文档库 最新最全的文档下载
当前位置:文档库 › 排序算法汇总

排序算法汇总

排序算法汇总
排序算法汇总

第一节排序及其基本概念

一、基本概念

1.什么是排序

排序是数据处理中经常使用的一种重要运算。

设文件由n个记录{R1,R2,……,R n}组成,n个记录对应的关键字集合为{K1,K2,……,K n}。所谓排序就是将这n个记录按关键字大小递增或递减重新排列。

2.稳定性

当待排序记录的关键字均不相同时,排序结果是惟一的,否则排序结果不唯一。

如果文件中关键字相同的记录经过某种排序方法进行排序之后,仍能保持它们在排序之前的相对次序,则称这种排序方法是稳定的;否则,称这种排序方法是不稳定的。

3.排序的方式

由于文件大小不同使排序过程中涉及的存储器不同,可将排序分成内部排序和外部排序两类。整个排序过程都在内存进行的排序,称为内部排序;反之,若排序过程中要进行数据的内、外存交换,则称之为外部排序。

内排序适用于记录个数不是很多的小文件,而外排序则适用于记录个数太多,不能一次性放人内存的大文件。

内排序是排序的基础,本讲主要介绍各种内部排序的方法。

按策略划分内部排序方法可以分为五类:插入排序、选择排序、交换排序、归并排序和分配排序。

二、排序算法分析

1.排序算法的基本操作

几乎所有的排序都有两个基本的操作:

(1)关键字大小的比较。

(2)改变记录的位置。具体处理方式依赖于记录的存储形式,对于顺序型记录,一般移动记录本身,而链式存储的记录则通过改变指向记录的指针实现重定位。

为了简化描述,在下面的讲解中,我们只考虑记录的关键字,则其存储结构也简化为数组或链表。并约定排序结果为递增。

2.排序算法性能评价

排序的算法很多,不同的算法有不同的优缺点,没有哪种算法在任何情况下都是最好的。评价一种排序算法好坏的标准主要有两条:

(1)执行时间和所需的辅助空间,即时间复杂度和空间复杂度;

(2)算法本身的复杂程度,比如算法是否易读、是否易于实现。

第二节插入排序

插入排序的基本思想是:每次将一个待排序的记录,按其关键字大小插入到前面已经排好序的记录集中,使记录依然有序,直到所有待排序记录全部插入完成。

一、直接插入排序

1.直接插入排序的思想

假设待排序数据存放在数组A[1..n]中,则A[1]可看作是一个有序序列,让i从2开始,依次将A[i]插入到有序序列A[1..i-1]中,A[n]插入完毕则整个过程结束,A[1..n]成为有序序列。

2.排序过程示例(用【】表示有序序列)

待排序数据:【25】54 8 54 21 1 97 2 73 15 (n=10)

i=2:【25 54】8 54 21 1 97 2 73 15

i=3:【825 54】54 21 1 97 2 73 15

i=4:【8 25 54 54】21 1 97 2 73 15

i=5:【8 2125 54 54】 1 97 2 73 15

i=6:【18 21 25 54 54】97 2 73 15

i=7:【1 8 21 25 54 54 97】 2 73 15

i=8:【1 28 21 25 54 54 97】73 15

i=9:【1 2 8 21 25 54 54 7397】15

i=10:【1 2 8 1521 25 54 54 73 97】排序结束

3.算法实现

可在数组中增加元素A[0]作为关键值存储器和循环控制开关。第i趟排序,即A[i]的插入过程为:

①保存A[i]→A[0]

②1

j

-

=i

③如果A[j]<=A[0](即待排序的A[i]),则A[0]→A[j+1],完成插入;

否则,将A[j]后移一个位置:A[j]→A[j+1];1

=j

j;继续执行③

-

对于上面的数据实例,i从2依次变化到10的过程中,j值分别为{1,0,3,1,0,6,1,7,3}

4.程序代码

procedure insertsort(n:integer);

var i,j:integer;

begin

for i:=2 to n do

begin

a[0]:=a[i];

j:=i-1;

while a[j]>a[0] do {决定运算次数和移动次数} begin

a[j+1]:=a[j];

j:=j-1;

end;

a[j+1]:=a[0];

end;

end;

5.算法分析

(1)稳定性:稳定

(2)时间复杂度:

①原始数据正序,总比较次数:n-1

②原始数据逆序,总比较次数:)(2

2

2

2

2

n O n n i n

i =-+=

∑=

③原始数据无序,第i 趟平均比较次数=2

1/1

+=

∑=i i j i

j ,总次数为:

)(4

32

2

n O n n =+

④可见,原始数据越趋向正序,比较次数和移动次数越少。 (3)空间复杂度:仅需一个单元A[O] 二、希尔排序 1.基本思想:

任取一个小于n 的整数S 1作为增量,把所有元素分成S 1个组。所有间距为S 1的元素放在同一个组中。

第一组:{A[1],A[S 1+1],A[2*S 1+1],……} 第二组:{A[2],A[S 1+2],A[2*S 1+2],……} 第三组:{A[3],A[S 1+3],A[2*S 1+3],……} ……

第s 1组:{A[S 1],A[2*S 1],A[3*S 1],……}

先在各组内进行直接插人排序;然后,取第二个增量S 2(

2.排序过程示例

3.算法实现

由于在分组内部使用的是直接插入排序,因此排序过程只要在直接插入排序的算法上对j 的步长进行修改就可以了。

4.程序代码

procedure shell(n:integer); var s,k,i,j:integer; begin

s:=n; repeat

s:=round(s/2); {设置增量S递减}

for k:=1 to s do {对S组数据分别排序}

begin

i:=k+s; {第二个待排序数据}

while i<=n do {当i>n时,本组数据排序结束}

begin

a[0]:=a[i];

j:=i-s; {约定步长为S}

while (a[j]>a[0]) and (j>=k) do

begin

a[j+s]:=a[j];

j:=j-s;

end;

a[j+s]:=a[0];

i:=i+s;

end;

end;

until s=1;

end;

5.算法分析

(1)稳定性:不稳定

(2)时间复杂度:

①Shell排序的执行时间依赖于增量序列。如实例所示,选择增量系列为5-2-1的比较次数<增量系列为5-3-2-1的比较次数。

②在直接插入排序中,数据越趋向于有序,比较和移动次数越少,Shell排序的目的则是增加这种有序趋势。虽然看起来重复次数较多,需要多次选择增量,但开始时,增量较大,分组较多,但由于各组的数据个数少,则比较次数累计值也小,当增量趋向1时,组内数据增多,而所有数据已经基本接近有序状态,因此,Shell的时间性能优于直接插入排序。

(3)空间复杂度:仅需一个单元A[O]

第三节交换排序

交换排序的基本思想是:两两比较待排序的数据,发现两个数据的次序相反则进行交换,直到没有反序的数据为止。

一、冒泡排序

1.冒泡排序的思想

最多进行n-1趟排序,每趟排序时,从底部向上扫描,一旦发现两个相邻的元素不符合规则,则交换。我们发现,第一趟排序后,最小值在A[1],第二趟排序后,较小值在A[2],第n-1趟排序完成后,所有元素完全按顺序排列。

2.排序过程示例

待排序数据:53 33 1953 3 63 82 20 1939

第一趟排序:3 53 33 19 53 19 63 82 20 39 第二趟排序:3 19 53 33 19 53 20 63 82 39 第三趟排序:3 19 19 53 33 20 53 39 63 82 第四趟排序:3 19 19 20 53 33 39 53 63 82 第五趟排序:没有反序数据,排序结束。 3.程序代码

procedure Bubble(n:integer);; var temp,i,j:integer; change:boolean; begin

for i:=1 to n-1 do begin

change:=false;

for j:=n-1 downto i do if a[j]>a[j+1] then begin

change:=true;

temp:=a[j]; a[j]:=a[j+1]; a[j+1]:=temp; end;

if not(change) then exit; end; end; 4.算法分析 (1)稳定性:稳定 (2)时间复杂度:

①原始数据正序,需一趟排序,比较次数n-1=O(n)

②原始数据反序,需n-1趟排序,比较次数)(2

)1()(21

1

n O n n i n n i =-=

-∑-=

③一般情况下,虽然不一定需要n-1趟排序,但由于每次数据位置的改变需要3次移动操作,因此,总时间复杂度高于直接插入排序。

(3)空间复杂度:仅需一个中间变量

5.改进

可以在每趟排序时,记住最后一次发生交换发生的位置,则该位置之前的记录均已有序。下一趟排序扫描到该位置结束。利用这种方式,可以减少一部分比较次数。

二、快速排序

1.快速排序的思想

在A[1..n]中任取一个数据元素作为比较的“基准”(不妨记为X ),将数据区划分为左右两个部分:A[1..i-1]和A[i+1..n],且A[1..i-1]≤X ≤A[i+1..n](1≤i ≤n),当A[1..i-1]和A[i+1..n]非空时,分别对它们进行上述的划分过程,直至所有数据元素均已排序为止。

2.算法实现

可以使用递归函数实现这一算法。假定待排序序列的下标范围为low~high 。

借用两个整型变量i、j作为指针,约定初值分别为low、high。

排序过程:

①选定基准X(不妨用A[low])

②j向前扫描,直到A[j]

③i向后扫描,直到A[i]>X,交换A[i]与A[j],j-1。保证了X≤A[j..high]

④继续执行②、③,直到i=j。这时,X恰好在A[i]位置上。

⑤对序列A[low..i-1]及A[i+1..high]按照上述规律继续划分,直到序列为空。

仔细分析算法,我们发现,在排序中,我们总是用基准X与另一数据交换,因此,一趟排序结束后,X就能确切定位其最终位置。

3.排序过程示例

待排序数据:67 67 14 5229 9 9054 87 71

X=67 i j

扫描j i j

交换54 67 145229 9 90 678771

扫描i i j

交换5467145229967 90 8771

j=i,结束 ij

第一趟排序后:54 67 14 52 29 9 [67] 90 87 71

第二趟排序后: 9 29 14 52 [54] 67 [67] 71 87 [90]

第三趟排序后:[9] 29 14 52 [54 67 67 71] 87 [90]

第四趟排序后:[9] 14 [29] 52 [54 67 67 71 87 90]

第五趟排序后:[9 14 29 52 54 67 67 71 87 90]

4.程序代码

procedure quicksort(low,high:integer);

var temp,x,i,j:integer;

begin

if low

begin

x:=a[low]; i:=low; j:=high;

while i

begin

while (j>i) and (a[j]>=x) do j:=j-1; {j左移}

temp:=a[i]; a[i]:=a[j]; a[j]:=temp;

i:=i-1;

while (j>i) and (a[i]<=x) do i:=i+1; {i右移}

temp:=a[i]; a[i]:=a[j]; a[j]:=temp;

j:=j-1;

end;

quicksort(low,i-1);

quicksort(i+1,high);

end;

end;

5.算法分析

(1)稳定性:不稳定

(2)时间复杂度:

每趟排序所需的比较次数为待排序区间的长度-1,排序趟数越多,占用时间越多。

①最坏情况:

每次划分选取的基准恰好都是当前序列中的最小(或最大)值,划分的结果A[low..i-1]为空区间或A[i+1..high]是空区间,且非空区间长度达到最大值。

这种情况下,必须进行n-1趟快速排序,第i次趟去见长度为n-i+1,总的比较次数达到最大值:n(n-1)/2=O(n2)

②最好情况:

每次划分所取的基准都是当前序列中的“中值”,划分后的两个新区间长度大致相等。共需lgn 趟快速排序,总的关键字比较次数:O(nlgn)

③基准的选择决定了算法性能。经常采用选取low和high之间一个随机位置作为基准的方式改善性能。

(3)空间复杂度:快速排序在系统内部需要一个栈来实现递归,最坏情况下为O(n),最佳情况下为O(lgn)。

第四节选择排序

选择排序的基本思想是:每一趟从待排序的数据中选出最小元素,顺序放在已排好序的数据最后,直到全部数据排序完毕。

一、直接选择排序

2.程序代码

procedure select(n:integer);

var temp,k,i,j:integer;

begin

for i:=1 to n-1 do

begin

k:=i;

for j:=i+1 to n do

if a[j]i then

begin

a[0]:=a[i]; a[i]:=a[k]; a[k]:=a[0]; end; end; end;

3.算法分析

(1)稳定性:不稳定

(2)时间复杂度:O(n 2

)

(3)空间复杂度:仅需一个中间单元A[0] 二、堆排序

1.堆排序思想

堆排序是一种树形选择排序,在排序过程中,将A[1..n]看成是完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。

2.堆的定义:n 个元素的序列K 1,K 2,K 3,…K n 称为堆,当且仅当该序列满足特性:K i ≤K 2i , Ki ≤K 2i+1(1≤i ≤n/2)

堆实质上是满足如下性质的完全二叉树:树中任一非叶子结点的关键字均大于等于其孩子结点的关键字。例如序列{1,35,14,60,61,45,15,81}就是一个堆,它对应的完全二叉树如下图1所示。这种堆中根结点(称为堆顶)的关键字最小,我们把它称为小根堆。反之,若完全二叉树中任一非叶子结点的关键字均大于等于其孩子的关键字,则称之为大根堆。

图4_1 最小堆 图4_2 最大堆

3.堆排序过程(以最大堆为例)

(1)调整堆

假定待排序数组A 为{20,12,35,15,10,80,30,17,2,1}(n=10),初始完全树状态为:

图4_3 图

4_4

存储结构:

结点(20)、(35)、(12)等,值小于其孩子结点,因此,该树不属最大堆。

为了将该树转化为最大堆,从后往前查找,自第一个具有孩子的结点开始,根据完全二叉树性质,这个元素在数组中的位置为i=[n/2],如果以这个结点为根的子树已是最大堆,则此时不需调整,否则必须调整子树使之成为堆。随后,继续检查以i-1、i-2等结点为根的子树,直到检查到整个二叉树的根结点(i=1),并将其调整为堆为止。

调整方法:由于A[i]的左、右子树均已是堆,因此A[2i]和A[2i+1]分别是各自子树中关键字最大的结点。若A[i]不小于A[2i]和A[2i+1],则A[i]没有违反堆性质,那么以A[i]为根的子树已是堆,无须调整;否则必须将A[i]和A[2i]与A[2i+1]中较大者(不妨设为A[j])进行交换。交换后又可能使结点A[j]违反堆性质,同样由于该结点的两棵子树仍然是堆,故可重复上述的调整过程,直到当前被调整的结点已满足堆性质,或者该结点已是叶子结点为止。

以上图为例,经过调整后,最大堆为:{80,17,35,12,10,20,30,15,2,1}。如图4_4所示。此堆作为排序的初始无序区。

(2)选择、交换、调整

①将建成的最大堆作为初始无序区。

②将堆顶元素(根)A[1]和A[n]交换,由此得到新的无序区A[1..n-1]和有序区A[n],且满足A[1..n-1]≤A[n]

③将A[1..n-1]调整为堆。

④再次将A[1]和无序区最后一个数据A[n-1]交换,由此得到新的无序区A[1..n-2]和有序区A[n-1..n],且仍满足关系A[1..n-2]≤A[n-1..n],同样要将A[1..n-2]调整为堆。直到无序区只有一个元素A[1]为止。

说明:如果需要生成降序序列,则利用最小堆进行操作。

4.程序代码

procedure editheap(i:integer; s:integer); {堆的调整}

var j:integer;

begin

if 2*i<=s then {如果该结点为叶子,则不再继续调整}

begin

a[0]:=a[i]; j:=i;

if a[2*i]>a[0] then begin a[0]:=a[2*i]; j:=2*i; end;

if (2*i+1<=s) and (a[2*i+1]>a[0]) then

begin a[0]:=a[2*i+1]; j:=2*i+1; end; {获取最大值}

if j<>i then

begin

a[j]:=a[i]; a[i]:=a[0]; {更新子树结点}

editheap(j,s); {调整左右孩子}

end;

end;

end;

procedure buildheap; {堆的建立}

var i,j:integer;

begin

for i:=n div 2 downto 1 do {从后往前,依次调整}

begin

a[0]:=a[i]; j:=i;

if a[2*i]>a[0] then begin a[0]:=a[2*i]; j:=2*i; end;

if (2*i+1<=n) and (a[2*i+1]>a[0]) then

begin a[0]:=a[2*i+1]; j:=2*i+1; end;

if j<>i then

begin

a[j]:=a[i]; a[i]:=a[0];

editheap(j,n);

end;

end;

end;

procedure heapsort(n:integer); {堆排序}

var k,i,j:integer;

begin

buildheap;

for i:=n downto 2 do

begin

a[0]:=a[i]; a[i]:=a[1]; a[1]:=a[0];

editheap(1,i-1);

end;

end;

5.算法分析

(1)稳定性:不稳定。

假定数据序列为{1,1},已是大堆,经过排序后,结果为{1,1}。

(2)时间复杂度:堆排序的时间,主要由建立初始堆和反复调整堆这两部分的时间开销构成,它们均是通过调用editheap函数实现的。

堆排序的最坏时间复杂度为O(nlgn)。堆排序的平均性能较接近于最坏性能。由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。

(3)空间复杂度:O(1)

第五节归并排序

归并排序是利用"归并"技术来进行排序。归并是指将若干个已排序的子文件合并成一个有序的文件。

一、两路归并算法

1、算法基本思路

设有两个有序(升序)序列存储在同一数组中相邻的位置上,不妨设为A[l..m],A[m+1..h],将它们归并为一个有序数列,并存储在A[l..h]。

为了减少数据移动次数,不妨采用一个临时工作数组C,将中间排序结果暂时保存在C数组

中,等归并结束后,再将C数组值复制给A。

归并过程中,设置p1,p2和p3三个指针,其初值分别指向三个有序区的起始位置。归并时依次比较A[p1]和A[p2]的关键字,取关键字较小的记录复制到C[p3]中,然后将被复制记录的指针p1或p2加1,以及指向复制位置的指针p3加1。

重复这一过程直至有一个已复制完毕,此时将另一序列中剩余数据依次复制到C中即可。

2.程序代码

procedure merge(l,m,h:integer);

var p1,p2,p3,j:integer;

begin

if m

begin

if h>n then h:=n;

p1:=l; p2:=m+1;

p3:=l;

while (p1<=m) and (p2<=h) do

begin

if a[p1]<=a[p2] then

begin

c[p3]:=a[p1]; p1:=p1+1;

end

else begin

c[p3]:=a[p2]; p2:=p2+1;

end;

p3:=p3+1;

end;

if p1>m then

for j:=p2 to h do begin c[p3]:=a[j]; p3:=p3+1; end;

if p2>h then

for j:=p1 to m do begin c[p3]:=a[j]; p3:=p3+1; end;

for j:=l to h do a[j]:=c[j];

end;

end;

二、归并排序

归并排序有两种实现方法:自底向上和自顶向下。

1.自底向上的方法

(1)自底向上的基本思想

自底向上的基本思想是:第1趟归并排序时,将数列A[1..n]看作是n个长度为1的有序序列,将这些序列两两归并,若n为偶数,则得到[n/2]个长度为2的有序序列;若n为奇数,则最后一个子序列不参与归并。第2趟归并则是将第1趟归并所得到的有序序列两两归并。如此反复,直到最后得到一个长度为n的有序文件为止。

上述的每次归并操作,均是将两个有序序列合并成一个有序序列,故称其为“二路归并排序”。

类似地有k(k>2)路归并排序。

(2)程序代码

procedure mergesort;

var i,s,k:integer;

begin

s:=1;

while s

begin

i:=1;

repeat

merge(s*(i-1)+1,s*i,s*(i+1));

i:=i+2;

until i>n;

s:=s*2;

end;

end;

2.自顶向下的方法

采用分治法进行自顶向下的算法设计,形式更为简洁。

(1)分治法的三个步骤

设归并排序的当前区间是A[l..h],分治法的三个步骤是:

分解:将当前区间一分为二,即求分裂点m=(l+h)/2

求解:递归地对两个子区间A[l..m]和A[m+1..h]进行归并排序;

组合:将已排序的两个子区间A[l..m]和A[m+1..h]归并为一个有序的区间A[l..h]。

递归的终结条件:子区间长度为1(一个数据组成的区间必然有序)。

(2)程序代码

procedure mergesort(l,h:integer);

var m:integer;

begin

if h>l then

begin

m:=(h+l) div 2;

mergesort(l,m); mergesort(m+1,h);

merge(l,m,h);

end;

end;

3.算法分析

(1)稳定性

归并排序是一种稳定的排序。

(2)存储结构要求

用顺序存储结构。也易于在链表上实现。

(3)时间复杂度

长度为n的数列,需进行[log2n]趟二路归并,每趟归并的时间为O(n),故其时间复杂度无论是在最好情况下还是在最坏情况下均是O(nlog2n)。

4、空间复杂度

需要一个辅助数组来暂存两有序序列归并的结果,故其辅助空间复杂度为O(n)。

作业:从以下角度对排序方法进行比较

一、影响排序效果的因素

二、不同条件下,排序方法的选择

三、排序与查找的关系

各种排序算法比较

排序算法 一、插入排序(Insertion Sort) 1. 基本思想: 每次将一个待排序的数据元素,插入到前面已经排好序的数列中的适当位置,使数列依然有序;直到待排序数据元素全部插入完为止。 2. 排序过程: 【示例】: [初始关键字] [49] 38 65 97 76 13 27 49 J=2(38) [38 49] 65 97 76 13 27 49 J=3(65) [38 49 65] 97 76 13 27 49 J=4(97) [38 49 65 97] 76 13 27 49 J=5(76) [38 49 65 76 97] 13 27 49 J=6(13) [13 38 49 65 76 97] 27 49 J=7(27) [13 27 38 49 65 76 97] 49 J=8(49) [13 27 38 49 49 65 76 97] Procedure InsertSort(Var R : FileType); //对R[1..N]按递增序进行插入排序, R[0]是监视哨// Begin for I := 2 To N Do //依次插入R[2],...,R[n]// begin R[0] := R[I]; J := I - 1; While R[0] < R[J] Do //查找R[I]的插入位置// begin R[J+1] := R[J]; //将大于R[I]的元素后移// J := J - 1 end R[J + 1] := R[0] ; //插入R[I] // end End; //InsertSort // 二、选择排序 1. 基本思想: 每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。 2. 排序过程: 【示例】: 初始关键字[49 38 65 97 76 13 27 49] 第一趟排序后13 [38 65 97 76 49 27 49] 第二趟排序后13 27 [65 97 76 49 38 49] 第三趟排序后13 27 38 [97 76 49 65 49] 第四趟排序后13 27 38 49 [49 97 65 76] 第五趟排序后13 27 38 49 49 [97 97 76]

excel数据排序的常用方式有哪些

excel数据排序的常用方式有哪些 在excel中整理数据、作图或者其他数据汇总操作,常会遇到对某一列数据排序的需求。当然用肉眼观察手动排序肯定是不现实。以下是为您带来的关于excel数据排序的常用方式,希望对您有所帮助。 excel数据排序的常用方式函数排序 rank() rank函数是excel中的专用排序函数,可以给出某一单元格数值在某一列中的名次。 E2单元格中语句为“=rank(D2,$D$2:$D$11)” 第一个参数是要排序的目标数据,第二个参数是要排序的目标数据区域。这里有一点很重要,目标区域一定要使用绝对引用,否则函数公式在向下填充的时候容易出现错位,排序结果无效。 large函数 large函数用法稍微有点儿复杂,这里跟大家详细讲解一下。 large函数需要给出指定名次才能给出数据区域的相对应数值。 I14=LARGE($D$14:$D$23,H14) I14单元格中公式可以看出来,large需要给出第二个排名参数才能给出具体对应的得分。因而想要对D列数据进行排名,需要一列顺序排列的名次数据作为辅助数据(H列)。

有没有可以摆脱辅助列直接使用一个函数语句结果排序问题呢? 当然可以,不过语法会比较复杂一点,需要使用到large函数的数组用法: 首先用鼠标选定存放排序数据的单元格(一定要注意原数据有几个就选定几行,不能多也不能少) =LARGE(D14:D23,{1;2;3;4;5;6;7;8;9;10}) 然后在公式编辑框种输入以上函数:第一个参数是待排序的源数据区域,第二个参数是一个数组用来显示输出的所有名次对应分数。 然后重点来了,千万不能公式输完就立马按enter键,因为选定的是一组单元格区域,这里输出的时候需要先按住Ctrl+shift然后再按enter键才能输出正确的排序分数。(记得一定要注意顺序,先按Ctrl+shift,然后再按enter键) 使用数组好处是不用额外添加辅助排序数据,当然如果嫌公式复杂也可以使用之前的辅助数据加large函数。 当然既然有降序排序函数,当然也有升序排序函数,就是large 函数的搭档:small,这个在这里不做详细说明,因为这两个函数语法一模一样,只是名称不一样,上述两种large函数的用法对于small 函数同样适用,只是输出的结果是升序排序的。 这里只给大家看下排序结果。 菜单: 当然菜单排序肯定大家就比较熟悉了,这里只是做个小小的介

排序算法简介

排序算法 排序算法大致分为两大类,即排序对象全部位于内存的内排序以及排序对象不完全位于内存的外排序。其中又以内排序为排序算法的主要部分,绝大多数的排序算法均适用于内排序。 除了以排序对象是否全部位于内存来划分的两种类型外,排序算法又分为: 1)对待排序对象进行两两比较以确定两对象次序,进而确定整个序列的交换排序 2)将待排序对象中的未排序对象依次插入到已排序好的序列中,此为插入排序 3)将未排序子序列中的最小对象移动到该子序列的最前端并于未排序子序列中 删除此最小对象,这是选择排序 4)利用堆结构实现的堆排序,相当的优秀,对于一般数据有着nlog2(n)的算法复 杂度,并且不需要额外的内存空间 5)十分适合于外排序的归并排序,原理是将待排序序列分割为两两一对的小序 列,对这些小序列进行排序并不断将这些小序列合并,最终获得完整有序序列, 和堆排序一样的算法复杂度,不过需要额外的储存空间。相对于堆排序的优点 是可以处理外排序 以上的5个算法均基于对象关键字大小的比较,以下的两种算法是基于对象关键字 大小的统计比较。 6)比较统计排序,基本思想是对给定的待排序序列中的每一个对象,确定该序列 中键值小于对象键值的对象个数,一旦知道了这个统计信息,那么就可以直接 将对象放到输出序列的正确的位置上了。 7)分布统计排序,是比较统计排序的升级版本,可以获得O(n)的算法复杂度,可 以说是所有算法里面最优的,但是缺点也是很明显,就是对于输入数据结构有 明显的要求和需要额外的内存空间。 下面对上面所述的相关算法进行描述。 一、交换排序 交换排序中最基本简单的就是冒泡排序了,基于冒泡排序的优化算法又有双向冒泡排序。而除了冒泡排序之外,快速排序也是常见的交换排序算法。鉴于冒泡排序太简单了,这里就不打算进行介绍了。 快速排序,是一种效率很好的排序方法,适用于排序问题的规模很大但对于稳定性不做要求的情况。这里的稳定性指的是,对于原序列中拥有相同大小关键字的项,如果在排序后这些项的前后顺序没有变化,那么我们就称该算法为稳定的。 快速排序的设计方法是分冶法,基本思想是:在待排序序列中选择一个对象(比如说第一个对象)作为基准点(pivot),通过将将序列分割为两个子序列(一个子序列的对象都大于基准点,另一个则是小于)来确定基准点的位置。确定了基准点的位置之后对分割开来的两个子序列重复上面的操作(此即为分冶),直到所有的对象都被确定了位置。 举一个例子以较形象的表达这一过程,以数据10、25、25、11、2、5来做例子,其中因为有两个25,所以第2个25以25*表示。

几种排序算法分析

《几种排序算法的分析》 摘要: 排序算法是在C++中经常要用到的一种重要的算法。如何进行排序,特别是高效率的排序是是计算机应用中的一个重要课题。同一个问题可以构造不同的算法,最终选择哪一个好呢?这涉及如何评价一个算法好坏的问题,算法分析就是评估算法所消耗资源的方法。可以对同一问题的不同算法的代价加以比较,也可以由算法设计者根据算法分析判断一种算法在实现时是否会遇到资源限制的问题。排序的目的之一就是方便数据的查找。在实际生活中,应根据具体情况悬着适当的算法。一般的,对于反复使用的程序,应选取时间短的算法;对于涉及数据量较大,存储空间较小的情况则应选取节约存储空间的算法。本论文重点讨论时间复杂度。时间复杂度就是一个算法所消耗的时间。算法的效率指的是最坏情况下的算法效率。 排序分为内部排序和外部排序。本课程结业论文就内部排序算法(插入排序,选择排序,交换排序,归并排序和基数排序)的基本思想,排序步骤和实现算法等进行介绍。 本论文以较为详细的文字说明,表格对比,例子阐述等方面加以比较和总结,通过在参加数据的规模,记录说带的信息量大小,对排序稳定的要求,关键字的分布情况以及算法的时间复杂度和空间复杂度等方面进行比较,得出它们的优缺点和不足,从而加深了对它们的认识和了解,进而使自己在以后的学习和应用中能够更好的运用。

1.五种排序算法的实例: 1.1.插入排序 1.1.1.直接插入排序 思路:将数组分为无序区和有序区两个区,然后不断将无序区的第一个元素按大小顺序插入到有序区中去,最终将所有无序区元素都移动到有序区完成排序。 要点:设立哨兵,作为临时存储和判断数组边界之用。 实现: Void InsertSort(Node L[],int length) { Int i,j;//分别为有序区和无序区指针 for(i=1;i=1)//直到增量缩小为1 { Shell(L,d); d=d/2;//缩小增量 } } Void Shell(Node L[],int d) {

各种排序算法的总结和比较

各种排序算法的总结和比较 1 快速排序(QuickSort) 快速排序是一个就地排序,分而治之,大规模递归的算法。从本质上来说,它是归并排序的就地版本。快速排序可以由下面四步组成。 (1)如果不多于1个数据,直接返回。 (2)一般选择序列最左边的值作为支点数据。(3)将序列分成2部分,一部分都大于支点数据,另外一部分都小于支点数据。 (4)对两边利用递归排序数列。 快速排序比大部分排序算法都要快。尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。 2 归并排序(MergeSort)

归并排序先分解要排序的序列,从1分成2,2分成4,依次分解,当分解到只有1个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。 3 堆排序(HeapSort) 堆排序适合于数据量非常大的场合(百万数据)。 堆排序不需要大量的递归或者多维的暂存数组。这对于数据量非常巨大的序列是合适的。比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。 堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。

Shell排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素进行一次插入排序,以减少数据交换和移动的次数。平均效率是O(nlogn)。其中分组的合理性会对算法产生重要的影响。现在多用D.E.Knuth的分组方法。 Shell排序比冒泡排序快5倍,比插入排序大致快2倍。Shell排序比起QuickSort,MergeSort,HeapSort慢很多。但是它相对比较简单,它适合于数据量在5000以下并且速度并不是特别重要的场合。它对于数据量较小的数列重复排序是非常好的。 5 插入排序(InsertSort) 插入排序通过把序列中的值插入一个已经排序好的序列中,直到该序列的结束。插入排序是对冒泡排序的改进。它比冒泡排序快2倍。一般不用在数据大于1000的场合下使用插入排序,或者重复排序超过200数据项的序列。

Office Excel 2003数据排序方法及技巧

用Excel做数据排序的常用方法与技巧 在用Excel制作相关的数据表格时,我们可以利用其强大的排序功能,浏览、查询、统计相关的数字。下面,我们以图1所示的“员工基本情况登记表”为例,来全面体验一番Excel的排序功能。 一、快速排序 如果我们希望对员工资料按某列属性(如“工龄”由长到短)进行排列,可以这样操作:选中“工龄”列任意一个单元格(如I3),然后按一下“常用”工具栏上的“降序排序”按钮即可(参见图1)。 小提示:①如果按“常用”工具栏上的“升序排序”按钮,则将“工龄”由短到长进行排序。②如果排序的对象是中文字符,则按“汉语拼音”顺序排序。③如果排序的对象是西文字符,则按“西文字母”顺序排序。 二、多条件排序 如果我们需要按“学历、工龄、职称”对数据进行排序,可以这样操作:选中数据表格中任意一个单元格,执行“数据→排序”命令,打开“排序”对话框(图2),将“主要关键词、次要关键词、第三关键词”分别设

置为“学历、工龄、职称”,并设置好排序方式(“升序”或“降序”),再按下“确定”按钮就行了。 三、按笔划排序 对“姓名”进行排序时,国人喜欢按“姓氏笔划”来进行:选中姓名列任意一个单元格,执行“数据→排序”命令,打开“排序”对话框(参见图2),单击其中的“选项”按钮,打开“排序选项”对话框(图3),选中其中的“笔划排序”选项,确定返回到“排序”对话框,再按下“确定”按钮即可。 小提示:如果需要按某行属性对数据进行排序,我们只要在上述“排序选项”对话框中选中“按行排序”选项即可

四、自定义排序 当我们对“职称”列进行排序时,无论是按“拼音”还是“笔划”,都不符合我们的要求。对于这个问题,我们可以通过自定义序列来进行排序: 先把相应的职称序列按需要排序的顺序输入到相应的单元格区域(如N2至N18)中(图4);执行“工具→选项”命令,打开“选项”对话框(图 5),切换到“自定义序列”标签下,在“从单元格中导入序列”右侧的方框中输入“$N$2:$N$18”(也可以用鼠标选择输入),然后单击“导入”按钮,将相应的序列导入到系统中,确定返回。 小提示:序列导入后,原来N2至N18区域中输入的数据可以删除,导入的序列在其他Excel文档中均可直接使用。

常见经典排序算法(C语言)1希尔排序 二分插入法 直接插入法 带哨兵的直接排序法 冒泡排序 选择排序 快速排

常见经典排序算法(C语言) 1.希尔排序 2.二分插入法 3.直接插入法 4.带哨兵的直接排序法 5.冒泡排序 6.选择排序 7.快速排序 8.堆排序 一.希尔(Shell)排序法(又称宿小增量排序,是1959年由D.L.Shell提出来的) /* Shell 排序法*/ #include void sort(int v[],int n) { int gap,i,j,temp; for(gap=n/2;gap>0;gap /= 2) /* 设置排序的步长,步长gap每次减半,直到减到1 */ { for(i=gap;i= 0) && (v[j] > v[j+gap]);j -= gap ) /* 比较相距gap远的两个元素的大小,根据排序方向决定如何调换*/ { temp=v[j]; v[j]=v[j+gap]; v[j+gap]=temp; } }

} } 二.二分插入法 /* 二分插入法*/ void HalfInsertSort(int a[], int len) { int i, j,temp; int low, high, mid; for (i=1; i temp) /* 如果中间元素比但前元素大,当前元素要插入到中间元素的左侧*/ { high = mid-1; } else /* 如果中间元素比当前元素小,但前元素要插入到中间元素的右侧*/ { low = mid+1; } } /* 找到当前元素的位置,在low和high之间*/ for (j=i-1; j>high; j--)/* 元素后移*/ { a[j+1] = a[j]; } a[high+1] = temp; /* 插入*/ } }

几种常见内部排序算法比较

常见内部排序算法比较 排序算法是数据结构学科经典的内容,其中内部排序现有的算法有很多种,究竟各有什么特点呢?本文力图设计实现常用内部排序算法并进行比较。分别为起泡排序,直接插入排序,简单选择排序,快速排序,堆排序,针对关键字的比较次数和移动次数进行测试比较。 问题分析和总体设计 ADT OrderableList { 数据对象:D={ai| ai∈IntegerSet,i=1,2,…,n,n≥0} 数据关系:R1={〈ai-1,ai〉|ai-1, ai∈D, i=1,2,…,n} 基本操作: InitList(n) 操作结果:构造一个长度为n,元素值依次为1,2,…,n的有序表。Randomizel(d,isInverseOrser) 操作结果:随机打乱 BubbleSort( ) 操作结果:进行起泡排序 InserSort( ) 操作结果:进行插入排序 SelectSort( ) 操作结果:进行选择排序 QuickSort( ) 操作结果:进行快速排序 HeapSort( ) 操作结果:进行堆排序 ListTraverse(visit( )) 操作结果:依次对L种的每个元素调用函数visit( ) }ADT OrderableList 待排序表的元素的关键字为整数.用正序,逆序和不同乱序程度的不同数据做测试比较,对关键字的比较次数和移动次数(关键字交换计为3次移动)进行测试比较.要求显示提示信息,用户由键盘输入待排序表的表长(100-1000)和不同测试数据的组数(8-18).每次测试完毕,要求列表现是比较结果. 要求对结果进行分析.

详细设计 1、起泡排序 算法:核心思想是扫描数据清单,寻找出现乱序的两个相邻的项目。当找到这两个项目后,交换项目的位置然后继续扫描。重复上面的操作直到所有的项目都按顺序排好。 bubblesort(struct rec r[],int n) { int i,j; struct rec w; unsigned long int compare=0,move=0; for(i=1;i<=n-1;i++) for(j=n;j>=i+1;j--) { if(r[j].key

Excel2000XP的数据排序方法

Excel2000XP的数据排序方法 Excel2000XP的数据排序方法 排序是数据处理中的经常性工作,Excel排序有序数计算(类似成绩统计中的名次)和数据重排两类。本文以几个车间的产值和名称为例,介绍Excel 2000/XP的数据排序方法。 一、数值排序 1.RANK函数 RANK函数是Excel计算序数的主要工具,它的语法为:RANK (number,ref,order),其中number为参与计算的数字或含有数字的单元格,ref是对参与计算的数字单元格区域的绝对引用,order是用来说明排序方式的数字(如果order为零或省略,则以降序方式给出结果,反之按升序方式)。 例如E2、E3、E4单元格存放一季度的总产值,计算各车间产值排名的方法是:在F2单元格内输入公式“=RANK(E2,$E$2: $E$4)”,敲回车即可计算出铸造车间的产值排名是2。再将F2中的公式复制到剪贴板,选中F3、F4单元格按Ctrl V,就能计算出其余两个车间的产值排名为3和1。如果B1单元格中输入的公式为“=RANK(E2,$E$2:$E$4,1)”,则计算出的序数按升序方式排列,即2、1和3。 需要注意的是:相同数值用RANK函数计算得到的序数(名次)相同,但会导致后续数字的序数空缺。假如上例中F2单元格存放的数值与F3相同,则按本法计算出的排名分别是3、3和1(降序时)。 2.COUNTIF函数 COUNTIF函数可以统计某一区域中符合条件的单元格数目,它的语法为COUNTIF(range,criteria)。其中range为参与统计的单元格区域,criteria是以数字、表达式或文本形式定义的条件。其中数字可以直接写入,表达式和文本必须加引号。 仍以上述为例,F2单元格内输入的公式为“=COUNTIF($E$2:$E$4,">"&E2)1”。计算各车间产值排名的方法同上,结果也完全相同,2、1和3。 此公式的计算过程是这样的:首先根据E2单元格内的数值,在连接符&的作用下产生一个逻辑表达式,即“>176.7”、“>167.3”等。COUNTIF函数计算出引用区域内符合条件的单元格数量,该结果加一即可得到该数值的名次。很显然,利用上述方法得到的是降序排列的名次,对重复数据计算得到的结果与RANK函数相同。 3.IF函数 Excel自身带有排序功能,可使数据以降序或升序方式重新排列。如果将它与IF函数结合,可以计算出没有空缺的排名。上例中E2、E3、E4单元格的产值排序为例,具体做法是:选中E2单元格,根据排序需要,单击Excel工具栏中的“降序排序”或“升序排序”按钮,即可使工作表中的所有数据按要求重新排列。 假如数据是按产值由大到小(降序)排列的,而您又想赋予每个车间从1到n(n为自然数)的排名。可以在G2单元格中输入1,然后在G3单元格中输入公式“=IF(E3=E2,G3,G3 1)”,只要将公式复制到G4等单元格,就可以计算出其他车间的产值排名。 二、文本排序 选举等场合需要按姓氏笔划为文本排序,Excel提供了比较好的解决办法。如果您要将数据表按车间名称的笔划排序,可以使用以下方法: 选中排序关键字所在列(或行)的首个单元格(如A1),单击Excel“数据”菜单下的“排序”命令,再单击其中的“选项”按钮。选中“排序选项”对话框“方法”下的“笔画排序”,再根据数据排列方向选择“按行排序”或“按列排序”,“确定”后回到“排序”对话框。如果您的数据带有标题行(如“单位”之类),则应选中“有标题行”(反之不选),然后打开“主要关键字”下拉列表,选择其中的“单位”,选中排序方式(“升序”或“降序”)后“确定”,表中的所有数据就会据此重新排列。

选择排序的算法实现

课题:选择排序的算法实现 授课教师:钱晓峰 单位:浙江金华第一中学 一、教学目标 1.知识目标: (1)进一步理解和掌握选择排序算法思想。 (2)初步掌握选择排序算法的程序实现。 2.能力目标:能使用选择排序算法设计程序解决简单的问题。 3.情感目标:培养学生的竞争意识。 二、教学重点、难点 1. 教学难点:选择排序算法的VB程序实现。 2. 教学重点:对于选择排序算法的理解、程序的实现。 三、教学方法与教学手段 本节课使用教学辅助网站开展游戏竞技和其他教学活动,引导学生通过探究和分析游戏中的玩法,得出“选择排序”的基本思路,进而使用VB来实现该算法。让学生在玩游戏的过程中学到知识,然后再以这些知识为基础,组织学生进行又一个新的游戏。“从生活中来、到生活中去、寓教于乐”便是这堂课的主导思想。

四、教学过程

五、教学设计说明 在各种游戏活动、娱乐活动中,人们都会不知不觉地使用各种基础算法的思想来解决问题。通过这类课堂活动,可以帮助学生更加容易地理解和接受这些算法。“从生活中来、到生活中去、寓教于乐”便是这堂课的主导思想。

本节课以教学辅助网站为依托,以游戏活动“牛人争霸赛”为主线,将教学内容融入到游戏活动中,让学生从中领悟知识、学到知识,然后又把学到的知识应用到新的游戏活动中。 本节课所使用的教学辅助站点记录了每一个学生的学习任务的完成情况,通过这个站点,我们可以实时地了解每一个学生学习任务的完成情况,也解决了《算法与程序设计》课程如何进行课堂评价的问题。 本节课的重点和难点是对选择排序算法思想的理解和选择排序算法的程序实现。如何解决这两个难点是一开始就需要考虑的问题,本节课通过玩游戏的方式,让学生不知不觉地进入一种排序思维状态,然后引导学生分析玩游戏的步骤,这样就可以很顺畅地让学生体验到选择排序的算法思想。然后,进一步分析这种方法第I步的操作,让学生根据理解完成第二关的“流程图游戏”,这又很自然地引导学生朝算法实现的方向前进了一步,接着让学生分析游戏中完成的流程图,得出选择排序的程序。为了巩固学生的学习效果,最后以游戏的方式让学生巩固知识、强化理解。 六、个人简介 钱晓峰,男,中共党员,出生于1981年12月,浙江湖州人。2004年6月毕业于浙江师范大学计算机科学与技术专业,同年应聘到浙江金华第一中学任教信息技术课。在开展日常教学工作的同时,开设的校本课程《网站设计与网页制作》、《常用信息加密与解密》,深受学生好评;与此同时,还根据学校实际情况开发了《金华一中网络选课系统》、《金华信息学奥赛专题网》等网络应用程序;教学教研方面,也多次在省、市、学校的各项比赛中获奖。

用Excel做数据排序的常用方法与技巧

用Excel做数据排序的常用方法与技巧 2006-11-14 09:19作者:tt 在用Excel制作相关的数据表格时,我们可以利用其强大的排序功能,浏览、查询、统计相关的数字。下面,我们以图1所示的“员工基本情况登记表”为例,来全面体验一番Excel的排序功能。 一、快速排序 如果我们希望对员工资料按某列属性(如“工龄”由长到短)进行排列,可以这样操作:选中“工龄”列任意一个单元格(如I3),然后按一下“常用”工具栏上的“降序排序”按钮即可(参见图1)。 小提示:①如果按“常用”工具栏上的“升序排序”按钮,则将“工龄”由短到长进行排序。②如果排序的对象是中文字符,则按“汉语拼音”顺序排序。③如果排序的对象是西文字符,则按“西文字母”顺序排序。 二、多条件排序 如果我们需要按“学历、工龄、职称”对数据进行排序,可以这样操作:选中数据表格中任意一个单元格,执行“数据→排序”命令,打开“排序”对话框(图2),将“主要关键词、次要关键词、第三关键词”分别设置为“学历、工龄、职称”,并设置好排序方式(“升序”或“降序”),再按下“确定”按钮就行了。

三、按笔划排序 对“姓名”进行排序时,国人喜欢按“姓氏笔划”来进行:选中姓名列任意一个单元格,执行“数据→排序”命令,打开“排序”对话框(参见图2),单击其中的“选项”按钮,打开“排序选项”对话框(图3),选中其中的“笔划排序”选项,确定返回到“排序”对话框,再按下“确定”按钮即可。 小提示:如果需要按某行属性对数据进行排序,我们只要在上述“排序选项”对话框中选中“按行排序”选项即可。 四、自定义排序 当我们对“职称”列进行排序时,无论是按“拼音”还是“笔划”,都不符合我们的要求。对于这个问题,我们可以通过自定义序列来进行排序:先把相应的职称序列按需要排序的顺序输入到相应的单元格区域(如N2至N18)中(图4);执行“工具→选项”命令,打开“选项”对话框(图5),切换到“自定义序列”标签下,在“从单元格中导入序列”右侧的方框中输入“$N$2:$N$18”(也可以用鼠标选择输入),然后单击“导入”按钮,将相应的序列导入到系统中,确定返回。

选择法排序的教学设计

VB 程序设计之十大算法-------“选择排序”教学设计 姓名:XXX 邮箱:XXX

本节课取自《Visual Basic 语言程序设计基础》,因本书中涉及到排序类的题型不多,而且知识点比较单一,例题没有很好的与控件结合起来,因此在课堂中将引入形式各样的题型,让学生通过读题、分步解题来掌握知识点,得出一类题型的解题规律,提高课堂教学的有效性。 【学情分析】 本课教学对象是中职二年级计算机应用技术专业班级,班级由33名同学组成。他们大部分突显出拿到编程题无从下手的窘况,缺乏分析问题的能力,由于英语底子薄,在编写代码方面有时即使知道该如何书写,但也总因为单词写错而影响整题得分。 【考纲分析】 对于这一算法,在考纲中只有这样一句话:“掌握选择排序法的编程方法”。但是对于这个知识点是高职高考中操作设计大分题,因此必须让学生引起高度的重视。例如在2016年的高职高考中,最后一题设计题16分就是关于排序题。【教学目标】 知识与技能 1.通过简单排序题,得出读题的方法和解题“三步走”模块化的概念。 2.能够将长代码进行分块化编写,从而解决复杂题型。 过程与方法 1.读题时学会抓住其中的关键字,知道解题思路 2.边讲边练的教学法,帮助学生自主学习 情感与态度 1.以简单易懂题入手,激发学生学习的热情,树立信心 2.培养学生处理复杂问题的耐心 【教学重点】 1.清楚选择排序的固定代码 2.对编程类题型形成“输入、处理、输出”三步走的概念 3.养成高职高考解题的规范性。 【教学难点】 1.能够学会捕捉题中的关键字 2.能够书写选择排序与控件相结合的代码 【教学方法】 分析法、举例法

各种排序算法演示--综合排序

课程设计(论文)任务书 学院计算机科学与技术专业2005-1 班 一、课程设计(论文)题目各种排序算法演示 二、课程设计(论文)工作自 2007年 6月 25 日起至 2007年 7月 8日止。 三、课程设计(论文) 地点: 多媒体实验室(5-302,303) 四、课程设计(论文)内容要求: 1.本课程设计的目的 (1)熟练掌握C语言的基本知识和技能; (2)掌握各种排序(直接插入,希尔,冒泡,快速排序,简单选择,堆排序)方法及适用场合,并能在解决实际问题时灵活应用; (3)从空间和时间的角度分析各种排序; (5)培养分析、解决问题的能力;提高学生的科技论文写作能力。 2.课程设计的任务及要求 1)基本要求: (1)设计一个的菜单将在实现的功能显示出来,并有选择提示; (2)分别实现直接插入,希尔,冒泡,快速排序,简单选择,堆排序算法; (3)通过多种测试数据,对各种排序算法的时间复杂度和空间复杂度进行比较并说明在实际场合的运用。 2)创新要求: 提高算法效率,降低时间复杂度和空间复杂度 3)课程设计论文编写要求 (1)要按照课程设计模板的规格书写课程设计论文 (2)论文包括目录、正文、心得体会、参考文献等 (3)课程设计论文用B5纸统一打印,装订按学校的统一要求完成 4)答辩与评分标准: (1)完成原理分析:20分; (2)完成设计过程:40分; (3)完成调试:20分; (4)回答问题:20分。

5)参考文献: (1)严蔚敏,吴伟民.数据结构. 北京:清华大学出版社,2006. (2)严蔚敏、吴伟民、米宁.数据结构题集。北京:清华大学出版社,2006. (3) 谭浩强. C程序设计(第二版)作者:清华大学出版社,2006. 6)课程设计进度安排 内容天数地点 构思及收集资料2图书馆 编程设计与调试5实验室 撰写论文3图书馆、实验室 学生签名: 年月日 课程设计(论文)评审意见 (1)完成原理分析(20分):优()、良()、中()、一般()、差();(2)设计分析(20分):优()、良()、中()、一般()、差();(3)完成调试(20分):优()、良()、中()、一般()、差();(4)翻译能力(20分):优()、良()、中()、一般()、差();(5)回答问题(20分):优()、良()、中()、一般()、差();(6)格式规范性及考勤是否降等级:是()、否() 评阅人:职称: 年月日

十 大 经 典 排 序 算 法 总 结 超 详 细

数据挖掘十大经典算法,你都知道哪些? 当前时代大数据炙手可热,数据挖掘也是人人有所耳闻,但是关于数据挖掘更具体的算法,外行人了解的就少之甚少了。 数据挖掘主要分为分类算法,聚类算法和关联规则三大类,这三类基本上涵盖了目前商业市场对算法的所有需求。而这三类里又包含许多经典算法。而今天,小编就给大家介绍下数据挖掘中最经典的十大算法,希望它对你有所帮助。 一、分类决策树算法C4.5 C4.5,是机器学习算法中的一种分类决策树算法,它是决策树(决策树,就是做决策的节点间的组织方式像一棵倒栽树)核心算法ID3的改进算法,C4.5相比于ID3改进的地方有: 1、用信息增益率选择属性 ID3选择属性用的是子树的信息增益,这里可以用很多方法来定义信息,ID3使用的是熵(shang),一种不纯度度量准则,也就是熵的变化值,而 C4.5用的是信息增益率。区别就在于一个是信息增益,一个是信息增益率。 2、在树构造过程中进行剪枝,在构造决策树的时候,那些挂着几个元素的节点,不考虑最好,不然容易导致过拟。 3、能对非离散数据和不完整数据进行处理。 该算法适用于临床决策、生产制造、文档分析、生物信息学、空间数据建模等领域。 二、K平均算法

K平均算法(k-means algorithm)是一个聚类算法,把n个分类对象根据它们的属性分为k类(kn)。它与处理混合正态分布的最大期望算法相似,因为他们都试图找到数据中的自然聚类中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 从算法的表现上来说,它并不保证一定得到全局最优解,最终解的质量很大程度上取决于初始化的分组。由于该算法的速度很快,因此常用的一种方法是多次运行k平均算法,选择最优解。 k-Means 算法常用于图片分割、归类商品和分析客户。 三、支持向量机算法 支持向量机(Support Vector Machine)算法,简记为SVM,是一种监督式学习的方法,广泛用于统计分类以及回归分析中。 SVM的主要思想可以概括为两点: (1)它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分; (2)它基于结构风险最小化理论之上,在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。 四、The Apriori algorithm Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法,其核心是基于两阶段“频繁项集”思想的递推算法。其涉及到的关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支

五种排序算法的分析与比较

五种排序算法的分析与比较 广东医学院医学信息专业郭慧玲 摘要:排序算法是计算机程序设计广泛使用的解决问题的方法,研究排序算法具有重要的理论意义和广泛的应用价值。文章通过描述冒泡、选择、插入、归并和快速5种排序算法,总结了它们的时间复杂度、空间复杂度和稳定性。通过实验验证了5种排序算法在随机、正序和逆序3种情况下的性能,指出排序算法的适用原则,以供在不同条件下选择适合的排序算法借鉴。 关键词:冒泡排序;选择排序;插入排序;归并排序;快速排序。 排序是计算机科学中基本的研究课题之一,其目的是方便记录的查找、插入和删除。随着计算机的发展与应用领域的越来越广,基于计算机硬件的速度和存储空间的有限性,如何提高计算机速度并节省存储空间一直成为软件设计人员的努力方向。其中,排序算法已成为程序设计人员考虑的因素之一[1],排序算法选择得当与否直接影响程序的执行效率和内外存储空间的占用量,甚至影响整个软件的综合性能。排序操作[2,3],就是将一组数据记录的任意序列,重新排列成一个按关键字有序的序列。而所谓排序的稳定性[4]是指如果在排序的序列中,存在前后相同的两个元素,排序前和排序后他们的相对位臵不发生变化。 1 算法与特性 1.1冒泡排序 1.1.1冒泡排序的基本思想

冒泡排序的基本思想是[5,6]:首先将第1个记录的关键字和第2个记录的关键字进行比较,若为逆序,则将2个记录交换,然后比较第2个和第3个记录的关键字,依次类推,直至n-1个记录和第n个记录的关键字进行过比较为止。然后再按照上述过程进行下一次排序,直至整个序列有序为止。 1.1.2冒泡排序的特性 容易判断冒泡排序是稳定的。可以分析出它的效率,在最好情况下,只需通过n-1次比较,不需要移动关键字,即时间复杂度为O(n)(即正序);在最坏情况下是初始序列为逆序,则需要进行n-1次排序,需进行n(n-1)/2次比较,因此在最坏情况下时间复杂度为O(n2),附加存储空间为O(1)。 1.2选择排序 1.2.1选择排序的基本思想 选择排序的基本思想是[5,6]:每一次从待排序的记录中选出关键字最小的记录,顺序放在已排好序的文件的最后,直到全部记录排序完毕.常用的选择排序方法有直接选择排序和堆排序,考虑到简单和易理解,这里讨论直接选择排序。直接选择排序的基本思想是n个记录的文件的直接排序可经过n-1次直接选择排序得到有序结果。 1.2.2选择排序的特性 容易得出选择排序是不稳定的。在直接选择排序过程中所需进行记录移动的操作次数最少为0,最大值为3(n-1)。然而,无论记录的初始排序如何,所需进行的关键字间的比较次数相同,均为n(n-1)/2,时间

数据结构课程设计(内部排序算法比较 C语言)

课题:内部排序算法比较 第一章问题描述 排序是数据结构中重要的一个部分,也是在实际开发中易遇到的问题,所以研究各种排算法的时间消耗对于在实际应用当中很有必要通过分析实际结合算法的特性进行选择和使用哪种算法可以使实际问题得到更好更充分的解决!该系统通过对各种内部排序算法如直接插入排序,冒泡排序,简单选择排序,快速排序,希尔排序,堆排序、二路归并排序等,以关键码的比较次数和移动次数分析其特点,并进行比较,估算每种算法的时间消耗,从而比较各种算法的优劣和使用情况!排序表的数据是多种不同的情况,如随机产生数据、极端的数据如已是正序或逆序数据。比较的结果用一个直方图表示。 第二章系统分析 界面的设计如图所示: |******************************| |-------欢迎使用---------| |-----(1)随机取数-------|

|-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| 请选择操作方式: 如上图所示该系统的功能有: (1):选择 1 时系统由客户输入要进行测试的元素个数由电脑随机选取数字进行各种排序结果得到准确的比较和移动次数并打印出结果。 (2)选择 2 时系统由客户自己输入要进行测试的元素进行各种排序结果得到准确的比较和移动次数并打印出结果。 (3)选择0 打印“谢谢使用!!”退出系统的使用!! 第三章系统设计 (I)友好的人机界面设计:(如图3.1所示) |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| (3.1) (II)方便快捷的操作:用户只需要根据不同的需要在界面上输入系统提醒的操作形式直接进行相应的操作方式即可!如图(3.2所示) |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------|

选择排序法教案

选择排序法教案 教学目标: 掌握选择排序的算法,并会用选择排序法解决实际问题 教学重点: 选择排序算法的实现过程 教学难点: 选择排序算法的实际应用 教学过程: 一、引入 我们在实际生活中经常会产生一系列的数字,比如考试的成绩,运动会跑步的成绩,并对这些数据按一定的顺序排列得到我们所需要的数据,那么怎么样来实现这些排序呢?引入今天的课题。 二、新课 1.给出10个数,怎么实现排序呢? 78,86,92,58,78,91,72,68,35,74 学生回答:依次找出其中的最大数,找9次后能完成排序。 ●排第一个数时,用它和其后的所有数逐个进行比较,如果比其它数要大,则 进行交换,否则保持不变。经过一轮比较后,我们得到最大数,并置于第一位置。 相应的程序代码为: For i=2 to 10 if a(1)

a(i)=tmp end if next i 以此类推,我们得到一个通式,用于排第j个数For i=j+1 to 10 if a(j)

快速排序算法(论文)

1 绪论 快速排序(quicksort)是分治(divide and conquer)法的一个典型例子。快速排序(Quicksort)是对冒泡排序的一种改进。由C. A. R. Hoare在1962 年提出。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。 快速排序算法具有良好的平均性能,因此它在实际中常常是首选的排序算法。本次任务主要以快速排序算法实现对任意数字序列的排序,并解决书本P59页 2-26问题: O n n 试说明如何修改快速排序算法,使它在最坏情况下的计算时间为(log) 所选编程语言为C语言。

2 快速排序算法 2.1快速排序算法简介 快速排序算法是基于分治策略的排序算法。即对于输入的子数组a[p:r],按以下三个步骤进行排序。 (1)分解:以a[p]为基准元素将a[p:r]划分成3段a[p:q-1],a[q]和a[q+1:r],使a[p:q-1]中任何一个元素小于等于a[q],而a[q+1:r]中任何一个元素大于等于a[q]。下标q在划分过程中确定。 (2)递归求解:通过递归调用快速排序算法分别对a[p:q-1]和a[q+1:r]进行排序。 (3)合并:由于对a[p:q-1]和a[q+1:r]的排序是就地进行的,所以在a[p:q-1]和a[q+1:r]都已排好的序后,不需要执行任何计算,a[p:r]就已排好序。

2.2 图1 快速排序算法流程图

2.3快速排序算法的算法实现 第一趟处理整个待排序列,选取其中的一个记录,通常选取第一个记录,以该记录的关键字值为基准,通过一趟快速排序将待排序列分割成独立的两个部分,前一部分记录的关键字比基准记录的关键字小,后一部分记录的关键字比基准记录的关键字大,基准记录得到了它在整个序列中的最终位置并被存放好,这个过程称为一趟快速排序。第二趟即分别对分割成两部分的子序列再进行快速排序,这样两部分子序列中的基准记录也得到了最终在序列中的位置并被存放好,又分别分割出独立的两个子序列。这是一个递归的过程,不断进行下去,直至每个待排子序列中都只有一个记录是为止,此时整个待排序列已排好序,排序算法结束。 快速排序的过程: (1)初始化。取第一个记录作为基准,设置两个整型指针i,j,分别指向将要与基准记录进行比较的左侧记录位置和右侧记录位置。最开始从右侧比较,当发生交换操作后,再从左侧比较。 (2)用基准记录与右侧记录进行比较。即与指针j指向的记录进行比较,如果右侧记录的关键字值大,则继续与右侧前一个记录进行比较,即j减1后,再用基准元素与j所指向的记录比较,若右侧的记录小,则将基准记录与j所指向的记录进行交换。 (3)用基准记录与左侧记录进行比较。即与指针i指向的记录进行比较,如果左侧记录的关键字值小,则继续与左侧后一个记录进行比较,即i加1后,再用基准记录与i指向的记录比较,若左侧的记录大,则将基准记录与i指向的记录比较。 (4)右侧比较与左侧比较交替重复进行,直到指针i与j指向同一位置,即指向基准记录最终的位置。 可实现的快速排序算法如下: void QuickSort(int a[],int p,int r) { i f(p

相关文档
相关文档 最新文档