文档库 最新最全的文档下载
当前位置:文档库 › 对偶单纯性算法的matlab程序

对偶单纯性算法的matlab程序

对偶单纯性算法的matlab程序
对偶单纯性算法的matlab程序

三、试验内容

1. 将对偶单纯型算法用自己熟悉的语言编制成计算机程序

2. 并用下面例子进行验证

?????=≥=-++-=-++++=5,,2,1,02

413.min 532143213

21 j x x x x x x x x x t s x x x z j

建立M 文件:(M 的文件名为 duioudanchun)

function[sol,val,kk]=duioudanchun(A,N)

B=A;

[mA,nA]=size(A);

kk=0;

flag=1;

while flag

kk=kk+1;

if A(:,nA)>=0

flag=0;

sol=zeros(1,nA);

for i=1:mA-1

sol(N(i))=A(i,nA);

end

val=sol*(B(mA,:))';

else

for i=1:mA-1

if A(i,nA)<0&A(i,1:nA-1)>=0

disp('have infinite solution!');

flag=0;

break;

end

end

if flag

temp=0;

for i=1:mA-1

if A(i,nA)

temp=A(i,nA);

outb=i;

end

end

sita=zeros(1,nA-1);

for i=1:nA-1

if A(outb,i)<0

sita(i)=A(mA,i)/A(outb,i);

end

end

temp=-inf;

for i=1:nA-1

if sita(i)<0&sita(i)>temp

temp=sita(i);

inb=i;

end

end

for i=1:mA-1

if i==outb

N(i)=inb;

end

end

A(outb,:)=A(outb,:)/A(outb,inb);

for i=1:mA

if i~=outb

A(i,:)=A(i,:)-A(outb,:)*A(i,inb);

A(mA,nA)=0;

end

end

end

end

end

在窗口中输入

>> A=[-3 -1 -1 1 0 -1;1 -4 -1 0 1 -2;1 1 1 0 0 0];

>> N=[4 5];

>> duioudanchun(A,N)

运行结果为:

ans =

0.1538 0.5385 0 0 0 0

最优化实验报告(单纯形法的matlab程序,lingo程序)

实验一:线性规划单纯形算法 一、实验目的 通过实验熟悉单纯形法的原理,掌握Matlab 循环语句的应用,提高编程的能力和技巧。 二、实验用仪器设备、器材或软件环境 Windows Xp 操作系统 ,Matlab6.5,计算机 三、算法 对于一般的标准形式线性规划问题(求极小问题),首先给定一个初始 基本可行解。设初始基为B,然后执行如下步骤: (1).解B Bx b =,求得1 B x B b -=,0,N B B x f c x ==令计算目标函数值 1(1,2,...,)i m B b i -=i 以b 记的第个分量 (2).计算单纯形乘子w , B wB C =,得到1 B w C B -=,对于非基变量,计算判别数 1i i i B i i z c c B p c σ-=-=-,令 max{}k i i i R z c σ∈=-,R 为非基变量集合 若判别数0k σ≤ ,则得到一个最优基本可行解,运算结束;否则,转到下一步 (3).解k k By p =,得到 1 k k y B p -=;若0k y ≤,即k y 的每个分量均非正数,则停止计算,问题不存在有限最优解,否则,进行步骤(4). (4).确定下标r,使 { } :0 min ,0 t r rk tk tk b b tk y y t y y >=>且r B x 为离基变量。 k x 为进基变量,用k p 替换r B p ,得到新的基矩阵B ,返回步骤(1)。 对于极大化问题,可以给出完全类似的步骤,只是确定进基变量的准则不同。对于极大化问题,应令 min{}k k j j z c z c -=-

四、计算框图 是 否 是 否 开始 初始可行解B 令1,0,B N B B x B b b x f c x -==== 计算单纯形乘子1 B w c B -=,计算判别数,i j j wp c j R σ=-∈(非基变量) 令max{,}k j j R σσ=∈ 0?k σ≤ 得到最优解 解方程k k By p =,得到1k k y B p -=。 0?k y ≤ 不存在有限最优解 确定下标r ,是 { }:0 min ,0 t r rk tk tk b b tk y y t y y >=>且 k x 为进基变量,用 k p 替换r B p ,得到新的基矩阵B

聚类分析Matlab程序实现

2. Matlab程序 2.1 一次聚类法 X=[11978 12.5 93.5 31908;…;57500 67.6 238.0 15900]; T=clusterdata(X,0.9) 2.2 分步聚类 Step1 寻找变量之间的相似性 用pdist函数计算相似矩阵,有多种方法可以计算距离,进行计算之前最好先将数据用zscore 函数进行标准化。 X2=zscore(X); %标准化数据 Y2=pdist(X2); %计算距离 Step2 定义变量之间的连接 Z2=linkage(Y2); Step3 评价聚类信息 C2=cophenet(Z2,Y2); //0.94698 Step4 创建聚类,并作出谱系图 T=cluster(Z2,6); H=dendrogram(Z2); Matlab提供了两种方法进行聚类分析。 一种是利用 clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法; 另一种是分步聚类:(1)找到数据集合中变量两两之间的相似性和非相似性,用pdist函数计算变量之间的距离;(2)用 linkage函数定义变量之间的连接;(3)用 cophenetic函数评价聚类信息;(4)用cluster函数创建聚类。 1.Matlab中相关函数介绍 1.1 pdist函数 调用格式:Y=pdist(X,’metric’) 说明:用‘metric’指定的方法计算 X 数据矩阵中对象之间的距离。’ X:一个m×n的矩阵,它是由m个对象组成的数据集,每个对象的大小为n。 metric’取值如下: ‘euclidean’:欧氏距离(默认);‘seuclidean’:标准化欧氏距离; ‘mahalanobis’:马氏距离;‘cityblock’:布洛克距离; ‘minkowski’:明可夫斯基距离;‘cosine’: ‘correlation’:‘hamming’: ‘jaccard’:‘chebychev’:Chebychev距离。 1.2 squareform函数 调用格式:Z=squareform(Y,..) 说明:强制将距离矩阵从上三角形式转化为方阵形式,或从方阵形式转化为上三角形式。 1.3 linkage函数 调用格式:Z=linkage(Y,’method’) 说明:用‘method’参数指定的算法计算系统聚类树。 Y:pdist函数返回的距离向量;

PID算法Matlab仿真程序和C程序

增量式PID控制算法Matlab仿真程序设一被控对象G(s)=50/(0.125s^2+7s),用增量式PID控制算法编写仿真程序(输入分别为单位阶跃、正弦信号,采样时间为1ms,控制器输出限幅:[-5,5],仿真曲线包括系统输出及误差曲线,并加上注释、图例)。程序如下clear all; close all; ts=0.001; sys=tf(50,[0.125,7, 0]); dsys=c2d(sys,ts,'z'); [num,den]=tfdata(dsys,'v'); u_1=0.0;u_2=0.0; y_1=0.0;y_2=0.0; x=[0,0,0]'; error_1=0; error_2=0; for k=1:1:1000 time(k)=k*ts; S=2; if S==1 kp=10;ki=0.1;kd=15; rin(k)=1; % Step Signal elseif S==2 kp=10;ki=0.1;kd=15; %Sin e Signal rin(k)=0.5*sin(2*pi*k*ts); end du(k)=kp*x(1)+kd*x(2)+ki*x(3); % PID Controller u(k)=u_1+du(k); %Restricting the output of controller if u(k)>=5 u(k)=5; end if u(k)<=-5 u(k)=-5; end %Linear model yout(k)=-den(2)*y_1-den(3)*y_2+nu m(2)*u_1+num(3)*u_2; error(k)=rin(k)-yout(k); %Return of parameters u_2=u_1;u_1=u(k); y_2=y_1;y_1=yout(k); x(1)=error(k)-error_1; %C alculating P x(2)=error(k)-2*error_1+error_2; %Calculating D x(3)=error(k); %Calculating I error_2=error_1; error_1=error(k); end figure(1); plot(time,rin,'b',time,yout,'r'); xlabel('time(s)'),ylabel('rin,yout'); figure(2); plot(time,error,'r') xlabel('time(s)');ylabel('error'); 微分先行PID算法Matlab仿真程序%PID Controler with differential in advance clear all; close all; ts=20; sys=tf([1],[60,1],'inputdelay',80); dsys=c2d(sys,ts,'zoh'); [num,den]=tfdata(dsys,'v'); u_1=0;u_2=0;u_3=0;u_4=0;u_5=0;

单纯形法matlab

数 学 软 件 与 实 验 数学与信息科学学院 信息与计算科学

单纯形法的Matlab程序如下:function [xx,fm]=myprgmh(m,n,A,b,c) B0=A(:,1:m); cb=c(:,1:m); xx=1:n; sgm=c-cb*B0^-1*A; h=-1; sta=ones(m,1); for i=m+1:n if sgm(i)>0 h=1; end end while h>0 [msg,mk]=max(sgm); for i=1:m sta(i)=b(i)/A(i,mk); end [mst,mr]=min(sta); zy=A(mr,mk); for i=1:m

if i==mr for j=1:n A(i,j)=A(i,j)/zy; end b(i)=b(i)/zy; end end for i=1:m if i~=mr for j=1:n A(i,j)=A(i,j)-A(i,mk)*A(mr,j); end b(i)=b(i)-A(i,mk)*b(mr); end end B1=A(:,1:m); cb(mr)=c(mk); xx(mr)=mk; sgm=c-cb*B1*A; for i=m+1:n if sgm(i)>0 h=1;

end end end fm=c*xx; 例题: 编写下列求解如下线性规划问题的单纯形法函数min f'x s.t ax<=b(其中b>=0) 函数形式function [x,fval,it,op]=singl(f,a,b) 输出中x为最优解 fval为最优值 it为迭代次数 无最优解op=0 有最优解op=1 编写程序如下: function [x,fval,it,op]=singl(f,a,b) [m,n]=size(a); c=[a eye(m) b;f' zeros(1,m+1)]; fval=0; x=zeros(m+n,1); op=1; it=0; e=zeros(1,m); lie=find(f<0); l=length(lie); while(l>0) for j=1:l d=find(c(:,lie(j)));

MATLAB实现FCM 聚类算法

本文在阐述聚类分析方法的基础上重点研究FCM 聚类算法。FCM 算法是一种基于划分的聚类算法,它的思想是使得被划分到同一簇的对象之间相似度最大,而不同簇之间的相似度最小。最后基于MATLAB实现了对图像信息的聚类。 第 1 章概述 聚类分析是数据挖掘的一项重要功能,而聚类算法是目前研究的核心,聚类分析就是使用聚类算法来发现有意义的聚类,即“物以类聚” 。虽然聚类也可起到分类的作用,但和大多数分类或预测不同。大多数分类方法都是演绎的,即人们事先确定某种事物分类的准则或各类别的标准,分类的过程就是比较分类的要素与各类别标准,然后将各要素划归于各类别中。确定事物的分类准则或各类别的标准或多或少带有主观色彩。 为获得基于划分聚类分析的全局最优结果,则需要穷举所有可能的对象划分,为此大多数应用采用的常用启发方法包括:k-均值算法,算法中的每一个聚类均用相应聚类中对象的均值来表示;k-medoid 算法,算法中的每一个聚类均用相应聚类中离聚类中心最近的对象来表示。这些启发聚类方法在分析中小规模数据集以发现圆形或球状聚类时工作得很好,但当分析处理大规模数据集或复杂数据类型时效果较差,需要对其进行扩展。 而模糊C均值(Fuzzy C-means, FCM)聚类方法,属于基于目标函数的模糊聚类算法的范畴。模糊C均值聚类方法是基于目标函数的模糊聚类算法理论中最为完善、应用最为广泛的一种算法。模糊c均值算法最早从硬聚类目标函数的优化中导出的。为了借助目标函数法求解聚类问题,人们利用均方逼近理论构造了带约束的非线性规划函数,以此来求解聚类问题,从此类内平方误差和WGSS(Within-Groups Sum of Squared Error)成为聚类目标函数的普遍形式。随着模糊划分概念的提出,Dunn [10] 首先将其推广到加权WGSS 函数,后来由Bezdek 扩展到加权WGSS 的无限族,形成了FCM 聚类算法的通用聚类准则。从此这类模糊聚类蓬勃发展起来,目前已经形成庞大的体系。 第 2 章聚类分析方法 2-1 聚类分析 聚类分析就是根据对象的相似性将其分群,聚类是一种无监督学习方法,它不需要先验的分类知识就能发现数据下的隐藏结构。它的目标是要对一个给定的数据集进行划分,这种划分应满足以下两个特性:①类内相似性:属于同一类的数据应尽可能相似。②类间相异性:属于不同类的数据应尽可能相异。图2.1是一个简单聚类分析的例子。

最短路径算法_matlab程序[1]

算法描述: 输入图G,源点v0,输出源点到各点的最短距离D 中间变量v0保存当前已经处理到的顶点集合,v1保存剩余的集合 1.初始化v1,D 2.计算v0到v1各点的最短距离,保存到D for each i in v0;D(j)=min[D(j),G(v0(1),i)+G(i,j)] ,where j in v1 3.将D中最小的那一项加入到v0,并且从v1删除这一项。 4.转到2,直到v0包含所有顶点。 %dijsk最短路径算法 clear,clc G=[ inf inf 10 inf 30 100; inf inf 5 inf inf inf; inf 5 inf 50 inf inf; inf inf inf inf inf 10; inf inf inf 20 inf 60; inf inf inf inf inf inf; ]; %邻接矩阵 N=size(G,1); %顶点数 v0=1; %源点 v1=ones(1,N); %除去原点后的集合 v1(v0)=0; %计算和源点最近的点 D=G(v0,:); while 1 D2=D; for i=1:N if v1(i)==0 D2(i)=inf; end end D2 [Dmin id]=min(D2); if isinf(Dmin),error,end v0=[v0 id] %将最近的点加入v0集合,并从v1集合中删除 v1(id)=0; if size(v0,2)==N,break;end %计算v0(1)到v1各点的最近距离 fprintf('计算v0(1)到v1各点的最近距离\n');v0,v1 id=0; for j=1:N %计算到j的最近距离 if v1(j)

matlab单纯形法

%求解标准型线性规划:max c*x;s.t. A*x=b;x>=0 %本函数中的A是单纯初始表,包括:最后一行是初始的检验数,最后一列是资源向量b %N是初始的基变量的下标 %输出变量sol是最优解 %输出变量val是最优值,kk是迭代次数 function [sol,val,kk]=ssimplex(A,N) [mA,nA]=size(A); kk=0; %迭代次数 flag=1; while flag kk=kk+1; if A(mA,:)<=0 %已找到最优解 flag=0; sol=zeros(1,nA-1);%给每个变量赋初值0 for i=1:mA-1 sol(N(i))=A(i,nA);%给基变量赋新值(替换0) end %给出最优解 val=-A(mA,nA); else for i=1:nA-1 if A(mA,i)>0&A(1:mA-1,i)<=0 %问题有无界解 disp('have infinite solution!'); flag=0; break; end end if flag %还不是最优表,进行转轴运算 temp=0; for i=1:nA-1 if A(mA,i)>temp temp=A(mA,i); inb=i; % 进基变量的下标 end end %选择最大检验数纵向对应的变量为进基变量 sita=zeros(1,mA-1); for i=1:mA-1 if A(i,inb)>0 sita(i)=A(i,nA)/A(i,inb); end end temp=inf; for i=1:mA-1 if sita(i)>0&sita(i)

matlab实现Kmeans聚类算法

题目:matlab实现Kmeans聚类算法 姓名吴隆煌 学号41158007

背景知识 1.简介: Kmeans算法是一种经典的聚类算法,在模式识别中得到了广泛的应用,基于Kmeans的变种算法也有很多,模糊Kmeans、分层Kmeans 等。 Kmeans和应用于混合高斯模型的受限EM算法是一致的。高斯混合模型广泛用于数据挖掘、模式识别、机器学习、统计分析。Kmeans 的迭代步骤可以看成E步和M步,E:固定参数类别中心向量重新标记样本,M:固定标记样本调整类别中心向量。K均值只考虑(估计)了均值,而没有估计类别的方差,所以聚类的结构比较适合于特征协方差相等的类别。 Kmeans在某种程度也可以看成Meanshitf的特殊版本,Meanshift 是一种概率密度梯度估计方法(优点:无需求解出具体的概率密度,直接求解概率密度梯度。),所以Meanshift可以用于寻找数据的多个模态(类别),利用的是梯度上升法。在06年的一篇CVPR文章上,证明了Meanshift方法是牛顿拉夫逊算法的变种。Kmeans 和EM算法相似是指混合密度的形式已知(参数形式已知)情况下,利用迭代方法,在参数空间中搜索解。而Kmeans和Meanshift相似是指都是一种概率密度梯度估计的方法,不过是Kmean选用的是特殊的核函数(uniform kernel),而与混合概率密度形式是否已知无关,是一种梯度求解方式。 k-means是一种聚类算法,这种算法是依赖于点的邻域来决定哪些

点应该分在一个组中。当一堆点都靠的比较近,那这堆点应该是分到同一组。使用k-means,可以找到每一组的中心点。 当然,聚类算法并不局限于2维的点,也可以对高维的空间(3维,4维,等等)的点进行聚类,任意高维的空间都可以。 上图中的彩色部分是一些二维空间点。上图中已经把这些点分组了,并使用了不同的颜色对各组进行了标记。这就是聚类算法要做的事情。 这个算法的输入是: 1:点的数据(这里并不一定指的是坐标,其实可以说是向量) 2:K,聚类中心的个数(即要把这一堆数据分成几组) 所以,在处理之前,你先要决定将要把这一堆数据分成几组,即聚成几类。但并不是在所有情况下,你都事先就能知道需要把数据聚成几类的。但这也并不意味着使用k-means就不能处理这种情况,下文中会有讲解。 把相应的输入数据,传入k-means算法后,当k-means算法运行完后,该算法的输出是: 1:标签(每一个点都有一个标签,因为最终任何一个点,总会被分到某个类,类的id号就是标签) 2:每个类的中心点。 标签,是表示某个点是被分到哪个类了。例如,在上图中,实际上

单纯形法matlab程序

算法实现与分析 算法1.单纯形法 具体算例: 标准化后: 用单纯形法求解,程序如下: clear clc M=1000000; A=[3,2,-3,1,0;1,-2,1,0,1];%系数矩阵 C=[-3,1,2,M,M,0];%价值矩阵 B=[6;4]; Xt=[4 5]; for i=1:length(C)-1 D=0; for j=1:length(Xt) D=D+A(j,i)*C(Xt(j)); end xi(i)=C(i)-D; end s=[]; for i=1:length(xi) if xi(i)<0 s=[s,i]; end end f=length(s); h=1; while(f) for k=1:length(s) j=1; A x=[]; for i=1:length(Xt) if A(i,s(k))>0 x(j)=i;

j=j+1; end end x if(length(x)+1==1) break; end y=1 x for i=1:length(x) if B(x(i))/A(x(i),s(k))

最短距离聚类的matlab实现-1(含聚类图-含距离计算)

最短距离聚类的matlab实现-1 【2013-5-21更新】 说明:正文中命令部分可以直接在Matlab中运行, 作者(Yangfd09)于2013-5-21 19:15:50在MATLAB R2009a(7.8.0.347)中运行通过 %最短距离聚类(含距离计算,含聚类图) %说明:此程序的优点在于每一步都是自己编写的,很少用matlab现成的指令, %所以更适合于初学者,有助于理解各种标准化方法和距离计算方法。 %程序包含了极差标准化(两种方法)、中心化、标准差标准化、总和标准化和极大值标准化等标准化方法, %以及绝对值距离、欧氏距离、明科夫斯基距离和切比雪夫距离等距离计算方法。 %==========================>>导入数据<<============================== %变量名为test(新建一个以test变量,双击进入Variable Editor界面,将数据复制进去即可)%数据要求:m行n列,m为要素个数,n为区域个数(待聚类变量)。 % 具体参见末页测试数据。 testdata=test; %============================>>标准化<<=============================== %变量初始化,m用来寻找每行的最大值,n找最小值,s记录每行数据的和 [M,N]=size(testdata);m=zeros(1,M);n=9999*ones(1,M);s=zeros(1,M);eq=zeros(1,M); %为m、n和s赋值 for i=1:M for j=1:N if testdata(i,j)>=m(i) m(i)=testdata(i,j); end if testdata(i,j)<=n(i) n(i)=testdata(i,j); end s(i)=s(i)+testdata(i,j); end eq(i)=s(i)/N; end %sigma0是离差平方和,sigma是标准差 sigma0=zeros(M); for i=1:M for j=1:N sigma0(i)=sigma0(i)+(testdata(i,j)-eq(i))^2; end end sigma=sqrt(sigma0/N);

单纯形法MATLAB程序

单纯形法(Matlab 程序) %%单纯形法( Matlab 程序) a=input('input the major matrix A '); b=input('input the matrix b '); n=input('input the judgement '); %%为计数器(确定循环次数) g=0; while g<40 %%确定非负 alength=max(size(n)); blength=max(size(b)); m=0; for i=1:alength if n(i)>=0 m=m+1; end end; if m==alength x=b; break end; %%找 K s=min(n); for i=1:alength if n(i)==s k=i; break end; end; %%a[i,k] 的非负性 m=0; for i=1:blength if a(i,k)<0 m=m+1; end; end; if m==blength

disp('x does not exit'); judge=1; break end; %%找 L 确定主元 cc=100000; for i=1:blength if a(i,k)>0 if (b(i)/a(i,k))< cc cc=b(i)/a(i,k); end end end; for i=1:blength if a(i,k)~=0 if (b(i)/a(i,k))==cc l=i; break end end end; %%计算 ,a 标准化 zu=a(l,k); aa=a; for i=1:l-1 for j=1:alength aa(i,j)=a(i,j)- a(l,j)*a(i,k)/a(l,k); end end; for i=l+1:blength for j=1:alength aa(i,j)=a(i,j)- a(l,j)*a(i,k)/a(l,k); end end; for j=1:alength aa(l,j)=a(l,j)/zu; end; %%b勺判别 bb=b; bb(l)=b(l)/zu; for i=1:l-1 bb(i)=b(i)- b(l)*a(i,k)/a(l,k); end; for i=l+1:blength bb(i)=b(i)- b(l)*a(i,k)/a(l,k); end; b=bb; %%确定判别数

数学实验05聚类分析---用matlab做聚类分析

用matlab做聚类分析 Matlab提供了两种方法进行聚类分析。 一种是利用clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法; 另一种是分步聚类:(1)找到数据集合中变量两两之间的相似性和非相似性,用pdist函数计算变量之间的距离;(2)用linkage函数定义变量之间的连接;(3)用cophenetic函数评价聚类信息;(4)用cluster函数创建聚类。1.Matlab中相关函数介绍 1.1pdist函数 调用格式:Y=pdist(X,’metric’) 说明:用‘metric’指定的方法计算X数据矩阵中对象之间的距离。’X:一个m×n的矩阵,它是由m个对象组成的数据集,每个对象的大小为n。 metric’取值如下: ‘euclidean’:欧氏距离(默认);‘seuclidean’:标准化欧氏距离; ‘mahalanobis’:马氏距离;‘cityblock’:布洛克距离; ‘minkowski’:明可夫斯基距离;‘cosine’: ‘correlation’:‘hamming’: ‘jaccard’:‘chebychev’:Chebychev距离。 1.2squareform函数 调用格式:Z=squareform(Y,..)

说明:强制将距离矩阵从上三角形式转化为方阵形式,或从方阵形式转化为上三角形式。 1.3linkage函数 调用格式:Z=linkage(Y,’method’) 说明:用‘method’参数指定的算法计算系统聚类树。 Y:pdist函数返回的距离向量; method:可取值如下: ‘single’:最短距离法(默认);‘complete’:最长距离法; ‘average’:未加权平均距离法;‘weighted’:加权平均法; ‘centroid’:质心距离法;‘median’:加权质心距离法; ‘ward’:内平方距离法(最小方差算法) 返回:Z为一个包含聚类树信息的(m-1)×3的矩阵。 1.4dendrogram函数 调用格式:[H,T,…]=dendrogram(Z,p,…) 说明:生成只有顶部p个节点的冰柱图(谱系图)。 1.5cophenet函数 调用格式:c=cophenetic(Z,Y) 说明:利用pdist函数生成的Y和linkage函数生成的Z计算cophenet相关系数。 1.6cluster函数 调用格式:T=cluster(Z,…) 说明:根据linkage函数的输出Z创建分类。

最优化算法-Matlab程序

CG程序代码 function [x,y] = cg(A,b,x0) %%%%%%%%%%%%%%%%%CG算法%%%%%%%%%%%% r0 = A*x0-b; p0 = -r0; k = 0; r = r0; p = p0; x = x0; while r~=0 alpha = -r'*p/(p'*A*p); x = x+alpha*p; rold = r; r = rold+alpha*A*p; beta = r'*r/(rold'*rold); p = -r+beta*p; plot(k,norm(p),'.--'); hold on k = k+1; end y.funcount = k; y.fval = x'*A*x/2-b'*x;

function [x,y] = cg_FR(fun,dfun,x0) %%%%%%%%%%%%%%%CG_FR算法%%%%%%%%%%%%%%% error = 10^-5; f0 = feval(fun,x0); df0 = feval(dfun,x0); p0 = -df0; f = f0; df = df0; p = p0; x = x0; k = 0; while ((norm(df)>error)&&(k<1000)) f = feval(fun,x); [alpha,funcNk,exitflag] = lines(fun,0.01,0.15,0.85,6,f,df'*p,x,p);%%用线搜索找下降距离%% if exitflag == -1 disp('Break!!!'); break; end x = x+alpha*p; dfold = df; df = feval(dfun,x); beta = df'*df/(dfold'*dfold); p = -df+beta*p; plot(k,norm(df),'.--'); hold on k = k+1; end y.funcount = k; y.fval = feval(fun,x); y.error = norm(df);

多目标线性规划的若干解法及MATLAB实现

多目标线性规划的若干解法及MATLAB 实现 一.多目标线性规划模型 多目标线性规划有着两个和两个以上的目标函数,且目标函数和约束条件全是线性函 数,其数学模型表示为: 11111221221122221122max n n n n r r r rn n z c x c x c x z c x c x c x z c x c x c x =+++??=+++?? ??=+++? (1) 约束条件为: 1111221121122222112212,,,0 n n n n m m mn n m n a x a x a x b a x a x a x b a x a x a x b x x x +++≤??+++≤?? ??+++≤?≥?? (2) 若(1)式中只有一个1122i i i in n z c x c x c x =+++ ,则该问题为典型的单目标线性规划。我们记:()ij m n A a ?=,()ij r n C c ?=,12(,,,)T m b b b b = ,12(,,,)T n x x x x = , 12(,,,)T r Z Z Z Z = . 则上述多目标线性规划可用矩阵形式表示为: max Z Cx = 约束条件:0 Ax b x ≤?? ≥? (3) 二.MATLAB 优化工具箱常用函数[3] 在MA TLAB 软件中,有几个专门求解最优化问题的函数,如求线性规划问题的linprog 、求有约束非线性函数的fmincon 、求最大最小化问题的fminimax 、求多目标达到问题的fgoalattain 等,它们的调用形式分别为: ①.[x,fval]=linprog(f,A,b,Aeq,beq,lb,ub) f 为目标函数系数,A,b 为不等式约束的系数, Aeq,beq 为等式约束系数, lb,ub 为x 的下 限和上限, fval 求解的x 所对应的值。 算法原理:单纯形法的改进方法投影法 ②.[x,fval ]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub ) fun 为目标函数的M 函数, x0为初值,A,b 为不等式约束的系数, Aeq,beq 为等式约束

用对偶单纯形法求解线性规划问题

例4-7用对偶单纯形法求解线性规划问题. Min z =5x1+3x 2 ≥6 s.t. -2 x1 + 3x 2 ≥4 3 x1 - 6 x 2 Xj≥0(j=1,2) 解:将问题转化为 Max z = -5 x1 - 3 x 2 + x3 = -6 s.t. 2 x1 - 3x 2 -3 x1 + 6 x + x4≥-4 2 Xj≥0(j=1,2,3,4) 其中,x3 ,x4为松弛变量,可以作为初始基变量,单纯形表见表4-17. 在表4-17中,b=-16<0,而y≥0,故该问题无可行解. 注意: 对偶单纯形法仍是求解原问题,它是适用于当原问题无可行基,且所有检验数均为负的情况. 若原问题既无可行基,而检验数中又有小于0的情况.只能用人工变量法求解. 在计算机求解时,只有人工变量法,没有对偶单纯形法. 3.对偶问题的最优解 由对偶理论可知,在原问题和对偶问题的最优解之间存在着密切的关系,可以根据这些关系,从求解原问题的最优单纯形表中,得到对偶问题的最优解. (1)设原问题(p)为 Min z=CX

s.t. ?? ?≥=0 X b AX 则标准型(LP)为 Max z=CX s.t. ? ??≥=0X b AX 其对偶线性规划(D )为 Max z=b T Y s.t. ? ? ?≥=0X b AX 用对偶单纯形法求解(LP ),得最优基B 和最优单纯形表T (B )。对于(LP )来说,当j=n+i 时,有Pj=-e i ,c j =0 从而,在最优单纯形表T (B )中,对于检验数,有 (σn+1,σn+2…σn+m )=(c n+1,c n+2…,c n+m )-C B B -1(Pn +1,Pn+2…,Pn+m )=- C B B -1 (-I) 于是,Y*=(σn+1,σn+2…σn+m )T 。可见,在(LP )的最优单纯形表中,剩余变量对应的检验数就是对偶问题的最优解。 同时,在最优单纯形表T (B )中,由于剩余变量对应的系数 所以 B -1 =(-y n+1,-y n+2…-y n+m ) 例4-8 求下列线性规划问题的对偶问题的最优解。 Min z =6x 1+8x 2 s.t. x 1 + 2x 2≥20 3 x 1 + 2x 2≥50 Xj ≥0(j=1,2) 解: 将问题转化为 Max z =-6x 1-8x 2 s.t. -x 1 — 2x 2 + x 3=20 -3 x 1 - 2x 2+ x 4 =50 Xj ≥0(j=1,2,3,4)

MVDR算法matlab程序

clc clear all close all %% 常量定义 Freqs=1.6e9; %工作频率 c=3e8; %光速 lamda=c/Freqs; %波长 d=0.5*lamda; %单元间距 M=16; %天线阵元数 fs=2e6; %采样频率 pd=10; %快拍数 %% 模型建立 %--------------第一个干扰模型-------------------- thetaJ1=20*pi/180; %干扰方向 FreqJ1=5e5; %第一个干扰的频率 J1NR=sqrt(10^(60/10)); J1one=J1NR*exp(j*(2*pi*FreqJ1*(1:1:pd)/fs)); %1*pd %--------------第二个干扰模型-------------------- ThetaJ2=60*pi/180; %干扰方向 FreqJ2=6e5; %第二个干扰的频率 J2NR=sqrt(10^(60/10)); J2one=J2NR*exp(j*(2*pi*FreqJ2*(1:1:pd)/fs)); %1*pd %--------------信号模型-------------------- ThetaS=30*pi/180; FreqS=7e5; SNR=sqrt(10^(40/10)); Sone=SNR*exp(j*(2*pi*FreqS*(1:1:pd)/fs)); %1*pd %--------------空域处理------------------------- I1=zeros(M,1); I2=zeros(M,1); IS=zeros(M,1); for n=1:M I1(n)=exp(j*2*pi*(n-1)*d*sin(thetaJ1)/lamda); I2(n)=exp(j*2*pi*(n-1)*d*sin(ThetaJ2)/lamda); IS(n)=exp(j*2*pi*(n-1)*d*sin(ThetaS)/lamda); end J1=I1*J1one; J1=J1.'; J2=I2*J2one; J2=J2.'; %------------产生噪声------------------------- noise=sqrt(1/2)*randn(pd,M)+j*sqrt(1/2)*randn(pd,M);

实验二:MATLAB编程单纯形法求解

北京联合大学 实验报告 项目名称:运筹学专题实验报告 学院:自动化专业:物流工程 班级: 1201B 学号:2012100358081 姓名:管水城成绩: 2015 年 5 月 6 日

实验二:MATLAB 编程单纯形法求解 一、实验目的: (1)使学生在程序设计方面得到进一步的训练;,掌握Matlab (C 或VB)语言进行程序设计中一些常用方法。 (2)使学生对线性规划的单纯形法有更深的理解. 二、实验用仪器设备、器材或软件环境 计算机, Matlab R2006 三、算法步骤、计算框图、计算程序等 本实验主要编写如下线性规划问题的计算程序: ?? ?≥≥≤0 ,0..min b x b Ax t s cx 其中初始可行基为松弛变量对应的列组成. 对于一般标准线性规划问题: ?? ?≥≥=0 ,0..min b x b Ax t s cx 1.求解上述一般标准线性规划的单纯形算法(修正)步骤如下: 对于一般的标准形式线性规划问题(求极小问题),首先给定一个初始基本可行解。设初始基为B,然后执行如下步骤: (1).解B Bx b =,求得 1 B x B b -=,0,N B B x f c x ==令计算目标函数值 1(1,2,...,)i m B b i -=i 以b 记的第个分量 (2).计算单纯形乘子w, B wB C =,得到1 B w C B -=,对于非基变量,计算判别 数1i i i B i i z c c B p c σ-=-=-,可直接计算 σ =1 B A c c B --令 max{}k i R σσ∈=,R 为非基变量集合 若判别数0k σ≤ ,则得到一个最优基本可行解,运算结束;否则,转到下一 步 (3).解k k By p =,得到 1 k k y B p -=;若0k y ≤,即k y 的每个分量均非正数, 则停止计算,问题不存在有限最优解,否则,进行步骤(4).确定下标r,使 { }:0 min ,0 t r rk tk tk b b tk y y t y y >=>且r B x 为离基变量, ,r k B x p k 为进基变量,用p 替换得到新的基矩阵B,还回步骤(1) ;

图论算法及matlab程序的三个案例

图论实验三个案例 单源最短路径问题 Dijkstra 算法 Dijkstra 算法是解单源最短路径问题的一个贪心算法。其基本思想是,设置一个顶点集合S 并不断地作贪心选择来扩充这个集合。一个顶点属于集合S 当且仅当从源到该顶点的最短路径长度已知。设v 是图中的一个顶点,记()l v 为顶点 v 到源点v 1的最短距离, ,i j v v V ?∈,若 (,)i j v v E ?,记i v 到j v 的权ij w =∞。 Dijkstra 算法: ① 1{}S v =,1()0l v =;1{}v V v ??-,()l v =∞,1i =,1{}S V v =-; ② S φ=,停止,否则转③; ③ ()min{(),(,)} j l v l v d v v =, j v S ∈,v S ?∈; ④ 存在 1 i v +,使 1()min{()} i l v l v +=,v S ∈; ⑤ 1{} i S S v +=, 1{} i S S v +=-,1i i =+,转②; 实际上,Dijkstra 算法也是最优化原理的应用:如果12 1n n v v v v -是从1v 到 n v 的最短路径,则 12 1 n v v v -也必然是从1v 到 1 n v -的最优路径。 在下面的MATLAB 实现代码中,我们用到了距离矩阵,矩阵第i 行第j 行元 素表示顶点i v 到j v 的权ij w ,若i v 到j v 无边,则realmax ij w =,其中realmax 是 MATLAB 常量,表示最大的实数+308)。 function re=Dijkstra(ma)

matlab实现Kmeans聚类算法

matlab实现Kmeans聚类算法 1.简介: Kmeans和应用于混合高斯模型的受限EM算法是一致的。高斯混合模型广泛用于数据挖掘、模式识别、机器学习、统计分析。Kmeans 的迭代步骤可以看成E步和M步,E:固定参数类别中心向量重新标记样本,M:固定均值只考虑(估计)了均值,而没有估计类别的方差,所以聚类的结构比较适合于特征协方差相等的类别。 Kmeans在某种程度也可以看成Meanshitf的特殊版本,Meanshift 是所以Meanshift可以用于寻找数据的多个模态(类别),利用的是梯度上升法。在06年的一篇CVPR文章上,证明了Meanshift方法是牛顿拉夫逊算法的变种。Kmeans和EM算法相似是指混合密度的形式已知(参数形式已知)情况下,利用迭代方法,在参数空间中搜索解。而Kmeans和Meanshift相似是指都是一种概率密度梯度估计的方法,不过是Kmean选用的是特殊的核函数(uniform kernel),而与混合概率密度形式是否已知无关,是一种梯度求解方式。 k-means是一种聚类算法,这种算法是依赖于点的邻域来决定哪些点应该分在点,也可以对高维的空间(3维,4维,等等)的点进行聚类,任意高维的空间都可以。 上图中的彩色部分是一些二维空间点。上图中已经把这些点分组了,并使用了不同的颜色对各组进行了标记。这就是聚类算法要做的事情。 这个算法的输入是: 1:点的数据(这里并不一定指的是坐标,其实可以说是向量)

2:K,聚类中心的个数(即要把这一堆数据分成几组) 所以,在处理之前,你先要决定将要把这一堆数据分成几组,即聚成几类。但并不是在所有情况下,你都事先就能知道需要把数据聚成几类的。意味着使用k-means就不能处理这种情况,下文中会有讲解。 把相应的输入数据,传入k-means算法后,当k-means算法运行完后,该算法的输出是: 1:标签(每一个点都有一个标签,因为最终任何一个点,总会被分到某个类,类的id号就是标签) 2:每个类的中心点。 标签,是表示某个点是被分到哪个类了。例如,在上图中,实际上有4中“标签”,每个“标签”使用不同的颜色来表示。所有黄色点我们可以用标签以看出,有3个类离的比较远,有两个类离得比较近,几乎要混合在一起了。 当然,数据集不一定是坐标,假如你要对彩色图像进行聚类,那么你的向量就可以是(b,g,r),如果使用的是hsv颜色空间,那还可以使用(h,s,v),当然肯定可以有不同的组合例如(b*b,g*r,r*b) ,(h*b,s*g,v*v)等等。 在本文中,初始的类的中心点是随机产生的。如上图的红色点所示,是本文随机产生的初始点。注意观察那两个离得比较近的类,它们几乎要混合在一起,看看算法是如何将它们分开的。 类的初始中心点是随机产生的。算法会不断迭代来矫正这些中心点,并最终得到比较靠5个中心点的距离,选出一个距离最小的(例如该点与第2个中心点的距离是5个距离中最小的),那么该点就归属于该类.上图是点的归类结果示意图. 经过步骤3后,每一个中心center(i)点都有它的”管辖范围”,由于这个中心点不一定是这个管辖范围的真正中心点,所以要重新计算中心点,计算的方法有很多种,最简单的一种是,直接计算该管辖范围内所有点的均值,做为心的中心点new_center(i). 如果重新计算的中心点new_center(i)与原来的中心点center(i)的距离大于一定的阈值(该阈值可以设定),那么认为算法尚未收敛,使用new_center(i)代替center(i)(如图,中心点从红色点

相关文档
相关文档 最新文档