文档库 最新最全的文档下载
当前位置:文档库 › 基于EMD_HMM的BIT间歇故障识别_郭明威

基于EMD_HMM的BIT间歇故障识别_郭明威

基于EMD_HMM的BIT间歇故障识别_郭明威
基于EMD_HMM的BIT间歇故障识别_郭明威

基于EMD-HMM的BIT间歇故障识别

郭明威, 倪世宏, 朱家海

(空军工程大学工程学院 西安,710038)

摘要 针对引起机内测试系统(BI T)虚警的间歇故障,提出了一种基于经验模态分解(EM D)和隐马尔科夫模型(HM M)的间歇故障诊断方法以抑制虚警。首先对原始信号进行EM D分解,选择能量最大的几个固有模式分量函数(IM F)进行特征提取,作为系统状态的观测值;然后将观测值输入到训练好的HM M中进行决策,求取最大似然概率值作为识别结果。结果表明,利用EM D进行特征提取并与HM M方法相结合能很好地分类出各种状态,有效地诊断出间歇故障。

关键词 机内测试;虚警;间歇故障;经验模态分解;隐马尔科夫模型

中图分类号 T P274;T H113

引 言

机内测试技术已成为改善装备或系统测试性能与诊断能力的重要手段,并大量应用于军用装备和航空航天系统中[1],但高虚警率始终阻碍着BIT充分发挥效能和更广泛地应用[1-2]。国内、外大量研究表明,间歇故障是BIT系统暂时失效,从而导致虚警的一个主要原因[2-3],诊断间歇故障是有效抑制BIT 虚警的手段。对间歇故障的诊断多集中在基于概率的方法[4]、基于人工智能(如神经网络虚警过滤器[5]等)的方法上,但是概率方法需要事先知道故障与间歇故障发生的概率,条件苛刻;神经网络法从单一时刻的状态来判别,忽略了间歇故障发生前后的信息,易引起诊断决策的错误。

故障诊断的实质是一个模式识别的过程,包括特征提取和状态识别两个环节。机内测试系统的间歇故障变化是一种变化剧烈的非平稳时间序列。在非平稳时间序列信号的处理方面,Huang[6]等提出的经验模态分解,是一种新的自适应时频分析方法。

HMM[7]是一种动态时间序列模式识别工具,特别适合处理非平稳、重复再现性差的信号。间歇故障前后时刻的状态存在着一定的转移关系,这种状态转移关系给诊断决策提供了重要的信息。HMM不仅可以联系故障发生前后的信息,识别出故障的类型,而且可以揭示系统潜在的变化特征,对设备状态进行观测、评估,发现故障早期发展的迹象。

基于此,笔者提出一种基于EM D分解的能量特征提取和以HMM模型为诊断决策的间歇故障诊断方法,并将此法应用到动调陀螺仪的陀螺信号非平稳运行过程的间歇故障诊断中来抑制虚警,以验证其有效性。

1 基于EMD的特征提取

1.1 经验模态分解

经验模态分解后的每个固有模式函数必须满足以下两个条件[6]:a.整个数据长度中极值点的数量与过零点的数量必须相等或最多相差一个;b.在任一时间点上,信号局部最大值确定的上包络线和局部最小值确定的下包络线的均值为零。EM D的分解过程可以形象地称之为“筛”的过程,步骤如下[8]:

1)找到信号x(t)的局部极大值和极小值,所有的局部极大值用3次样条插值函数插值形成数据的上包络,同样,所有的局部极小值通过插值形成数据的下包络,上、下包络的平均值记作m1(t),令h1(t) =x(t)-m1(t),如果h1(t)不满足IM F的两个必要条件,则把h1(t)看作新的原始信号,进行第2次“筛”。重复进行k次,直到h1k(t)是一个IM F

h1(k-1)(t)-m1k(t)=h1k(t)(1) 记c1(t)=h1k(t)为信号x(t)的第1阶IM F。

采用停止准则对筛分过程进行约束,以前后两个h1(k-1)(t)和h1k(t)的标准差SD来判断,即

第32卷第3期2012年6月

振动、测试与诊断

Journal of Vibratio n,M ea surem ent&Diag no sis

V o l.32N o.3

J un.2012

航空科学基金资助项目(编号:20080896009)

收稿日期:2010-10-24;修改稿收到日期:2011-03-01

SD =

T

t =0

|h 1(k -1)(t )-h 1k (t )|

2

h 21(k -1)(t )

(2)

2)把原始信号x (t )减去第1阶固有模式函数

c 1(t ),则得到残余量r 1(t )

x (t )-c 1(t )=r 1(t )(3)

3)对r 1(t )重复以上筛选过程,从高频到低频可依次得到一系列的IM F 分量c i (t )和残余项r n (t ),原始数据x (t )可重构为

x (t )=

∑n

i =1

c i (t )+

r n (t )(4)

其中:余项r n (t )为信号的平均趋势;各个IM F 分量c i (t )为信号固有的谐波成分。

通常,EM D 分解出来的前几个IM F 分量往往集中了原信号中最显著、最重要的信息。1.2 基于固有模式函数的特征提取

经EM D 分解后的各个IM F 包含了信号从高到低不同频率段的成分,各频带能量的变化表征了故障发生的情况。笔者提出针对每个IM F 单独进行分析提取能量特征的方法,以获得更好的故障特征信息。考虑到故障信息主要集中在高频带即前几个权值比重大的IM F 中,因此,选取前几个IM F 分量的能量作为特征向量来识别工作状态与故障类型,特征提取步骤如下:

1)对于给定信号x (t ),设经过EM D 分解后的IM F 分量为c i (t ),则c i (t )分频段的能量E i 为

E i =

∑N

t =0|

c i

(t )|2

(5)

其中:N 为信号长度;i 为IM F 的个数。

2)选取能量最大的前n 个包含主要故障信息的IM F 分量,求能量向量的第二范数

E =

∑n

i =1

|E i |

2

12

(6)

3)构造特征向量T

T =[E 1/E ,E 2/E ,…,E n /E ](7)

基于经验模态分解的特征提取方法选取了能量最大的IM F ,可显著滤除噪声影响,很适合于探测正常信号中夹杂的间歇瞬态现象并展示其成分。同时,对各IM F 单独提取特征向量,可避免分量之间的交叠失真,有利于故障信号的特征提取和状态识别。

2 基于HMM 的状态识别

2.1 隐马尔科夫模型

HM M 是在Ma rkov 链的基础上发展而来的一

种统计模型,是一个双重随机过程[9]

。模型中真实的状态不能直接看到,只能是通过一个观测值去感知

状态的存在及特征。HMM 具体可表示为

λ=(π,A ,B )(8)

其中:π为初始概率分布矢量;A 为状态转移概率矩阵;B 为观测值概率矩阵。

π,A 描述的是一个Markov 链,产生的输出是状态序列;B 描述是一个随机过程,产生的输出为观察值序列。

2.2 基于HMM 模型的选择与训练

模型采用左右型三状态转移的Markov 链,每个状态的观测概率由2个高斯概率密度函数联合决定。系统开始时总是处于正常状态,因此取初始状态概率矢量为π=[1,0,0],A 的初值均匀选取。为增加HM M 诊断模型的稳健性,训练时利用多个观测值序列的重估算法,由初始模型对训练样本进行Baum-Welch 算法

c i =

∑L

L =1

T

1*L

(i )U 1*L (i )

P (O /λ) (1≤i ≤N )

(9)

T i j =

∑L l =1∑T L -1

t =1

T

t *L (i )T ij b j (O t +

1,l

)U t +

1,l

(j )/P (O l /λ)

∑L

L =1∑T

L -1

t =1

T t ,l

(i )U t ,l

(j )/P (O

l

/λ)

(1≤i ≤N , 1≤j ≤N )

(10)

b jk =

∑L

l =1,t =1∑T

L -1

O t

=V

k

T t ,l

(i )U

t ,l

(j )/P (O l /λ)

∑L l =1∑T L-1

t =1

T t ,l

(i )U

t ,l

(j )/P (O l /λ)

(1≤l ≤N ,1≤k ≤M )

(11)

其中:T 为前向变量;U 为后向变量;L 为观测值序列的数量。

由初始模型对训练样本进行匹配计算和状态标注后,估计出一组新的模型,再对训练样本重新进行匹配计算和状态标注,估计出更新的模型参数λ,如此反复直至收敛,得到优化模型,使P (O |λ)最大。2.3 基于HMM 模型的诊断方法

传统BIT 是基于正常和故障两状态分类的,忽略了间歇故障状态,这样导致的结果是在间歇故障活跃时BIT 报警有永久故障,事后又找不到故障;在间歇故障不活跃时BIT 判断系统正常,引起虚警。因此将系统划分为正常态、间歇态和故障态3种状态进行诊断识别以达到抑制虚警的目的[9]

。基于HM M 模型的间歇故障诊断方法如图1所示。

诊断分为两个阶段: a.分别对正常、间歇和故障3种状态的训练样本提取特征向量,利用Baum-468

振 动、测 试 与 诊 断 第32卷 

图1 基于HM M 模型的诊断方法

W elch 算法进行模型训练,获得各类典型故障的

HMM 模型;b .在实际状态监测时,将测得的信号经EMD 分解处理提取特征向量后作为观测值序列,将其送入已经训练好的HM M 模型,通过前向-后向

算法计算观测向量在不同模型下的概率P (O |λ),由概率值最大的HM M 模型决定被测系统的状态。

3 试验结果与分析

动调陀螺仪是一种被广泛应用于航空航天导航与制导系统中的中高精度陀螺仪,其故障常常导致飞行器无法完成预定任务,并可能导致重大恶性事故。对于动调陀螺仪而言,随着高速旋转机电部件的磨损和变形,其动态性能将出现各种细微的变化,而所有这些变化都会在振动能量的增加上反映出来[10]

;因此,对陀螺振动信号的监测和分析能够获得陀螺运行异常或故障的有效信息,诊断间歇故障抑制虚警。试验对象为G01254-3型动调陀螺仪,采用CA-YD-107压电式加速度传感器拾取振动信号,采样频率为10k Hz ,得到正常、间歇、故障3种状态振动数据见图2

图2 3种状态的振动信号

3.1 经验模态分解的故障特征提取

首先,对不同状态的振动信号进行EM D 分解。

这里以正常信号为例,得到9个IM F 分量,此处只给

出了前5个IM F 时域波形,如图3所示。

图3 信号IM F 分量时域波形

分析图3可以看出,能量主要集中在前几个基本频段较高的IM F 中,在每个IM F 频段中的故障特

征,具有比原始信号中更加集中的表现形式。

表1给出了前5个IM F 分量相对于原始信号能量所占比重及重构误差,结果表明,采用包含主要故障信息的前5个IM F 进行特征提取和状态识别是合理的。IM F 分量按频率成分由高到低的顺序排列为c 1(t ),c 2(t ),…,c 5(t ),按式(5)~式(7)求出特征向量T =[E 1/E ,E 2/E ,…E 5/E ]。

表1 IMF 分量与原始信号的能量关系

IM F 1IM F 2IM F 3IM F 4IM F 5

能量比重0.26530.29720.07830.09660.1570重构误差0.27830.31240.08890.10860.1312

3.2 基于HMM 模型的间歇故障识别

通过验得到正常、间歇和故障3种状态的样本序列各30组,每组序列有2048个点,抽取10组作为训练样本,其余20组作为验证样本。对样本序列提

取的特征向量经归一化处理后,作为系统状态的观测值。利用10组训练样本得到正常状态HMM (λ1)、

间歇状态HMM (λ

2)和故障状态HMM (λ3),训练时一般循环20次左右收敛。

对于正常状态的20组验证样本进行分类测试,结果如图4所示。图中每一条曲线表示样本输入到3个HM M 模型时的输出概率,输出概率最大的模型代表状态识别结果。图4的测试结果表明,20组正常

样本的识别结果均为正常状态,即正常HMM (λ1)对20组样本的识别输出概率是最大的。

同样对间歇态、故障态的20组验证样本分别测试,结果如图5、图6所示,可见模型均能对样本的状态正确识别。

表2是部分测试数据组在各个模型下的输出的

469 第3期

郭明威,等:基于EM D -HM M 的BIT 间歇故障识别

 

图4 HM M

对正常状态的识别

图5 HM M

对间歇状态的识别

图6 HM M 对故障状态的识别

对数似然概率值,并根据输出概率最大分类原则做出的判决结果。

表2 HMM 模型对测试数据决策状态的判别结果样本正常态模型间歇态模型故障态模型判别结果λ1-1

-196.9738-382.4084-444.5196正常态λ1-2-188.7312-386.3981-417.2498正常态λ2-1

-533.6427-147.0916-557.0075间歇态λ2-2

-547.2961-136.4278-569.3213间歇态λ3-1

-578.3813-513.3675-233.2499故障态λ3-2

-567.0892-528.8887-244.9781故障态由表2可见,所有测试数据的状态都可以正确识别,没有误判现象,具有较高的稳定性和识别率。

4 结束语

笔者针对间歇故障引起的BIT 虚警,提出基于

EMD-HMM 的抑制虚警方法。首先,对间歇故障信号进行EM D 分解,得到一系列的IM F 分量,对高频

带的IM F 单独提取能量特征,以此作为HM M 的训练和验证样本;然后,根据系统的状态建立连续高斯密度混合隐马尔可夫模型,进行训练和诊断。将其应用在动调陀螺仪上,结果表明能有效地诊断出间歇故障,达到降低虚警的目的。

参 考 文 献

[1] 曾天翔.电子设备测试性及诊断技术[M ].北京:航空

工业出版社,1996:1-2.

[2] 温熙森,徐永成,易晓山,等.智能机内测试理论与应用

[M ].北京:国防工业出版社,2002:29-31.

[3] Dr ew R ,Yo ung N .Role of BIT in suppo r t system

maintenance a nd availa bility [J].I EEE AES M ag a-zine ,2004,19(8):3-7.

[4] Blo ug h D M ,Sulliv an G F,M a sso n G M.Intermit-tent fault diag no sis in m ultipr ocesso r systems [J].I EEE Tr ansac tions o n Co mpute rs ,1992,41(11):1430-1441.

[5] Aylstock F ,Elerin L ,H intz J .Neura l ne two rk fa lse

ala rm filter [R ].U SA :Ra ytheo n Co mpa ny ,1994.[6] Hua ng N E,Shen Z,Lo ng S R,et al.The empirical

mode deco mpo sition and the hilbert spectrum fo r no n-linea r a nd no n-statio na ry time series analysis [C ]∥Proceedings Ro yal Society.Londo n :[s.n.],1998:903-995.

[7] Law rance R R.A tuto ria l on hidden M a rkov models

and selected applications in speech recog nition [J ].Proceedings o f the I EEE,1989,77(2):257-286.

[8] 胡劲松,杨世锡.基于能量的振动信号经验模态分解

终止条件[J ].振动、测试与诊断,2009,29(1):19-22.Hu J ingso ng ,Y ang Shixi.Energ y-based sto p co ndtion

of empirica l mode deco mposition o f V ibr atio n sig nal [J].Jour na l o f Vibra tio n,M easur ement &Diag no sis,2009,29(1):19-22.(in Chinese)

[9] 柳新民,温熙森,邱静,等.基于隐马尔科夫模型的机电

系统机内测试虚警抑制[J].兵工学报,2005,26(3):387-391.

Li X inmin ,W en Xisen ,Qiu J ing ,et a l .Flase a la rm filter o f mecha tro nics built-in test based o n the hidden

M ar kov mo de [J ].Ac ta Ar mamentarii ,2005,26(3):287-391.(in Chinese)

[10]徐国平.基于支持向量机的动调陀螺仪寿命预测方法

研究[D ].上海:上海交通大学,2008.

第一作者简介:郭明威,男,1979年8月生,博士研究生。主要研究方向为飞行器状态监控与健康管理、故障诊断。E-mail :hahaj369@163.co m

470

振 动、测 试 与 诊 断 第32卷 

518Jo ur na l o f V ibra tion,M easurement&Diag no sis V ol.32

V C++.Applications are div ided into three-lay er structure:the bo tto m da ta lay er,the co nnecting lan-g uag e lay er,the upper user lay er.Piv o tal techniques are bro ugh t fo rw ard in acco rdance with the structure m odel:the general data interface,virtual simulation technolog y,parallel com puting.A prototype is dev el-o ped a nd tested by some kinds of aircrafts load spectrum test pro jects,which had been used to fighter plane,transpor ter plane a nd attack plane.The practice has prov ed that the prog ram made use of data visu-alization technique improves the data processing efficiency and provides a uxilia ry analysis tools fo r aircraft life determina tion and ex tensio n.

Keywords aircraft load spectrum,da ta visualiza tio n,fligh t test data trea tment,three-layer structure, V C++

Rain-Wind Induced Vibration Model of Cable and Numerical Analysis

Zhou Chao1, Rui X iaom ing1, Liu Yibing1, Qi Qianfeng2

(1.Sch oo l o f Ene rgy Po w er and M echa nical Eng ineering,N or th China Electric Po w er Univ ersity Changping,102206,China)

(2.Shanghai Na npre M echa nics Co.,Ltd Shang hai,201203,China)

Abstract Studying on m echa nism of co ro na discha rg e excitatio n,a finite element model of Rain-wind vi-bratio n is established based on the finite element theo ry a nd the Newm ark algo rithm.Taking LG J-240as an exa mple,ex perimental a nd numerical analysis are used to research the co ro na discharg e io n w ind g ener-ation and respo nse,the co rona w ind pow er under load transient respo nse a nd harmo nic respo nse cha racter-istics.The results show that the role o f co ro na discha rg e affected o n vibra tio n is remarkable.In addition-al,the io nic w ind co upled with the wind fo rce amplifies amplitude.Analytical methods a nd conclusio ns can be taken as references in designing U H V cable,upg rading of existing line and controlling vibration,espe-cially in Rain-wind regio n of so uthern china.

Keywords rain-wind ex citation,finite elem ent m ethod,ionic wind,corona discharg e

Intermittent Fault Diagnosis for Built-in Test System Based on EMD and HMM

G uo Mingwei, Ni Shihong, Zhu J iahai

(The Enginee ring Institute,Air For ce Engineering Univ ersity Xi′an,710038,China)

Abstract An intermittent fault diag no sis approach based on EM D-HM M to restrain false alarm fo r Built-in test(BIT)is pro posed.Firstly,EM D is employ ed to deco mpo se the o riginal signal,the sev eral energy-dominating intrinsic m ode functions(IM Fs)are chosen and the energy feature parameters of each IM Fs are ex tracted to form o bserv ed v ectors of sy stem.Then,the fea ture v ecto rs are input into the trained HM M fo r malfunctio n recog nitio n,the maxim um log-likeliho od probability is in the fault sta te.The results sho w that combining this fea ture v ecto rs ex tracted m ethod by EM D with HM M can diag nose intermittent fault effectiv ely.

Keywords built-in test,false alarm,intermittent fault,em pirical mode decom po sitio n(EM D),hidden Markov model(HMM)

故障诊断分析方法-结课论文

故障诊断分析方法比较 摘要:小波变换作为信号处理的手段,逐渐被越来越多领域的理论工作者和工 程技术人员重视和应用。在机械系统和电气系统中,故障时常发生,为了诊断 系统是否故障,小波分析是很好的方法。小波分析的方法很多,小波的选择也 很多类,为了研究哪种小波分析方法更加适合于故障检测。论文将通过一个例 子来分别采用功率谱、多分辨小波分析和小波包三种方法进行突发性故障诊断,来研究各自的分析特点。并总结在故障发生时,一个更加好的分析方法。 关键词:故障功率谱多分辨分析小波包分析 正文: 在对机械设备进行故障检测时,通常采用对振动信号进行频谱分析找出奇 异点的方法来实现设备监测。傅里叶变换是频谱分析的主要工具,其方法是研 究函数在傅里叶变换后的衰减以推断函数是否具有奇异性及奇异性的大小,但 傅里叶分析只能确定一个函数奇异性的整体性质而难以确定奇异点空间的位置 分布情况,这一局限性导致了频谱分析不能精确的确定信号的奇异性特点,给 进一步分析信号的规律带来了一定的障碍。 而在傅里叶基础上发展而来的功率谱可以识别不同信号的故障信号。将正 常信号的功率谱与运行过程中不断连续收集的信号功率谱进行对比,功率谱异 常就表示机械系统有故障,不同类型的故障会有不同类型的频谱特征,从故障 信号的功率谱中可以识别故障的类型。 然而利用传统的频谱分析方法只能从频谱图上了解故障信号的所包含的频 率成分,而无法确定具体的频率成分的震动形式。无法对具体的频率成分进行 分析,难以直接描述机械的状态。小波分析是近十年发展起来的一门适用于时 变信号分析的新兴工具,它可以把时域信号变换到时间—尺度域中,在不同尺 度下观察不同的局部化特性。在信号突变时,其小波变换后的系数具有模量极 大值,可通过对模的极大值点的检测来确定故障发生的时间点。在从小波基础 上发展的小波包,对各个子小波空间做出更加细致的分解,其对应的频带被进 一步分解,这使得时—频分析能聚焦于任意的细节,在故障诊断时,可从细节 上分析故障。 很多工作系统正常工作时,工作输出点的采样信号是蠕变信号,当由于多 种原因系统系统故障时,输出信号将产生一突变信号(主要表现在幅度和频率 的变化),信号的突变时刻被称为信号的奇异点。这些奇异点数值包含有重要 的故障信息,因此,对突变信号进行检测和处理,是故障诊断的关键。 因此,本文从功率谱、多分辨分析分析和小波包三种方法进行蠕变信号突发性 故障诊断,并比较总结它们的特点。 实例:由于日常机械中很多振动信号都是由不通频率的正弦余弦波组成的,于 是这里选择的原始信号采用的是单一频率正弦波的形式。为了研究上述三种分 析方法,并且由于还未在先研究阶段中未得到研究机械的信号,为了简化分析

水轮机运行常见故障及处理

水轮机运行常见故障及处理 发布日期:2010-6-12 16:49:37 (阅478次) 所属频道: 水力发电关键词: 水轮机 (一)、机组过速 机组带负荷运行中突然甩负荷时,由于导叶不能瞬时关闭,在导叶关闭的过程中水轮机的转速就可能增高20%~40%,甚至更高。当机组转速升高至某一定值(其整定值由机组的转动惯量而定,一般整定为140%额定转速)以上,则机组出现过速事故。由于转速的升高,机组转动部分离心力急剧增大,引起机组摆度与振动显著增大,甚至造成转动部分与固定部分的碰撞。所以应防止机组过速。 为了防止机组发生过速事故,目前多数电站是设置过速限制器、事故电磁阀或事故油泵,并装设水轮机主阀或快速闸门。这些装置都通过机组事故保护回路自动控制。 1.机组发生过速时的现象有 1)机组噪音明显增大。 2)发电机的负荷表指示为零,电压表指示升高(过电压保护可能动作)。 3)“水力机械事故”光字牌亮,过速保护动作,出现事故停机现象。 4)过速限制器动作,水轮机主阀(或快速闸门)全开位置红灯熄灭(即正在关闭过程)。若过速保护采用事故油泵,则事故油泵起动泵油,关闭导水叶。2.机组过速时的处理 1)通过现象判明机组已过速时,应监视过速保护装置能否正常动作,若过速保护拒动或动作不正常,应手动紧急停机,同时关闭水轮机主阀(或快速闸门)。 2)若在紧急停机过程中,因剪断销剪断或主配压阀卡住等引起机组过速,此时即使转速尚未达到过速保护动作的整定值,都应手动操作过速保护装置,使导水叶及主阀迅速关闭。对于没有设置水轮机主阀的机组,则应尽快关闭机组前的进水口闸门。 (二)、机组的轴承事故 1.巴氏合金轴承的温度升高 一般机组的推力、上导、下导等轴承和水轮机导轴承都采用巴氏合金轴承,故利用稀油进行润滑和冷却。当它们中的任一轴承温度升高至事故温度时,则轴承温度过高事故保护动作,进行紧急停机,以免烧坏轴瓦。 当轴承温度高于整定值时,机旁盘“水力机械事故”光字牌亮,轴承温度过高信号继电器掉牌,事故轴承的膨胀型温度计的黑针与红针重合或超过红针。在此以前,可能已出现过轴承温度升高的故障信号;或者可能出现过冷却水中断及冷却水压力降低、轴承油位降低等信号。 当发生以上现象时,首先应对测量仪表的指示进行校核与分析。例如将膨胀型温度计与电阻型温度计两者的读数进行核对,将轴承温度与轴承油温进行比较鉴别。并察看轴承油面和冷却水。若证明轴承温度并未升高,确属保护误动作,则可复归事故停机回路,启动机组空转,待进一步检查落实无问题后,便可并网发电。当确认轴承温度过高时,就必须查明实际原因,进行正确处理。 有许多因素可以导致巴氏合金轴承温度升高,一般常见的原因及处理办法如下:

喷码机五大常见故障及解决方法

喷码机五大常见故障及解 决方法 Prepared on 22 November 2020

喷码机五大常见故障解决方法: 1.高压故障,原因,高压传感器检测到高压不平衡。 具体原因:a.有异物碰到高压偏转板。b.高压偏转板脏。c.高压传感器本身太灵敏。解决方法:a&b清洗高压偏转板,然后正常开机即可。c.如果是这种情况,可能会经常报高压故障,但是偏转板却很干净。 2.充电故障 具体原因:a.充电槽上有墨水;b.充电墨点检测故障。解决办 法:a.关闭喷码机(包括电源),清洗充电槽。必要时可以拆下充电槽清洗。清洗彻底后,等充电槽干燥后,重新开机。b.这个故障产生的原因较多,首先从墨水开始。确定墨水的粘度,保质期,当然也要看墨水的品质,然后观察分裂,检查墨路压力,调制电压,并适当的做调整,使分裂良好。这样故障一般都能解决。还有可能是充电槽本身损坏。 3.字符缺损原因是有墨点落到了回收管的边缘,造成回收管挂墨 (回收管积墨) 具体原因:a.墨线位置是否正确。b.墨点分裂是否正常。c.墨水是否正常。d.喷码机接地是否有效(经常被客户和一些工程师忽略)。 4.回收管故障回收管传感器没有检测到有墨水流经回收管。 具体原因:a.墨线不正常(根本没有墨线射出,或墨线偏)。b. 回收管路堵塞。c.回收传感器损坏或者未接通。解决办法:a.检

查供墨回路。清洗喷嘴板,做墨线校正工作。b.回收管路堵塞,可以分段检查回收管堵塞位置。c.检查主板上面回收管传感器接头是否未正确安装。更换回收管传感器。 5.墨水粘度故障因为墨水粘度BFT值超标引起。有些情况下,机 器可以正常使用。但是必须做一些检查。否则可能在使用一段时间后,无法正常打印。 原因:a.墨水BFT目前值大于墨水BFT设置值,墨水粘度过高。 b.墨水BFT目前值小于墨水BFT设置值。墨水粘度过低。处理办 法:a.检查溶剂箱是否有溶剂。检查溶剂添加回路是否正常。b. 是否在很短的时间内多次开机,关机。如果没有在很短的时间内多次开机、关机,应检查溶剂添加回路是否正常。

自动化设备常见故障检测方法(技术)

自动化设备常见故障检测方法 任何一台自动化设备都是由执行元件,传感器、控制器这三个部分组成的,当自动化设备突然出现故障不能工作,或者工作的顺序失常时,我们必须进行故障诊断。 下面胡记自动化设备有限公司将给您解答一下如何诊断自动化设备故障的方法: 1、检查自动化设备的所有电源,起源,液压源 电源,起源和液压源的问题会经常导致自动化设备出现故障。 例如:供电出现问题,包括整个车间供电的故障。又或者是电源功率低,保险烧毁,电源插头接触不良等。检测自动化设备时应包括每台设备的供电电源和车间的动力电。气源,包括气动装置所需要的气压源。液压源,包括自动化设备液压装置需要的液压泵的工作情况。 2、检查自动化设备的传感器位置是否出现偏移。 由于设备维护人员的维护人员的疏忽,可能某些传感器的位置出现差错。比如没有到位,传感器故障等。技术人员要经常检查传感器的传感位置和灵敏度,如果检查出是传感器坏掉了要及时更换。 有的时候,由于自动化设备的震动关系,大部分的传感器在长时间的使用后,都会出现位置松动的情况,所以在日常的维护时要经常检查传感器的位置是否正确,是否固定、牢固。 3、检查自动化设备的续电器、流量控制阀、压力控制阀 继电器和磁感应式的传感器一样,长期使用也会出现打铁粘连的状况,从而无法保证电器回路的正常,需要更换。在气动或液压系统

中,节流阀开口度和压力阀的压力调节弹簧,也会随着设备的震动而出现松动和滑动的情况。其实这些装备和传感器是一样的,在自动化设备中都需要进行日常维护部件。 4、检查电气,气动和液压回路的连接 如果以上三步都没有发现任何的问题,那么就要检查所有的回路。查看是否在电路导线出现短路的情况,检查线槽内的导线是否由于拉扯被线槽割断。检查气管内是否有损坏性的折痕。检查液压油管内是否有堵塞。如果气管内出现严重的折痕,技术人员需立刻更换。液压油管一样要一并更换。

喷码机五大常见故障及解决方法

喷码机五大常见故障解决方法: 1.高压故障,原因,高压传感器检测到高压不平衡。 具体原因:a.有异物碰到高压偏转板。b.高压偏转板脏。c.高压传感器本身太灵敏。解决方法:a&b清洗高压偏转板,然后正常开机即可。c.如果是这种情况,可能会经常报高压故障,但是偏转板却很干净。 2.充电故障 具体原因:a.充电槽上有墨水;b.充电墨点检测故障。解决办法: a.关闭喷码机(包括电源),清洗充电槽。必要时可以拆下充电槽 清洗。清洗彻底后,等充电槽干燥后,重新开机。b.这个故障产生的原因较多,首先从墨水开始。确定墨水的粘度,保质期,当然也要看墨水的品质,然后观察分裂,检查墨路压力,调制电压,并适当的做调整,使分裂良好。这样故障一般都能解决。还有可能是充电槽本身损坏。 3.字符缺损原因是有墨点落到了回收管的边缘,造成回收管挂墨 (回收管积墨) 具体原因:a.墨线位置是否正确。b.墨点分裂是否正常。c.墨水是否正常。d.喷码机接地是否有效(经常被客户和一些工程师忽略)。 4.回收管故障回收管传感器没有检测到有墨水流经回收管。 具体原因:a.墨线不正常(根本没有墨线射出,或墨线偏)。b.回收管路堵塞。c.回收传感器损坏或者未接通。解决办法:a.检查供墨回路。清洗喷嘴板,做墨线校正工作。b.回收管路堵塞,可以分

段检查回收管堵塞位置。c.检查主板上面回收管传感器接头是否未正确安装。更换回收管传感器。 5.墨水粘度故障因为墨水粘度BFT值超标引起。有些情况下,机器 可以正常使用。但是必须做一些检查。否则可能在使用一段时间后,无法正常打印。 原因:a.墨水BFT目前值大于墨水BFT设置值,墨水粘度过高。b. 墨水BFT目前值小于墨水BFT设置值。墨水粘度过低。处理办法: a.检查溶剂箱是否有溶剂。检查溶剂添加回路是否正常。 b.是否在 很短的时间内多次开机,关机。如果没有在很短的时间内多次开机、关机,应检查溶剂添加回路是否正常。

笼型异步电动机转子断条故障诊断技术

2006年第21卷第3期 电 力 学 报 Vol.21No.32006 (总第76期) JOURNAL OF ELECT RIC POWER (Sum.76) 文章编号: 1005-6548(2006)03-0310-04 笼型异步电动机转子断条故障诊断技术 安永红, 夏昌浩 (三峡大学,宜昌湖北 443002) Techniques of Broken Rotor Bar Fault Diagnosis For Squirrel Cage Induction Motor AN Yong hong, XIA Chang hao (Three Gorge University,Yichang 443002,China) 摘 要: 对笼型异步电动机转子断条故障诊断进行了研究,归纳和总结出几种方法。这些方法均由研究人员进行了仿真或实验验证,对检测笼型异步电动机的转子故障是有效的。并对各种方法进行了分析比较,指出了各自的优缺点。 关键词: 异步电动机;转子断条;故障检测 中图分类号: TM343+.3 文献标识码: A Abstract: This paper focuses on the study of bro ken rotor bar fault diagnosis for squirrel cage induc tion motor,and concludes several effective methods. All of the methods have been tested by reseachers to simulate or identify their validity in motor rotor fault analysis.This paper compares these methods and points out their advantages and disadvantages. Key Words: induction motor;broken rotor bar; fault detection 鼠笼式异步电动机的转子绕组比较坚固,但如果转子温度过高或作用在端环的离心负荷过大,可能会导致转子故障。另外,在制造过程中的某些缺陷(如铸导条或焊端环时的质量不良)也会导致电阻过高,从而引起过热。而在高温条件下,鼠笼的强度降低,鼠笼条可能出现裂纹,导致笼条伸出转子槽外而得不到转子铁芯的支撑。导条与转子槽的相对位移,连续的高温运行可引起端环和导条变形,并最终导致端环与鼠笼条的断裂[1]。 笼型异步电动机转子断条故障将导致电机出力下降,运行性能恶化,一旦发生,不仅会损坏电动机本身,而且会影响整个生产系统,甚至会危及人身安全,造成巨大的经济损失和恶劣的社会影响[2]。因此必须对其进行检测,特别是进行早期检测,早期检测系统可以在故障发生初期及时告警,有助于现场组织,安排维修,避免事故停机,具有显著经济效益。 1 转子断条故障诊断方法 笼型异步电动机转子故障的检测与诊断方法有许多种,如:磁通检测法,定子电流检测法,机械信号检测法,傅立叶变换法等。但这些方法有时很难提取转子故障特征,因此,必须寻求其它的检测与诊断方法。 1 1 基于小波变换的方法 笼型异步电动机正常运行时,定子绕组中只含 收稿日期: 2006-04-27 修回日期: 2006-09-10 作者简介: 安永红(1967-),男,湖北钟祥人,硕士研究生,小波理论及应用; 夏昌浩(1965-),男,湖北江陵人,副教授,硕士生导师,检测与自控,智能信号处理。

实用电机故障诊断方法总结

交流异步电动机常见故障的分析、诊断及处理 一、异步电动机的故障分析、诊断与处理 电动机的故障大体归纳为电磁的原因和机械的原因两个方面。常见故障分析、诊断与处理如下: 1.异步电动机不能起动: 1.1电动机不能起动,有被拖动机械卡住、起动设备故障和电动机本体故障及其它方面原因: 处理方法:当电动机不能起动的故障时,可使用万用表测量三相电压,若电压太低,应设法提高电压,原因可能有:⑴电源线太细,起动压降太大,应更换粗导线。⑵三角形接线错接成星形接线,又是重载起动,应按三角形接法起动。⑶送电电压太低,应增高电压,达到要求的电压等级。若三相电压不平衡或缺相,说明故障发生在起动设备上。若三相电压平衡,但电动机转速较慢并有异常声响,这可能是负荷太重,拖动机械卡住。此时应断开电源,盘动电动机转轴,若转轴能灵活均衡地转动,说明是负荷过重;若转轴不能灵活均衡地转动,说明是机械卡阻。若三相电压正常而电机不转,则可能是电机本体故障或卡阻严重,此时应使电动机与拖动机械脱开,分别盘动电动机和拖动机械的转轴,并单独起动电动机,即可知道故障所在,作相应的处理。 1.1.1当确定为起动设备故障时,要检查开关,接触器各触头及接线柱的接触情况;检查热继电器过载保护触头的开闭情况和工作电流的调整值是否合理;检查熔断器熔体的通断情况,对熔断的熔体在分析原因后应根据电动机起动状态的要求重新选择;若起动设备内部接线有错,则应按照正确接线改正。 1.1.2 当确定为电动机本体故障时,则应检查定,转子绕组是否接地或轴承是否损坏。绕组接地或局部匝间短路时,电动机虽能起动但会引起熔体熔断而停转,短路严重时电动机绕组很快就会冒烟。 检查绕组接地常采用的方法:用兆殴表检查绕组的对地绝缘电阻,若存在接地故障,兆殴表指示值为零。绕组短路:通常用双臂电桥测直阻的平衡情况,对于绕组接地、匝间短路的处理通常都是重新绕制绕组。 1.1.3其它原因 由于轴承损坏而造成电动机转轴窜位、下沉、转子与定子磨擦乃至卡死时,应更换轴承。 若在严冬无保温,环境较差场所的电动机,应检查润滑脂。 2、鼠笼式电动机起动后转速低于额定值 2.1电动机运行时的转速降低: 2.1.1电源电压;如端电压降低,则电机起动转矩减小,转速降低。若检查是电压太低,则应提高电源电压。电动机接线错误,绕组应是三角形接线而错接成星形的也会使相电压降低。 2.1.2转子电阻;若鼠笼转子导条断裂或开焊,表现为转速和起动转矩下降。导条断裂和开焊,首先可进行直观检查,也可借助于仪表检查。直观检查:就是查看鼠笼导条有没有电弧灼痕,有无断裂和细小裂纹,端环连接是否良好。借助于仪表检查:一种方法是在电动机运行时,看指示电动机定子电流的电流表。在鼠笼转子导条断裂或开焊故障时,电流表指针将来回摆动。对于未装设电流表的电动机,可将电动机的定子绕组串联电流表后接到15-20%Ue(Ue为额定电压)的三相交流电源上,(用三相自耦调压器调压),盘动电动机转轴,随着转子位置不同,定子电流会发生变化,指针突然下降处即导条断裂或开焊处。 2.2若检查是被拖动机械轻微卡住,使转轴转不灵活,也会使电动机勉强拖动负载

水轮发电机的常见事故处理(标准版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 水轮发电机的常见事故处理(标 准版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

水轮发电机的常见事故处理(标准版) (1)发电机断路器自动跳闸,运行人员应立即检查 1)灭磁开关是否跳闸,如未跳闸应立即远方跳闸; 2)检查是由于何种保护动作使断路器跳闸,查明光字牌后分析动作的正确性。如系外部故障引起过电流保护动作,同时内部故障保护未动作,发电机外部检查无明显的不正常现象,应与调度联系发电机可并入电网。 3)如系运行人员误动,判明后立即将发电机并入电网; 4)如系发电机内部故障保护动作而引起跳闸,应测量定子绕组的绝缘电阻,并对保护范围内的一切电气回路作详细的外部检查,查明有无冒烟、冒火、响声、焦味、放电、灼伤痕迹等外部现象,同时对动作的保护进行检查,联系调度查问电网上的情况。如未发现发电机及保护范围内的故障,发电机可从零升压,升压正常可将

发电机并入电网;升压不正常,应立即停机,详细检查故障部位并设法消除。 (2)发电机发生剧烈的振荡。有时有下列现象: 1)电力表指针在全盘上大幅度摆动; 2)定子电流表针来回剧烈的摆动,可能超过正常值 3)定子电压表和母线电压表指针剧烈的摆动,经常低于正常值4)转子电压表和母线电压表指针剧烈的摆动,经常低于正常值5)发电机发出鸣音,其节奏与表计指示摆动合拍。 这时运行人员应立即采取一下措施: 1)降低发电机的有功负荷,增加励磁电流,以恢复稳定; 2)采取上述措施无效后,应将机组解列或解列发电厂的一部分机组。 云博创意设计 MzYunBo Creative Design Co., Ltd.

水轮机简答填空判断例题

水轮机简答填空判断例题 水轮机复习题(200题) 一、问答题: 1、混流式水轮机的结构,按水流流径的路径主要有几部分组成? 答:混流式水轮机的结构,按水流流径的路径主要有引水机构、导水机构、转动机构、泄水机构四大部分组成。 2、引水机构的主要作用是什么? 答:压力钢管引进的水流首先进入水轮机室,主要作用是使引进的水流以尽可能小的水头损失且较均匀地从四周进入水轮机的转轮。 3、导水机构的主要作用是什么? 答导水机构的主要作用是调节进入转轮的流量,以适应负荷变化的需要;当发电机负荷减少时,要求水轮机的进入流量相应减少,这时关水导叶开度,减少流量,反之当负荷增大时,打开导叶开度加大流量。停机时,导叶全部关闭,将水流截断。当机组发生故障而紧急停机时,导叶可迅速关闭。一般在5-10s内导叶可从全部开启状态至全关闭状态。 4、座环的作用是什么? 答:座环是水轮机的承重部件。水轮机的轴向推力,发电机的重量及座环上混凝土的重量,均由座环承受。座环是水轮机零部件安装中的重量基准面。座环由上环、下环、固定导叶组成。固定导叶的断面为机翼型,以减少水流阻力。固定导叶的叶片数为活动导叶的1/2。水流通过蜗壳经固定导叶活动导叶按辐向均匀地进入转轮。 5、转轮由几部分组成,叶片是什么形状? 答:转轮由叶片、上冠、下环和泄水锥组成,泄水锥装在上冠的中心下方。用来引导水流,避免水流经叶片流出后相互撞击,减少水力损失,提高水轮机效率。转轮叶片安置在上冠和下环之间,按圆周均匀分布。叶片是一个三向的空间扭曲面。上部较直,扭曲较小,而下部扭曲较大。转轮叶片数目通常为14-15片,我厂是14片。 6、尾水管的作用主要是什么? 答:尾水管的作用主要是①将转轮出口的水流引向下游。②利用下游水位至转轮出口处所形成的静力真空(吸出高度值)。③利用转轮出口的水流动能,将其转换为转轮出口处的附加动力真空,使动能恢复并加以利用。 7、立式混流式水轮机从作用和安装上划分,它由那几部分组成? 答:①埋设部分,包括尾水管里衬、基础环、座环、蜗壳和机坑里衬;②转动部分包括主轴、转轮和它们的附件。③导水机构包括座环、底环、顶盖、活动导叶、导叶拐臂、双连臂控制环、推拉杆等;④水轮机导轴承包括轴瓦、轴承体等;⑤主轴密封;⑥水轮机附属装置包括紧急真空破坏阀、尾水管十字补气架或补气管各种测压管路,测温装置、信号装置等。 8、水轮机安装的基本程序是什么? 答:①埋设件的安装;②主轴与转轮的组合检查;③导水

电动机断条故障理论分析

利用连续细化的傅里叶变换方法,通过对异步电动机稳态运行时定子电流进行分析,提出了用傅里叶变换的结果作为参考信号以抵消基波1f 分量的方法,解决了傅里叶变换时1f 分量的泄漏淹没()121f s -分量这以问题。该方法可用于电动机转子故障的在线检测,并可成功应用于嵌入式在线监测仪的研制。 三相异步电动机由于结构简单、价格低廉、运行可靠,在电力、冶金、石油、化工、机械等领域得到广泛应用。由于工作环境恶劣或者电动机频繁启动等原因,转子导条或者端环经常会发生开焊和断裂等故障。这种故障通常先有1~2根,而后发展成多根,以至出力下降,最后带不动负荷而停机。对电动机进行在线检测,提前发现电动机的故障隐患及早采取相应措施,以减少或者避免恶性故障的发生。 目前常用的转子断条在线检测方法是对稳态的定子电流信号直接进行频谱分析,根据频谱中是否存在()121f s -的附加分量来判断转子有无断条。但由于()121f s -分量的绝对幅值很小,并且异步电动机运行时转差率s 很小,频率()121f s -与1f 非常接近,用快速傅里叶变换直接作频谱分析时,基波1f 频率分量的泄漏会淹没()121f s -频率分量,因而使检测()121f s -频率分量是否存在变得非常困难。 本文采用快速傅里叶变换的方法,通过快速傅里叶变换得到电动机断条时信号的频谱,为了抵消基频50Hz 频谱图由于频谱泄漏对故障信号频谱的淹没,将电动机断条故障时的信号经自适应陷波器处理,以滤除工频50Hz 对特征分量的影响。

第一章绪论 1 引言 2 电动机转子断条故障的现状与课题意义 3 本文的主要研究方法法与研究内容 第二章电动机的结构与工作原理 2.1 电动机结构及原理分析 2.1.1 组成结构 2.1.2 转子的结构、定子的结构 2.1.3 电动机工作原理分析 2.2 电动机断条故障的原理 2.2.1转子断条原因 2.2.2转子断条常见现象 2.2.3断条原因分析 第三章快速傅里叶变换与MATLAB实现 3.1 MATLAB简介 3.2 快速傅里叶变换的数字实验 3.3 本章小结 第四章自适应陷波器原理 4.1 原理分析 4.2 基于LMS算法的MATLAB实现 4.3 用MATLAB程序实现LMS算法 4.4 本章小结 第五章电动机断条故障理论分析 5.1 电动机断条故障理论分析 5.1.1异步电动机转子断条故障时定子电流的特点 5.1.2电动机断条故障理论分析程序流程图 5.1.3理论仿真波形及其分析 5.2 理论仿真波形与分析 5.3 本章小结 参考文献 附录 致谢

自动化设备中气动元件常见故障

自动化设备中气动元件常见故障 气动技术一这个被誉为工业自动化之“肌肉”的传动与控制技术,在加工制造业领域越来越受到人们重视,并获得了广泛应用。日前,伴随着微电子技术、通信技术和自动控制技术的迅猛发展,气动技术也在不断创新,以工程实际应用为目标,得到了前所未有的发展。气动元件常见故障有哪些? 1.气动执行元件(气缸)故障 由于气缸装配不当和长期使用,气动执行元件(气缸)易发生内、外泄漏,输出力不足和动作不平稳,缓冲效果不良,活塞杆和缸盖损坏等故障现象。 (1)气缸出现内、外泄漏,一般是因活塞杆安装偏心,润滑油供应不足,密封圈和密封环磨损或损坏,气缸内有杂质及活塞杆有伤痕等造成的。所以,当气缸出现内、外泄漏时,应重新调整活塞杆的中心,以保证活塞杆与缸筒的同轴度;须经常检查油雾器工作是否可靠,以保证执行元件润滑良好;当密封圈和密封环出现磨损或损环时,须及时更换;若气缸内存在杂质,应及时清除;活塞杆上有伤痕时,应换新。 (2)气缸的输出力不足和动作不平稳,一般是因活塞或活塞杆被卡住、润滑不良、供气量不足,或缸内有冷凝

水和杂质等原因造成的。对此,应调整活塞杆的中心;检查油雾器的工作是否可靠;供气管路是否被堵塞。当气缸内存有冷凝水和杂质时,应及时清除。 (3)气缸的缓冲效果不良,一般是因缓冲密封圈磨损或调节螺钉损坏所致。此时,应更换密封圈和调节螺钉。 (4)气缸的活塞杆和缸盖损坏,一般是因活塞杆安装偏心或缓冲机构不起作用而造成的。对此,应调整活塞杆的中心位置;更换缓冲密封圈或调节螺钉。 2.换向阀故障 换向阀的故障有:阀不能换向或换向动作缓慢,气体泄漏,电磁先导阀有故障等。 (1)换向阀不能换向或换向动作缓慢,一般是因润滑不良、弹簧被卡住或损坏、油污或杂质卡住滑动部分等原因引起的。对此,应先检查油雾器的工作是否正常;润滑油的粘度是否合适。必要时,应更换润滑油,清洗换向阀的滑动部分,或更换弹簧和换向阀。

服务器维修故障诊断思路大全

前言: 相对PC机而言服务器出故障的机率是小多了,但是它的故障给企业也带来了一些影响。作为服务器工程师除要有服务器基础知识以外,还需要具备服务器故障的诊断思路,这样才能最快速的解决问题也可以减少故障停机时间。 本文并不是针对某个厂家服务器故障完全手册,而是根据个人经验总结出来的一些经验思路还有一些总结案例。按照下面思路和方法基本上能够解决目前服务器更换式维修的大多数问题。而且里面的一些操作风险性也不是很大,因为服务器本身就是坏的,最坏的情况下就是它一点都不能工作了呗,(主要确认是否有数据,数据无价啊)而且现在很多厂商都有自己的客服电话关于产品问题打个电话也很方便,所以安心做啦 当然如果服务器在保修期内就打电话让售后工程师上门服务,毕竟顾客就是上帝嘛,但是如果上帝比较着急使用,一般小故障自己解决一下就好了,因为一般报修最快都是第二天(大客户如银行等除外,一般当天还得是晚上才能停机解决) 目录: 一、服务器常见故障分类 二、服务器常见故障现象及其对应排错方法 三、服务器排错基本原则 四、服务器故障需要收集哪些信息 五、服务器硬件故障排错实例 六、服务器软件故障排错实例 七、服务器常见内存故障现象 一、服务器常见故障类型分类: A. 开机无显示 B. 加电BIOS自检阶段故障 C. 系统和软件安装阶段故障和现象 D. 操作系统启动失败 E. 系统运行阶段故障 二、服务器常见故障现象及其对应的排除方法

A.服务器开机无显示(加电无显示和不加电无显示) 1. 检查供电环境 2. 检查电源和故障指示灯(故障指示灯状态,目前很多厂商的服务器都有故障指示灯,或故障诊断卡等。) 3. 按下电源开关时,键盘指示灯是否亮、风扇是否全部转动 4. 是否更换过显示器,尝试更换另外一台显示器 5. 插拔内存,用橡皮擦擦拭一下金手指,如果在故障之前有增加内存,去掉增加的内存尝试 6. 是否添加了CPU,如果有增加CPU尝试去掉 7. 去掉增加的第三方I/O卡包括Raid卡等 8. ClearCMOS (记得使用跳线来清除,尽量不要直接拔电池,每款服务器清除跳线位置不一致,具体找不到电话联系一下厂商客服) 9. 尝试更换主板、内存等主要部件 10.清除静电,将电源线等外插在服务器上的线缆全部拔掉,然后轻按开机键几下 B.加电BIOS自检报错 1. 根据BIOS自检报错信息提示 2. 查看是否外插了第三方的卡或者添加部件,如果有还原基本配置重启 3. 做最小化测试 4. 尝试清除CMOS 5. 看能否正常进入BIOS C. 系统安装阶段故障和现象 1.查看服务器支持操作系统的兼容版本(从厂商能查到兼容性列表) 2.系统安装蓝屏(对蓝屏故障代码诊断) 3.安装在分区格式化的时候找不到硬盘 (阵列驱动没有安装或者没有配置阵列,可以尝试适应引导光盘安装) 4.大于2T的硬盘式应该如何分区(必须使用阵列卡才能实现或者有外插识别卡) (使用阵列卡配置阵列分成一个小于2T的空间,一个大于2T的空间,然后将系统安装在小于2T的上面,安装好系统后在使用GPT方式分区即可) 5.安装过程是死机 (检查兼容性列表---查看硬盘接口选择是否正确---阵列驱动安装是否正确---尝试最小化配置安装检查是否为内存和CPU等问题) 6.引导光盘安装失败

水轮发电机常见故障及处理

水轮发电机常见故障及处理 由于水轮机发电机组的结构比较复杂,有机械部分、电气部分以及油、气、水系统,它受系统和用户运行方式的影响,还受天气等自然条件影响。容易发生故障或者不正常运行状态。某一次故障可能是一种偶然情况,但对整个机组运行来说又是一种必然事件。运行人员应从思想、技术、组织等各个方面做好充分准备。 (1)运行人员平时应加强理论学习,尽可能掌握管辖设备的工作原理和运行性能。 (2)运行人员应熟悉各设备安装为止,各切换开关、切换片位置。 (3)运行班组应针对各种主要故障制定事故处理预案并落实到人。 (4)运行现场应准备必要的安全防护用具及应急工具。 (5)运行人员应由临危不乱沉着应对的心理素质。 发电机的异常运行及处理 发电机在运行过程中,由于外界的影响和自身的原因,发电机的参数将发生变化,并可能超出正常运行允许的范围。短时间超过参数规定运行或超过规定运行参数不多虽然不会产生严重后果,但长期超过参数运行或者大范围超过运行参数就有可能引起严重的后果,危机及发电机的安全应该引起重视。 一、发电机过负荷 运行中的发电机,当定子电流超过额定值1.1倍时,发电机的过负荷保护将动作发出报警信号。运行人员应该进行处理,使用其恢复正常运行。若系统未发生故障,则应该首先减小励磁电流减小发电机发出的无功功率;如果系统电压较低又要保

证发电机功率因数的要求,当减小励磁电流仍然不能使用定子电流降回来额定值时,则只有减小发电机有功负荷;如果系统发生故障时,允许发电 1 机在短时间内过负荷运行,其允许值按制造厂家的规定运行。 (1)现象 1)发电机定子电流超过额定值; 2)当定子电流超过额定值1.1倍时,发电机的过负荷保护将动作发出报警信号,警铃响,机旁发“发电机过负荷”信号,计算机有报警信号; 3)发电机有功、无功负荷及转子电流超过额定值。 (2)处理 1)注意监视电压、频率及电流大小,是否超过允许值; 2)如电压或频率升高,应立即降低无功或有功负荷使定子电流降至额定值,如 调整无效时应迅速查明原因,采取有效措施消除过负荷; 3)如电压、频率正常或降低时应首先用减小励磁电流的方法,消除过负荷,但 不得使母线电压降至事故极限值以下,同时将情况报告值长; 4)当母线电压已降到事故极限值,而发电机仍过负荷时,应根据过负荷多少,采取限负荷运行并联系调度起动备用机组等方法处理。 注意:通过相量图可分析出:图(a)减少励磁电流,会降低定子电流I,功率因素cosψ增大;图(b)减少有功,会降低定子电流I,功率因素cosψ减小。

电脑硬件常见的故障检测及处理方法

电脑硬件常见的故障检测及处理方法 掌握一些电脑维修的基本检测方法,是解决电脑故障的必备基础知识。本文总结了电脑使用者在日常的工作、生活中有可能遇到的几种代表性的电脑硬件故障以及处理方法,在遇到电脑故障时,快速判断并处理一些有规律可循的常见故障。 我们在日常生活、工作中肯定会遇到电脑硬件引起的一些故障,这个时候,如果你不懂如何检测及处理硬件故障,则会对我们的生活、工作造成很大的不便;本文就针对我们在使用电脑中常遇到的几种硬件故障,总结了几种代表性的电脑故障及处理方法,希望对大家有一定的帮助; 一、什么是电脑硬件故障 电脑硬件故障是由硬件引起的故障,涉及各种板卡、存储器、显示器、电源等。常见的硬故障有如下一些表现。 ①电源故障,导致系统和部件没有供电或只有部分供电。

②部件工作故障,计算机中的主要部件如显示器、键盘、磁盘驱动器、鼠标等硬件产生的故障,造成系统工作不正常。 ③元器件或芯片松动、接触不良、脱落,或者因温度过热而不能正常运行。 ④计算机外部和内部的各部件间的连接电缆或连接插头(座)松动,甚至松脱或者错误连接。 ⑤系统与各个部件上及印制电路的跳线连接脱落、连接错误,或开关设置错误,而构成非正常的系统配置。 ⑥系统硬件搭配故障,各种电脑芯片不能相互配合,在工作速度、频率方面不具有一致性等。 二、硬件故障的常用检测方法 目前,计算机硬件故障的常用检测方法主要有以下几种。 1.清洁法 对于使用环境较差或使用较长时间的计算机,应首先进行清洁。可用毛刷轻轻刷去主板、外设上的灰尘。如果灰尘已清洁掉或无灰尘,就进行下一步检查。另外,由于板卡上一些插卡或芯片采用插脚形式,所以,震动、灰尘等其他原因常会造成引脚氧化,接触不良。可用橡皮擦去表面氧化层,重新插接好后,开机检查故障是否已被排除。 2.直接观察法 直接观察法即“看、听、闻、摸”。 ①“看”即观察系统板卡的插头、插座是否歪斜,电阻、电容引脚是否相碰,表面是否烧焦,芯片表面是否开裂,主板上的铜箔是否烧断。还要查看是否有异物掉进主板的元器件之间(造成短路)。也应查看板上是否有烧焦变色的地方,印制电路板上的走线(铜箔)是否断裂等。 ②“听”即监听电源风扇、硬盘电机或寻道机构等设备的工作声音是否正常。另外,系统发生短路故障时常常伴随着异常声响。监听可以及时发现一些事故隐患,帮助在事故发生时即时采取措施。 ③“闻”即辨闻主机、板卡中是否有烧焦的气味,便于发现故障和确定短路所在处。 ④“摸”即用手按压管座的活动芯片,查看芯片是否松动或接触不良。

智能故障诊断技术知识总结复习课程

智能故障诊断技术知 识总结

智能故障诊断技术知识总结 一、绪论 □智能: ■智能的概念 智能是指能随内、外部条件的变化,具有运用知识解决问题和确定正确行为的能力。 ■低级智能和高级智能的概念 低级智能——感知环境、做出决策和控制行为 高级智能——不仅具有感知能力,更重要的是具有学习、分析、比较 和推理能力,能根据复杂环境变化做出正确决策和适应 环境变化 ■智能的三要素及其含义 三个基本要素:推理、学习、联想 推理——从一个或几个已知的判断(前提),逻辑地推断出一个新判断(结论)的思维形式 学习——根据环境变化,动态地改变知识结构 联想——通过与其它知识的联系,能正确地认识客观事物和解决实际问题 □故障: ■故障的概念 故障是指设备在规定条件下不能完成其规定功能的一种状态。可分为以下几种情况:

1.设备在规定的条件下丧失功能; 2.设备的某些性能参数达不到设计要求,超出允许范围; 3.设备的某些零部件发生磨损、断裂、损坏等,致使设备不能正常工作; 4.设备工作失灵,或发生结构性破坏,导致严重事故甚至灾难性事故。 ■故障的性质及其理解 1层次性——系统是有层次的,故障的产生对应于系统的不同层次表 现出层次性。一般可分为系统级、子系统级、部件级、 元件级等多个层次;高层故障可由低层故障引起,而低 层故障必定引起高层故障。诊断时可采用层次诊断模型 和诊断策略。 2相关性——故障一般不会孤立存在,它们之间通常相互依存和相互 影响,如系统故障常常由相关联的子系统传播所致。表 现为,一种故障可能对应多种征兆,而一种征兆可能对 应多种故障。这种故障与征兆间的复杂关系导致了故障 诊断的困难。 3随机性——故障的发生常常是一个与时间相关的随机过程,突发性 故障的出现通常都没有规律性,再加上某些信息的模糊 性和不确定性,就构成了故障的随机性。

水轮机发电机振动问题的分析与处理方法

水轮机发电机振动问题的分析与处理方法 发表时间:2019-05-16T10:42:49.553Z 来源:《电力设备》2018年第33期作者:欧亮[导读] 摘要:在我国,水电作为一种重要的清洁能源受到了政府及社会的高度重视,而且我国对于水电开发更是居于世界前列。 (五凌电力有限责任公司托口水电厂湖南省怀化市洪江市托口镇托口水电厂 418106)摘要:在我国,水电作为一种重要的清洁能源受到了政府及社会的高度重视,而且我国对于水电开发更是居于世界前列。水轮机发电机是水电站生产电能的主要设备,为我国的水电事业发展作出了重要的贡献,但是水轮机发电机的振动问题严重影响了机组的寿命与安全,必须得到妥善的解决与处理。因此本文针对水轮机发电机振动问题的成因作详细阐述,并就此提出一定的解决方法,以为业内作为参 考。 关键词:水轮机发电机;振动;稳定性;处理方法水轮机发电机对于水电行业本身的重要性不言而喻,这是将水能转化为电能的重要媒介工具。而且近年来伴随智能化技术的发展,无人值班、远程控制的水电厂是未来的发展趋势,但是由于水轮机发电机的振动问题致使电厂的安全性大受影响,这在一定程度上阻碍了这种去世的发展。因此,为了保障水电厂的安全性,解决水轮机发电机的振动问题是当前迫在眉睫。 1.水轮机发电机振动问题原理及危害分析 我国的水电事业发展居于世界前列,诸如三峡水电工程等大型的水电工程更是世上绝无仅有的水电工程。而水轮机发电机是水电站当中极为重要的组成部分,它的稳定性更是受到了相关人士的高度关注,而振动问题作为影响水轮机发电机安全与稳定性的重要因素更是必须得到高度重视与处理。 1.1水轮发电机组振动的原理 水轮机发电机主要组成部分包括:固定部分与旋转部分,而当水轮发电机组工作时,部分的水轮机发电机由于某些部分出现问题或故障导致了机组出现不稳定性振动。而当气隙处于不对称状态时,定子与转子之间不平衡的磁拉力致使水轮机发电机出现振动。 1.2水轮机发电机振动的危害 水轮机发电机振动的危害不只是对发电机本身具有较大的影响,最重要的是它有可能危害到水电站本身的安全性。由于尾水管会发生低频压力脉动致使水管壁开裂,一旦发电机机组振动频率与尾水管低频压力脉动的频率发生共振,共振会直接致使机组发生大幅度振动,有可能致使机组的零件脱落,甚至造成机组的松动,这将导致机组整体的安全性能受到极大的影响。 2.水轮机发电机振动原因 在水电站的运行当中,水轮机发电机机组产生振动的主要是受到以下三个方面的影响:水力、机械、电磁等方面。而一旦水轮机发电机产生振动必定在一定程度上对水轮发电机组的安全造成影响,正是因此,只有详细的分析水轮机发电机发声振动的原因才能找到解决水轮机发电机振动的方案。 2.1水力因素 水轮机发电机发生水力振动主要是受水轮机当中动水压力而形成,而这主要是受到水力不平衡、汽蚀、尾水管涡带等所引起。 由于不少水电站为了节省建设成本,忽视了调压井的建设,但是与之带来的“脱流”问题严重困扰了水电厂。一旦水电厂并没有建设水电厂,脱流几乎是无法避免出现,而这个过程而形成的压力将直接引发水轮机发电机的振动,继而影响了水电发电机组的安全。 其次,气蚀所引发水轮机发电机的振动也是由水力所引发振动的一种,只要有空腔气蚀出现,必定会引发水轮机发电机的振动。而且虽然在预先的设计上根本不可能出现水力不平衡这一状况,但实际上由于现实中的诸多限制诸如安装、加工误差等都有可能致使出现水力不平衡,继而影响到水轮机发电机出现振动。 2.2机械因素 机械原因也是致使水轮机发电机产生振动的重要因素之一,这主要是由于误差、零件缺陷等导致。首先,一旦导轴承的刚性不足或直径不满足设计要求都可能致使导轴承之间产生横向振动力,而这将会导致水轮机发电机发生振动;其次,紧固件的松动也将导致水轮机发电机产生振动。而且水轮发电机组内由于内部的摩擦也将导致水轮机发电机发生振动。 2.3 电磁因素 电磁也是影响水轮机发电机振动的影响因素之一,由于发电机的转动导致受到不平衡力的影响从而致使发生振动。而且由于水轮机发电机的转子及磁极的不同,这也将导致磁极中存在的拉力不平衡,最终导致了水轮机发电机发声振动。 3.水轮发电组振动故障的识别 解决水轮发电机组振动问题的关键是对于振动故障的准确识别,只有正确的判断振动故障的类型才能够解决相关的故障。当前主要有以下三种方法能够判断振动故障的类别,具体包括振动实验、振动部位、振动频率等方式。 3.1振动实验识别故障类型 振动实验是诊断振动故障的方式之一,通过振动实验可以直接判断振动的类型,主要的方法包括转速试验、励磁实验等。转速试验顾名思义是通过在固定的转数之下启动水轮发电组机组,以此检验检测部位的振幅与频率,根据频率的不同可以判断具体的故障类别;励磁实验则是通过改变励磁电流,观察其实际变化规律,从而找到判断故障类别的依据。 3.2振动部位判断故障类型 通过振动部位判断故障类型首要的任务是明晰各种振动所代表的故障类型,例如水导轴承处振动明显大于其他部位时,则是表明存在水力不平衡这一类型的故障,这是一种极为常见引发水轮发电机组振动的类型;其次如果是上机架处振动较其他部位十分明显,则是表明存在机械故障,而这还需要具体明确究竟是何种因素致使的故障; 3.3振动频率判断故障类型 振动频率是所有判断故障类型最为有效的方法,它是利用测振仪直接对振动频率进行测量与判断,减少了由于人类自我判断所造成的误差,更加客观与真实的数据显示了故障的类型。而且在长久的测量过程当中,人类发现了一些规律可以直接判断故障的类型。例如振动频率与机组频率一致则是表明转动部分质量不平衡亦或是导轴不合适这一情况;其次,如果振动频率是转速频率乘以活动导叶数时则可以直接表明是由于转轮开口不均匀所造成。

相关文档
相关文档 最新文档