文档库 最新最全的文档下载
当前位置:文档库 › 测控技术与仪器课程设计(简易数字电压表)

测控技术与仪器课程设计(简易数字电压表)

测控技术与仪器课程设计(简易数字电压表)
测控技术与仪器课程设计(简易数字电压表)

专业

《测控系统原理与设计》课程设计任务书

淮阴工学院

电子与电气工程学院

2014年5月 1 日

《测控系统原理与设计》课程设计课题:简易数字电压表的设计

班级

学号

学生姓名

专业

系别

指导教师

2014年5月

课题介绍

1.设计指标

利用单片机AT89S51与ADC0809设计一个数字电压表,能够测量0-5V之间的直流电压值,四位数码显示。

采用AD转换器对外部模拟信号进行测量;

使用4位共阳LED对测量结果进行显示;

画出完整的电路原理图、模拟仿真图。

2功能要求

电压的测量范围为:0~5v;

能够用数字显示电压值(即LED数码管显示);

测量精度为:0.02v。

3创新点

选用单片机AT89C51和AD0808转换芯片实现电压的转换和控制,转换精度高,测量范围宽,抗干扰能力强,同时采用4位LED数码管显示电压,进而可实现电压的控制同时也实现对LED数码管的显示的控制;结构精简。

摘要

在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。本设计从各个角度分析了由单片机组成的数字电压表的设计过程及各部分电路的组成及其原理,并且分析了程序如何驱动单片机进而使系统运行起来的原理及方法。

本设计的课题是“简易数字电压表的设计”。主要解决A/D转换、数据处理及显示控制等三个模块。控制系统采用AT89C52单片机,A/D转换采用ADC0809。

本设计主要分为两部分:硬件电路及软件程序。而硬件电路又大体可分为单片机系统电路、A/D转换电路以及LED显示电路,各部分电路的设计及原理将会在硬件电路设计部分详细介绍;程序的设计使用C语言编程,利用Keil 软件对其编译和仿真,其流程框图将会在软件设计部分给出。

目录

1.绪论

1.1 数字电压表的特点

2 硬件电路设计与工作原理

2.1系统结构框图

2.2 A/D转换模块ADC0808逐次逼近式电路说明

2.2.1 工作原理

2.2.2 引脚及使用说明

2.2.3 AD转换电路连接

2.3 控制模块单片机电路说明

2.3.1主要管脚说明:

2.3.2 单片机外围电路连接

2.4显示模块LED数码显示

2.4.1电路说明

2.4.2 LED数码管电路

2.5 数据转换电路接口说明

3 软件设计及流程图

3.1软件流程图

3.2 数据接收程序设计

3.3 数据转换程序设计

3.4 数据显示程序设计

3.5 C语言源程序

4 部分模块仿真

5.仿真结果分析

6 总结

7附录原理图

1.绪论

数字电压表简称DVM,它是采用数字化测量设计的电压仪表。

1.1 数字电压表的特点

(1) 显示清晰直观,读数准确

传统的模拟式仪表必须借助于指针和刻度盘进行读数,在读数过程中不可避免的会引入人为的测量误差。数字电压表则采用先进的数显技术,使测量结果一目了然,只要仪表不发生跳读现象,测量结果就是唯一的。

新型数字电压表还增加了标志符显示功能,包括测量项目、符号单位和特殊符号、为解决DVM不能反映被测电压的连续变化过程以及变化趋势这一难题,一种“数字/模拟条图”仪表业已问世。“模拟图条”有双重含义:第一,被测量为模拟量;第二,利用条状图形来模拟被测量的大小及变化趋势。这类仪表将数字显示与高分辨率模拟条图显示集于一身,兼有DVM与模拟电压表之优点。

智能数字电压表均带微处理器和标准接口,可配合计算机和打印机进行数据处理或自动打印,构成完整的测试系统。准确度是测量结果中系统误差与随机误差的综合。

(2) 分辨率高,测量范围宽

数字电压表在最低电压量程上末位1个字所代表的电压值,称为仪表的分辨力,它反映仪表灵敏度的高低。分辨力随显示位数的增加而提高。分辨率是指所能显示的最小数字(零除外)与最大数字的百分比。多量程DVM一般可测量0~1000V直流电压,配上高压探头还可测上万伏的高压。

(3) 测量速度快

数字电压表在每秒钟内对被测电压的测量次数,叫测量速率,单位是“次/S”。它主要取决于A/D转换器的转换速率,其倒数是测量周期。

(4) 输入阻抗高,集成度高,微功耗

数字电压表具有很高的输入阻抗,通常为10MΩ~10000MΩ,最高可达1T Ω。并且新型数字电压表普遍采用CMOS大规模集成电路,整机功耗很低。(5) 抗干扰能力强

其串模抑制比、共模抑制比各别可达100dB、80~120dB。高档DVM还采用数字滤波、浮地保护等先进技术,进一步提高了抗干扰能力,共模抑制比可达

180dB。

2 硬件电路设计与工作原理

2.1系统结构框图

系统总体硬件框图

2.2 A/D转换模块ADC0808逐次逼近式电路说明

2.2.1 工作原理

ADC0808集成了一个8位的A/D转换器、一个8路通道和一个兼容控制逻辑的微处理器。其中,8位的A/D转换器采用了连续逼近的转换技术,具有高阻抗稳定的断续比较器特性,包括一个带模拟开关树的256R的分压器和一个逐次逼近寄存器;而由ADC0808中的8路通道,可直接从8个单一模拟信号中获取任何一个作为输入信号。

2.2.2 引脚及使用说明

ADC0808是CMOS集成工艺制成的逐次比较逼近型A/D转换芯片。分辨率8位,输入模拟电压范围0至5V,片内含8通道多路开关,单电源+5V工作。引脚排列见图所示。

ADC0808引脚图

各引脚功能为:

(1)IN0~IN7(第1~5 脚,第26 ~ 28脚):8路模拟量输入脚,可以从8个脚输入0V至+5V待转换模拟电。

(2)CLOCK(第10脚):时钟CP输入端,ADC0808只有在CP信号同步下,才能进行A/D转换。时钟频率的上限是640KHZ。

(3)ALE(第22脚):地址锁存允许端。当ALE=1时地址锁存和译码部分把外部数据的值输入和译码并接通IN0~IN7之一。当 ALE=0时,把此值锁存起来。(4)START(第6脚):启动脉冲输入端,启动脉冲的上升沿清除逐次逼近寄存器SAR,下跳沿启动ADC开始转换。

(5)VDD(第11脚):电源输入端:+5V~+6.5V。

(6)GND(第13脚):地

(7)VREF(+)(第12脚)VREF(-)(第16脚):分别为基准电压的高电平和低电平端。

(8)EOC(第7脚):转换结束信号端。EOC=0,表示转换正在进行,输出数据不可信。EOC=1表示转换已完成,输出数据可信。

(9)B0~B7(第8、14、15、17~21脚):转换所得八位输出数据,B7是最

高位,B0是最低位。

(10)OE(第9脚):允许输出端。OE端控制输出锁存器的三态门。当OE=1时,转换所得的数据送到B0~B7端,当OE=0时,B0~B7脚对外呈高阻状态。(11)ADDA、ADDB、ADDC(第25~23脚):通道地址输入端(如表2.1)。

表2.1 通道地址表

2.2.3 AD转换电路连接

2.3 控制模块单片机电路说明

AT89C51(如图2.4)是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM)的低电压,高性能CMOS8位微处理器,俗称单片机

单片机外部引脚图

2.3.1主要管脚说明:

(1)P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P0口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

(2)P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。在FLASH编程和校验时,P1口作为第八位地址接收。

(3)P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

(4)P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。P3口也可作为AT89C51的一些特殊功能口,如:P3.3 /INT1(外部中断1)。P3口同时为闪烁编程和编程校验接收一些控制信号。

(5)RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

(6)ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地

址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE 端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。

(7)XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。

(8)XTAL2:来自反向振荡器的输出。

振荡器特性:

XTAL1和XTAL2分别为反向放大器的输入和输出。该反向放大器可以配置为片内振荡器。石晶振荡和陶瓷振荡均可采用。如采用外部时钟源驱动器件,XTAL2应不接。有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。

2.3.2 单片机外围电路连接

2.4显示模块LED数码显示

2.4.1电路说明

四位一体LED数码显示器分别采用位选和段选位来控制,A~G为段选位,1~4为选为位,DP位小数点控制位(如图2.5)。当其为有效信号时则被点亮。

四位动态数码管

动态数码显示采用循环点亮的方式即假设第一位点亮则其它都不点亮,因此如果要显示数据即要不停的循环点亮,利用余晖效应显示出所有的数据。

2.4.2 LED数码管电路

2.5 数据转换电路接口说明

数据转换电路主要由单片机和A/D数据转换模块组成。ADC0808的out端口直接与单片机的P2口相连即将转换后的数据直接并行传入单片机。ADC0808的控制主要由单片机来完成。启动端口(ALE/START)与P3.0口相连;状态显示位(EOC)与P3.2相连;传送控制位(OE)与P3.1相连;时钟信号CP输入端(CLOCK)与P3.3相连(如图2.6)。在CLOCK时钟下当P3.0口出现高低高变化时则启动转换,此时EOC自动变为低电平,当转换完成后则又变回高电平,此时只需将P3.1口置高电平即可将数据传入单片机。

AD转换与单片机电路连接图

2.5 数据显示电路接口说明

数据显示电路主要由LED数码显示器和单片机组成

LED数码显示器段选线与P0口直接相连;而位选线则由P1-P4口控制(如图)。

单片机将数据分别由P0口传给LED显示器,而由位控线控制循环点亮即达到目的。

单片机与LED连接图

3 软件设计及流程图

3.1软件流程图

主程序流程图

3.2 数据接收程序设计

数据接收子程序流程图3.3 数据转换程序设计

数据转换子程序流程图

3.4 数据显示程序设计

延时子程序流程图

N

3.5 C语言源程序

#include

unsigned char code dispbitcode[]={0xfe,0xfd,0xfb,0xf7, 0xef,0xdf,0xbf,0x7f};

unsigned char code dispcode[]={0x3f,0x06,0x5b,0x4f,0x66, 0x6d,0x7d,0x07,0x7f,0x6f,0x00};

unsigned char dispbuf[8]={10,10,10,10,10,0,0,0};

unsigned char dispcount;

unsigned char getdata;

unsigned int temp;

long int i; \\代替原来的unsigned char i;

sbit ST=P3^0;

sbit OE=P3^1;

sbit EOC=P3^2;

sbit CLK=P3^3;

void main(void)

{

ST=0;

OE=0;

ET0=1;

ET1=1;

EA=1;

TMOD=0x12;

TH0=216;

TL0=216;

TH1=(65536-5000)/256;

TL1=(65536-5000)%256;

TR1=1;

TR0=1;

ST=1;

ST=0;

while(1)

{

if(EOC==1)

{

OE=1;

getdata=P0;

OE=0;

i=getdata*196;

dispbuf[5]=i/10000;

i=i%10000;

dispbuf[6]=i/1000;

i=i%1000;

dispbuf[7]=i/100;

/*原来的:

temp = getdata * 235;

temp=temp/128;

i=5;

dispbuf[0]=10;

dispbuf[1]=10;

dispbuf[2]=10;

dispbuf[3]=10;

dispbuf[4]=10;

dispbuf[5]=0;

dispbuf[6]=0;

dispbuf[7]=0;

while(temp/10)

{

dispbuf[i]=temp%10;

temp=temp/10;

i++;

}

dispbuf[i]=temp; */

ST=1;

ST=0;

}

}

}

void t0(void) interrupt 1 using 0 //定时器0 中断服务

测控仪器设计复习要点

一、知识点 1.按照系统工程的技术观点,可以将产品生产的技术结构分为能量流,材料流 和信息流。 2.计算机辅助设计系统从功能角度它可以分为数据库、程序库和输入输出人机 通信系统。 3.所谓可靠性,是指产品在规定条件下和规定时间内,完成规定功能的能力。 按产品可靠性的形成,可靠性可分为固有可靠性、使用可靠性和环境适应性4.分辨力是显示装置能有效辨别的最小示值;鉴别力是使测量仪器产 生未察觉的响应变化的最大激励变化。 5.稳定性是指测量仪器保持其计量特性随时间恒定的能力;漂移 是指仪器计量特性的慢变化。 6.示值范围又称为量程,测量范围是测量仪器允许范围内的被测量值。 7.标尺间隔示值对应标尺两相邻标记的两个值之差,分度值示值一个标尺间隔 所代表的被测量值。 8.仪器误差产生的原因是多方面的,从数学特性上看原理误差多为系统误差, 制造误差和运行误差多为随机误差。 9.传递位移的方式有推力传动和摩擦力传动。 10.对于推力传动其作用线是两构件接触区的公法线,对于摩擦力传动则是 公切线。 11.若略去某项误差对总误差的影响小于不略去结果的1/10,则可视为微小误差。 根据微小误差定义,测量仪器和测量标准的误差只需小于测量总误差的1/3,则对测量结果的影响是微不足道的。 12.检测与测量就是把被测量与标准量进行比较的过程。测量的精度首先取决于 标准量的精度。 13.标准量根据标准量体现的标准值的个数可以分为单值和多值两种。根据计量 值方法可分为绝对码和增量码。 14.标准量可分为实物标准量与自然标准量。自然标准量是以光波波长为标准的。 15.在几何量中按被测参数,可分为长度标准量、角度标准量和复合参数标准量。 16.对仪器的支承件设计要求,具有足够刚度,力变形要小;稳定性好,内应力 变形小;热变形要小;有良好抗振性。 17.按导轨面间摩擦性质,导轨可分为滑动摩擦导轨、滚动导轨、静压导轨和弹 性摩擦导轨。 18.导轨的基本功能是传递精密直线运动,导向精度是其最重要的精度要求。 19.凡作回转运动的仪器中都必须有主轴系统,其由主轴、轴承及安装在主轴上 的传动件或分度元件组成。 20.轴系的误差运动是指在规定的轴向和径向位置上,以及规定的方向上,指定 的旋转物体相对轴线平均线的位置变化。 21.主轴回转精度是主轴系统设计的关键。轴系误差运动可分为径向误差运动、 轴向误差运动、倾角误差运动以及端面误差运动。 22.动压轴承获得动压的条件是:结构上必须有斜楔,轴系之间必须有一定粘度 的润滑油。 23.按控制技术分,控制系统可分为闭环控制系统,开环控制系统和半闭环控制 系统。

基于51单片机的简易数字电压表的设计

课题交流毫伏表设计 系别 专业 年级 姓名 学号 指导教师

目录 第一章引言 (2) 1.1摘要 (2) 1.2 设计目的 (2) 1.3设计任务及要求 (2) 1.4 课程设计过程 (2) 第二章系统方案选择和论证 (3) 2.1基本方案论证 (3) 2.2输出部分中各模块的方案选择 (3) 2.3总体方案设计 (4) 第三章AT89C51的结构 (5) 3.1AT89C51的概述 (5) 3.2 AT89C51部结构 (5) 3.3存储器和特殊功能寄存器的介绍 (5) 3.4时钟电路和复位电路 (7) 第4章元器件的选择 (7) 4..1显示 (7) 4.2 模数(A/D)芯片 (11) 4.3 数模AC/DC736芯片 (13) 4.4 OP07 (13) 第五章电路的设计 (14) 5.1时钟电路 (15) 5.2A/D转换程序 (17) 第6章系统的调试 (18) 6.1 硬件的调试 (18) 6.2软件调试 (19) 参考文献 (20) 附录 (20) 程序清单 (20) 元件清单 (25)

容摘要 本次设计主要解决AC/DC转换、A/D转换、数据处理及显示控制等几个模块。控制系统采用AT89C51单片机,A/D转换采用ADC0809。要求交流毫伏表检测信号的电压围:1mv—2v ,输入信号的频率围:10Hz-2000KHz,并在LCD1602液晶上显示测量电压信号。 关键词AT89C51单片机;电压测量;A/D转换;LCD1602液晶显示;AC/DC 转换;放大;衰减。 1.2 设计目的 本课程的任务是通过“交流毫伏表的设计”的设计过程,综合所学课程,掌握目前自动化仪表的一般设计要求,工程设计方法,开发及设计工具的使用方法,通过这一设计实践过程,锻炼学生的动手能力和分析,解决问题的能力;积累经验,培养按部就班,一丝不苟的工作个对所学知识的综合应用能力。 1.3设计任务及要求 1、设计一个交流毫伏表,检测信号的电压围:1mv—2v。 2、输入信号的频率围:10Hz-2000KHz 3、查阅相关资料,了解交流毫伏表的各种现实发法极其特点,并着重掌 握交流毫伏表的设计及显示等。 4、熟悉并掌握个芯片的功能极其管脚分。 5、检测设计电路中所需要的各种电子元器件。 6、对设计的交流毫伏表进行装接与调试,要时设计的电路达标。 7、完成设计交实物图极其设计报告。 1.4课程设计过程 1、各组组成员讨论并进行软硬件系统设计,经指导老师同意进行具体方 案实施。 2、将可行方案硬件电路焊接在万能板上,并检查。 3、软硬件仿真。

基于单片机的数字电压表设计

引言 数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便。目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力。与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。本论文重点介绍单片A/D 转换器以及由它们构成的基于单片机的数字电压表的工作原理。

1 实训要求 (1)基本要求: ①实现8路直流电压检测 ②测量电压范围0-5V ③显示指定电压通道和电压值 ④用按键切换显示通道 (2)发挥要求 ①测量电压范围为0-25V ②循环显示8路电压 2 实训目的 (1)进一步熟悉和掌握单片机的结构和工作原理; (2)掌握单片机的借口技术及,ADC0809芯片的特性,控制方法; (3)通过这次实训设计,掌握以单片机为核心的电路设计的基本方法和技术;(4)通过实际程序设计和调试,逐步掌握模块化程序设计的方法和调试技术。 3 实训意义 通过完成一个包括电路设计和程序开发的完整过程,使自身了解开发单片机应用系统的全过程,强化巩固所学知识,为以后的学习和工作打下基础。 4 总体实训方案 测量一个0——5V的直流电压,通过输入电路把信号送给AD0809,转换为数字信号再送至89s52单片机,通过其P1口经数码管显示出测量值。 4.1 结构框图 如图1—1所示 图1—1

单片机课程设计报告——数字电压表[1]剖析

数字电压表 单片机课程设计报告 班级: 姓名: 学号: 指导教师: 2011 年3 月29 日

数字电压表电路设计报告 一、题目及设计要求 采用51系列单片机和ADC设计一个数字电压表,输入为0~5V线性模拟信号,输出通过LED显示,要求显示两位小数。 二、主要技术指标 1、数字芯片A/D转换技术 2、单片机控制的数码管显示技术 3、单片机的数据处理技术 三、方案论证及选择 主要设计方框图如下: 1、主控芯片 方案1:选用专用转化芯片INC7107实现电压的测量和实现,用四位数码管显示出最后的转换电压结果。缺点是京都比较低,内部电压转换和控制部分不可控制。优点是价格低廉。 方案2:选用单片机AT89C51和A/D转换芯片ADC0809实现电压的转换和控制,用四位数码管显示出最后的转换电压结果。缺点是价格稍贵;优点是转换京都高,且转换的过程和控制、显示部分可以控制。 基于课程设计的要求和实验室能提供的芯片,我选用了:方案2。 2、显示部分 方案1:选用4个单体的共阴极数码管。优点是价格比较便宜;缺点是焊接时比较麻烦,容易出错。 方案2:选用一个四联的共阴极数码管,外加四个三极管驱动。这个电路几乎没有缺点;优点是便于控制,价格低廉,焊接简单。 基于课程设计的要求和实验室所能提供的仪器,我选用了:方案2。

四、电路设计原理 模拟电压经过档位切换到不同的分压电路筛减后,经隔离干扰送到A/D 转换器进行A/D 转换。然后送到单片机中进行数据处理。处理后的数据送到LED 中显示。同时通过串行通讯与上位通信。硬件电路及软件程序。而硬件电路又大体可分为A/D 转换电路、LED 显示电路,各部分电路的设计及原理将会在硬件电路设计部分详细介绍;程序的设计使用汇编语言编程,利用Keil 和PROTEUS 软件对其编译和仿真。 一般I/O 接口芯片的驱动能力是很有限的,在LED 显示器接口电路中,输出口所能提供的驱动电流一般是不够的尤其是设计中需要用到多位LED ,此时就需要增加LED 驱动电路。驱动电路有多种,常用的是TTL 或MOS 集成电路驱动器,在本设计中采用了74LS244驱动电路。 本实验采用AT89C51单片机芯片配合ADC0808模/数转换芯片构成一个简易的数字电压表,原理电路如图1所示。该电路通过ADC0808芯片采样输入口IN0输入的0~5 V 的模拟量电压,经过模/数转换后,产生相应的数字量经过其输出通道 D0~D7传送给AT89C51芯片的P0口。AT89C51负责把接收到的数字量经过数据处理,产生正确的7段数码管的显示段码,并通过其P1口传送给数码管。同时它还通过其三位I/O 口P1.0、P1.1、P1.2、P1.3产生位选信号,控制数码管的亮灭。另外,AT89C51还控制着ADC0808的工作。其ALE 管脚为ADC0808提供了1MHz 工作的时钟脉冲;P2.4控制ADC0808的地址锁存端 (ALE);P2.1控制ADC0808的启动端(START);P2.3控制ADC0808的输出允许端(OE);P2.0控制ADC0808的转换结束信号(EOC)。 电路原理图如下所示,三个地址位ADDA,ADDB,ADDC 均接高电平+5V 电压,因而所需测量的外部电压可由ADC0808的IN7端口输入。由于ADC0808

检测技术与仪表课程设计论文(DOC)

第1章绪论 1.1 课题背景与意义 换热设备污垢的形成过程是一个极其复杂的能量、质量和动量传递的物理化学过程,污垢的存在给广泛应用于各工业企业的换热设备造成极大的经济损失,因而污垢问题成为传热学界和工业界十分关注而又至今未能解决的难题之一。 1.1.1目的 针对“应用技术主导型”普通工科高等教育的特点,从工程创新的理念出发,以工程思维模式为主,旨在培养突出“实践能力、创新意识和创业精神”特色的、适应当前经济社会发展需要的“工程应用型人才”。 通过在模拟的实战环境中系统锻炼,使学生的学习能力、思维能力、动手能力、工程创新能力和承受挫折能力都得到综合提高。以增强就业竞争力和工作适应力。 以多功能动态实验装置为对象,成此换热设备污垢的实验装置所需检测参数的检测。 1.2污垢的研究 换热设备污垢的形成过程是一个极其复杂的能量、质量和动量传递的物理化学过程,污垢的存在给广泛应用于各工业企业的换热设备造成极大的经济损失,因而污垢问题成为传热学界和工业界十分关注而又至今未能解决的难题之一。 1.2.1污垢的形成和现状 近10年来,基于污垢形成机理认识的逐步深入,污垢的预测和模拟都取得了明显进展。然而换热设备污垢形成的影响因素众多,是在动量、能量、质量传递以及生物活动同时存在的多相、多组分流动过程中进行的,其理论基础除传热传质学外,还涉及到化学动力学、流体力学、胶体化学、热力学与统计物理、微生物学、非线性科学以及表面科学等相关学科,是一个典型的多学科交叉的高度复杂问题,因而对其机理的清晰理解和准确把握仍是一项极为艰巨的任务。在20世纪80年代中Epstein曾以矩阵形式对污垢形成过程的理论分析和实验研究作了形象的概括,指出了发展趋势;Pinhero则比较了当时已有的各预测模型,

#简易数字电压表的设计

一、简易数字电压表的设计 l .功能要求 简易数字电压表可以测量0~5V 的8路输入电压值,并在四位LED 数码管上轮流显示或单路选择显示。测量最小分辨率为0.019 V ,测量误差约为土0.02V 。 2.方案论证 按系统功能实现要求,决定控制系统采用A T89C52单片机,A /D 转换采用ADC0809。系统除能确保实现要求的功能外,还可以方便地进行8路其它A /D 转换量的测量、远程测量结果传送等扩展功能。数字电压表系统设计方案框图如图1-1。 3.系统硬件电路的设 计 简易数字电压测量电 路由A /D 转换、数据处 理及显示控制等组成,电 路原理图如图1-2所示。A /D 转换由集成电路0809完 成。0809具有8路模拟输人 端口,地址线(23~25脚)可决定对哪一路模拟输入作A /D 转换,22脚为地址锁存控制,当输入为高电平时,对地址信号进行锁存,6脚为测试控制,当输入一个2us 宽高电平脉冲时,就开始A /D 转换,7脚为A /D 转换结束标志,当A /D 转换结束时,7脚输出高电平,9脚为A /D 转换数据输出允许控制,当OE 脚为高电平时,A /D 转换数据从该端口输出,10脚为0809的时钟输入端,利用单片机30脚的六分频晶振频率再通过14024二分频得到1 MHz 时钟。单片机的P1、P3.0~P3.3端口作为四位LED 数码管显示控制。P3.5端口用作单路显示/循环显示转换按钮,P3.6端口用作单路显示时选择通道。P0端口作A /D 转换数据读入用,P2端口用作0809的A /D 转换控制。 4.系统程序的设计 (1)初始化程序 系统上电时,初始化程序将70H ~77H 内存单元清0,P2口置0。 (2)主程序 在刚上电时,系统默认为循环显示8个通道的电压值状态。当进行一次测量后,将 图1-1 数字电压表系统设计方案

基于51单片机的数字电压表设计

目录 摘要........................................................................ I 1 绪论. (1) 1.1数字电压表介绍 (1) 1.2仿真软件介绍 (1) 1.3 本次设计要求 (2) 2 单片机和AD相关知识 (3) 2.1 51单片机相关知识 (3) 2.2 AD转换器相关知识 (4) 3 数字电压表系统设计 (5) 3.1系统设计框图 (5) 3.2 单片机电路 (5) 3.3 ADC采样电路 (6) 3.4显示电路 (6) 3.5供电电路和参考电压 (7) 3.6 数字电压表系统电路原理图 (7) 4 软件设计 (8) 4.1 系统总流程图 (8) 4.2 程序代码 (8) 5 数字电压表电路仿真 (15) 5.1 仿真总图 (15) 5.2 仿真结果显示 (15) 6 系统优缺点分析 (16) 7 心得体会 (17) 参考文献 (18)

1 绪论 1.1数字电压表介绍 数字电压表简称DVM,数字电压表基本原理是将输入的模拟电压信号转化为数字信号,再进行输出显示。而A/D转换器的作用是将连续变化的模拟信号量转化为离散的数字信号,器基本结构是由采样保持,量化,编码等几部分组成。因此AD转换是此次设计的核心元件。输入的模拟量经过AD转换器转换,再由驱动器驱动显示器输出,便得到测量的数字电压。 本次自己的设计作品从各个角度分析了AD转换器组成的数字电压表的设计过程及各部分电路的组成及原理,并且分析了数模转换进而使系统运行起来的原理及方法。通过自己的实践提高了动手能力,也只有亲历亲为才能收获掌握到液晶学过的知识。其实也为建立节约成本的意识有些帮助。本次设计同时也牵涉到了几个问题:精度、位数、速度、还有功耗等不足之处,这些都是要慎重考虑的,这些也是在本次设计中的收获。 1.2仿真软件介绍 Proteus ISIS是英国Labcenter公司开发的电路分析与实物仿真软件。它运行于Windows 操作系统上,可以仿真、分析(SPICE)各种模拟器件和集成电路,该软件的特点是: (1)现了单片机仿真和SPICE电路仿真相结合。具有模拟电路仿真、数字电路仿真、单片机及其外围电路组成的系统的仿真、RS232动态仿真、I2C调试器、SPI调试器、键盘和LCD系统仿真的功能;有各种虚拟仪器,如示波器、逻辑分析仪、信号发生器等。 (2)支持主流单片机系统的仿真。目前支持的单片机类型有:68000系列、8051系列、 A VR系列、PIC12系列、PIC16系列、PIC18系列、Z80系列、HC11系列以及各种外围芯片。 (3)提供软件调试功能。在硬件仿真系统中具有全速、单步、设置断点等调试功能,同时可以观察各个变量、寄存器等的当前状态,因此在该软件仿真系统中,也必须具有这些功能;同时支持第三方的软件编译和调试环境,如Keil C51 uVision2等软件。 (4)具有强大的原理图绘制功能。 可以仿真51系列、A VR、PIC、ARM、等常用主流单片机。还可以直接在基于原理图的虚拟原型上编程,再配合显示及输出,能看到运行后输入输出的效果。配合系统配置的

数字电压表设计课程设计

东北石油大学课程设计 2

东北石油大学课程设计任务书 课程硬件课程设计 题目数字电压表设计 专业 主要内容、基本要求等 一、主要内容: 利用EL教学实验箱、微机和QuartusⅡ软件系统,使用VHDL语言输入方法设计数字钟。可以利用层次设计方法和VHDL语言,完成硬件设计设计和仿真。最后在EL教学实验箱中实现。 二、基本要求: 1、A/D转换接口电路的设计,负责对ADC0809的控制。 2、编码转换电路设计,负责把从ADC0809数据总线中读出的电压转换成BCD码。 3、输出七段显示电路的设计,负责将BCD码用7段显示器显示出来。 三、参考文献 [1] 潘松.EDA技术实用教程[M].北京:科学出版社, 2003.11-13. [2] 包明.《EDA技术与数字系统设计》.北京航天航空大学出版社. 2002. [3] EDA先锋工作室.Altera FPGA/CPLD设计[M].北京:人民邮电出版社 2005.32-33. [4] 潘松.SOPC技术实用教程[M] .清华大学出版社.2005.1-15. 完成期限第18-19周 指导教师 专业负责人

摘要 本文介绍了基于EDA技术的8位数字电压表。系统采用CPLD为控制核心,采用VHDL语言实现,论述了基于VHDL语言和CPLD芯片的数字系统设计思想和实现过程。在硬件电子电路设计领域中,电子设计自动化(EDA)工具已成为主要的设计手段,而VHDL语言则是EDA的关键技术之一,。VHDL的英文全名是 Very-High-Speed Integrated Circuit HardwareDescription Language,它采用自顶向下的设计方法,即从系统总体要求出发,自上至下地将设计任务分解为不同的功能模块,最后将各功能模块连接形成顶层模块,完成系统硬件的整体设计。 电子设计自动化技术EDA的发展给电子系统的设计带来了革命性的变化,EDA软件设计工具,硬件描述语言,可编程逻辑器件(PLD)使得EDA技术的应用走向普及。CPLD是新型的可编程逻辑器件,采用CPLD进行产品开发可以灵活地进行模块配置,大大缩短了产品开发周期,也有利于产品向小型化,集成化的方向发展。而 VHDL语言是EDA的关键技术之一,它采用自顶向下的设计方法,完成系统的整体设计。 本文用CPLD芯片和VHDL语言设计了一个八位的数字电压表。它的计时周期为24小时,显示满刻度为23时59分59秒,另外还具有校时功能和闹钟功能。总的程序由几个各具不同功能的单元模块程序拼接而成,其中包括分频程序模块、时分秒计数和设置程序模块、比较器程序模块、三输入数据选择器程序模块、译码显示程序模块和拼接程序模块。 关键词:数字电压表;QuartusⅡ软件;EDA(电子设计自动化)

二维精密工作台设计

目录 第一节 《测控仪器课程设计》要求 (1) 第二节 国内外现状 (2) 第三节 方案设计 (5) 第四节 测量控制方法设计 (13) 第五节 未来展望与总结 (18) 参考文献 (20)

第一节 《测控仪器课程设计》要求 一课程设计目的: 测控仪器课程设计是一次比较完整的仪器设计,它是理论联系实际、培养初步设计能力的重要教学环节,完成课程设计的目的有一下几点: (1) 培养学生综合地考虑使用、经济、工艺、安全性等方面的设计要求,确定合理的设计方案。 (2) 测控仪器设计是综合光学,电学,机械学,控制等多门课程的一个系统工程,培养学生从全局出发,体会各个学科融合的一次实战演练。 (3) 培养学生仔细阅读本课程指导书和随时查阅有关教材。 (4) 通过分析比较吸取现有结构中的优点,并在此基础上发挥自己的创造性,而不是简单抄袭或没有根据在臆造; (5) 培养学生制图功底,训练学生通过计算参数,最后完成设计制图的能力,(6) 了解国内外的技术前沿,以及现有企业可以提供的各种封装产品技术参数。 二 课程设计技术要求 课题名称:基于CCD边缘检测的二维测量系统设计 要求:1. 二维精密工作台系统 X轴行程范围10mm,分辨率0.1um,精度要求0.5um; Y轴行程范围10mm,分辨率0.1um,精度要求0.5um; 2. CCD测量系统 边缘识别,精度要求1um; 三 设计说明书要求 1.根据设计任务要求,确定设计方案。 2. 详细讨论系统各部分的实现方法和原理。 3.按照技术指标要求计算相应的机械结构参数,有国家标准的零部件,过计算选取。 4.完成设计说明书一份,仪器工作原理图一张,总装配图一张(0号),零件图5张以上。 5.提交设计报告书。要求打印,并列出参考文献。设计说明书要求5000字。

双通道数字电压表课程设计

目录 1 引言.......................................................... - 2 - 2设计原理及要求................................................ - 2 - 2.1数字电压表的实现原理..................................... - 2 - 2.2数字电压表的设计要求..................................... - 2 - 3软件仿真电路设计................................. 错误!未定义书签。 3.1设计思路.................................... 错误!未定义书签。 3.3设计过程.................................... 错误!未定义书签。 3.4 AT89C51的功能介绍....................................... - 3 - 3.4.1简单概述........................................... - 3 - 3.4.2主要功能特性....................................... - 3 - 3.4.3 AT89C51的引脚介绍................................. - 3 - 3.5 ADC0808的引脚及功能介绍................................. - 5 - 3.5.1芯片概述........................................... - 5 - 3.5.2 引脚简介........................................... - 5 - 3.5.3 ADC0808的转换原理................................. - 6 - 3.6 74LS373芯片的引脚及功能................................. - 6 - 3.6.1芯片概述........................................... - 6 - 3.6.2引脚介绍........................................... - 6 - 3.7 LED数码管的控制显示..................................... - 7 - 3.7.1 LED数码管的模型................................... - 7 - 3.7.2 LED数码管的接口简介............................... - 7 - 4系统软件程序的设计............................... 错误!未定义书签。 4.1 主程序................................................. - 15 - 4.2 A/D转换子程序.......................................... - 16 - 4.3 中断显示程序............................... 错误!未定义书签。5电压表的调试及性能分析........................... 错误!未定义书签。 5.1 调试与测试................................. 错误!未定义书签。 5.2 性能分析............................................... - 17 - 6电路仿真图....................................... 错误!未定义书签。7总结......................................................... - 14 - 参考文献........................................... 错误!未定义书签。

检测技术及仪表课程设计报告

检测技术及仪表课程设计报告 1、1 课程设计目的针对“应用技术主导型”普通工科高等教育的特点,从工程创新的理念出发,以工程思维模式为主,旨在培养突出“实践能力、创新意识和创业精神”特色的、适应当前经济社会发展需要的“工程应用型人才”。通过在模拟的实战环境中系统锻炼,使学生的学习能力、思维能力、动手能力、工程创新能力和承受挫折能力都得到综合提高。以增强就业竞争力和工作适应力。 1、2课题介绍本课设题目以多功能动态实验装置为对象,要求综合以前所学知识,完成此实验装置所需参数的检测。设计检测方案,包括检测方法,仪表种类选用以及需要注意事项,并分析误差产生的原因等等。 1、3 实验背景知识换热设备污垢的形成过程是一个极其复杂的能量、质量和动量传递的物理化学过程,污垢的存在给广泛应用于各工业企业的换热设备造成极大的经济损失,因而污垢问题成为传热学界和工业界分关注而又至今未能解决的难题之一。 1、4 实验原理 1、4、1 检测方法按对沉积物的监测手段分有:热学法和非传热量的污垢监测法。热学法中又可分为热阻表示法和温差表示法两种;非传热量的污垢监测法又有直接称重法、厚度测量法、压降测量法、放射技术、时间推移电影法、显微照相法、电解法

和化学法。这些监测方法中,对换热设备而言,最直接而且与换热设备性能联系最密切的莫过于热学法。这里选择热学法中的污垢热阻法。 1、4、2 热阻法原理简介表示换热面上污垢沉积量的特征参数有:单位面积上的污垢沉积质量mf,污垢层平均厚度δf和污垢热阻Rf。这三者之间的关系由式表示: (1-1)图1-1 清洁和有污垢时的温度分布及热阻通常测量污垢热阻的原理如下:设传热过程是在热流密度q为常数情况下进行的,图1a为换热面两侧处于清洁状态下的温度分布,其总的传热热阻为: (1-2)图1b为两侧有污垢时的温度分布,其总传热热阻为: (1-3)忽略换热面上污垢的积聚对壁面与流体的对流传热系数影响,则可认为(1-4)于是两式相减得: (1-5)该式表明污垢热阻可以通过清洁状态和受污染状态下总传热系数的测量而间接测量出来。实验研究或实际生产则常常要求测量局部污垢热阻,这可通过测量所要求部位的壁温表示。为明晰起见,假定换热面只有一侧有污垢存在,则有:(1-6)(1-7)若在结垢过程中,q、Tb均得持不变,且同样假定(1-8)则两式相减有: (1-9)这样,换热面有垢一侧的污垢热阻可以通过测量清洁状态和污染状态下的壁温和热流而被间接测量出来。

简易数字电压表(单片机课程设计)

课程设计说明书 简易数字电压表的设计 院(系) 专业机械电子工程 班级二班 学生姓名 指导老师 2015 年 3月 13 日 课程设计任务书 兹发给机械电子工程(2)班学生课程设计任务书,内容如下:

1.设计题目:简易数字电压表的设计 2.应完成的项目: (1)可测0~5V的8路电压输入值; (2)在LED数码管上轮流显示; (3)单路选择显示; (4)利用功能键可以实现滚动显示,显示启动/停止等; 3.参考资料以及说明: [1]刘瑞新.单片机原理及应用教程[M].北京:机械工业出版社, 2003.7 [2]张俊,钟知原,王日根.简易数字电压表的设计[J].科协论坛:下半月,2012(8)34-35 [3]赵静,刘少聪,丁浩.王莉莎.基于单片机的数字电压表的设计[J].数字技术与应用,2011(6):121-125 [4]魏立峰.单片机原理及应用技术[M].北京大学出版社,2005年 [5]谭浩强.C语言程序设计(第二版)[M].北京:清华大学出版社,2005.12 4.本设计任务书于2015年3月2日发出,应于2015年3月13日前完成,然后进行答辩。 专业教研室、研究所负责人审核年月日 指导教师签发年月日 课程设计评语:

课程设计总评成绩: 课程设计答辩负责人签字: 年月日

摘要 在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。 数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC进行实时通信。目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力。 本实验设计主要讲述了数字电压表的设计过程,主要包括硬件设计和程序设计,硬件主要包括以STC89C51单片机为主要控制电路、数据采样电路、显示电路等,是基于51单片机开发平台实现的一种数字电压表系统。该设计采用STC89C51单片机作为控制核心,驱动控制四块数码管显示被测电压,以ADC0809为模数转换数据采样,实现被测电压的数据采样,使得该数字电压表能够测量0-5V之间的直流电压值。 关键词:STC89C51、ADC0809、显示电路、数据采样

虚拟数字电压表的设计

摘要 LabVIEw 8.5版本的工程技术比以往任何一个版本都丰富.它采用了中文界面,各个控件的功能一目了然。利用它全新的用户界面对象和功能,能开发出专业化、可完全自定义的前面板。LabVIEw 8.5对数学、信号处理和分析也进行了重大的补充和完善,信号处理分析和数学具有更为全面和强大的库,其中包括500多个函数。所以在LabVIEw 8.5版本下能够更方便地实现虚拟电压表的设计。 虚拟电压表是基于计算机和标准总线技术的模块化系统,通常它由控制模块、仪器模块和软件组成,由软件编程来实现仪器的功能。在虚拟仪器中,计算机显示器是惟一的交互界面,物理的开关、按键、旋钮以及数码管等显示器件均由与实物外观相似的图形控件来代替,操作人员只要通过鼠标或键盘操作虚拟仪器面板上的旋钮、开关、按键等设置各种参数,就能根据自己的需要定义仪器的功能。在虚拟电压表的设计中,考虑到仪器主要用于教学和实验,使用对象是学生,因此将引言中提到的三种检波方式的仪器合为一体,既简化了面板操作,又便于直接对比。 该电压表主要用于电路分析和模拟电子技术等实验课的教学和测量仪器,能够使学习者了解和掌握电压的测量和电压表对各种波形的不同响应。因此,虚拟电压表应具备电源开关控制、波形选择,以及显示峰值、有效值和平均值三种结果,且输入信号的大小可调节等功能。虚拟电压表由硬件设备与接口、设备驱动软件和虚拟仪器面板组成。其中,硬件设备与接口包括仪器接口设备和计算机,设备驱动软件是直接控制各种硬件接口的驱动程序,虚拟仪器通过底层设备驱动软件与真实的仪器系统进行通信,并以虚拟仪器面板的形式在计算机屏幕上显示与真实仪器面板操作相对应的各种控件。在此,用软件虚拟了一个信号发生器。该信号发生器可产生正弦波、方波和三角波,还可以输入公式,产生任意波形。根据需要,可调节面板上的控件来改变信号的频率和幅度等可调参数,然后检测电压表的运行情况。因此,在LabVIEW图形语言环境下设计的虚拟电压表主要分为两个部分:第一部分是虚拟电压表前面板的设计;第二部分是虚拟电压表流程图的设汁。

单片机课程设计 数字电压表设计

《单片机原理及应用》课程设计报告书 课题名称数字电压表设计 名姓 学号 专业

指导教师 机电与控制工程学院月年日 1 任务书 电压表是测量仪器中不可缺少的设备,目前广泛应用的是采用专用集成电路实现的数字电压表。本系统以8051单片机为核心,以逐次逼近式A/D转换器ADC0809、LED显示器为主体,设计了一款简易的数字电压表,能够测量0~5V的直流电压,最小分辨率为0.02V。 该设计大体分为以下几个部分,同时,各部分选择使用的主要元器件确定如下: 1、单片机部分。使用常见的8051单片机,同时根据需要设计单片机电路。 2、测量部分。该部分是实验的重点,要求将外部采集的模拟信号转换成数字信号,通过单片机的处理显示在显示器上,该部分决定了数字电压表的精度等主要技术指标。根据需要本设计采用逐次逼近型A∕D转换器ADC0809进行模数转换。 3、键盘显示部分。利用4×6矩阵键盘的一个按键控制量程的转换,3或4位LED显示。其中一位为整数部分,其余位小数部分。 关键词:8051 模数转换LED显示矩阵键盘 2 目录

1 绪论 (1) 2 方案设计与论证 (2) 3 单元电路设计与参数计算 (3) 4 总原理图及参考程序 (8) 5 结论 (14) 6 心得体会 (15) 参考文献16 (7) 3 1.绪论 数字电压表的基本工作原理是利用A/D转换电路将待测的模拟信号转换成数字信号,通过相应换算后将测试结果以数字形式显示出来的一种电压表。较之于一般的模拟电压表,数字电压表具有精度高、测量准确、读数直观、使用方便等优

点。 电压表的数字化测量,关键在于如何把随时连续变化的模拟量转化成数字量,完成这种转换的电路叫模数转换器(A/D)。数字电压表的核心部件就是A/D转换器,由于各种不同的A/D转换原理构成了各种不同类型的DVM。一般说来,A/D 转换的方式可分为两类:积分式和逐次逼近式。 积分式A/D转换器是先用积分器将输入的模拟电压转换成时间或频率,再将其数字化。根据转化的中间量不同,它又分为U-T(电压-时间)式和U-F(电压-频率)式两种。 逐次逼近式A/D转换器分为比较式和斜坡电压式,根据不同的工作原理,比较式又分为逐次比较式及零平衡式等。斜坡电压式又分为线性斜坡式和阶梯斜坡式两种。 在高精度数字电压表中,常采用由积分式和比较式相结合起来的复合式A/D转换器。本设计以8051单片机为核心,以逐次比较型A/D转换器ADC0809、LED 显示器为主体,构造了一款简易的数字电压表,能够测量1路0~5V直流电压,最小分辨率0.02V。 4 2.方案设计与论证 基于单片机的多路数字电压表电路的基本组成如图3.1所示。

检测及仪表课程设计(DOC)

目录 1设计目的 (2) 2题目介绍 (2) 3 背景意义 (2) 3.1实验装置简介 (2) 3.2研究污垢传热的理论知识 (3) 4参数检测与控制 (5) 4.1进出口温度水浴温度测量 (5) 4.1.1 仪表种类选用及依据 (5) 4.1.2 注意事项 (6) 4.1.3 可能误差 (6) 4.2 实验管壁温测量 (7) 4.2.1 仪表种类选用及依据 (7) 4.2.2 可能误差 (7) 4.3 水位的测量 (7) 4.3.1 仪表种类选用及依据 (7) 4.3.2 注意事项 (8) 4.3.3 可能误差 (8) 4.4 实验管内流体流量的测量 (8) 4.4.1仪表种类选用与依据 (8) 4.4.2 可能误差 (10) 4.5 差压测量 (10) 4.5.1仪表种类选用与依据 (10) 4.5.2 可能误差 (11) 5.参考文献 (12)

第1章绪论 1.1设计目的 针对“应用技术主导型”普通工科高等教育的特点,从工程创新的理念出发,以工程思维模式为主,旨在培养突出“实践能力、创新意识和创业精神”特色的、适应当前经济社会发展需要的“工程应用型人才”。通过在模拟的实战环境中系统锻炼,使学生的学习能力、思维能力、动手能力、工程创新能力和承受挫折能力都得到综合提高。以增强就业竞争力和工作适应力。 2题目介绍 本课设题目以一多功能动态实验装置为对象,要求综合以前所学知识,完成此实验装置所需检测参数的检测。设计检测方案,包括检测方法、仪表种类选用以及需要注意事项,并分析误差产生的原因等等。 该实验装置上,需要检测和控制的参数主要有: 1、温度:包括实验管流体进口(20~40℃)、出口温度(20~80 ℃), 2、实验管壁温(20~80 ℃)以及水浴温度(20~80 ℃) 3、水位:补水箱上位安装,距地面2m,其水位要求测量并控制,以适应不同流速的需要,水位变动范围200mm~500mm 4、流量:实验管内流体流量需要测量,管径Φ25mm,流量范围0.5~4m3/h 5、差压:由于结垢导致管内流动阻力增大,需要测量流动压降,范围为0~50mm 水柱 3 背景意义 3.1实验装置简介 如图3—1所示的实验装置是东北电力大学节能与测控研究中心杨善让教授为首的课题组基于测量新技术—软测量技术开发的多功能实验装置。 基于本实验装置,先后完成国家、东北电力公司、省、市多项科研项目并获奖,鉴定结论为国际领先。目前承担国家自然科学基金、973项目部分实验工作。

简易数字电压表的设计

一、设计题目:简易数字电压表的设计 二、设计目的 自动化专业的专业实践课程。本课程的任务是使学生通过“简易数字电压表的设计”的设计过程,综合所学课程,掌握目前自动化仪表的一般设计要求,工程设计方法,开发及设计工具的使用方法,通过这一设计实践过程,锻炼学生的动手能力和分析,解决问题的能力;积累经验,培养按部就班,一丝不苟的工作个对所学知识的综合应用能力。 三、设计任务及要求 设计电压表并实现简单测量。具有以下基本功能: ⑴可以测量0~5V的8路输入电压值; ⑵可在四位LED数码管上轮流显示或单路选择显示; ⑶测量最小分辨率为0.019V; ⑷.测量误差约为±0.02V; ⑸带有一定的扩展功能; 目录 第一章摘要 (4) 第二章智能仪表目前的发展状况 (4) 第三章设计目的 (6) 第四章设计要求 (6) 第五章设计方案与比较论证 (6) 5.1 单片机电路设计 (6) 5.2 电源方案 (8) 5.3 显示方案 (9) 5.4 A/D采样方案 (10) 5.5串口通讯方案 (12) 5.7 高压,短路报警 (14) 5.8 键盘 (14) 第六章方案设计 (15) 6.1 硬件设计 (15)

6.2 软件设计 (16) 第七章性能测试 (18) 电压测试 (18) 第八章结果分析 (19) 第九章设计体会 (19) 参考文献 (20) 附录 (20) 元器件清单 (20) 程序清单 (20) 第一章摘要 本报告介绍了基于AT89S52单片机为核心的、以AD0809数模转换芯片采样、以1602液晶屏显示的具有电压测量功能的具有一定精度的数字电压表。在实现基础功能要求之上扩展了串口通讯、时钟功能、高压报警、短路测试、电阻测量、交流电压峰峰值和周期测试等功能,使系统达到了良好的设计效果和要求。 关键词:AT89S52单片机模数转换液晶显示扩展功能 ABSTRACT:The report describes the AT89S52 based on the microcontroller as the core, AD0809 digital-to-analog converter chip sampling, to 1602 LCD display with voltage measurement function with a certain precision of digital voltage meter. In achieving functional requirements based upon the expansion of serial communications, high-pressure alarm, short circuit, electrical resistivity measurement, AC voltage and the peak of cycle testing and other functions, allowing the system to achieve good results and the design requirements. Keywords : AT89S52 SCM analog-to-digital conversion functions LCD expansion 第二章智能仪表目前发展状况 在自动化控制系统中,仪器仪表作为其构成元素,它的技术进展是跟随控制系统技术的发展的。常规的自动化仪器仪表适应常规控制系统的要求,它们以经典控制理论和现代控制理论为基础,以控制对象的数学模型为依据。当今,控制理论已发展到智能控制的新阶段,自动化仪器仪表的智能化就成为必然和必须。本文将就自动化仪器仪表的智能化的状况与进展,以及当今对智能仪器仪表研究、开发热点做概要的分析与表述。作者建议人们关注自动化仪器仪表智能化技术的进展,关注仪器仪表装置

简易数字直流电压表的设计

电子制作课程考核报告 课程名称简易数字直流电压表的设计 学生姓名贾晋学号1313014041 所在院(系)物理与电信工程 专业班级电子信息工程1302 指导教师秦伟 完成地点 PC PROTEUS 2015年 6 月 13 日

简易数字直流电压表的设计 简易数字直流电压表的设计 摘要本文介绍一种基于AT89C51单片机的简易数字电压表的设计。该设计主要由三个模块组成:A/D转换模块,数据处理模块及显示模块。A/D转换芯片为ADC0808,它主要负责把采集到的模拟量转换为数字量再传送到数据处理模块。数据处理则是由芯片AT89C51来完成,主要负责把ADC0808传送来的数字量经过一定的数据处理,产生相应的显示码送到显示模块进行显示;并且,它还控制着ADC0808芯片工作。 该系统的数字电压表电路简单,所用的元件较少,成本低,且测量精度和可靠性较高。此数字电压表可以测量0-200V的模拟直流输入电压值,并通过数码管显示。 关键词单片机;数字电压表;AT89C51;ADC0808

目录 1 引言............................................................................................... 2 总体设计方案............................................................................... 2.1设计要求 ............................................................................... 2.2 设计思路 .............................................................................. 2.3 设计方案 .............................................................................. 3 详细设计....................................................................................... 3.1 A/D转换模块 .................................................................... 3.2 单片机系统 ........................................................................ 3.3 时钟电路 ............................................................................ 3.4 LED显示系统设计 ........................................................... 3.5 总体电路设计 .................................................................... 4 程序设计....................................................................................... 4.1 程序设计总方案 ................................................................ 4.2 系统子程序设计 ................................................................ 5 仿真............................................................................................. 5.1 软件调试 (11) 5.2 显示结果及误差分析 ........................................................ 结论................................................................................................. 参考文献........................................................................................... 附录...................................................................................................

相关文档