文档库 最新最全的文档下载
当前位置:文档库 › 六自由度机器人的零位标定原理与操作

六自由度机器人的零位标定原理与操作

六自由度机器人的零位标定原理与操作
六自由度机器人的零位标定原理与操作

5.3 实验项目2—机器人的零位标定

5.3.1 实验目的

了解机器人在什么情况下需要零位标定;

掌握机器人零位标定的方法;

5.3.2 实验内容

零位标定主要用于标定机器人的各个关节运动的零点。零位标定界面显示机器人各个关节零位标定状况。完成标定的关节,相应的状态显示为绿色,当所有关节都完成标定后,{全部}指示灯点亮。用户可以选定指定的一个或多个关节,并点击{记录零点}按钮来记录当前的编码器数据作为零点数据(长按该按钮2-3秒钟左右)。只有当所有关节的零点数据都完成标定,机器人才能进行全功能运动,否则,机器人只能进行关节点动运动。

原点位置是指各轴“0”脉冲的位置,此时的姿态称为原点位置姿态,也即是机器人回零时的终到位置。

原点位置校准是将机器人位置与绝对编码器位置进行对照的操作。原点位置校准是在出厂前进行的,但在下列情况下必须再次进行原点位置校准:(1)更换电机或绝对编码器时;

(2)存储内存被删除时;

(3)机器人碰撞工件造成原点偏移时,此种情况发生的机率较大);

(4)电机驱动器绝对编码器电池没电时;

机器人零位标定的操作步骤:

第1步:打开软件进入{机器人}-{零位标定}界面:

第2步:在“关节坐标模式”下,机器人各个关节处于零位时的姿态,如下图所示,其中下臂处于竖直状态,前臂处于水平状态,手腕部(第五关节)也处于水平状态。一般机器人在本体设计过程中已考虑了零位接口(例如凹槽、刻线、标尺等)。正常情况下机器人在机械零点的姿态应该如下图所示:

第3步:按照零位接口(例如凹槽、刻线、标尺等)调整位置姿态。

第4步:选择要标定的轴。“请选择要标定/清零的轴”区域是用户交互区域,

用户在此区域选择需要记录零位数据的轴号,例如选定第一轴。用户可以选择同时记录多个轴的零位数据,也可以选择只记录一个轴的零位数据。当相应的轴号选择按钮被按下,则该按钮以绿色显示。

第5步:按下{记录零点}按钮,并保持按下的状态不变(约3秒钟左右),直到轴号选择按钮的指示灯由绿色变为灰色,说明相应轴号的零点数据已成功记录。只有用户选择的轴号的零点数据才会刷新,未选中的轴号的零点数据不会被刷新。

第6步:检查标定是否成功。“各轴零位标定状态”区域显示机器人各个轴的零位标定状态。数字指示灯1到8代表1到8号轴,其中1到6号轴为机器人本体轴,7号和 8号轴是扩展轴。当相应的轴的零位标定成功后,则相应的数字指示灯标记为绿色,否则,数字指示灯以灰色显示。当所有用到的轴(本体轴和辅助扩展轴)都完成零位标定后,“全部”指示灯变为绿色,说明机器人已完成零位数据的标定,机器人可以进行笛卡尔空间下的运动。

六轴关节机器人机械结构

六轴关节机器人机械结构 e y . <7>J4 akis motor <8>J5 axis / tiKi呂motor 说uation Mdr / Flhaw -U 」£: □nis rritx r crc .inTi * 12;、JE处也mn空 < 13 ■ J6 axis red jction gear ■ S J3 axi reduct ken / \<1t)〉J5 酣仪timi啊belt i < / /<1 1>J5 3ME Wrist hoqsine/ / r也[juGlidn 営凸mr <2>J1 axis n'dijnt rm 3" J? miG irctci: <4>J2 axis rrdi.nt nn £rn^ 上图为常见的六轴关节机器人的机械结构,六个伺服电机直接通过谐波减速器、同步带 轮等驱动六个关节轴的旋转,注意观察一、二、三、四轴的结构,关节一至关节四的驱动电机为空心结构,关节机器人的驱动电机采用空心轴结构应该不常见,空心轴结构的电机一般 较大。采用空心轴电机的优点是:机器人各种控制管线可以从电机中心直接穿过,无论关节轴怎么旋转,管线不会随着旋转,即使旋转,管线由于布置在旋转轴线上,所以具有最小的 旋转半径。此种结构较好的解决了工业机器人的管线布局问题。对于工业机器人的机械结构 设计来说,管线布局是难点之一,怎样合理的在狭小的机械臂空间中布置各种管线(六个电机的驱动线、编码器线、刹车线、气管、电磁阀控制线、传感器线等),使其不受关节轴旋 转的影响,是一个值得深入考虑的问题。 机器人的腕部结构常见有如下几种结构

?3RS 在这三种手腕部的结构中,以第一种(RBR型)结构应用最为广泛,它适应于各种工作场合,后两种结构应用范围相对较窄,比如说3R型的手腕结构主要应用在喷涂行业等关节设计: 对于国外的工业机器人主要制造国家来说,六轴关节机器人的研发设计及制造已经有好几十 年的历史了,整个工业机器人的研发制造体系较为完善,他们的技术相对来说比较成熟,他们 在相互竞争中可以相互模仿、改善、不断推陈出新,他们的技术对于国内来说,近乎完美?而 国内目前这个行业还处在黎明前的黑暗阶段,虽然有不少公司有这个研发意图,或者正在研发途中,不管怎么说,浮出水面公布自己正在研发或者研发成功的公司应该说是极少数,即使宣布自己研发成功,也只是初步试验成功,真正产业化、商品化还有一段相当漫长的路要走?而更多的公司还停留在项目立项、技术评估、投入风险分析的阶段?由于国内做这个行业的 很少,相关的结构也没有什么可参考的,技术储备不足,少数的单位或个人有机会能够拆拆别 人的机器,拆个一知半解,更多的人只能在旁边看看了(比如说我,想拆都没机会A_A),还好了,网络资源丰富,今搜集到不少机械结构方面的图片,分享给大家参考,希望咱们做机械设计的(我应该也算是个机械工程师啊A_A毕竟我也是做机械的)少走点弯路,做出更好的机器? 六轴关节机器人的腕部关节设计较为复杂,因为在腕部同时集成了三种运动?小型的六轴关 节机器人的腕部关节主要采用谐波减速器?下面的图片较为详细的描述了常见的六轴关节机 器人的腕部结构?

六自由度工业机器人设计

六自由度工业机器人 对于工业机器人的设计与大多数机械设计过程相同;首先要知道为什么要设计机器人机器人能实现哪些功能活动空间(有效工作范围)有多大了解基本的要求后,接下来的工作就好作了。 首先是根据基本要求确定机器人的种类,是行走的提升(举升)机械臂、还是三轴的坐标机器人、还是六轴的机器人等。选定了机器人的种类也就确定了控制方式,也就有了在有限的空间内进行设计的指导方向。 接下来的要做的就是设计任务的确定。这是一个相对复杂的过程,在实现这一复杂过程的第一步是将设计要求明确的规定下来;第二步是按照设计要求制作机械传动简图,分析简图,制定动作流程表(图),初步确定传动功率、控制流程和方式;第三步是明确设计内容,设计步骤、攻克点、设计计算书、草图绘制,材料、加工工艺、控制程序、电路图绘制;第四步是综合审核各方面的内容,确认生产。 下面我将以六轴工业机器人作为设计对象来阐明这一设计过程: 在介绍机器人设计之前我先说一下机器人的应用领域。机器人的应用领域可以说是非常广泛的,在自动化生产线上的就有很多例子,如垛码机器人、包装机器人、转线机器人;在焊接方面也有很例子,如汽车生产线上的焊接机器人等等;现在机器人的发展是非常的迅速,机器人的应用也在民用企业的各个行业得以延伸。机器人的设计人才需求也越来越大。 六轴机器人的应用范筹不同,设计形式也各不相同。现在世界上生产机器人的公司也很多,结构各有特色。在中国应用最多的如:ABB、Panasonic、FANUK、莫托曼等国外进口的机器人。 既然机器人的应用那么广泛,在我国却没有知名的生产公司。对于作为中国机械工程技术人员来说是一个值得思考的问题!有关机器人技术方面探讨太少了从业人员还不能成群体虽然在很多地方可以看到机器的论术,可是却没有真正形成普及的东西。 即然是要说设计,那我就从头一点一点的说起。力求讲的通俗简明一些,讲得不对的地方还请各位指正! 六轴机器人是多关节、多自由度的机器人,动作多,变化灵活;是一种柔性技术较高的工业机器人,应用面也最广泛。那么怎样去从头开始的设计它呢工作范围又怎样去确定动作怎样去编排呢位姿怎样去控制呢各部位的关节又是有怎么样的要求呢等等。。。。。。让我们带着众多的疑问慢慢的往下走吧! 首先我们设定:机器人是六轴多自由度的机器人,手爪夹持二氧气体保护焊标准焊枪;完成点焊、连续焊等不同要求的焊接部件,工艺要求、工艺路线变化快的自动生线上。最大伸长量:1700mm;转动270度;底座与地平线水平固定;全电机驱动。 好了,有了这样的基本要求我们就可以做初步的方案的思考了。 首先是全电机驱动的,那么我们在考虑方案的时候就不要去考虑液压和气压的各种结构了,也就是传动机构只能用齿轮齿条、连杆机构等机械机构了。 机器人是用于焊接方面的,那么我们就去考察有人工行为下的各种焊接手法和方法。这里就有一个很复杂的东西在里面,那就是焊接工艺;即然焊艺定不下来,我们就给它区分一下,在常用焊接里有单点点焊、连续断点点焊、连续平缝焊接、填角焊接、立缝焊接、仰焊、环缝焊等等。。。。。。 搞清了各种焊方法,也就明白了要实现这些复杂的动作就要有一套可行的控制方式才行;在机械没有完全设计出来之前可以不做太多的控制方案思考,有一个大概的轮廓概念就行了,待机械结构做完,各方面的驱动功率确定下来之后再做详细的程序。 焊枪是用常用的标准的焊枪,也就是说焊枪是随时可以更换下来的,也就要求我们要做到对焊枪的夹持部分进行快速锁定与松开。

【CN109910014A】基于神经网络的机器人手眼标定方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910276856.4 (22)申请日 2019.04.08 (71)申请人 上海嘉奥信息科技发展有限公司 地址 201304 上海市浦东新区书院镇丽正 路1628号4幢1-2层 (72)发明人 肖建如 吕天予  (74)专利代理机构 上海汉声知识产权代理有限 公司 31236 代理人 庄文莉 (51)Int.Cl. B25J 9/16(2006.01) (54)发明名称 基于神经网络的机器人手眼标定方法 (57)摘要 本发明提供一种基于神经网络的机器人手 眼标定方法,确定NDI坐标系、NDI工具坐标系、机 器人坐标系;根据NDI坐标系和工具坐标系,对机 械臂TCP末端的工具尖端进行位置标定,得到工 具尖端位置;采集m个点集组,每个点集组分别包 括NDI坐标系下的工具尖端的坐标位置、机器人 坐标系下的工具的位置和旋转矩阵,基于罗德里 格旋转公式对从机器人坐标系转换到NDI坐标系 的转换矩阵进行转换,构建正向传播网络,基于 正向传播网络,生成反向传播网络,得到参数的 偏导数;采用牛顿梯度下降进行计算,得到手眼 标定矩阵。本发明方便快捷,易于实施,标定精 确,在标定过程中无需机械臂绕一点转动,可在 空间中任意采集姿态。权利要求书1页 说明书5页 附图1页CN 109910014 A 2019.06.21 C N 109910014 A

1.一种基于神经网络的机器人手眼标定方法,其特征在于,包括: 坐标系确定步骤:分别确定红外定位装置NDI的NDI坐标系、机械臂TCP末端的NDI工具坐标系、机器人坐标系; 尖端标定步骤:根据NDI坐标系和工具坐标系,对机械臂TCP末端的工具尖端进行位置标定,得到工具尖端位置; 数据采集步骤:采集m个点集组,每个点集组分别包括NDI坐标系下的工具尖端的坐标位置P ndi 、机器人坐标系下的工具的位置和旋转矩阵M robot ,设置NDI工具坐标系下工具尖端的位置P robot ,从机器人坐标系转换到NDI坐标系的转换矩阵M robot2ndi ,所述工具尖端的坐标位置P ndi 满足P ndi =M robot2ndi *M robot *P robot ; 神经网络构建步骤:基于罗德里格旋转公式对转换矩阵M robot2ndi 进行转换,构建正向传播网络,基于正向传播网络,生成反向传播网络,得到参数的偏导数; 坐标求解步骤:基于偏导数,采用牛顿梯度下降进行计算,得到手眼标定矩阵。 2.根据权利要求1所述的基于神经网络的机器人手眼标定方法,其特征在于,所述尖端标定步骤是将工具尖端插入机械臂工具中,以设定角度做绕点旋转运动,采用最小二乘法求出尖端位置。 3.根据权利要求2所述的基于神经网络的机器人手眼标定方法,其特征在于,所述设定角度是30度至45度。 4.根据权利要求1所述的基于神经网络的机器人手眼标定方法,其特征在于,所述NDI 坐标系是NDI红外定位装置的坐标系; 所述NDI工具坐标系是绑定在工具上的四个红外小球构成结构所定义的坐标系;所述机器人坐标系是机器人底座中心所在位置的坐标系。 5.根据权利要求1所述的基于神经网络的机器人手眼标定方法,其特征在于,所述对转换矩阵M robot2ndi 进行转换使用以下公式: θ←norm(r) r ←r/ θ 其中,θ表示绕旋转轴旋转的角度; r表示旋转轴; norm(r)表示旋转轴单位向量; r T 表示旋转轴的转置; r x 、r y 、r z 分别表示旋转轴向量的xyz分量; I表示单位矩阵; R表示旋转矩阵。 6.根据权利要求1所述的基于神经网络的机器人手眼标定方法,其特征在于,采用tensorflow工具正向传播网络、生成反向传播网络,得到参数的偏导数。 权 利 要 求 书1/1页2CN 109910014 A

浅析六轴工业机器人的控制方式及特点

浅析六轴工业机器人的控制方式及特点工业机器人是面向工业领域的多关节机械手或多自由度的机器装置,它能自动执行工作,是靠自身动力和控制能力来实现各种功能的一种机器。它可以接受人类指挥,也可以按照预先编排的程序运行,现代的工业机器人还可以根据人工智能技术制定的原则纲领行动。 6轴工业机器人的全部控制由一台微型计算机完成。另一种是分散(级)式控制,即采用多台微机来分担机器人的控制,如当采用上、下两级微机共同完成机器人的控制时,主机常用于负责系统的管理、通讯、运动学和动力学计算,并向下级微机发送指令信息;作为下级从机,各关节分别对应一个CPU,进行插补运算和伺服控制处理,实现给定的运动,并向主机反馈信息。根据作业任务要求的不同,机器人的控制方式又可分为点位控制、连续轨迹控制和力(力矩)控制。 6轴工业机器人的特点主要有以下几方面: (1)可编程:6轴工业机器人Biggist特点是柔性启动化,柔性制造系统中的一个重要组成部分。工业机器人可随其工作环境变化以及加工件的变化进行再编程,适合于小批量多品种具有均衡率的柔性制造生产线的应用。 (2)拟人化:6轴工业机器人结合机器人与人的特点。在6轴工业机器人的结构上有类似人的行走、腰转、大臂、小臂、手腕、手爪等部分,在控制上有电脑。其传感器提高了工业机器人对周围环境的自适应能力。 3)通用性:一般6轴工业机器人在执行不同的作业任务时具有较好的通用性。当然也有的工业机器人。 4)机电一体化:6轴工业机器人是机械学和微电子学的结合-机电一体化技术。工业机器人具有各种传感器可以获取外部环境信息,而且还具有记忆能力、语言理解能力、

图像识别能力、推理判断能力等人工智能,这些都是微电子技术的应用,特别是计算机技术的应用密切相关。 六轴关节工业机器人的研发设计及制造已经有好几十年的历史了,整个工业机器人的研发制造体系较为完善,各研发厂家在相互竞争中可以相互模仿、改善、不断推陈出新。博立斯多年来坚持投入研发、生产各类自动化设备,其中包括:数控车床机械手、上下料机械手、机床机械手、冲压机械手、6轴工业机器人、4轴工业机械手、多轴工业机器人等。多年来不断推陈出新,研发生产的自动化设备帮助许多企业解决了生产难题,备受企业的喜爱。

六轴运动机器人运动学求解分析_第九讲

六轴联动机械臂运动学及动力学求解分析 V0.9版 随着版本的不断更新,旧版本文档中的一些笔误得到了修正,同时文档内容更丰富,仿真程序更完善。 作者朱森光 Email zsgsoft@https://www.wendangku.net/doc/fc139542.html, 完成时间 2016-02-28

1引言 笔者研究六轴联动机械臂源于当前的机器人产业热,平时比较关注当前热门产业的发展方向。笔者从事的工作是软件开发,工作内容跟机器人无关,但不妨碍研究机器人运动学及动力学,因为机器人运动学及动力学用到的纯粹是数学和计算机编程知识,学过线性代数和计算机编程技术的人都能研究它。利用业余时间翻阅了机器人运动学相关资料后撰写此文,希望能够起到抛砖引玉的作用引发更多的人发表有关机器人技术的原创性技术文章。本文内容的正确性经过笔者编程仿真验证可以信赖。 2机器建模 既然要研究机器人,那么首先要建立一个机械模型,本文将以典型的六轴联动机器臂为例进行介绍,图2-1为笔者使用3D技术建立的一个简单模型。首先建立一个大地坐标系,一般教科书上都是以大地为XY平面,垂直于大地向上方向为Z轴,本文为了跟教科书上有所区别同时不失一般性,将以水平向右方向为X轴,垂直于大地向上方向为Y轴,背离机器人面向人眼的方向为Z轴,移到电脑屏幕上那就是屏幕水平向右方向为X轴,屏幕竖直向上方向为Y轴,垂直于屏幕向外为Z轴,之所以建立这样不合常规的坐标系是希望能够突破常规的思维定势训练在任意空间建立任意坐标系的能力。 图2-1 图2-1中的机械臂,底部灰色立方体示意机械臂底座,定义为关节1,它能绕图中Y轴旋转;青色长方体示意关节2,它能绕图中的Z1轴旋转;蓝色长方体示意关节3,它能绕图中的Z2轴旋转;绿色长方体示意关节4,它能绕图中的X3轴旋转;深灰色长方体示意关节5,它能绕图中的Z4轴旋转;末端浅灰色机构示意关节6即最终要控制的机械手,机器人代替人的工作就是通过这只手完成的,它能绕图中的X5轴旋转。这儿采用关节这个词可能有点不够精确,先这么意会着理解吧。 3运动学分析 3.1齐次变换矩阵 齐次变换矩阵是机器人技术里最重要的数学分析工具之一,关于齐次变换矩阵的原理很多教科书中已经描述在此不再详述,这里仅针对图2-1的机械臂写出齐次变换矩阵的生成过程。首先定义一些变量符号,关节1绕图中Y轴旋转的角度定义为θ0,当θ0=0时,O1点在OXYZ坐标系内的坐标是(x0,y0,0);关节2绕图中的Z1轴旋转的角度定义为θ1,图中的θ1当前位置值为+90度;定义O1O2两点距离为x1,关节3绕图中的Z2轴旋转的角度定义为θ2,图中的θ2当前位置值为-90度;O2O3两点距离为x2,关节4绕图中的X3轴旋转的角度定义为θ3, 图中的θ3当前位置值为0度;O3O4两点距离为x3,关节5绕图中的Z4轴旋转的角度定义为θ4, 图中的θ4当前位置值为-60度;O4O5两点距离为x4,关节6绕图中的X5轴旋转的角度定义为θ5, 图中的θ5当前位置值为0度。以上定义中角度正负值定义符合右手法则,所有角度定义值均为本关节坐标系相对前一关节坐标系的相对旋转角度值(一些资料上将O4O5两点重合在一起即O4O5两点的距离x4退化为零,本文定义x4大于零使得讨论时更加不失一般性)。符号定义好了,接下来描述齐次变换矩阵。 定义R0为关节1绕Y轴的旋转矩阵 =cosθ0 s0 = sinθ0 //c0 R0 =[c0 0 s0 0 0 1 0 0 0 c0 0 -s0 0 0 0 1] 定义T0为坐标系O1X1Y1Z1相对坐标系OXYZ的平移矩阵 T0=[1 0 0 x0 0 1 0 y0 00 1 0 0 0 0 1] 定义R1为关节2绕Z1轴的旋转矩阵 R1=[c1 –s1 0 0 s1 c1 0 0

六自由度机械手重载搬运机器人本体结构设计(全套CAD图纸)

全套设计通过答辩优秀CAD图纸QQ 36396305 XX学院 毕业设计说明书(论文) 作者: 学号: 学院(系): 专业: 题目: 重载搬运机器人本体结构设计【六自由 度机械手】 2015 年5月

全套设计通过答辩优秀CAD图纸QQ 36396305 毕业设计说明书(论文)中文摘要 机械手是一种典型的机电一体化产品,搬运机械手是机械手研究领域的热点。研究搬运机械手需要结合机械、电子、信息论、人工智能、生物学以及计算机等诸多学科知识,同时其自身的发展也促进了这些学科的发展。 本文对一种使用在搬运机械手的结构进行设计,并完成总装配图和零件图的绘制。要求对机械手模型进行力学分析,估算各关节所需转矩和功率,完成电机和减速器的选型。其次从电机和减速器的连接和固定出发,设计关节结构,并对机构中的重要连接件进行强度校核。 关键词:结构设计,机器臂,关节型机械手,结构分析

毕业设计说明书(论文)外文摘要

目录 1 绪论 (1) 1.1 引言 (2) 1.2 搬运机械手研究概况 (3) 1.2.1 国外研究现状 (3) 1.2.2 国内研究现状 (4) 1.4 搬运机械手的总体结构 (5) 1.5 主要内容 (5) 2 总体方案设计 (6) 2.1 机械手工程概述 (6) 2.2 工业机械手总体设计方案论述 (7) 2.3 机械手机械传动原理 (8) 2.4 机械手总体方案设计 (8) 2.5 本章小结 (10) 3 机械手大臂结构设计 (1) 3.1 大臂部结构设计的基本要求 (1) 3.2 大臂部结构设计 (2) 3.3 大臂电机及减速器选型 (2) 3.4 减速器参数的计算 (3) 3.5承载能力的计算 (7) 3.5.1 柔轮齿面的接触强度的计算 (7) 3.5.2 柔轮疲劳强度的计算 (7) 3.6 轴的计算校核 (8) 3.7 大臂的平衡设计 (11) 3.7.1 弹簧的受力分析 (11) 3.7.2 弹簧的设计计算 (14) 4机械手小臂结构设计 (18) 4.1 腕部设计 (18) 4.2 小臂部结构设计 (31)

六自由度机器人说明书

六自由度机器人说明书 专业:机械制造与自动化 班级: 成员:

目录 一、打开气源 二、机器人的快速操作入门 1、坐标系的选择 2、手动速度调整 3、伺服电源接通 4、接通主电源 5、接通伺服电源 三、伺服电源切断 1、切断伺服电源 2、切断主电源 四、轴操作

一、打开气源 请确认系统进气气源已进行供气,未供气或气压不足将会导致系统无法正常工作,系统运行中如断开气源,可能导致设备损坏,甚至造成人员伤害。 打开下图气泵,将开关拨到“I”,再打开气阀

拨到“开”,即 “Ⅰ” 往上拨,打开气阀

二、机器人的快速操作入门 1、坐标系的选择 在示教模式下,选择机器人运动坐标系:按手持操作示教器上的【坐标系】键,每按一次此键,坐标系按以下顺序变化,通过状态区的显示来确认。 2、手动速度调整 示教模式下,选择机器人运动速度:按手持操作示教器上【高速】键或【低速】键,每按一次,手动速度按以下顺序变化,通过状态区的速度显示来确认。 ?按手动速度【高速】键,每按一次,手动速度按以下顺序变化:微动1%→微动2%→低5%→低10%→中25%→中50%→高75%→高100%。 ?按手动速度【低速】键,每按一次,手动速度按以下顺序变化:高100%→高75%→中50%→中25%→低10%→低5%→微动2%→微动1%。 3、伺服电源接通 打开上电控柜上的主电源开关时,应确认在机器人动作 范围内无任何人员。

忽视此提示可能会发生与机器人的意外接触而造成人身伤害。如有任何问题发生,应立即按动急停键,急停键位于 电控柜前门的右上方。 4、接通主电源 ●把电控柜侧板上的主电源开关扳转到接通(ON) 的位置,此 时主电源接通。 ●按下电控柜面板上的绿色伺服启动按钮。

六自由度机械手设计说明书

六自由度机械手设计说明书

设计参数

摘要 随着现代科技和现代工业的发展,工业的自动化程度越来越高。工业的自动化中机械手发挥了相当大的作用,小到机床的自动换刀机械手,大到整个的全自动无人值守工厂,无一不能看到机械手的身影。 机械手在工业中的应用可以确保运转周期的连贯,提高品质。另外,由于机械手的控制精确,还可以提高零件的精度。机械手在工业中的应用十分广泛,如:一、以提高生产过程中的自动化程度 应用机械手有利于实现材料的传送、工件的装卸、刀具的更换以及机器的装配等的自动化的程度,从而可以提高劳动生产率和降低生产成本。 二、以改善劳动条件,避免人身事故 在高温、高压、低温、低压、有灰尘、噪声、臭味、有放射性或有其他毒性污染以及工作空间狭窄的场合中,用人手直接操作是有危险或根本不可能的,而应用机械手即可部分或全部代替人安全的完成作业,使劳动条件得以改善。 在一些简单、重复,特别是较笨重的操作中,以机械手代替人进行工作,可以避免由于操作疲劳或疏忽而造成的人身事故。 三、可以减轻人力,并便于有节奏的生产 应用机械手代替人进行工作,这是直接减少人力的一个侧面,同时由于应用机械手可以连续的工作,这是减少人力的另一个侧面。因此,在自动化机床的综合加工自动线上,目前几乎都设有机械手,以减少人力和更准确的控制生产的节拍,便于有节奏的进行工作生产。 应用前景 工业机械手是近几十年发展起来的一种高科技自动化生产设备。工业机械手的是工业机器人的一个重要分支。它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。 机械手是在机械化,自动化生产过程中发展起来的一种新型装置。在现代生产过程中,机械手被广泛的运用于自动生产线中,机械人的研制和生产已成为高技术邻域内,迅速发殿起来的一门新兴的技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用

六轴工业机器人实验报告

六轴工业机器人模块 实验报告

六轴工业机器人模块实验报告 一、实验背景 六自由度工业机器人具有高度得灵活性与通用性,用途十分广泛。本实验就是在开放得六自由度机器人系统上,采用嵌入式多轴运动控制器作为控制系统平台,实现机器人得运动控制。通过示教程序完成机器人得系统标定。学习采用C++编程设计语言编写机器人得基本控制程序,学习实现六自由度机器人得运动控制得基本方法。了解六自由度机器人在机械制造自动化系统中得应用。 在当今高度竞争得全球市场,工业实体必须快速增长才能满足其市场需求。这意味着,制造企业所承受得压力日益增大,既要应付低成本国家得对手,还要面临发达国家得劲敌,二后者为增强竞争力,往往不惜重金改良制造技术,扩大生产能力。 机器人就是开源节流得得利助手,能有效降低单位制造成本。只要给定输入成值,机器人就可确保生产工艺与产品质量得恒定一致,显著提高产量。自动化将人类从枯燥繁重得重复性劳动中解放出来,让人类得聪明才智与应变能力得以释放,从而生产更大得经济回报。 二、实验过程 1、程序点0——开始位置 把机器人移动到完全离开周边物体得位置,输入程序点 0。按下手持操作示教器上得【命令一览】键,这时在右侧弹出指令列表菜单如图: 按手持操作示教器【下移】键,使{移动 1}变蓝后,按【右移】键,打开{移动1}子列表,MOVJ 变蓝后,按下【选择】键,指令出现在命令编辑区。修改指令参数为需要得参数,设置速度,使用默认位置点 ID 为 1。(P1 必须提前示教好)。按下手持操作示教器上得【插入】键,这时插入绿色灯亮起。然后再按下【确认】键,指令插入程序文件记录列表中。此时列表内容显示为: MOVJ P=1 V=25 BL=0 (工作原点)

六自由度机器人结构设计

六自由度机器人结构设计、 运动学分析及仿真 学科:机电一体化 姓名:袁杰 指导老师:鹿毅 答辩日期: 2012.6 摘要 近二十年来,机器人技术发展非常迅速,各种用途的机器人在各个领域广泛获 得应用。我国在机器人的研究和应用方面与工业化国家相比还有一定的差距,因此 研究和设计各种用途的机器人特别是工业机器人、推广机器人的应用是有现实意义 的。 典型的工业机器人例如焊接机器人、喷漆机器人、装配机器人等大多是固定在 生产线或加工设备旁边作业的,本论文作者在参考大量文献资料的基础上,结合项 目的要求,设计了一种小型的、固定在AGV 上以实现移动的六自由度串联机器人。 首先,作者针对机器人的设计要求提出了多个方案,对其进行分析比较,选择

其中最优的方案进行了结构设计;同时进行了运动学分析,用D-H 方法建立了坐标变换矩阵,推算了运动方程的正、逆解;用矢量积法推导了速度雅可比矩阵,并计算了包括腕点在内的一些点的位移和速度;然后借助坐标变换矩阵进行工作空间分析,作出了实际工作空间的轴剖面。这些工作为移动式机器人的结构设计、动力学分析和运动控制提供了依据。最后用ADAMS 软件进行了机器人手臂的运动学仿真,并对其结果进行了分析,对在机械设计中使用虚拟样机技术做了尝试,积累了 经验。 第1 章绪论 1.1 我国机器人研究现状 机器人是一种能够进行编程,并在自动控制下执行某种操作或移动 作业任务的机械装置。 机器人技术综合了机械工程、电子工程、计算机技术、自动控制及 人工智能等多种科学的最新研究成果,是机电一体化技术的典型代表,是当代科技发展最活跃的领域。机器人的研究、制造和应用正受到越来越多的国家的重视。近十几年来,机器人技术发展非常迅速,各种用途的机器人在各个领域广泛获得应用。 我国是从 20 世纪80 年代开始涉足机器人领域的研究和应用的。1986年,我国开展了“七五”机器人攻关计划。1987 年,我国的“863”计划将机器人方面的研究列入其中。目前,我国从事机器人的应用开发的主要是高校和有关科研院所。最初我国在机器人技术方面的主要

六轴工业机器人实验报告

六轴工业机器人模块 实验报告 姓名:张兆伟 班级:13 班 学号:30 日期:2016年8月25日

六轴工业机器人模块实验报告 一、实验背景 六自由度工业机器人具有高度的灵活性和通用性,用途十分广泛。本实验是在开放的六自由度机器人系统上,采用嵌入式多轴运动控制器作为控制系统平台,实现机器人的运动控制。通过示教程序完成机器人的系统标定。学习采用C++编程设计语言编写机器人的基本控制程序,学习实现六自由度机器人的运动控制的基本方法。了解六自由度机器人在机械制造自动化系统中的应用。 在当今高度竞争的全球市场,工业实体必须快速增长才能满足其市场需求。这意味着,制造企业所承受的压力日益增大,既要应付低成本国家的对手,还要面临发达国家的劲敌,二后者为增强竞争力,往往不惜重金改良制造技术,扩大生产能力。 机器人是开源节流的得利助手,能有效降低单位制造成本。只要给定输入成值,机器人就可确保生产工艺和产品质量的恒定一致,显著提高产量。自动化将人类从枯燥繁重的重复性劳动中解放出来,让人类的聪明才智和应变能力得以释放,从而生产更大的经济回报。 二、实验过程 1、程序点0——开始位置 把机器人移动到完全离开周边物体的位置,输入程序点 0。按下手持操作示教器上的【命令一览】键,这时在右侧弹出指令列表菜单如图:按手持操作示教器【下移】键,使{移动 1}变蓝后,按【右移】键,打开{移动 1}子列表,MOVJ 变蓝后,按下【选择】键,指令出现在命令编辑区。修改指令参数为需要的参数,设置速度,使用默认位置点 ID 为 1。(P1 必须提前示教好)。按下手持操作示教器上的【插入】键,这时插入绿色灯亮起。然后再按下【确认】键,指令插入程序文件记录列表中。此时列表内容显示为: MOVJ P=1 V=25 BL=0 (工作原点) 2、程序点1——抓取位置附近(抓取前) 位置点1必须选取机器人接近工件时不与工件发生干涉的方向、位置。(通常在抓取位置的正上方)按下手持操作示教器上的【命令一览】键按手持操作示教器【下移】键,使{移动 1}变蓝后,按【右移】键,打开{移动 1}子列表,MOVJ

六自由度工业机器人实验指导书

六自由度工业机器人实验指导书 前言 机器人已广泛应用于汽车与汽车零部件制造业、机械加工行业、电子电器行业、橡胶及塑料工业、食品工业、木材与家具制造业等领域。在工业生产中,弧焊机器人,点焊机器人,喷涂机器人及装配机器人等都被大量使用。 机器人系统由机器人和作业对象及环境共同组成的,其中包括机器人机械系统、驱动系统、控制系统和感知系统四部分组成,其实际上是一个典型的机电一体化系统,其工作原理为:控制系统发出动作指令,控制驱动器动作,驱动器带动机械系统运动,使末端操作器到达空间某一位置和实现某一姿态,实施一定的作业任务。末端操作器在空间的实时位姿由感知系统反馈给控制系统,控制系统把实际位姿与目标位姿相比较,发出下一个动作指令,如此循环,直到完成作业任务为止。 首钢莫托曼机器人有限公司生产的SG—MOTOMAN—UP6工业机器人,为6轴垂直多关节型,具有节省空间、高速动作时的轨迹精度高、轨迹流畅、动作速度高、动作范围广、安全可靠等特点,在工业上可进行弧焊、点焊、切割、搬运等。 实验项目机器人示教编程与再现控制 一、实验目的 通过本次试验,掌握六自由度工业机器人的工具坐标系及工件坐标系的标定方法、示教编程与再现控制。 二、实验内容 实验前请仔细阅读MOTOMAN-UP6机器人使用说明书、Y ASNAC XRC使用说明书及操作要领书相关内容。 2.1 示教的基本步骤 开始示教前,请做以下准备: 1.开启电源,接通XRC控制柜的控制按钮; 2.确认急停键是否可以正常工作; 3.设置示教锁定: 按下再现操作盒的[TEACH]按钮(指示灯点亮),使机器人工作在示教模式。

● 2.2 输入程序名 ●在示教编程器显示画面中下拉菜单选择【程序】→选择【新建程序】→输入程序名 →按【回车】键→选择【执行】。 2.3 示教 2.3.1 示教任务 机器人卸料作业如下图所示,当自动输送线的卸料工位有工件且运料小车到位时,机器人从卸料工位上抓取工件,堆放到运料箱中(运料箱中可存储工件4×6个),当工件堆满后,机器人停止作业,直到下一个空运料箱到位,重复堆垛工作。 机器人卸料作业示意图 2.3.2 示教要求 1. 画出机器人工作流程图; 2. 完成工具坐标系、工件坐标系的标定 3. 完成机器人卸料作业的示教程序的编写,要求对通用I/O地址、变量进行定义, 实现卸料工位是否有工件、运料小车是否到位等状态检测、堆料工件的计数、启动平移功能时移动量的设定、夹爪的夹紧/松开等等功能。 4. 在再现模式下验证所编写程序的正确性。 2.4 实验报告要求 1. 以小论文的形式完成书面实验报告。 2. 对卸料作业任务要求进行分析,提出机器人卸料的解决方案,并画出机器人的 工作流程。 3. 完成机器人卸料作业所必需的参数设定及坐标系的标定、程序设计等。

六轴关节机器人机械结构

六轴关节机器人机械结构 < 7". J4 3KI5 EOtb 8 J& UKi:; ---- =7i& J3 nioltir gr”/ < 9 J5 axis motor Flhow -12. J6 訣在motor <5 J3 axi reduction / /<1 1>J5 3ME diaper anr Wnst hausine/ / 営tier <2XJ1 axis n'drint J2 axis r- di.nt nn pnaf -二1:;J I axis motor 上图为常见的六轴关节机器人的机械结构,六个伺服电机直接通过谐波减速器、同步带 轮等驱动六个关节轴的旋转,注意观察一、二、三、四轴的结构,关节一至关节四的驱动电机为空心结构,关节机器人的驱动电机采用空心轴结构应该不常见,空心轴结构的电机一般 较大。采用空心轴电机的优点是:机器人各种控制管线可以从电机中心直接穿过,无论关节轴怎么旋转,管线不会随着旋转,即使旋转,管线由于布置在旋转轴线上,所以具有最小的旋转半径。此种结构较好的解决了工业机器人的管线布局问题。对于工业机器人的机械结构 设计来说,管线布局是难点之一,怎样合理的在狭小的机械臂空间中布置各种管线(六个电机的驱动线、编码器线、刹车线、气管、电磁阀控制线、传感器线等),使其不受关节轴旋转的影响,是一个值得深入考虑的问题。 机器人的腕部结构常见有如下几种结构

JT5(弯曲)"4(旋转) 为?? JT6 (旋 转) =£\JT4 (弯 曲) JT6 (旋转)JT5(弯曲)

?3R型 JT6 (旋转) JT4 (旋转) 在这三种手腕部的结构中,以第一种(RBR型)结构应用最为广泛,它适应于各种工作场合,后两种结构应用范围相对较窄,比如说3R型的手腕结构主要应用在喷涂行业等. 关节设计: 对于国外的工业机器人主要制造国家来说,六轴关节机器人的研发设计及制造已经有好几十 年的历史了,整个工业机器人的研发制造体系较为完善,他们的技术相对来说比较成熟,他们在相互竞争中可以相互模仿、改善、不断推陈出新,他们的技术对于国内来说,近乎完美?而 国内目前这个行业还处在黎明前的黑暗阶段,虽然有不少公司有这个研发意图,或者正在研发途中,不管怎么说,浮出水面公布自己正在研发或者研发成功的公司应该说是极少数,即使宣布自己研发成功,也只是初步试验成功,真正产业化、商品化还有一段相当漫长的路要走?而更多的公司还停留在项目立项、技术评估、投入风险分析的阶段?由于国内做这个行业的 很少,相关的结构也没有什么可参考的,技术储备不足,少数的单位或个人有机会能够拆拆别 人的机器,拆个一知半解,更多的人只能在旁边看看了(比如说我,想拆都没机会A_A),还好了,网络资源丰富,今搜集到不少机械结构方面的图片,分享给大家参考,希望咱们做机械设计的(我应该也算是个机械工程师啊A_A毕竟我也是做机械的)少走点弯路,做出更好的机器? 六轴关节机器人的腕部关节设计较为复杂,因为在腕部同时集成了三种运动?小型的六轴关节机器人的腕部关节主要采用谐波减速器?下面的图片较为详细的描述了常见的六轴关节机 器人的腕部结构?

六自由度机器人

本科毕业设计(论文) FINAL PROJECT/THESIS OF UNDERGRADUATE (2014届) 六自由度机器人机械机构设计 学院机械工程学院 专业机械设计制造及其自动化学生姓名** 学号 指导教师*** 完成日期2014年5月

承诺书 本人郑重承诺:所呈交的毕业论文“六自由度机器人机械结构设计”是在导师的指导下,严格按照学校和学院的有关规定由本人独立完成。文中所引用的观点和参考资料均已标注并加以注释。论文研究过程中不存在抄袭他人研究成果和伪造相关数据等行为。如若出现任何侵犯他人知识产权等问题,本人愿意承担相关法律责任。 承诺人(签名):______________________ 日期:年月日

六自由度机器人机械结构设计 摘要 机械手是模仿人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置,其主要由执行机构、驱动机构、控制机构以及位置检测装置等所组成。本论文围绕机器人本体结构设计,进行机器人静力学分析及研究极限位置下关节力矩情况,并以此为依据为机器人机构改进奠定理论基础,主要设计内容如下:(1)阐述六自由度工业机器人当前发展现状,对比现有机械手传动方式及空间布局,分析其技术特点。 (2)根据预期假定机器人工作运动范围及有效负载,参考目前应用较广泛的本体结构,在solidworks环境下先设计简单机器人初期模型。通过静力学分析得出关节所受负载,进行伺服电机、减速机选型以及确定同步齿形带相关参数,完成机械手内部空间整体布局,确定传动方式并能达到相关目标要求完成理论作业。 (3)建立考虑约束及质量等效转换的机械手模型,分析典型工况下各关节的运动情况。对关键零件及手部轴承通过施加约束、负载完成相应应力分析,验证不同电机、减速机选型的合理性,完成机器人结构校核与优化。 关键词:六自由度传动方式静力学分析 i

六轴工业机器人控制系统探究

高 新 技 术 中国新技术新产品- 1 - 随着机器人技术的发展,在现代工业生产中,机器人发挥着越来越重要的作用,改变了传统的生产和生活方式。引起了世界各国的广泛关注。工业机器人由机器人控制系统和机器人本体两部分组成,一般工业计算机使用Windows操作系统,但是却无法满足工业机器人实时性控制要求。国内的运动控制器主要采用三种方案。 方案一:A R M (l i n u x )+D S P + F P G A ,核心运算在D S P 实现,A R M (linux)里面实现人机交互。例如广州数控采用本方案。 方案二:PC(Windows)+DSP+ F P G A ,核心运算在D S P 实现,P C (Windows)里面实现人机交互。例如固高采用本方案。 方案三:PC(Windows)+DSP+ F P G A ,核心运算在P C 实现,P C (Windows)里面实现人机交互。例如卡诺普采用本方案。 本文研究了一种基于R T X (R e a l Time Extend)的工业机器人控制系统,在实时性、精度方面均有优势,可满足应用需要。 一、工业机器人本体介绍 我国自主研发的六轴工业机器人本体的驱动装置,采用的是交流伺服电机和减速器两种构件。六轴工业机器人的本体,主要包括回转机体、腕部、大臂和小臂等几部分。其中,全部关节都是转动关节。机器人的前三个关节,能够将末端工具送至任何空间位置,后三个关节能够满足不同工具姿态的要求。 从结构上面来看,第1关节为数值方向旋转,属于六轴工业机器人腰部关节,底部底座位置安装着电机;第2关节相当于人体的肩关节,其轴线为水平方向,并且大臂缠绕此轴线之上;第3关节就是机器人的小臂和手腕,而第4关节为带动手腕旋转,第5关节做俯仰旋转运用,第6关节做旋转运用。 Windows系统属于多任务操作系统,可同时并行多项任务,系统核心层的任务调度器可调度用户线程。同时,Windows系统实现了一个由优先驱动的抢占式调度系统,通过配额的调整,根据时间进行调度。根据调度机制,在运行过程中,用户的程序如果超过了实时性的要求,即超过15ms,则可能需要等待更长时间才能得以处理。 Windows系统中的硬件采用的是两片级联的8259芯片,但是由于PCI分配中断资源属于常规中断,且由于BIOS运行属于实时模式,因此只有在保护模式下其才能够正常使用。这也就是说,目前系统中的 中断实现还存在局限性,需要加以进一步开发和研究,完善系统中断实现,以更好适应机器人控制系统发展,满足其要求。 基于此,本文探究了一种基于RTX 系统的六轴工业机器人控制系统。 二、基于RTX工业机器人控制系统结构介绍 (一)RTX系统 事实上,RTX是Windows系统内核体系的拓展和眼神,为系统提供实时解决方案,有效拓展了抽象层HAL,建立了一种独立内核驱动模式。RTX系统可将既有系统的线程间切换时间消耗,也只有短短的数微妙。系统结构图如图1所示。 经过拓展的实时HAL,其RTX使用的是中断管理模式,而与Windows线程相比,RTX可实现实时线程严格调度管理,并且RTX线程也比其他系统的调度权要优越。同时,通过扩展的HAL, RTX还拥有自身的中断管理机制,可直接访问I/O硬件端口。因此,RTX的上述机制,可该系统始终保持优先权,而不被系统线程堵塞。RTX线程与Windows线程间,可实现共享内存数据,并由实时信号负责两部分的同步通信。RTX定时器精度,由运行环境来决定和设置,可达到0.2ms精度。 (二)系统硬件结构分析 六轴工业机器人系统结构包括三部分,即机器人手臂、电气控制箱和工业计算机。如图2所示。 机器人手臂主要负责机器人操作,其可直接带动末端,控制和实现计算机的各种动作和操作。机器人手臂为全关节式,通过旋转运动可实现任何动作和姿态。而电气控制箱则是内里安装有伺服电动驱动器的部分,用于驱动机器人手臂关节,实现手臂关节的启停与运动。同时,这部分还包括各种保护电路、辅助电路和I/O电路等。 六轴工业机器人控制系统探究 汤嘉荣1,2 (1.广州数控设备有限公司,广东 广州 510000;2.广州市广数职业培训学院,广东 广州 510000) 摘 要:六轴工业机器人系统要求具有高实时性和高精度,本文研究了一种基于RTX的工业机器人系统。本文对工业机器人的结构做了准确介绍,重点分析了基于RTX的控制系统构架,并探究了其软硬件结构,在利用Windows界面功能和RTX实时处理能力,实现了开放、可扩展的六轴工业机器人系统。实践表明,这种工业机器人的点位和轨迹精度均满足生产需要,值得推广。 关键词:工业机器人;控制系统;实时性;探究中图分类号:TP242 文献标识码:A 图1 RTX 系统结构 图2

六自由度机器人运动分析及优化

本科毕业论文(设计) 题目(中文)六自由度机器人运动分析及优化 (英文) Motionanalysis and optimization of 6-DOF robot 学院信息与机电工程学院院 年级专业 2013级汽车服务工程(中德)) 学生姓名吴子璇正 学号 130154494 7 指导教师安康安 完成日期 2017 年 3 月

摘要 当今世界,工业化日趋成熟,机器人被广泛的应用于各行各业,最常用到的有四自由度,六自由度机器人。其中,自动化水平较高的汽车制造业和电子装配业经常常常要使用到六自由度机器人。因此对其实施运动学分析,是进行科学设计的基础,也是降低机器人生产成本,优化机器人运动轨迹的前提。此外,运动分析过程有效的模拟了机器人运动的真实情况,有助于提供有效可行的优化方案。本文主要探讨六自由度机器人的运动分析,基于经典运动学以及动力学的研究方法概念,首先通过solidworks做出机械臂各部分零件的三维图,然后通过SolidWorks装配出六自由度机器人机械臂的三维模型。通过该模型,选取其中一个关节和底座,并用SolidWorks进行运动学分析,对六自由度机器人的运动学和动力学计算方法进行了仿真验证。最后得到六自由度机器人的其中一个自由度的运动仿真实例。通过对该运动仿真实例的分析,得出最佳优化方案,优化机器人的运动轨迹提高机器人的工作效率,降低机器人生产成本。 关键词:六自由度机器人;运动分析;运动学;动力学;

目录 摘要................................................. I Abstract ............................... 错误!未定义书签。 1 绪论 (1) 1.1 课题背景及研究的目的和意义 (1) 1.2机器人国内外发展现状及前景展望--------------------------1 2 六自由度机器人运动学分析 (4) 2.1六自由度机器人的结构-------------------------------------1 2.2运动学分析----------------------------------------------1 3 六自由度机器人动力学分析 (6) 3.1综述----------------------------------------------------3 3.2机器人动力学研究方法------------------------------------3 3.2.1几项假设-------------------------------------------3 3.2.2目标-----------------------------------------------4 3.2.3数学工具-------------------------------------------5 3.3动力学原理----------------------------------------------3

相关文档
相关文档 最新文档