文档库 最新最全的文档下载
当前位置:文档库 › 二叉树前序遍历的递归算法演示程序

二叉树前序遍历的递归算法演示程序

二叉树前序遍历的递归算法演示程序
二叉树前序遍历的递归算法演示程序

班级姓名

======== 实习报告二“二叉树前序遍历的非递归算法”演示程序============ (一)、程序的功能和特点

程序通过键盘输入数据建立一个二叉树,通过递归算法与非递归算法两种方式用前序遍历法输出二叉树。

功能包括:

1.前序遍历方式建立二叉树

2.前序遍历的递归算法输出二叉树

3. 前序遍历的非递归算法(以栈完成)输出二叉树

(二)、程序的算法设计

“二叉树前序遍历的非递归”算法:

1.【逻辑结构与存储结构设计】

程序中的二叉树的逻辑结构为树状结构;

存储结构为链式存储

2.【基本操作设计】

程序的主要操作有:

判断栈是否为空

元素进栈(插入到栈顶,即将新节点插入到头部)

元素出栈(删除头结点)

以root为根建立二叉树(输入按前序遍历方式输入字符串)等

3.【算法设计】

(1)前序遍历方式建立二叉树

public BinTreeNode preOrderCreate ( BinTreeNode p,String s)

{

得到输入字符串第i位的字符item;

如果item不是参照值(此程序为”∧”)

{

1、生成根结点;

2、把根结点的左指针作为新的根结点指针,递归调用自身生成左子

树;

3、把根结点的右指针作为新的根结点指针,递归调用自身生成右

子树;

}

否则,封闭叶子节点。

}

(2)前序遍历的递归算法输出二叉树

public void preOrderTraverse (BinTreeNode p) {

如果根节点不为空{

1、输出根节点的数据域

2、把根结点的左指针作为新的根结点指针,递归调用自身

输出左子树

3、把根结点的右指针作为新的根结点指针,递归调用自身

输出右子树

}

}

(3)前序遍历的非递归算法输出二叉树

void PreOrder(BinTreeNode p) {

若根节点的不为空(循环访问){

输出根节点的值

如果右子树不为空{

右子树的地址进栈

}

如果左子树不为空{

当前指针指向左子树

}

否则若栈空则打断循环(右子树地址出栈即当前指针指向右

子树)

}

}

4.【高级语言代码】

(1)前序遍历方式建立二叉树

int is=0; //串s的下标,成员变量,避免回溯。

public BinTreeNode preOrderCreate ( BinTreeNode p,String s)

{

char item=s.charAt(is++); //得到串s的第is个字符

if ( item != RefValue ){ //读入的不是参照值

p=new BinTreeNode(item);

//递归生成左子树

p.leftChild=preOrderCreate(p.leftChild,s);

//递归生成右子树

p.rightChild=preOrderCreate(p.rightChild,s);

//实参是空二叉树,得到返回的子二叉树

}

else //读入的是参照数

p=null; //封闭叶子结点

return p; //返回二叉树p

}

(2)前序遍历的递归算法输出二叉树

public void preOrderTraverse (BinTreeNode p){

if ( p != null ){ //输出根结点数据域

System.out.print(" "+p.GetData());

//递归输出p的左子树

preOrderTraverse ( p.leftChild );

//递归输出p的右子树

preOrderTraverse (p.rightChild );

}

}

(3)前序遍历的非递归算法输出二叉树

void PreOrder(BinTreeNode p) {

//定义栈(栈的数据类型是二叉树结点指针)

cLinkStack S=new cLinkStack(); //空栈

//从当前结点开始遍历访问

while ( p!=null) {

//访问根结点

System.out.print(" "+p.GetData());

//预留右孩子地址在栈中

if ( p.rightChild != null )

S.Push ( p.rightChild );

//若有左孩子,当前指针指向左孩子

if ( p.leftChild != null )

p = p.leftChild;

else if((p=S.Pop())==null) break;

//出栈, 意味p指向右孩子结点,

//如果栈空,则遍历结束。

} //循环,访问当前结点

}

(四)、程序的输入输出和运行结果截屏

输入:abc^^fr^h^^q^^^

已知某二叉树的先序遍历和中序遍历的结果是先序遍历ABDEGCF

树与二叉树复习 一、填空 1、由二叉树的(中)序和(前、后)序遍历序列可以唯一确定一棵二叉树。 2、任意一棵二叉树,若度为0的结点个数为n0,度为2的结点个数为n2,则n0等于(n0=n2+1 )。 3、一棵二叉树的第i(i≥1)层最多有(2i-1 )个结点。 4、一棵有n个结点的二叉树,若它有n0个叶子结点,则该二叉树上度为1的结点个数n1=(n-2n0+1 )。 5、在一棵高度为5的完全二叉树中,最少含有( 16 )个结点。 6、 2.有一个有序表为{1,3,9,12,32,41,45,62,75,77,82,95,100},当折半查找值为82的结点时,( C )次比较后查找成功。 A. 11 B 5 C 4 D 8 7、在有n个叶结点的哈夫曼树中,总结点数( 2n-1 )。 8、若一个问题的求解既可以用递归算法,也可以用递推算法,则往往用(递推)算法,因为(递推算法效率高)。 9、设一棵完全二叉树有700个结点,则共有( 350 )叶子结点。 10、设一棵完全二叉树具有1000个结点,该树有(500)个叶子结点,有(499 )个度为2的结点,有( 1 )个结点只有非空左子树。 二、判断 1、( × )在哈夫曼树中,权值最小的结点离根结点最近。 2、( √ ) 完全二叉树中,若一个结点没有左孩子,则它必是叶子结点。 3、( √ )二叉树的前序遍历序列中,任意一个结点均处在其孩子结点的前面。 4、( × ) 若一搜索树(查找树)是一个有n个结点的完全二叉树,则该树的最大值一定在叶结点上。 5、( √ )若以二叉链表作为树和二叉树的存储结构,则给定任一棵树都可以找到唯一的一棵二叉树与之对应。 6、( √ )若一搜索树(查找树)是一个有n个结点的完全二叉树,则该树的最小

二叉树的各种算法

二叉树的各种算法.txt男人的承诺就像80岁老太太的牙齿,很少有真的。你嗜烟成性的时候,只有三种人会高兴,医生你的仇人和卖香烟的。 /*用函数实现如下二叉排序树算法: (1)插入新结点 (2)前序、中序、后序遍历二叉树 (3)中序遍历的非递归算法 (4)层次遍历二叉树 (5)在二叉树中查找给定关键字(函数返回值为成功1,失败0) (6)交换各结点的左右子树 (7)求二叉树的深度 (8)叶子结点数 Input 第一行:准备建树的结点个数n 第二行:输入n个整数,用空格分隔 第三行:输入待查找的关键字 第四行:输入待查找的关键字 第五行:输入待插入的关键字 Output 第一行:二叉树的先序遍历序列 第二行:二叉树的中序遍历序列 第三行:二叉树的后序遍历序列 第四行:查找结果 第五行:查找结果 第六行~第八行:插入新结点后的二叉树的先、中、序遍历序列 第九行:插入新结点后的二叉树的中序遍历序列(非递归算法) 第十行:插入新结点后的二叉树的层次遍历序列 第十一行~第十三行:第一次交换各结点的左右子树后的先、中、后序遍历序列 第十四行~第十六行:第二次交换各结点的左右子树后的先、中、后序遍历序列 第十七行:二叉树的深度 第十八行:叶子结点数 */ #include "stdio.h" #include "malloc.h" #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0

#define INFEASIBLE -1 #define OVERFLOW -2 typedef int Status; typedef int KeyType; #define STACK_INIT_SIZE 100 // 存储空间初始分配量 #define STACKINCREMENT 10 // 存储空间分配增量 #define MAXQSIZE 100 typedef int ElemType; typedef struct BiTNode{ ElemType data; struct BiTNode *lchild,*rchild;//左右孩子指针 } BiTNode,*BiTree; Status SearchBST(BiTree T,KeyType key,BiTree f,BiTree &p) { if(!T){p=f;return FALSE;} else if(key==T->data){p=T;return TRUE;} else if(keydata)return SearchBST(T->lchild,key,T,p); else return(SearchBST(T->rchild,key,T,p)); } Status InsertBST(BiTree &T,ElemType e) { BiTree s,p; if(!SearchBST(T,e,NULL,p)) { s=(BiTree)malloc(sizeof(BiTNode)); s->data=e;s->lchild=s->rchild=NULL; if(!p)T=s; else if(edata)p->lchild=s; else p->rchild=s; return TRUE; } else return FALSE; } Status PrintElement( ElemType e ) { // 输出元素e的值 printf("%d ", e ); return OK; }// PrintElement

二叉树前序或中序或后序遍历

数学与计算机学院计算机系实验报告 课程名称: 数据结构 年级:2010 实验成绩: 指导教师: 黄襄念 姓名: 实验教室:6A-413 实验名称:二叉树前序或中序或后序遍历 学号: 实验日期:2012/6/10 实验序号:实验3 实验时间:8:00—11:40 实验学时:4 一、实验目的 1. 熟悉的掌握树的创建,和树的前序、中序、后序遍历。 二、实验环境 1. 操作系统:Windows7 2. 开发软件:Microsoft Visual C++ 6.0 三、实验内容 ● 程序功能 本程序完成了以下功能: 1. 前序遍历 2. 中序遍历 3. 后序遍历 ● 数据结构 本程序中使用的数据结构(若有多个,逐个说明): 1. 它的优缺点 1) 可以快速的查找数据。 2) 让数据层次更加清晰。 2. 逻辑结构图 3. 存储结构图

、、、、、、、、、、、、、、、、、、、、 4.存储结构的C/C++ 语言描述 typedef struct node { DataType data; struct node *lchild; struct node *rchild; } BiTNode, *BiTree; typedef BiTree type; ●算法描述 本程序中采用的算法 1.算法名称:递归 2.算法原理或思想 是通过访问结点的左右孩子来进行循环查找的方法,拿中序遍历来说明:先从头结点开始,再去访问头结点的右孩子如果为空就访问头结点的左孩子,依次进行访问当结点的左右孩子都为空时,就访问上一级,到了最后。 3.算法特点 它能将查找进行2分,体现出了更高效快捷的特点,并且层次很清晰。 ●程序说明 1. 2. 1)前序遍历模块:将树进行从头结点开始再左孩子再右孩子。 代码:void InOrder(BiTree root) { Stack S(100); initStack(S); BiTNode *p = root; do { while(p != NULL) { Push(S, p);

二叉树遍历所有代码

#include #include #include #include #include #define SIZE 100 using namespace std; typedef struct BiTNode //定义二叉树节点结构 { char data; //数据域 struct BiTNode *lchild,*rchild; //左右孩子指针域 }BiTNode,*BiTree; int visit(BiTree t); void CreateBiTree(BiTree &T); //生成一个二叉树 void PreOrder(BiTree); //递归先序遍历二叉树 void InOrder(BiTree); //递归中序遍历二叉树 void PostOrder(BiTree); //递归后序遍历二叉树 void InOrderTraverse(BiTree T); //非递归中序遍历二叉树 void PreOrder_Nonrecursive(BiTree T);//非递归先序遍历二叉树 void LeverTraverse(BiTree T);//非递归层序遍历二叉树 //主函数 void main() { BiTree T; char j; int flag=1; //---------------------程序解说----------------------- printf("本程序实现二叉树的操作。\n"); printf("叶子结点以空格表示。\n"); printf("可以进行建立二叉树,递归先序、中序、后序遍历,非递归先序、中序遍历及非递归层序遍历等操作。\n"); //---------------------------------------------------- printf("\n"); printf("请建立二叉树。\n"); printf("建树将以三个空格后回车结束。\n"); printf("例如:1 2 3 4 5 6 (回车)\n"); CreateBiTree(T); //初始化队列 getchar(); while(flag) {

树的遍历(递归和非递归)

二叉树的遍历 一、设计思想 二叉树的遍历分为三种方式,分别是先序遍历,中序遍历和后序遍历。先序遍历实现的顺序是:根左右,中序遍历实现的是:左根右,后续遍历实现的是:左右根。根据不同的算法分,又分为递归遍历和非递归遍历。 递归算法: 1.先序遍历:先序遍历就是首先判断根结点是否为空,为空则停止遍历,不为空则将左子作为新的根结点重新进行上述判断,左子遍历结束后,再将右子作为根结点判断,直至结束。到达每一个结点时,打印该结点数据,即得先序遍历结果。 2.中序遍历:中序遍历是首先判断该结点是否为空,为空则结束,不为空则将左子作为根结点再进行判断,打印左子,然后打印二叉树的根结点,最后再将右子作为参数进行判断,打印右子,直至结束。 3.后续遍历:指针到达一个结点时,判断该结点是否为空,为空则停止遍历,不为空则将左子作为新的结点参数进行判断,打印左子。左子判断完成后,将右子作为结点参数传入判断,打印右子。左右子判断完成后打印根结点。 非递归算法: 1.先序遍历:首先建立一个栈,当指针到达根结点时,打印根结点,判断根结点是否有左子和右子。有左子和右子的话就打印左子同时将右子入栈,将左子作为新的根结点进行判断,方法同上。若当前结点没有左子,则直接将右子打印,同时将右子作为新的根结点判断。若当前结点没有右子,则打印左子,同时将左子作为新的根结点判断。若当前结点既没有左子也没有右子,则当前结点为叶子结点,此时将从栈中出栈一个元素,作为当前的根结点,打印结点元素,同时将当前结点同样按上述方法判断,依次进行。直至当前结点的左右子都为

空,且栈为空时,遍历结束。 2.中序遍历:首先建立一个栈,定义一个常量flag(flag为0或者1),用flag记录结点的左子是否去过,没有去过为0,去过为1,默认为0.首先将指针指向根结点,将根结点入栈,然后将指针指向左子,左子作为新的结点,将新结点入栈,然后再将指针指向当前结点的左子,直至左子为空,则指针返回,flag置1,出栈一个元素,作为当前结点,打印该结点,然后判断flag,flag为1则将指针指向当前结点右子,将右子作为新的结点,结点入栈,再次进行上面的判断,直至当前结点右子也为空,则再出栈一个元素作为当前结点,一直到结束,使得当前结点右子为空,且栈空,遍历结束。 3.后续遍历:首先建立两个栈,然后定义两个常量。第一个为status,取值为0,1,2.0代表左右子都没有去过,1代表去过左子,2,代表左右子都去过,默认为0。第二个常量为flag,取值为0或者1,0代表进左栈,1代表进右栈。初始时指针指向根结点,判断根结点是否有左子,有左子则,将根结点入左栈,status置0,flag置0,若没有左子则判断结点有没有右子,有右子就把结点入右栈,status置0,flag置1,若左右子都没有,则打印该结点,并将指针指向空,此时判断flag,若flag为0,则从左栈出栈一个元素作为当前结点,重新判断;若flag为1则从右栈出栈一个元素作为当前结点,重新判断左右子是否去过,若status为1,则判断该结点有没有右子,若有右子,则将该结点入右栈,status置1,flag置1,若没有右子,则打印当前结点,并将指针置空,然后再次判断flag。若当前结点status为2,且栈为空,则遍历结束。若指针指向了左子,则将左子作为当前结点,判断其左右子情况,按上述方法处理,直至遍历结束。 二、算法流程图

C++二叉树的前序,中序,后序,层序遍历的递归算法55555

#include using namespace std; #define queuesize 100 #define ERROR 0 #define OK 1 typedef struct BiTNode//二叉树 { char data; struct BiTNode *lchild,*rchild; }BinNode; typedef BinNode * BiTree;//定义二叉链表指针类型 typedef struct { int front,rear; BiTree data[queuesize];//循环队列元素类型为二叉链表结点指针 int count; }cirqueue;//循环队列结构定义 void leverorder(BiTree t) { cirqueue *q; BiTree p; q=new cirqueue;//申请循环队列空间 q->rear=q->front=q->count=0;//将循环队列初始化为空 q->data[q->rear]=t;q->count++;q->rear=(q->rear+1)%queuesize;//将根结点入队 while (q->count) //若队列不为空,做以下操作 if (q->data[q->front]) //当队首元素不为空指针,做以下操作 { p=q->data[q->front]; //取队首元素*p cout<data; q->front=(q->front+1)%queuesize;q->count--;//队首元素出队 if (q->count==queuesize)//若队列为队满,则打印队满信息,退出程序的执行cout<<"error,队列满了!"; else {//若队列不满,将*p结点的左孩子指针入队 q->count++;q->data[q->rear]=p->lchild; q->rear=(q->rear+1)%queuesize; } if (q->count==queuesize)//若队列为队满,则打印队满信息,退出程序的执行cout<<"error"; else {//若队列不满,将*p结点的右孩子指针入队 q->count++;q->data[q->rear]=p->rchild;

数据结构C语言实现二叉树三种遍历

实验课题一:将下图中得二叉树用二叉链表表示: 1用三种遍历算法遍历该二叉树,给出对应得输出结果; 2写一个函数对二叉树搜索,若给出一个结点,根据其就是否属于该树,输出true或者f alse。 3写函数完成习题4、31(C++版)或4、28(C版教科书)。 #include "stdio、h" #include”malloc、h" typedefstruct BiTNode { char data; structBiTNode *lchild,*rchild; }BiTNode,*BiTree; BiTree Create(BiTreeT) { char ch; ch=getchar(); if(ch=='#’) T=NULL; else { T=(BiTNode *)malloc(sizeof(BiTNode)); T-〉data=ch; T->lchild=Create(T—〉lchild); T—〉rchild=Create(T-〉rchild); } return T; } int node(BiTree T) { int sum1=0,a,b; ?if(T) { if(T!=NULL) ??sum1++;

?a=node(T->lchild); sum1+=a; b=node(T—>rchild); sum1+=b; ?} return sum1; } int mnode(BiTree T) { ?int sum2=0,e,f; if(T) { ?if((T->lchild!=NULL)&&(T-〉rchild!=NULL))?sum2++; ?e=mnode(T-〉lchild); sum2+=e; f=mnode(T-〉rchild); sum2+=f; ?} return sum2; } void Preorder(BiTree T) { if(T) { printf("%c”,T->data); Preorder(T—>lchild); Preorder(T-〉rchild); } } int Sumleaf(BiTree T) { int sum=0,m,n; if(T) { if((!T-〉lchild)&&(!T-〉rchild)) sum++; m=Sumleaf(T->lchild); sum+=m; n=Sumleaf(T—>rchild); sum+=n; } return sum; }

C语言实现二叉树的前序遍历(递归)

C语言实现二叉树的前序遍历算法实现一: #include #include typedef struct BiTNode//定义结构体 { char data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree; void CreateBiTree(BiTree &T) //前序创建树 { char ch; scanf("%c",&ch); if(ch==' ') T=NULL; else { T=(struct BiTNode *)malloc(sizeof(struct BiTNode)); T->data=ch; CreateBiTree(T->lchild); CreateBiTree(T->rchild); } } int print(BiTree T)//前序遍历(输出二叉树) { if(T==NULL)return 0; else if(T->lchild==NULL && T->rchild==NULL)return 1; else return print(T->lchild)+print(T->rchild); } void main()//主函数 { BiTree T; CreateBiTree(T); printf("%d\n",print(T)); } 算法实现二: #include

#include struct BiTNode//定义结构体 { char data; struct BiTNode *lchild,*rchild; }; int num=0; void CreatBiTree(struct BiTNode *&p) //前序创建树 { char ch; scanf("%c",&ch); if(ch==' ') p=NULL; else { p=(struct BiTNode *)malloc(sizeof(struct BiTNode)); p->data=ch; CreatBiTree(p->lchild); CreatBiTree(p->rchild); } } void print(struct BiTNode *p) //前序遍历(输出二叉树){ if(p!=NULL) { if(p->lchild==NULL&&p->rchild==NULL) else { print(p->lchild); print(p->rchild); } } } void main()//主函数 { struct BiTNode *p; CreatBiTree(p); print(p); printf("%d\n",num); } 供测试使用的数据

二叉树遍历C语言(递归,非递归)六种算法

数据结构(双语) ——项目文档报告用两种方式实现表达式自动计算 专业: 班级: 指导教师: 姓名: 学号:

目录 一、设计思想 (01) 二、算法流程图 (02) 三、源代码 (04) 四、运行结果 (11) 五、遇到的问题及解决 (11) 六、心得体会 (12)

一、设计思想 二叉树的遍历分为三种方式,分别是先序遍历,中序遍历和后序遍历。先序遍历实现的顺序是:根左右,中序遍历实现的是:左根右,后续遍历实现的是:左右根。根据不同的算法分,又分为递归遍历和非递归遍历。 递归算法: 1.先序遍历:先序遍历就是首先判断根结点是否为空,为空则停止遍历,不为空则将左子作为新的根结点重新进行上述判断,左子遍历结束后,再将右子作为根结点判断,直至结束。到达每一个结点时,打印该结点数据,即得先序遍历结果。 2.中序遍历:中序遍历是首先判断该结点是否为空,为空则结束,不为空则将左子作为根结点再进行判断,打印左子,然后打印二叉树的根结点,最后再将右子作为参数进行判断,打印右子,直至结束。 3.后续遍历:指针到达一个结点时,判断该结点是否为空,为空则停止遍历,不为空则将左子作为新的结点参数进行判断,打印左子。左子判断完成后,将右子作为结点参数传入判断,打印右子。左右子判断完成后打印根结点。 非递归算法: 1.先序遍历:首先建立一个栈,当指针到达根结点时,打印根结点,判断根结点是否有左子和右子。有左子和右子的话就打印左子同时将右子入栈,将左子作为新的根结点进行判断,方法同上。若当前结点没有左子,则直接将右子打印,同时将右子作为新的根结点判断。若当前结点没有右子,则打印左子,同时将左子作为新的根结点判断。若当前结点既没有左子也没有右子,则当前结点为叶子结点,此时将从栈中出栈一个元素,作为当前的根结点,打印结点元素,同时将当前结点同样按上述方法判断,依次进行。直至当前结点的左右子都为空,且栈为空时,遍历结束。 2.中序遍历:首先建立一个栈,定义一个常量flag(flag为0或者1),用flag记录结点的左子是否去过,没有去过为0,去过为1,默认为0.首先将指针指向根结点,将根结点入栈,然后将指针指向左子,左子作为新的结点,将新结点入栈,然后再将指针指向当前结点的左子,直至左子为空,则指针返回,flag置1,出栈一个元素,作为当前结点,打印该结点,然后判断flag,flag为1则将指针指向当前结点右子,将右子作为新的结点,结点入栈,再次进行上面的判断,直至当前结点右子也为空,则再出栈一个元素作为当前结点,一直到结束,使得当前结点右子为空,且栈空,遍历结束。 3.后续遍历:首先建立两个栈,然后定义两个常量。第一个为status,取值为0,1,2.0代表左右子都没有去过,1代表去过左子,2,代表左右子都去过,默认为0。第二个常量为flag,取值为0或者1,0代表进左栈,1代表进右栈。初始时指针指向根结点,判断根结点是否有左子,有左子则,将根结点入左栈,status置0,flag置0,若没有左子则判断结点有没有右子,有右子就把结点入右栈,status置0,flag置1,若左右子都没有,则打印该结点,并将指针指向空,此时判断flag,若flag为0,则从左栈出栈一个元素作为当前结点,重新判断;若flag为1则从右栈出栈一个元素作为当前结点,重新判断左右子是否去过,若status 为1,则判断该结点有没有右子,若有右子,则将该结点入右栈,status置1,flag置1,若没有右子,则打印当前结点,并将指针置空,然后再次判断flag。若当前结点status为2,且栈为空,则遍历结束。若指针指向了左子,则将左子作为当前结点,判断其左右子情况,按上述方法处理,直至遍历结束。

二叉树的建立及几种简单的遍历方法

#include "stdio.h" #include "stdlib.h" #define STACK_INIT_SIZE 100 //栈存储空间初始分配量 #define STACKINCREMENT 10 //存储空间分配增量 //------二叉树的存储结构表示------// typedef struct BiTNode{ int data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree; //-----顺序栈的存储结构表示------// typedef struct{ BiTree *top; BiTree *base; int stacksize; }SqStack; //*************************************************** //构造一个空栈s SqStack *InitStack(); //创建一颗二叉树 BiTree CreatBiTree(); //判断栈空 int StackEmpty(SqStack *S); //插入元素e为新的栈顶元素 void Push(SqStack *S,BiTree p); //若栈不为空,则删除s栈顶的元素e,将e插入到链表L中void Pop(SqStack *S,BiTree *q); //非递归先序遍历二叉树 void PreOrderTraverse(BiTree L); //非递归中序遍历二叉树 void InOrderTraverse(BiTree L); //非递归后序遍历二叉树 void PostOrderTraverse(BiTree L); //递归后序遍历二叉树 void PostOrder(BiTree bt); //递归中序遍历二叉树 void InOrder(BiTree bt); //递归先序遍历二叉树 void PreOrder(BiTree bt); //***************************************************

二叉树前序、中序、后序遍历相互求法

二叉树前序、中序、后序遍历相互求法今天来总结下二叉树前序、中序、后序遍历相互求法,即如果知道两个的遍历,如何求第三种遍历方法,比较笨的方法是画出来二叉树,然后根据各种遍历不同的特性来求,也可以编程求出,下面我们分别说明。 首先,我们看看前序、中序、后序遍历的特性: 前序遍历: 1.访问根节点 2.前序遍历左子树 3.前序遍历右子树 中序遍历: 1.中序遍历左子树 2.访问根节点 3.中序遍历右子树 后序遍历: 1.后序遍历左子树 2.后序遍历右子树 3.访问根节点 一、已知前序、中序遍历,求后序遍历 例: 前序遍历: GDAFEMHZ 中序遍历: ADEFGHMZ 画树求法: 第一步,根据前序遍历的特点,我们知道根结点为G 第二步,观察中序遍历ADEFGHMZ。其中root节点G左侧的ADEF必然是root的左子树,G右侧的HMZ必然是root的右子树。 第三步,观察左子树ADEF,左子树的中的根节点必然是大树的root的leftchild。在前序遍历中,大树的root的leftchild位于root之后,所以左子树的根节点为D。 第四步,同样的道理,root的右子树节点HMZ中的根节点也可以通过前序遍历求得。在前序遍历中,一定是先把root和root的所有左子树节点遍历完之后才会遍历右子树,并且遍历的左子树的第一个节点就是左子树的根节点。同理,遍历的右子树的第一个节点就是右子树的根节点。 第五步,观察发现,上面的过程是递归的。先找到当前树的根节点,然后划分为左子树,右子树,然后进入左子树重复上面的过程,然后进入右子树重复上面的过程。最后就可以还原一棵树了。该步递归的过程可以简洁表达如下: 1 确定根,确定左子树,确定右子树。 2 在左子树中递归。

二叉树三种遍历算法代码_

二叉树三种遍历算法的源码 二叉树三种遍历算法的源码背诵版 本文给出二叉树先序、中序、后序三种遍历的非递归算法,此三个算法可视为标准算法,直接用于考研答题。 1.先序遍历非递归算法 #define maxsize 100 typedef struct { Bitree Elem[maxsize]; int top; }SqStack; void PreOrderUnrec(Bitree t) { SqStack s; StackInit(s); p=t; while (p!=null || !StackEmpty(s)) { while (p!=null) //遍历左子树 { visite(p->data); push(s,p); p=p->lchild; }//endwhile if (!StackEmpty(s)) //通过下一次循环中的内嵌while实现右子树遍历 { p=pop(s); p=p->rchild; }//endif }//endwhile }//PreOrderUnrec 2.中序遍历非递归算法 #define maxsize 100 typedef struct { Bitree Elem[maxsize];

int top; }SqStack; void InOrderUnrec(Bitree t) { SqStack s; StackInit(s); p=t; while (p!=null || !StackEmpty(s)) { while (p!=null) //遍历左子树 { push(s,p); p=p->lchild; }//endwhile if (!StackEmpty(s)) { p=pop(s); visite(p->data); //访问根结点 p=p->rchild; //通过下一次循环实现右子树遍历}//endif }//endwhile }//InOrderUnrec 3.后序遍历非递归算法 #define maxsize 100 typedef enum{L,R} tagtype; typedef struct { Bitree ptr; tagtype tag; }stacknode; typedef struct { stacknode Elem[maxsize]; int top; }SqStack; void PostOrderUnrec(Bitree t)

用递归非递归两种方法遍历二叉树

数据结构(双语) ——项目文档报告 用递归、非递归两种方法遍历二叉树 专业:计算机科学与技术 班级: 指导教师: 姓名:

学号: 目录 一、设计思想 (03) 二、算法流程图 (04) 三、源代码 (06) 四、运行结果 (12) 五、遇到的问题及解决 (14) 六、心得体会 (15)

一、设计思想 1.递归: (1)主函数main()主程序要包括:定义的二叉树T、建树函数、先序遍历函数、中序遍历函数、后序遍历函数。 (2)建树函数定义一个输入的数是字符型的,当ch为空时,T就为空值,否则的话就分配空间给T,T就指向它的结点,然后左指针域指向左孩子,右指针指向右孩子,若还有,继续调用,依次循环下去,直到ch遇到空时,结束。最后要返回建立的二叉树T。 (3)先序遍历函数根据先序遍历规则,当T为非空时,先输出结点处的数据,指针指向左、右孩子,依次进行下去。 (4) 中序遍历函数根据中序遍历规则,当T为非空时,先左指针指向左孩子数据,然后输出结点处的数据,再右指针指向右孩子,依次进行下去。 (5)后序遍历函数根据后序遍历规则,当T为非空时,先右指针指向右孩子,然后左指针指向左孩子,最后输出结点处的数据,依次进行下去。 2.非递归: (1)跟递归遍历二叉树的前提一样,首先应该创建一个二叉树,同样使用先序递归的方式创建二叉树。 (2)然后是中序,先序,后序非递归遍历二叉树。 (3)中序非递归遍历二叉树的思想是:首先是根节点压栈,当根节点的左子树不是空的时候,左子树压栈。直到左子树为空的时候,不再压栈。将栈顶元素出栈,访问栈顶元素,并将栈顶的右子树进栈。当右子树的左子树不是空的时候,左子树一直进栈,直到左子树为空,则不再进栈。重复上面的操作,直到栈空的时候。 (4)先序非递归遍历二叉树的思想是:首先是根节点进栈,然后当栈不为空的时候,将栈顶元素出栈,然后访问。同时将出栈元素的右子树进栈,左子树进栈。重复上面的操作,直到栈为空。 (5)后序非递归遍历二叉树的思想:首先是根节点进栈,当根节点的左子树不为空的时候,左子树进栈,直到左为空的时候,左子树不再进栈。指针指向的是右子树,当右子树为空的时候,直接访问根节点。当右子树不为空的时候,则右子树的指针进栈,当右子树的左子树不为空的时候,则左也进栈,直到左为空。重复上面的操作,直到栈为空的时候,则遍历树完成。

二叉树遍历课程设计心得【模版】

目录 一.选题背景 (1) 二.问题描述 (1) 三.概要设计 (2) 3.1.创建二叉树 (2) 3.2.二叉树的非递归前序遍历示意图 (2) 3.3.二叉树的非递归中序遍历示意图 (2) 3.4.二叉树的后序非递归遍历示意图 (3) 四.详细设计 (3) 4.1创建二叉树 (3) 4.2二叉树的非递归前序遍历算法 (3) 4.3二叉树的非递归中序遍历算法 (4) 4.4二叉树的非递归后序遍历算法 (5) 五.测试数据与分析 (6) 六.源代码 (6) 总结 (10) 参考文献: (11)

一.选题背景 二叉树的链式存储结构是用指针建立二叉树中结点之间的关系。二叉链存储结构的每个结点包含三个域,分别是数据域,左孩子指针域,右孩子指针域。因此每个结点为 由二叉树的定义知可把其遍历设计成递归算法。共有前序遍历、中序遍历、后序遍历。可先用这三种遍历输出二叉树的结点。 然而所有递归算法都可以借助堆栈转换成为非递归算法。以前序遍历为例,它要求首先要访问根节点,然后前序遍历左子树和前序遍历右子树。特点在于所有未被访问的节点中,最后访问结点的左子树的根结点将最先被访问,这与堆栈的特点相吻合。因此可借助堆栈实现二叉树的非递归遍历。将输出结果与递归结果比较来检验正确性。。 二.问题描述 对任意给定的二叉树(顶点数自定)建立它的二叉链表存贮结构,并利用栈的五种基本运算(置空栈、进栈、出栈、取栈顶元素、判栈空)实现二叉树的先序、中序、后序三种遍历,输出三种遍历的结果。画出搜索顺序示意图。

三.概要设计 3.1.创建二叉树 3.2.二叉树的非递归前序遍历示意图 图3.2二叉树前序遍历示意图3.3.二叉树的非递归中序遍历示意图 图3.3二叉树中序遍历示意图

二叉树遍历算法的实现

二叉树遍历算法的实现 题目:编制二叉树遍历算法的实现的程序 一.需求分析 1.本演示程序中,二叉树的数据元素定义为非负的整型(unsigned int)数据,输 入-1表示该处没有节点 2.本演示程序输入二叉树数据均是按先序顺序依次输入 3.演示程序以用户和计算机对话方式执行,即在计算机终端上显示“提示信息” 之后,由用户在键盘上输入演示程序中规定的运算命令;相应的输入数据和运 算结果显示在其后 4.本实验一共包括三个主要程序,分别是:1)二叉树前序,中序,后序遍历递归 算法实现2)二叉树前序中序遍历非递归算法实现3)二叉树层次遍历算法实现 5.本程序执行命令包括:1)构建二叉树2)二叉树前序递归遍历3)二叉树中序 递归遍历4)二叉树后序递归遍历5)二叉树前序非递归遍历6)二叉树中序非 递归遍历7)二叉树层次遍历 6.测试数据 (1)7 8 -1 9 10 -1 -1 -1 6 11 -1 -1 12 13 -1 -1 14 -1 -1 (2)1 -1 -1 (3)7 8 -1 -1 9 -1 -1 二.概要设计 1.为实现二叉树的遍历算法,我们首先给出如下抽象数据类型 1)二叉树的抽象数据类型 ADT BiTree{ 数据对象D:D是具有相同特性的数据元素的集合 数据关系R: 若D=Φ,则R=Φ,称BiTree是空二叉树; 若D≠Φ,则R={H},H是如下二元关系: (1)在D中存在唯一的成为根的数据元素root,它在关系H下无前驱; (2)若D-{H}≠Φ,则存在D-{root}={D1,D r},且D1∩D r=Φ (3)若D1≠Φ,则D1中存在唯一的元素x1,∈H,且存在D1上的 关系H1?H;若Dτ≠Φ,则D r中存在唯一的元素x r,∈ H,且存在D r上的关系H r?H;H={,,H1,H r}; (4)(D1,{H1})是符合本定义的二叉树,成为根的左子树,(D r,{H r})是 一颗符合本定义的二叉树,成为根的右字树。 基本操作P: InitBiTree(&T); 操作结果:构造空二叉树 DestroyBiTree(&T) 初始条件;二叉树存在 操作结果:销毁二叉树 CreateBiTree(&T,definition);

二叉树的层次遍历算法

二叉树层次遍历算法实现 问题描述 对任意输入的表示某二叉树的字符序列,完成二叉树的层次遍历算法,并输出其遍历结果。 注:所需Queue ADT的实现见附录。 输入描述 从键盘上输入一串字符串,该字符串为二叉树的先序遍历结果,其中如果遍历到空树时用字符”#”代替。 输出描述 从显示器上输出二叉树的按层次遍历结果。 输入与输出示例 输入: +A##/*B##C##D## 输出: +A/*DBC 输入: ABD##GJ###CFH##I### 输出: ABCDGFJHI 附录(仅供参考): #include #include #define TRUE 1 #define FALSE 0 #define MAX_QUEUE_SIZE 100

//注:需要定义ElementType类型,如果是二叉树, // 则应定义为指向二叉树中结点的指针类型 //格式如: // typedef Tree ElementType; // 队列存储结构采用循环队列 struct QueueRecord; typedef struct QueueRecord *Queue; int IsEmpty(Queue Q); int IsFull(Queue Q); Queue CreateQueue(int MaxElements); void DisposeQueue(Queue Q); void MakeEmpty(Queue Q); int Enqueue(ElementType X, Queue Q); ElementType Front(Queue Q); int Dequeue(Queue Q, ElementType &X); #define MinQueueSize ( 5 ) struct QueueRecord { int Capacity; int Front; int Rear; ElementType *Array; }; int IsEmpty(Queue Q) { return ((Q->Rear + 1)% Q->Capacity == Q->Front); } int IsFull(Queue Q) { return ((Q->Rear + 2) % Q->Capacity == Q->Front); } Queue CreateQueue(int MaxElements) { Queue Q; if (MaxElements < MinQueueSize) return NULL; Q = (Queue)malloc(sizeof(struct QueueRecord));

遍历二叉树(递归+非递归)实验资料报告材料

实验报告

附:源程序: 递归算法程序 #include #include #include #define maxsize 100 #define FALSE 0 #define TRUE 1 typedef struct node //二叉树结构体类型定义{ char data; struct node *lchild; struct node *rchild; }bitnode,*bitree; /*扩展先序序列创建二叉链表*/ void cteatebitree(bitree *bt) {

char ch; ch=getchar(); if(ch=='.')*bt=NULL; else { *bt=(bitree)malloc(sizeof(bitnode)); (*bt)->data=ch; cteatebitree(&((*bt)->lchild)); cteatebitree(&((*bt)->rchild)); } } /*先序递归遍历*/ void preorder(bitree root) { if(root!=NULL) { printf("%c ",root->data); preorder(root->lchild); preorder(root->rchild); } } /*中序递归遍历*/ void inorder(bitree root) { if(root!=NULL) { preorder(root->lchild); printf("%c ",root->data); preorder(root->rchild);

根据二叉树的后序遍历和中序遍历还原二叉树解题方法

【题目】 假设一棵二叉树的后序遍历序列为DGJHEBIFCA ,中序遍历序列为DBGEHJACIF ,则其前序 遍历序列为( ) 。 A. ABCDEFGHIJ B. ABDEGHJCFI C. ABDEGHJFIC D. ABDEGJHCFI 由题,后序遍历的最后一个值为A,说明本二叉树以节点A为根节点(当然,答案中第一个节点都是A,也证明了这一点) 下面给出整个分析过程 【第一步】 由后序遍历的最后一个节点可知本树根节点为【A】 加上中序遍历的结果,得知以【A】为根节点时,中序遍历结果被【A】分为两部分【DBGEHJ】【A】【CIF】 于是作出第一幅图如下

【第二步】 将已经确定了的节点从后序遍历结果中分割出去 即【DGJHEBIFC】---【A】 此时,位于后序遍历结果中的最后一个值为【C】 说明节点【C】是某棵子树的根节点 又由于【第一步】中【C】处于右子树,因此得到,【C】是右子树的根节点 于是回到中序遍历结果【DBGEHJ】【A】【CIF】中来,在【CIF】中,由于【C】是根节点,所以【IF】都是这棵子树的右子树,【CIF】子树没有左子树,于是得到下图 【第三步】 将已经确定了的节点从后序遍历中分割出去 即【DGJHEBIF】---【CA】 此时,位于后序遍历结果中的最后一个值为【F】 说明节点【F】是某棵子树的根节点 又由于【第二步】中【F】处于右子树,因此得到,【F】是该右子树的根节点

于是回到中序遍历结果【DBGEHJ】【A】【C】【IF】中来,在【IF】中,由于【F】是根节点,所以【I】是【IF】这棵子树的左子树,于是得到下图 【第四步】 将已经确定了的节点从后序遍历中分割出去 即【DGJHEB】---【IFCA】 此时,位于后序遍历结果中的最后一个值为【B】 说明节点【B】是某棵子树的根节点 又由于【第一步】中【B】处于【A】的左子树,因此得到,【B】是该左子树的根节点 于是回到中序遍历结果【DBGEHJ】【A】【C】【F】【I】中来,根据【B】为根节点,可以将中序遍历再次划分为【D】【B】【GEHJ】【A】【C】【F】【I】,于是得到下图

相关文档
相关文档 最新文档