧的顶端沿圆弧下滑,当B 到达最低点时,B 从A 右端的上表面水平滑入同时撤走

圆弧.A 与台阶碰撞无机械能损失,不计空气阻力,A 、B 之间动摩擦因数为μ,A 足够长,B 不会从A 表面

滑出;重力加速度为g .试分析下列问题:

(1)滑块B 到圆弧底端时的速度大小v 1;

(2)A 与台阶只发生一次碰撞,求S 满足的条件;

(3)S 在满足(2)条件下,讨论A 与台阶碰撞前瞬间B 的速度。

【答案】(1)gR v 21= (2)μ

4R

S ≥ (3)B v =

【解析】

试题分析: (1)滑块B 从释放到最低点,机械能守恒,取水平面为零势面,由机械能守恒定律得:

21202

1

21mv mgR mv =+ ① 由①解得: gR v 21= ②

(2)设A 与台阶碰撞前瞬间,A 、B 的速度分别为v A 和v B ,由动量守恒定律得: A B mv mv mv 21+= ③

若A 与台阶只碰撞一次,碰撞后必须满足:B A mv mv ≥2 ④ 对A 应用动能定理:2

22

1A

mv mgS ?=μ ⑤ 联立③④⑤解得:μ

4R

S ≥

⑥ 即A 与台阶只能碰撞一次的条件是:μ

4R

S ≥

(3)设S=0S 时,A 左端到台阶板前瞬间,A 、B 恰好达到共同速度AB v ,由动量守定律得:

AB v )m m (mv 21+= ⑦

对A 应用动能定理:2

022

1AB

mv μmgS ?= ⑧ 联立⑦⑧得:μ940R S =

讨论: (i )当0S S ≥即μ

94R

S ≥

时,AB 共速后A 才与挡板碰撞. 由⑦式可得A 与台阶碰撞前瞬间的A 、B 的共同速度为:3231gR v v AB ==

即A 与台阶碰撞前瞬间B 的速度为:3

23

1gR v v v AB B ===

(ii )当μ40R S S >>即μμ494R S R ≥>时,AB 共速前A 就与台阶碰撞,

对A 应用动能定理有:2222

1A mv mgS ?=

μ 由上式解得A 与台阶碰撞前瞬间的速度:gS v A μ=2

设此时B 的速度为/B v ,由动量守恒定律得:/

212B A mv mv mv +=

由上式解得:)(2/S R g v B μ-=

12.目前雾霾天气仍然困扰人们,为了解决此难题很多环保组织和环保爱好者不断研究。某个环保组织研究发现通过降雨能有效解决雾霾天气。当雨滴在空中下落时,不断与漂浮在空气中的雾霾颗粒相遇并结合为一体,其质量不断增大,直至落地。现将上述过程简化为沿竖直方向的一系列碰撞。已知雨滴的初始质量为m ,初速度为v 0,每个雾霾颗粒质量均为m 0,假设雾霾颗粒均匀分布,且雨滴每下落距离h 后才与静止的雾霾颗粒碰撞并立即结合在一起。试求:

(1)若不计重力和空气阻力,求第n 次碰撞后雨滴的速度大小。

(2)若不计空气阻力,但考虑重力,求第1次碰撞后雨滴的速度大小。

(3)若初始时雨滴受到的空气阻力是f ,假设空气阻力只与结合体的质量有关。以后每碰撞一次结合体受到的空气阻力都变为碰前的2倍,当第n 次碰后结合体的机械能为E ,求此过程因碰撞损失的机械能

△E 。 【答案】(1)00n mv v m nm =

+(23)()()

20

0112122n n n mgnh mv m gh E fh -++--- 【解析】试题分析:(1)不计重力和空气阻力,全过程中动量守恒 mv 0=(m+nm 0)v n 得0

n mv V m nm =

+

(2)若只受到重力,雨滴下降过程中做加速度为g 的匀加速运动,

第1次碰撞前22

102v v

gh =+ 碰撞瞬间动量守恒 则有()'

101mv m m v =+

解得'1v =

(3

()()()(){}

2

001123 (12)

f mgnh mv m

g n

h n h n h n n h E E W ??++-+-+-++--=+?+?? 又

两式联立解得()()

200112122

n n n E mgnh mv m gh E fh -?=+

+---

13.电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器.电磁

轨道炮示意如图,图中直流电源电动势为E ,电容器的电容为C .两根固定于水平面内的光滑平行金属导轨间距为l ,电阻不计.炮弹可视为一质量为m 、电阻为R 的金属棒MN ,垂直放在两导轨间处于静止状态,并与导轨良好接触.首先开关S 接1,使电容器完全充电.然后将S 接至2,导轨间存在垂直于导轨平面、磁感应强度大小为B 的匀强磁场(图中未画出),MN 开始向右加速运动.当MN 上的感应电动势与电容器两极板间的电压相等时,回路中电流为零,MN 达到最大速度,之后离开导轨.问:

(1)磁场的方向;

(2)MN 刚开始运动时加速度a 的大小;

(3)MN 离开导轨后电容器上剩余的电荷量Q 是多少.

【答案】(1)垂直于导轨平面向下;(2)BEl

mR

(3)22222B l C E m B l C +

【解析】(1)电容器充电后上板带正电,下板带负电,放电时通过MN 的电流由M 到N ,欲使炮

弹射出,安培力应沿导轨向右,根据左手定则可知磁场的方向垂直于导轨平面向下。 (2)电容器完全充电后,两极板间电压为E ,根据欧姆定律,电容器刚放电时的电流: E I R

= 炮弹受到的安培力: F BIl =

根据牛顿第二定律: F ma =

解得加速度BEl

a mR

=

(3)电容器放电前所带的电荷量1Q CE =

开关S 接2后,MN 开始向右加速运动,速度达到最大值v m 时,MN 上的感应电动势: m E Blv '= 最终电容器所带电荷量2Q CE ='

设在此过程中MN 的平均电流为I ,MN 上受到的平均安培力: F B I l =?? 由动量定理,有: m 0F t mv ??=- 又: 12I t Q Q ??=-

整理的:最终电容器所带电荷量222222B l C E

Q B l C m

=+

14.如图,一根水平杆上等距离地穿着n 个半径相同的珠子,珠子可以在杆上无摩擦移动,珠子的质量依次

为m , m , 2m , 3m………·, n-1m ,其中 的取值范围是1

2≤k ≤2。使第一颗珠子在极短时间内获得初速度v 0,之后每当珠子之间发生碰撞时都会粘在一起。

a.分析并说明当 取何值时,碰撞全部结束后系统的总动能最大; 取何值时,碰撞全部结束后系统的总动能最小。

b.求出碰撞结束后系统相应的最小总动能和最大总动能的比值。

【答案】a. 当k =2时,全部碰撞结束后系统的总动能最小,E K ′=12mv 02(1

2?1) 当k =1

2

时,全部碰撞结束后系统的总动能最大,E K ′=1

2

mv 02(

12?2

) b.

2?21?n 2?1

【解析】珠子连续与其它的珠子发生完全非弹性碰撞。可以采用全过程法,最后一次碰撞后系统动量守恒。应用全过程动量守恒定律与能量守恒定律分析答题。 a.设第一颗子质量为m,其余珠子质量为M

由题可知M =(km +k 2m +k 3m +?…+k n?1m ) 由动量守恒可得mv 0=(m +M )v

由能量守恒定律得,损失的动能ΔE K =12mv 02?1

2(m +M )v 2

ΔE K =M ·1mv 02=1mv 02

·(km +k 2m +k 3m +?…+k n?1m 23n?1)

碰撞全部结束后系统的总动能E k ′=1

2mv 02?ΔE k 解得E K ′=1

2mv 02(1?k

1?k n )

当k =2时,全部碰撞结束后系统的总动能最小,E K ′=12mv 02(1

2?1) 当k =12

时,全部碰撞结束后系统的总动能最大,E K ′=12

mv 02(1

2?21?n

)

b.最小总动能和最大总动能的比值为:

12mv 02(12n ?1)1mv 02(11?n

)=

2?21?n 2n ?1

15.如图所示,传送带长L =7 m ,与水平成θ=370角,以v =4 m /s 沿逆时针方向匀速传动,一质量为

M =0.5 k g 的物块在传送带的顶端由静止释放,物块与传送带间的动摩擦因数为μ=0.25,当物块滑到底端时,有一质量为m =0.01 k g 的子弹以v 0=800 m /s 原速度射入物块,后又以v ′=200 m

/

s 的速度穿出物块,以后每隔t 0=0.75 s 就有相同的子弹以相同的速度射入和穿出。(不计子弹穿过物块的时间,sin370=0.6,cos370=0.8)

(1)求物块滑到传送带底端时速度;

(2)通过计算说明物块滑离传送带时,有几颗子弹穿过物块。

【答案】(1) v1=8m/s(2)三颗

【解析】(1)开始下滑时摩擦力沿斜面向下,由牛顿第二定律可得Mg sin37°+μMg cos37°=Ma1则:a1=8m/s2

物块加速到速度为v=4m/s时摩擦力沿斜面向上,

所用时间:t1=v

a1

=0.5s

这一过程中物块的位移:s1=1

2

a2t12=1m

此后,根据牛顿第二定律:Mg sin37°?μM cos37°=Ma2

得:a2=4m/s2

设物块滑到底端时的速度为v1,由公式v12?v2=2a2(L?s1)

得:v1=8m/s

(2)第一颗子弹射入物块,由动量守恒可得:mv0?Mv1=ma+Mv2

得v2=4m/s

由于物块上滑的加速度为a1,其速度减速到零的时间为t2=v2

a1

=0.5s

所以物块上滑的位移为s2=v2

2

t2=1m

然后物块下滑,经时间t3=t0?t2=0.25s与第二颗子弹相遇,

相遇瞬时物块速度为v2=a1t2=2m/s,

下滑位移为s3=1

2a1t32=0.25m

第二颗子弹射入物块,有:mv0?Mv3=mv′+Mv4

得:v4=10 m/s

物块向上减速0.73s时的速度为v2=v4?a1t0=4m/s

此过程位移s4=v4+v5

2

t0=5.25m

此时物块离顶端距离为s5=L?s2+s3?s4=1m

第三颗子弹射入物块,有mv0+Mv5=mω′,得v6=16m/s

由于此后物体减速至零的位移2a1=v62?s6=16m>1m

故有三颗子弹穿过物体。

16.如图所示,光滑的水平平台上放有一质量M=2 g,厚度d=0.2m的木板,木板的左端放有一质量m=1 g 的滑块(视为质点),现给滑块以水平向右、v0=6m/s的初速度,木板在滑块的带动下向右运动,木板滑到平台边缘时平台边缘的固定挡板发生弹性碰撞,当木板与挡板发生第二次碰撞时,滑块恰好滑到木板的右端,然后水平飞出,落到水平地面上的A点,已知木板的长度l=10m,A点到平台边缘的水平距离s=1.6m,平台距水平地面的高度h=3m,重力加速度g=10m/s2,不计空气阻力和碰撞时间,求:

(1)滑块飞离木板时的速度大小;

(2)第一次与挡板碰撞时,木板的速度大小;(结果保留两位有效数字)

(3)开始时木板右端到平台边缘的距离;(结果保留两位有效数字)

【答案】(1)v1=2m/s(2) v=0.67m/s (3)x=0.29

【解析】(1)滑块飞离木板后做平抛运动,则有: +d=1

2gt2

v1t=s

解得v1=2m/s (2)木板第一次与挡板碰撞后,速度方向反向,速度大小不变,先向左做匀减速运动,再向右做匀加速运动,与挡板发生第二次碰撞,由匀变速直线运动的规律可知木板两次与挡板碰撞前瞬间速度相等。

设木板第一次与挡板碰撞前瞬间,滑块的速度大小为v′,木板的速度大小为v

由动量守恒定律有:mv0=mv′+Mv,

mv′?Mv=mv1+Mv

解得:v=0.67m/s

(3)由匀变速直线运动的规律:v02?v12=2a1x+l,

v2=2a2x,

由牛顿第二定律:f=ma1=Ma2

解得:x=0.29;

17.如图,固定的光滑平台左侧有一光滑的半圆轨道,轨道半径R=0.72 m。平台上静止着两个滑块A、B,m A=0.1 g、m B=0.2 g,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M=0.3 g,车上表面与平台的台面等高,车面左侧粗糙部分长度为L,动摩擦因数为μ=0.2,右侧拴接一轻质弹簧,弹簧自然长度所在处车面光滑。点燃炸药后,A滑块恰好到达半圆轨道的最高点,滑块B冲上小车。两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,g取10 m/s2。

(1)求炸药爆炸后滑块B的速度大小v B;

(2)若滑块B恰好没有从小车上掉下来,求小车左侧粗糙部分的长度L;

(3)若L'=0.75 m,求小车的最大速度v2.

【答案】(1)3 m/s (2)0.675m (3)2 m/s

【解析】(1)滑块A恰好到轨道的最高点

L3′=30cm

1

2

m A v A2=m A g2R+1

2

m A v2

炸药爆炸AB系统动量守恒0=m A v A?m B v B

解得:v B=3 m/s

(2)最终B与小车共速,B与小车系统动量守恒

m B v B=(m B+M)v t

μm B g2L=1

2

m B v B2?1

2

(m B+M)v t2

解得:L=0.675m

(3)当弹簧再次恢复原长时,小车速度最大

m B v B=m B v1+Mv2

1

2

m B v B2=

1

2

m B v12+

1

2

Mv22+μm B gL′

解得v2 =2m/s

18.如图所示,空间存在着方向竖直向上的匀强电场和方向垂直于纸面向内,磁感应强度大小为B的匀强磁场,带电量为+q、质量为m的小球Q静置在光滑绝缘的水平高台边缘,另一质量为m不带电的绝缘小球P以水平初速度v0向Q运动,v0=mg

2qB

,已知小球P、Q正碰过程中没有机械能损失且电荷量不发生转移,已知匀强电

场的电场强度E=mg

q

,水平台面距离地面高度 =2m

2g

q B

,重力加速度为g,不计空气阻力。

动量守恒定律典型例题解析

动量守恒定律·典型例题解析 【例1】 如图52-1所示,在光滑的水平面上,质量为m 1的小球以速度v 1追逐质量为m 2,速度为v 2的小球,追及并发生相碰后速度分别为v 1′和v 2′,将两个小球作为系统,试根据牛顿运动定律推导出动量守恒定律. 解析:在两球相互作用过程中,根据牛顿第二定律,对小球1有:F ==,对有′==.由牛顿第三定律得=m a m m F m a m F 1112222????v t v t 12 -F ′,所以F ·Δt =-F ′·Δt ,m 1Δv 1=-m 2Δv 2,即m 1( v 1′-v 1)=-m 2(v 2′-v 2),整理后得:m 1v 1+m 2v 2=m 1v 1′+ m 2v 2′,这表明以两小球为系统,系统所受的合外力为零时,系统的总动量守恒. 点拨:动量守恒定律和牛顿运动定律是一致的,当系统内受力情况不明,或相互作用力为变力时,用牛顿运动定律求解很繁杂,而动量定理只管发生相互作用前、后的状态,不必过问相互作用的细节,因而避免了直接运用牛顿运动定律解题的困难,使问题简化. 【例2】 把一支枪水平地固定在光滑水平面上的小车上,当枪发射出一颗子弹时,下列说法正确的是 [ ] A .枪和子弹组成的系统动量守恒 B .枪和车组成的系统动量守恒 C .子弹、枪、小车这三者组成的系统动量守恒 D .子弹的动量变化与枪和车的动量变化相同 解析:正确答案为C 点拨:在发射子弹时,子弹与枪之间,枪与车之间都存在相互作用力,所以将枪和子弹作为系统,或枪和车作为系统,系统所受的合外力均不为零,系统的动量不守恒,当将三者作为系统时,系统所受的合外力为零,系统的动量守恒,这时子弹的动量变化与枪和车的动量变化大小相等,方向相反.可见,系统的动量是否守恒,与系统的选取直接相关. 【例3】 如图52-2所示,设车厢的长度为l ,质量为M ,静止于光滑的水平面上,车厢内有一质量为m 的物体以初速度v 0向右运动,与车厢壁来

§2 动量守恒定律及其应用

§2 动量守恒定律及其应用 教学目标: 1.掌握动量守恒定律的内容及使用条件,知道应用动量守恒定律解决问题时应注意的问题. 2.掌握应用动量守恒定律解决问题的一般步骤. 3.会应用动量定恒定律分析、解决碰撞、爆炸等物体相互作用的问题. 教学重点: 动量守恒定律的正确应用;熟练掌握应用动量守恒定律解决有关力学问题的正确步骤. 教学难点: 应用动量守恒定律时守恒条件的判断,包括动量守恒定律的“五性”:①条件性;②整体性;③矢量性;④相对性;⑤同时性. 教学方法: 1.学生通过阅读、对比、讨论,总结出动量守恒定律的解题步骤. 2.学生通过实例分析,结合碰撞、爆炸等问题的特点,明确动量守恒定律的矢量性、同时性和相对性. 3.讲练结合,计算机辅助教学 教学过程 一、动量守恒定律 1.动量守恒定律的内容 一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。 即:221 12211v m v m v m v m '+'=+ 2.动量守恒定律成立的条件 ⑴系统不受外力或者所受外力之和为零; ⑵系统受外力,但外力远小于内力,可以忽略不计; ⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。 ⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。 3.动量守恒定律的表达形式 (1)221 12211v m v m v m v m '+'=+,即p 1+p 2=p 1/+p 2/, (2)Δp 1+Δp 2=0,Δp 1= -Δp 2 和 1221v v m m ??-= 4.动量守恒定律的重要意义 从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一。(另一个最基本的普适原理就是能量守恒定律。)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。相反,每当在实验中观察到似乎是违反动量守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终。例如静止的原子核发生β衰变放出电子时,按动量守恒,反冲核应该沿电子的反方向运动。但云室照片显示,两者径迹不在一条直线上。为解释这一反常现象,1930年泡利提出了中微子假说。由于中微子既不带电又几乎无质量,在实验中极难测量,直到1956年人们才首次证明了中

动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型) 例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为 4kg,地面光滑,则车后来的速度为多少? 例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少? 例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地 点的距离。(g取10m/s2) 例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。设 小车足够长,求: (1)木块和小车相对静止时小车的速度。 (2)从木块滑上小车到它们处于相对静止所经历的时间。 (3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。 例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞? 答案:1.

h b 分析:以物体和车做为研究对象,受力情况如图所示。 在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。因此地面给车的支持力远大于车与重物的重力之和。 系统所受合外力不为零,系统总动量不守恒。但在水平方向系统不受外力作用,所以系统水平方向动量守恒。以车的运动方向为正方向,由动量守恒定律可得: 车 重物初:v 0=5m/s 0末:v v ?Mv 0=(M+m)v ?s m v m N M v /454 14 0=?+=+= 即为所求。 2、分析:以滑块和小车为研究对象,系统所受合外力为零,系统总动量守恒。 以滑块的运动方向为正方向,由动量守恒定律可得 滑块 小车初:v 0=4m/s 0末:v v ?mv 0=(M+m)v ?s m v m M M v /143 11 0=?+=+= 再以滑块为研究对象,其受力情况如图所示,由动量定理可得 ΣF=-ft=mv-mv 0 ?s g v v t 5.110 2.0) 41(0=?--=-=μf=μmg 即为所求。 3、分析:手榴弹在高空飞行炸裂成两块,以其为研究对象,系统合外力不为零,总动量不守恒。但手榴弹在爆炸时对两小块的作用力远大于自身的重力,且水平方向不受外力,系统水平方向动量守恒,以初速度方向为正。 由已知条件:m 1:m 2=3:2 m 1 m 2 初:v 0=10m/s v 0=10m/s

高中物理动量守恒定律及其应用

动量守恒定律及其应用 教学目标: 1.掌握动量守恒定律的内容及使用条件,知道应用动量守恒定律解决问题时应注意的问题. 2.掌握应用动量守恒定律解决问题的一般步骤. 3.会应用动量定恒定律分析、解决碰撞、爆炸等物体相互作用的问题. 教学重点: 动量守恒定律的正确应用;熟练掌握应用动量守恒定律解决有关力学问题的正确步骤. 教学难点: 应用动量守恒定律时守恒条件的判断,包括动量守恒定律的“五性”:①条件性;②整体性;③矢量性;④相对性;⑤同时性. 教学方法: 1.学生通过阅读、对比、讨论,总结出动量守恒定律的解题步骤. 2.学生通过实例分析,结合碰撞、爆炸等问题的特点,明确动量守恒定律的矢量性、同时性和相对性. 3.讲练结合,计算机辅助教学 教学过程 一、动量守恒定律 1.动量守恒定律的内容 一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。 即:221 12211v m v m v m v m '+'=+ 2.动量守恒定律成立的条件 (1)系统不受外力或者所受外力之和为零; (2)系统受外力,但外力远小于内力,可以忽略不计; (3)系统在某一个方向上所受的合外力为零,则该方向上动量守恒。 (4)全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。 3.动量守恒定律的表达形式

(1)221 12211v m v m v m v m '+'=+,即p 1+p 2=p 1/+p 2/, (2)Δp 1+Δp 2=0,Δp 1= -Δp 2 和1 221v v m m ??-= 4.动量守恒定律的重要意义 从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一。(另一个最基本的普适原理就是能量守恒定律。)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。相反,每当在实验中观察到似乎是违反动量守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终。例如静止的原子核发生β衰变放出电子时,按动量守恒,反冲核应该沿电子的反方向运动。但云室照片显示,两者径迹不在一条直线上。为解释这一反常现象,1930年泡利提出了中微子假说。由于中微子既不带电又几乎无质量,在实验中极难测量,直到1956年人们才首次证明了中微子的存在。(2000年高考综合题23 ②就是根据这一历史事实设计的)。又如人们发现,两个运动着的带电粒子在电磁相互作用下动量似乎也是不守恒的。这时物理学家把动量的概念推广到了电磁场,把电磁场的动量也考虑进去,总动量就又守恒了。 5.应用动量守恒定律解决问题的基本思路和一般方法 (1)分析题意,明确研究对象.在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体总称为系统.对于比较复杂的物理过程,要采用程序法对全过程进行分段分析,要明确在哪些阶段中,哪些物体发生相互作用,从而确定所研究的系统是由哪些物体组成的。 (2)要对各阶段所选系统内的物体进行受力分析,弄清哪些是系统内部物体之间相互作用的内力,哪些是系统外物体对系统内物体作用的外力.在受力分析的基础上根据动量守恒定律条件,判断能否应用动量守恒。 (3)明确所研究的相互作用过程,确定过程的始、末状态,即系统内各个物体的初 动量和末动量的量值或表达式。 注意:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系。 (4)确定好正方向建立动量守恒方程求解。 二、动量守恒定律的应用 1.碰撞 两个物体在极短时间内发生相互作用,这种情况称为碰撞。由于作用时间极短,一般都满足内力远大于外力,所以可以认 为系统的动量守恒。碰撞又分弹性碰撞、非弹性 碰撞、完全非弹性碰撞三种。 仔细分析一下碰撞的全过程:设光滑水平面上,质量为m 1的物体A 以速度v 1向质量为m 2的静止物体B 运动,B 的左端连有轻弹簧。在Ⅰ位置A 、B 刚好接触,弹簧开始被压缩,A 开始减速,B 开始加速;到Ⅱ位置A 、B 速度刚

莆田市《动量守恒定律》单元测试题含答案

莆田市《动量守恒定律》单元测试题含答案 一、动量守恒定律 选择题 1.如图甲,质量M =0.8 kg 的足够长的木板静止在光滑的水平面上,质量m =0.2 kg 的滑块静止在木板的左端,在滑块上施加一水平向右、大小按图乙所示随时间变化的拉力F ,4 s 后撤去力F 。若滑块与木板间的动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力,重力加速度g =10 m/s 2,则下列说法正确的是 A .0~4s 时间内拉力的冲量为3.2 N·s B .t = 4s 时滑块的速度大小为9.5 m/s C .木板受到滑动摩擦力的冲量为2.8 N·s D .2~4s 内因摩擦产生的热量为4J 2.如图所示,固定的光滑金属水平导轨间距为L ,导轨电阻不计,左端接有阻值为R 的电阻,导轨处在磁感应强度大小为B 、方向竖直向下的匀强磁场中.质量为m 、电阻不计的导体棒ab ,在垂直导体棒的水平恒力F 作用下,由静止开始运动,经过时间t ,导体棒ab 刚好匀速运动,整个运动过程中导体棒始终与导轨垂直并保持良好接触.在这个过程中,下列说法正确的是 A .导体棒ab 刚好匀速运动时的速度22 FR v B L = B .通过电阻的电荷量2Ft q BL = C .导体棒的位移222 44 FtRB L mFR x B L -= D .电阻放出的焦耳热22222 44 232tRF B L mF R Q B L -= 3.一质量为m 的物体静止在光滑水平面上,现对其施加两个水平作用力,两个力随时间变化的图象如图所示,由图象可知在t 2时刻物体的( )

A .加速度大小为 t F F m - B .速度大小为 ()()021t F F t t m -- C .动量大小为()()0212t F F t t m -- D .动能大小为()()2 2 0218t F F t t m -- 4.如图所示,质量分别为m 和2m 的A 、B 两个木块间用轻弹簧相连,放在光滑水平面上,A 紧靠竖直墙.用水平力向左推B 将弹簧压缩,推到一定位置静止时推力大小为F 0,弹簧的弹性势能为E .在此位置突然撤去推力,下列说法中正确的是( ) A .在A 离开竖直墙前,A 、 B 与弹簧组成的系统机械能守恒,之后不守恒 B .在A 离开竖直墙前,A 、B 系统动量不守恒,之后守恒 C .在A 离开竖直墙后,A 、B 速度相等时的速度是223E m D .在A 离开竖直墙后,弹簧的弹性势能最大值为 3 E 5.如图所示,将一光滑的、质量为4m 、半径为R 的半圆槽置于光滑水平面上,在槽的左侧紧挨着一个质量为m 的物块.今让一质量也为m 的小球自左侧槽口A 的正上方高为R 处从静止开始落下,沿半圆槽切线方向自A 点进入槽内,则以下结论中正确的是( ) A .小球在半圆槽内第一次由A 到最低点 B 的运动过程中,槽的支持力对小球做负功 B .小球第一次运动到半圆槽的最低点B 时,小球与槽的速度大小之比为41︰ C .小球第一次在半圆槽的最低点B 时对槽的压力为133 mg D .物块最终的动能为 15 mgR 6.如图甲所示,质量M =2kg 的木板静止于光滑水平面上,质量m =1kg 的物块(可视为质点)以水平初速度v 0从左端冲上木板,物块与木板的v -t 图象如图乙所示,重力加速度大小为10m/s 2,下列说法正确的是( )

动量定理与动量守恒定律·典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

动量守恒定律及其应用习题(附答案)

动量守恒定律及其应用习题(附答案) 1. 如图所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动.两球质量关系为m B =2m A ,规定向右为正方向,A 、B 两球的动量均为6kg·m/s,运动中两球发生碰撞,碰撞后A 球的动量增量为-4kg·m/s,则(A) A.左方是A 球,碰撞后A 、B 两球速度大小之比为2:5 B.左方是A 球,碰撞后A 、B 两球速度大小之比为1:10 C.右方是A 球,碰撞后A 、B 两球速度大小之比为2:5 D.右方是A 球,碰撞后A 、B 两球速度大小之比为1:10 2. 有一则“守株待兔”的古代寓言,设兔子的头部受到大小等于自身重量的打击时,即可致死.假若兔子与树桩作用时间大约为s 2.0,则若要被撞死,兔子奔跑的速度至少为()/102s m g = ( C ) A.s m /1 B.s m /5.1 C.s m /2 D.s m /5.2 3. 向空中抛出一手榴弹,不计空气阻力,当手榴弹的速度恰好是水平方向时,炸裂成a 、b 两块,若质量较大的a 块速度方向仍沿原来的方向,则( CD ) A.质量较小的b 块的速度方向一定与原速度方向相反 B.从炸裂到落地这段时间内,a 飞行的水平距离一定比b 的大 C.a 、b 两块一定同时落到水平地面a D.在炸裂过程中,a 、b 两块受到的爆炸力的冲量大小一定相等 4. 两木块A 、B 质量之比为2∶1,在水平地面上滑行时与地面间的动摩擦因数相同,则A 、B 在开始滑行到停止运动的过程中,滑行的时间之比和距离之比( AD ) A.初动能相同时分别为1∶2和1∶2 B.初动能相同时分别为1∶2和1∶4 C.初动量相同时分别为1∶2和1∶2 D.初动量相同时分别为1∶2和1∶4 5. 在我们日常的体育课当中,体育老师讲解篮球的接触技巧时,经常这样模拟:当接迎面飞来的篮球,手接触到球以后,两臂随球后引至胸前把球接住.这样做的目的是( D ) A.减小篮球的冲量 B.减小篮球的动量变化 C.增大篮球的动量变化 D.减小篮球的动量变化率 6.在光滑的水平面上,有A 、B 两个小球向右沿同一直线运动,取向右为正方向,两球的动量分别为m/s kg 5A ?=P ,m/s kg 7B ?=P ,如图所示.若两球发生正碰,则碰后两球的动量增量A P ?、B P ?可能是( B ) A.m/s kg 3A ?=?P ,m/s kg 3B ?=?P B.m/s kg 3A ?-=?P ,m/s kg 3B ?=?P C.m/s kg 3A ?=?P ,m/s kg 3B ?-=?P D.m/s kg 10A ?-=?P ,m/s kg 10B ?=?P 7. 材料不同的两个长方体,上下粘结在一起组成一个滑块,静止在光滑的水平面上.质量为m 的子弹以速度0v 水平射入滑块,若射击上层,子弹的深度为d 1;若射击下层,子弹的深度为d 2,如图所示.已知d 1>d 2.这两种情况相比较( B ) A.子弹射入上层过程中,子弹对滑块做功较多 B.子弹射人上层过程中,滑块通过的距离较大 C.子弹射入下层过程中,滑块受到的冲量较大 D.子弹射入下层过程中,滑块的加速度较小 8. 如图所示,质量相同的两个小物体A 、B 处于同一高度。现使A 沿固定的光滑斜面无初速地自由下滑,而使B 无初速地自由下落,最后A 、B 都运动到同一水平地面上。不计空气阻力。则在上述过程中,A 、B 两物体( BD ) A.所受重力的冲量相同 B.所受重力做的功相同 C.所受合力的冲量相同 D.所受合力做的功相同

动量守恒定律单元检测附答案

动量守恒定律单元测试 一.选择题(共14小题) 1.(多选)质量为m的物块甲以3m/s的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m的物块乙以4m/s的速度与甲相向运动,如图所示,则() A.甲、乙两物块在弹簧压缩过程中,动量守恒 B.当两物块相距最近时,物块甲的速率为零 C.当物块甲的速率为1m/s时,物块乙的速率可能为2m/s,也可能为0 D.物块甲的速率可能达到5m/s 2.如图所示,质量为M的木块位于光滑水平面上,在木块与墙之间用轻弹簧连接,开始时木块静止在A位置.现有一质量为m的子弹以水平速度v0射向木块并嵌入其中,则当木块回到A位置时的速度v以及此过程中墙对弹簧的冲量I的大小分别为() A.v=,I=0 B.v=,I=2mv0 C.v=,I=D.v=,I=2mv0 3.一物体做直线运动的x﹣t图象如图所示,其中OA和BC段为抛物线,AB段为直线并且与两段抛物线相切.物体的加速度、速度、动能、动量分别用a、v、E k、P表示,下列表示这些物理量的变化规律可能正确的是()

A.B. C.D. 4.如图所示,质量为m 的小滑块(可视为质点),从h 高处的A 点由静止开始沿斜面下滑,停在水平地面上的 B 点(斜面和水平面之间有小圆弧平滑连接).要使物体能原路返回,在 B 点需给物体的瞬时冲量最小应是() A.2m B.m C.D.4m 5.(多选)将质量相等的三只小球A、B、C从离地同一高度以大小相同的初速度分别上抛、下抛、平抛出去,空气阻力不计,那么,有关三球动量和冲量的情况是()A.三球刚着地时的动量大小相同 B.三球刚着地时的动量各不相同 C.三球从抛出到落地时间内,受重力冲量最大的是A球,最小的是B球 D.三球从抛出到落地时间内,受重力冲量均相同 6.(多选)测量运动员体能的装置如图所示,质量为m1的运动员将绳拴在腰间并沿水平方向跨过滑轮(不计滑轮质量及摩擦),下端悬吊一个m2的重物,人用力向后蹬传送带,而人的重心不动,使传送带以v的速率向后运动,则不正确的是()

高中物理动量守恒定律题20套(带答案)

高中物理动量守恒定律题20套(带答案) 一、高考物理精讲专题动量守恒定律 1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以0 2 v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ; (4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能. 【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)20 1532 mv E ?= 【解析】 【详解】 (1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有: mv 0=m 2 v +2mv B 解得v B = 4 v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量 2 220001 11()2()22224 v v mgL mv m m μ?=-- 解得20 516v gL μ= (3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有: 2 mv +mv B =2mv A 、C 系统机械能守恒: 22200111 ()()222242 v v mgR m m mv +-?= 解得2 64v R g = (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒

怀化市 最新动量守恒定律单元测试题

怀化市 最新动量守恒定律单元测试题 一、动量守恒定律 选择题 1.在采煤方法中,有一种方法是用高压水流将煤层击碎而将煤采下.今有一采煤用水枪,由枪口射出的高压水流速度为v .设水的密度为ρ,水流垂直射向煤层表面,若水流与煤层作用后速度减为零,则水在煤层表面产生的压强为( ) A .2v ρ B .2 2v ρ C .2 v ρ D .22v ρ 2.如图,质量为m 的小木块从高为h 的质量为M 的光滑斜面体顶端滑下,斜面体倾角为θ,放在光滑水平面上,m 由斜面体顶端滑至底端的过程中,下列说法正确的是 A .M 、m 组成的系统动量守恒 B .M 移动的位移为()tan mh M m θ + C .m 对M 做功为222cos ()(sin )Mm gh M m M m θθ++ D .m 对M 做功为222sin ()(cos ) Mm gh M m M m θ θ++ 3.如图甲所示,一轻弹簧的两端与质量分别为99m 、200m 的两物块A 、B 相连接,并静止在光滑的水平面上,一颗质量为m 的子弹C 以速度v 0射入物块A 并留在A 中,以此刻为计时起点,两物块A (含子弹C )、B 的速度随时间变化的规律如图乙所示,从图象信息可得( ) A .子弹C 射入物块A 的速度v 0为600m/s B .在t 1、t 3时刻,弹簧具有的弹性势能相同,且弹簧处于压缩状态 C .当物块A (含子弹C )的速度为零时,物块B 的速度为3m/s D .在t 2时刻弹簧处于自然长度 4.如图,在光滑水平面上放着质量分别为2m 和m 的A 、B 两个物块,弹簧与A 、B 栓连,现用外力缓慢向左推B 使弹簧压缩,此过程中推力做功W 。然后撤去外力,则( )

经典验证动量守恒定律实验练习题(附答案)

· 验证动量守恒定律由于v 1、v1/、v2/均为水平方向,且它们的竖直下落高 度都相等,所以它们飞行时间相等,若以该时间为时间单位,那么小球的水平射程的数值就等于它们的水平速度。在右图中分别用OP、OM和O/N表示。因此只需验证: m 1OP=m 1 OM+m 2 (O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈 在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、复写纸、白纸、重锤、两个直径相同质量不同的小球、圆规。 ⑷若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为: m 1OP=m 1 OM+m 2 ON,两个小球的直径也不需测量 《 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得 小l车A的质量m 1=0.40kg,小车B的质量m 2 =0.20kg,由以上测量结果可得:碰 前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G

物理动量守恒定律题20套(带答案)

物理动量守恒定律题20套(带答案) 一、高考物理精讲专题动量守恒定律 1.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量M 2=2 kg ,问:甲车至少以多大的水平速度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上) 【答案】25m/s 【解析】试题分析:要使两车恰好不相撞,则两车速度相等. 以M 1、M 2、m 组成的系统为研究对象,水平方向动量守恒: ()20120M v M m M v +=++共,解得5m /s v =共 以小球与乙车组成的系统,水平方向动量守恒: ()202M v mv m M v -=+共,解得 25m /s v = 考点:考查了动量守恒定律的应用 【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系统,由系统动量守恒列出等式,联立求解 2.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧 被压缩瞬间 的速度 ,木块 、 的质量均为 .求: ?子弹射入木块 时的速度; ?弹簧被压缩到最短时弹簧的弹性势能. 【答案】22()(2) Mm a M m M m ++b 【解析】 试题分析:(1)普朗克为了对于当时经典物理无法解释的“紫外灾难”进行解释,第一次提出了能量量子化理论,A 正确;爱因斯坦通过光电效应现象,提出了光子说,B 正确;卢瑟福通过对粒子散射实验的研究,提出了原子的核式结构模型,故正确;贝克勒尔通过对天然放射性的研究,发现原子核有复杂的结构,但没有发现质子和中子,D 错;德布罗意大胆提出假设,认为实物粒子也具有波动性,E 错.(2)1以子弹与木块A 组成的系统为研究对象,以子弹的初速度方向为正方向,由动量守恒定律得: 解得:

13.1动量守恒定律及其应用

第十三章动量近代物理初步[选修3-5] 一、三年高考考点统计与分析 (1)从近三年高考试题考点分布可以看出,高考对本章内容的考查重点有动量、动量守恒定律、弹性碰撞与非弹性碰撞、原子的核式结构、玻尔理论、氢原子的能级和光谱、天然放射性现象及核能的计算等, (2)出题的形式多为选择题、填空题,对动量守恒定律及其应用的考查,以计算题形式出现的情况较多, 二、2014年高考考情预测 (1)动量守恒定律及其应用、原子核式结构、玻尔理论、原子核的衰变、核反应方程的书写及质能方程的应用是本章高考考查的热点, (2)原子结构与原子核部分高考命题难度不大,大多直接考查理解和记忆,考查细节等,体现时代气息,用新名词包装试题;动量作为选考的地区,以实验和计算题出现的可能性较大,动量作为必考的地区,在高考中会出现一些综合计算题,但难度不会太大, [备课札记] 第十三章动量近代物理初步[选修3-5] [学习目标定位] 考纲下载考情上线

1.动量、动量守恒定律及其应用(Ⅱ) 2.弹性碰撞和非弹性碰撞(Ⅰ) 3.光电效应(Ⅰ) 4.爱因斯坦的光电效应方程(Ⅰ) 5.氢原子光谱(Ⅰ) 6.氢原子的能级结构、能级公式(Ⅰ) 7.原子核的组成、放射性、原子核的衰 变、半衰期(Ⅰ) 8.放射性同位素(Ⅰ) 9.核力、核反应方程(Ⅰ) 10.结合能、质量亏损(Ⅰ) 11.裂变反应和聚变反应、裂变反应堆 (Ⅰ) 12.射线的危害和防护(Ⅰ) 13.实验十六:验证动量守恒定律 高考 地位 高考对本章知识点考查频率较高的是动量 守恒定律、光电效应、原子的能级结构及 跃迁、核反应方程及核能计算,题型较全面, 选择题、填空题、计算题均有,其中动量守 恒定理的应用出计算题的可能性较大, 考点 布设 1.动量守恒定律的应用,与能量守恒定律结 合,解决碰撞、打击、反冲、滑块摩擦等问 题, 2.探究和验证动量守恒定律, 3.光电效应、原子能级及能级跃迁、衰变 及核反应方程, 4.裂变反应、聚变反应的应用,射线的危 害和应用知识与现代科技相联系的信息题 是近几年高考的热点, 第1单元动量守恒定律及其应用 动量动量变化量动量守恒定律[想一想] 如图13-1-1所示,质量为M的物体静止在光滑的水平面上,质量为m的小球以初速度v0水平向右碰撞物体M,结果小球以大小为v1的速度被水平反弹,物体M的速度为v2,取向右为正方向,则物体M动量的变化量为多少?小球m的动量变化量为多少?m和M组成的系统动量守恒吗?若守恒,请写出其表达式, 图13-1-1 [提示]物体M动量的变化量为M v2,m动量的变化量为-(m v1+m v0),因m和M组成的系统合外力为零,故此系统动量守恒,表达式为:m v0=M v2-m v1, [记一记]

动量守恒定律单元测试题

动量守恒定律单元测试题 一、动量守恒定律 选择题 1.如图所示,在光滑水平面上有质量分别为A m 、B m 的物体A ,B 通过轻质弹簧相连接,物体A 紧靠墙壁,细线连接A ,B 使弹簧处于压缩状态,此时弹性势能为p0E ,现烧断细线,对以后的运动过程,下列说法正确的是( ) A .全过程中墙对A 的冲量大小为p02A B E m m B .物体B 的最大速度为 p02A E m C .弹簧长度最长时,物体B 的速度大小为 p02B A B B E m m m m + D .弹簧长度最长时,弹簧具有的弹性势能p p0 E E > 2.如图所示,物体A 、B 的质量均为m =0.1kg ,B 静置于劲度系数k =100N/m 竖直轻弹簧的上端且B 不与弹簧连接,A 从距B 正上方h =0.2m 处自由下落,A 与B 相碰并粘在一起.弹簧始终在弹性限度内,g =10m/s 2.下列说法正确的是 A .A B 组成的系统机械能守恒 B .B 运动的最大速度大于1m/s C .B 物体上升到最高点时与初位置的高度差为0.05m D .AB 在最高点的加速度大小等于10m/s 2 3.A 、B 两球沿同一直线运动并发生正碰,如图所示为两球碰撞前后的位移—时间(x-t)图像,图中a 、b 分别为A 、B 两球碰撞前的图线,c 为碰撞后两球共同运动的图线.若A 球的质量 2A m kg =,则由图可知下列结论正确的是( )

A .A 、 B 两球碰撞前的总动量为3 kg·m/s B .碰撞过程A 对B 的冲量为-4 N·s C .碰撞前后A 的动量变化为4kg·m/s D .碰撞过程A 、B 两球组成的系统损失的机械能为10 J 4.将质量为m 0的木块固定在光滑水平面上,一颗质量为m 的子弹以速度v 0沿水平方向射入木块,子弹射穿木块时的速度为 3 v .现将同样的木块放在光滑的水平桌面上,相同的子弹仍以速度v 0沿水平方向射入木块,设子弹在木块中所受阻力不变,则以下说法正确的是() A .若m 0=3m ,则能够射穿木块 B .若m 0=3m ,子弹不能射穿木块,将留在木块中,一起以共同的速度做匀速运动 C .若m 0=3m ,子弹刚好能射穿木块,此时子弹相对于木块的速度为零 D .若子弹以3v 0速度射向木块,并从木块中穿出,木块获得的速度为v 1;若子弹以4v 0速度射向木块,木块获得的速度为v 2;则必有v 1<v 2 5.质量分别为3m 和m 的两个物体,用一根细绳相连,中间夹着一根被压缩的轻弹簧,在光滑的水平面上以速度v 0匀速运动.某时刻剪断细绳,质量为m 的物体离开弹簧时速度变为v= 2v 0,如图所示.则在这一过程中弹簧做的功和两物体之间转移的动能分别是 A .2 083 mv 2023 mv B .2 0mv 2032 mv C . 2012mv 2032mv D . 2023mv 2 056 mv 6.如图所示,两个小球A 、B 在光滑水平地面上相向运动,它们的质量分别为 m A =4kg ,m B =2kg ,速度分别是v A =3m/s (设为正方向),v B =-3m/s .则它们发生正碰后,速度的可能值分别为( ) A .v A ′=1 m/s ,v B ′=1 m/s B .v A ′=4 m/s ,v B ′=-5 m/s C .v A ′=2 m/s ,v B ′=-1 m/s D .v A ′=-1 m/s ,v B ′=-5 m/s 7.如图所示,轻弹簧的一端固定在竖直墙上,一质量为2m 的光滑弧形槽静止放在足够长的光滑水平面上,弧形槽底端与水平面相切,一质量为m 的小物块从槽上高h 处开始下

动量守恒定律及其应用·典型例题精析

动量守恒定律及其应用·典型例题精析 [例题1]平静的湖面上浮着一只长l=6m,质量为550 kg的船,船头上站着一质量为m=50 kg的人,开始时,人和船均处于静止.若船行进时阻力很小,问当人从船头走到船尾时,船将行进多远? [思路点拨]以人和船组成的系统为研究对象.因船行进时阻力很小,船及人所受重力与水对船的浮力平衡,可以认为人在船上行走时系统动量守恒,开始时人和船都停止,系统总动量为零,当人在船上走动时,无论人的速度如何,系统的总动量都保持为零不变. [解题过程]取人运动方向为正方向,设人对岸的速度为v,船对岸的速度为V,其方向与v相反,由动量守恒定律有 0=mv+(-MV). 解得两速度大小之比为

此结果对于人在船上行走过程的任一瞬时都成立. 取人在船上行走时任一极短时间Δt i,在此时间内人和船都可视为匀速运动,此时间内人和船相对地面移动的距离分别为ΔS mi=v iΔt i和ΔSM i=V iΔt i,由此有 这样人从船头走到船尾时,人和船相对地面移动的总距离分别为 S m=∑ΔS mi,S M=∑ΔS Mi. 由图中几何关系可知S m+S M=L.这样,人从船头走到船尾时,船行进的距离为 代入数据有 S M=0.5 m.

[小结]本题表明,在动量守恒条件得到满足的过程中,系统任一瞬时的总动量保持不变. [例题2]如图7-9示,物块A、B质量分别为m A、m B,用细绳连接,在水平恒力F的作用下A、B一起沿水平面做匀速直线运动,速度为v,如运动过程中,烧断细绳,仍保持力F大小方向不变,则当物块B停下来时,物块A的速度为多大? [思路点拨]以A和B组成的系统作为研究对象.绳子烧断前,A、B 一起做匀速直线运动,故系统所受外力和为零,水平方向系统所受外力计有拉力F,物块A受到地面的摩擦力f A,物体B受到地面的摩擦力f B,且F=f A +f B.绳烧断后,直到B停止运动前F与f A、f B均保持不变,故在此过程中系统所受外力和仍为零,系统总动量保持不变.所以此题可用动量守恒定律求解. [解题过程]取初速v的方向为正方向,设绳断后A、B的速度大小分别为v′A、v′B,由动量守恒定律有 (m A+m B)v=m A v′A+m B v′B.

(完整word版)动量守恒定律及其应用一

动量守恒定律及其应用 一、教学目标: 知识与技能 (1)掌握动量守恒定律的内容、条件和适用范围。 (2)会运用动量守恒定律的条件判断系统动量是否守恒。 (3)会熟练运用动量守恒定律分析有关现象,解决有关问题,加深对动量守恒定律的理解。 过程与方法 (1)通过分组学习,让学生学会合作,学会交流,学会探究。 (2)培养学生发现问题,提出问题和解决问题的能力以及分析,推理和归纳等能力。 情感态度与价值观 (1)结合物理学前沿进行教学,激发学生的求知欲,让学生体验科学态度、感悟科学精神。 (2)通过应用动量守恒定律,解决实际问题,培养学生关注生活的态度。二.重点、难点: 重点:会运用动量守恒定律的条件判断系统动量是否守恒,会运用动量守恒定律分析有关现象,解决有关问题。 难点:会运用动量守恒定律分析有关现象,解决有关问题。 三.教学方法:讲练法、归纳法、探究法和合作学习法 四.教学用具:教学课件、小黑板和学案。 五.教学过程设计: ﹙一﹚、复习总结、引入新课

在复习动量定理的基础上,指出动量定理的研究对象可以是一个单体,也可以是物体系统。对于一个物体系统,如果不受外力或外力之和为零,由动量定理可知,该系统的动量变化量总为零或不变,即动量守恒,从而引入本节复习课题。 ﹙二﹚、新课教学 问题1.动量守恒定律的内容是什么?学生分组回忆,回答。 动量守恒定律的内容:一个系统不受外力或所受外力之和为零,这个系统的总动量保持不变。 说明:动量守恒不只是系统在初、末两时刻的总动量相等,而是在整个相互作用过程中任意两时刻的总动量相等。 问题2.动量守恒定律的表达式有哪些?学生合作分组讨论,总结归纳。 常用的四种表达式: ⑴.m1v 1 + m2v2 = m1v1′+m2v2′ ⑵.P = P′ ⑶.△p = 0 ⑷.△p 1 = -△p 2 问题3.如何判断系统动量是否守恒,即动量守恒定律的适用条件是什么? 学生合作分组讨论,总结归纳。 动量守恒定律的适用条件: ⑴、系统不受外力或所受外力之和为零。 ⑵、系统所受外力之和虽不为零,但比系统内力小得多。 ⑶、系统所受外力之和虽不为零,但系统某一方向上不受外力或所受外力之和为零 问题4.如何从矢量、速度的瞬时性和相对性、研究对象和适用范围等方面

动量守恒定律 单元测试

动量守恒定律综合测试 一、单选题(本大题共10小题,共40.0分) 1.跳水运动员在跳台上由静止直立落下,落入水中后在水中减速运动到速度为零时并未到达池底,不计 空气阻力,则关于运动员从静止落下到水中向下运动到速度为零的过程中,下列说法不正确的是() A. 运动员在空中动量的改变量等于重力的冲量 B. 运动员整个向下运动过程中合外力的冲量为零 C. 运动员在水中动量的改变量等于水的作用力的冲量 D. 运动员整个运动过程中重力冲量与水的作用力的冲量等大反向 2.一质量为1g的物块在合外力F的作用下从静止开始沿直线运动,F 随时间t变化的图线如图所示,则() A. t=1s时物块的速率为1m/s B. t=2时物块的动量大小为2g?m/s C. t=3s时物块的动量大小为3g?m/s D. t=4s时F的功率为3W 3.汽车正在走进千家万户,在给人们的出行带来方便的同时也带来了安全隐患.行车过程中,如果车距 较近,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害,为了尽可能地减轻碰撞引起的伤害,人们设计了安全带,假定乘客质量为70g,汽车车速为90m/s,从踩下刹车到完全停止需要的时间为5s,安全带对乘客的作用力大小约为(不计人与座椅间的摩擦)() A. 450N B. 400N C. 350N D. 300N 4.静止在湖面上的小船中有两人分别向相反方向以相对于河岸相等的速率水平抛出质量相同的小球,先 将甲球向左抛,后将乙球向右抛.水对船的阻力忽略不计,则下列说法正确的是() A. 抛出的过程中,人给甲球的冲量等于人给乙球的冲量 B. 抛出的过程中,人对甲球做的功大于人对乙球做的功 C. 两球抛出后,船向左以一定速度运动 D. 两球抛出后,船向右以一定速度运动 5.如图所示,弹簧的一端固定在竖直墙上,质量为M的光滑弧形槽静止在光 滑水平面上,底部与水平面平滑连接,一个质量为m(m<M)的小球从槽 高h处开始自由下滑,下列说法正确的是() A. 在以后的运动过程中,小球和槽的水平方向动量始终守恒 B. 在下滑过程中小球和槽之间的相互作用力始终不做功 C. 全过程小球和槽、弹簧所组成的系统机械能守恒,且水平方向动量守恒 D. 被弹簧反弹后,小球和槽的机械能守恒,但小球不能回到槽高h处 6.“弹弹子”是我国传统的儿童游戏,如图所示,静置于水平地面的两个完全相同的弹子沿一直线排列, 质量均为m,人在极短时间内给第一个弹子水平冲量I使其水平向右运动,当第一个弹子运动了距离L时与第二个弹子相碰,碰后第二个弹子运动了距离L时停止.已知摩擦阻力大小恒为弹子所受重力的倍,重力加速度为g,若弹子之间碰撞时间极短,为弹性碰撞,忽略空气阻力,则人给第一个弹子水平冲量I为() A. m B. m C. m D. m

相关文档
相关文档 最新文档