文档库 最新最全的文档下载
当前位置:文档库 › 倍角公式与半角公式习题(绝对物超所值)

倍角公式与半角公式习题(绝对物超所值)

倍角公式与半角公式习题(绝对物超所值)
倍角公式与半角公式习题(绝对物超所值)

两角和与差的三角函数

1.若4

cos 5α=

,且()0,απ∈,则tg 2

α= . 2.(本小题满分12分)已知函数

()sin()

6f x A x π

ω=+(0,0)A ω>>的最小正周期为6T π=,且(2)2f π=. (1)求()f x 的表达式;

(2)设

,[0,]

αβ∈,

16(3)5f απ+=

,520

(3)213f πβ+=-

,求cos()αβ-的值.

3.在非等腰△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,且a=3,c=4,C=2A .

(Ⅰ)求cosA 及b 的值;

(Ⅱ)求cos(3π

–2A)的值. 4.已知31)6sin(=-απ,则)3

(2cos απ

+的值是( )

A .

97 B .31 C .31- D .9

7- 5.若4cos 5θ=-

,θ是第三象限的角,则

1tan

21tan 2

θ

θ-+=( ) A .12 B .12- C .3

5

D .-2

6.己知 ,sin 3cos 5a R a a ∈+=,则tan 2a=_________.

7.已知==+

απ

α2sin ,54

)4cos(则 . 8.已知==+απα2sin ,5

4

)4cos(则 .

9.在ABC ?中,内角,,A B C 的对边分别为,,a b c 且a b >,已知4

cos 5

C =

,32c =,2

221sin cos sin cos sin 222

B A A B

C ++=. (Ⅰ)求a 和b 的值;

(Ⅱ)求cos()B C -的值. 10.已知函数()2sin()(0,)6

f x x x R ωωπ=+>∈的最小正周期为π. (1)求ω的值; (2)若2

()3

f α=

,(0,)8πα∈,求cos 2α的值.

11.已知函数2

()2sin cos 2sin 1()f x x x x x R =-+∈.

(1)求函数()f x 的最小正周期和单调递增区间;

(2)若在ABC ?中,角A ,B ,C 的对边分别为a ,b ,c ,3a =

错误!未找到

引用源。,A 为锐角,且2

()8

3

f A π

+

=

,求错误!未找到引用源。面积S 的最大值. 12.已知函数log (1)3a y x =-+,(0a >且1)a ≠的图象恒过点P ,若角α的终边经过点P ,则2sin sin 2αα-的值等于_______. 13.已知),0(πα∈,且1

sin cos 2

αα+=

,则α2cos 的值为( ) A .47±

B .4

7

C .47-

D .43-

14.已知函数()sin()(,0,0,||)2

f x A x x R A π

ω?ω?=+∈>><

的部分图象如图所示.

(1)试确定函数()f x 的解析式; (2)若1(

)23f απ=错误!未找到引用源。,求2cos()3

π

α-的值.

15.已知2

sin(45)10

α-?=-

,且090α?<

sin(45)10

α-?=-,且090α?<

(,0),cos()25π

απα∈-

-=-,则tan 2α= . 18.已知4

(,0),cos()25

παπα∈--=-,则tan 2α= .

19.设sin 2sin αα=-,(

,)2

π

απ∈,则tan 2α的值是________.

20.设)

cos()(cos 223

)2

sin(

)2(sin cos 2)(2

23θθπθπ

θπθθ-+++-++-+=

f ,求)3

f 的值。

21.①存在)2

,

0(π

α∈使3

1

cos sin =

+a a ;②存在区间(,)a b 使x y cos =为减函数而

sin 0x <;

③x y tan =在其定义域内为增函数;④)2

sin(2cos x x y -+=π

既有最大、最小值,

又是偶函数; ⑤|6

2|sin π

+

=x y 最小正周期为π, 以上命题错误的为____________。

22.在△ABC 中,若sin (A+B-C )=sin (A-B+C ),则△ABC 必是( ) (A )等腰三角形 (B )直角三角形

(C )等腰或直角三角形 (D )等腰直角三角形 23.x y 2

sin 2=的值域是( )

A .[-2,2]

B .[0,2]

C .[-2,0]

D .R 24.已知θs i n 是方程06752=--x x 的根,且

θ是第三象限角,求

)2sin()2cos()(tan )23cos()23sin(2θπ

θπθπθπ

πθ+----

-的值。

25.x

f(x)=cos ,2

则下列等式成立的是( )

(A ))()2(x f x f =-π (B ))()2(x f x f =+π (C ))()(x f x f -=- (D ))()(x f x f =-

26.已知函数)0(),2cos()(πθθ<<-=x x f 的图像过点)1,6

(

π

(1)求θ的值;

(2)将函数)(x f y =图像上各点的横坐标变为原来的2倍,纵坐标不变,得到函数

)(x g y =的图像,求函数)(x g y =在]2

,0[π

上的最大值和最小值.

27.将函数)3

sin(2)(π

+=x x f (x ∈R )的图像向左平移)0(>m m 个单位长度后,所

得到的图像关于y 轴对称,

(1)求m 的最小值;(2)在(1)的条件下,求函数)4

(x f -π

的单调减区间。

28.已知31)2

5

cos(=

-θπ,求)2

3c o s ()s i n ()23c o s ()2s i n (]1)[s i n (s i n )s i n (πθπθπθπθθπθθπ---+-+

--+的值.

29.求证:2(1-sin α)(1+cos α)=2

(1sin cos )-α+α. 30.已知()()()2

33sin sin cos 0

2f x x x x ππωωωω??=

+-->

???

的最小正周期为T π=.

(1)求23

f π

??

???

的值;

(2)在ABC ?中,角A B C 、、所对应的边分别为a b c 、、,若有

()

2c o s c o s a c B b C -=

,则求角B 的大小以及()f A 的取值范围.

31.已知函数2

2

()3cos 2sin cos sin f x x x x x =++. (1)求()f x 的最大值,并求出此时x 的值; (2)写出()f x 的单调区间.

32.已知向量)3,cos 2(2

x m =,)2sin ,1(x n =,函数n m x f ?=)(.

(Ⅰ)求函数f (x )的最小正周期和单调递减区间;

(Ⅱ)在A B C ?中,a ,b ,c 分别是角A ,B ,C 的对边,

且3)(=C f ,1=c ,ABC ?的面积为

2

3

,且a > b ,求,a b 的值. 33.已知函数()()22sin cos 23cos 30,0f x a x x x a ωωωω=+->>的最大值为2,且最小正周期为π.

(1)求函数()f x 的解析式及其对称轴方程; (2)若()4,sin 436f παα?

?=+ ??

?求的值. 34. 若tan θ+

1

tan θ

=4,则sin2θ=_________. 35.已知函数()2

33

3sin cos 33cos 2

f x x x x =-+

,R x ∈. (1)求()f x 的最大值和取得最大值时x 的集合. (2)设0,

2πα??

∈ ??

?

,,2πβπ??∈

???,29325f πα??-= ???,53621213f βπ??

+=- ?

??

,求()cos αβ+的值.

36.已知3

tan 5

α=-,则sin2=α( ) A.1517 B.1517- C.817- D.817

37.已知3

tan 5

α=-,则sin2=α( )

A.1517

B.1517-

C.817-

D.817

38.已知35,

,cos ,tan 22

5παπαα?

?

∈=- ?

?

?

=( )

A .

43 B .-4

3

C .

D .2

39. 已知函数52sin cos 2

2

++-+=a a x a x y 有最大值2,求实数a 的值. 40.已知函数2()sin (2cos sin )cos f x x x x x =?-+. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)设

4

2

π

π

α<<

,且52

()13

f α=-

,求sin 2α的值. 41.已知函数2π()12sin ()4

f x x =--,x ∈R . (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)判断函数()f x 在区间ππ

[,]66

-

上是否为增函数?并说明理由. 42.已知.02

cos 22sin =-x

x (1)求x tan 的值;

(2)求

x

x x

sin )4

cos(22cos +π

的值。

43. 已知π<

=x ,则??

?

??-x 4sin π的值为__________. 44.已知1027)4

(sin =

α,25

7

cos2=α,=αsin ( ) A .

54 B .54- C .5

3- D .53

45.已知51cos sin =+θθ,且2

π

θπ≤≤,则θ2cos = .

46.2002年在北京召开的国际数学家大会,会标是我国以古代数学家赵爽的弦图为基

础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值等于 .

47.已知角α的顶点在坐标原点,始边与x 轴的正半轴重合,角α的终边与圆心在原点的单位圆(半径为1的圆)交于第二象限内的点4

(,)5

A A x ,则sin 2α= .(用数值表示)

2

-

48.已知角α的终边与单位圆22

1x y +=交于点01,cos 22P y α??

???

,则等于 A.12-

B.1

2

C.32-

D.1

49.函数1

()2sin cos()2262π=++x x f x 的最大值为 _________ . 50.已知,4

1

)4cos()43sin(-=--ππx x 则x 4cos 的值等于( )

A.

14 B. 42 C. 2

1

D. 22

51.已知函数2()sin(2)cos(2)2cos 63

f x x x x ππ

=+-++. (1)求(

)12

f π

的值; (2)求函数)(x f 的单调区间; (3)函数)(x f 的图像可由

sin y x =的图像如何变换得来,请详细说明.

52.若(0,)απ∈,且1cos sin 3

αα+=-,则cos2α=( )

(A )

917 (B )179± (C )179

- (D )317

53.已知,在ABC ?中,角,,A B C 的对边分别是,,a b c ,若(2

)a cA B B C c B C C A -?=?

(Ⅰ)求B ∠的大小; (Ⅱ)若()2sin 2cos

2cos 2sin 22B B f x x x =?+?,5[,]1212

x ππ

∈- ,求()f x 的最大值和最小值.

54.已知α为锐角,且满足cos2sin αα=,则α等于( )

A .30或270

B .45

C .60

D .30 55.已知α是第二象限角,且3

sin()5

πα+=-,则tan 2α的值为( ) A .

54 B .723- C .7

24- D .3-

本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

答案第1页,总2页

参考答案

1.1

3 2.(1)()4sin()36x f x π=+

(2)63

cos()65αβ-=. 3.(Ⅰ)32,3

7.(Ⅱ)181154-. 4.D . 5.D 6.43

-

7.725- 8.7

25- 9.(Ⅰ)5,1a b ==; (Ⅱ)31250

10.(1)2;(2)

2616+. 11.(1)最小正周期T π=,单调递增区间为3[,]88

k k π

πππ-++;(2)3(32)4+.

12.313-. 13.C . 14.(1)()2sin()6f x x ππ=+;(2)17

18-. 15.725 16.725 17.247-

18.24

7-

19.3 20.21

- 21.①②③⑤. 22.C 23.B 24.916

- 25.D

26.(1)

3π;(2)11,2 27.(1)6

π;(2)Z k k k ∈++],452,42[π

πππ。 28.3 29.证明:右边=

2

(1sin )cos -α+α[]=22

(1sin )2cos (1sin )cos -α+α-α+α =1-2sin α+2

sin α +2cos α(1-sin α)+2

cos α=2-2sin α+2cos α(1-sin α) =2(1-sin α)(1+cos α)=左边,∴等式成立. 30.(1)213f π??=-

???;(2)3B π=,()11,2f A ??

∈-????

. 31.(1),Z 8x k k ππ=+∈;(2)5[,],Z 88k k k ππππ++∈. 32.(1)T π=,2[,],63

k k k Z π

π

ππ+

+

∈,(2)2,3a b ==,

33.(1)π

()2sin(2)3

f x x =+,ππ()122

k x k =

+∈Z ;

(2)1

9-. 34.

21 35.(1)()f x 的最大值为2,此时x 值的集合为5|,12x x k k Z ππ??

=+∈????

(2)6365- 36.B. 37.B. 38.B 39.43

a =-

或321

2+ 40.(Ⅰ)π,(Ⅱ)2627,

41.(Ⅰ)π; (Ⅱ)函数()f x 在区间ππ[,]66-

上是增函数. 42.

(1)34,(2)4

1 43.4

5- 44.D 45.725-

46.7

25

47.2524- 48.A 49.1 50.C 51.(1)31+; 52.A

53.(1)B ∠=3

π

; (2)max ()3f x =,min ()2f x =-; 54.D 55.C

数学,半角公式

第4讲 倍角、半角公式 北京四中 苗金利 考纲导读 1. 会用两角和与差的正弦、余弦公式推导倍角、半角公式,了解它们的 内在联系。 2. 解决比较简单的应用问题,体会换元思想、方程思想的运用。 知识要点 复习和差角的三角函数公式 sin()sin cos cos sin αβαβαβ+=+ sin()sin cos cos sin αβαβαβ-=- cos()cos cos sin sin αβαβαβ+=- cos()cos cos sin sin αβαβαβ-=+ 典型例题分析 例1、求证下列等式成立: (1)sin 22sin cos ααα=?; (2)2222cos2cos sin 2cos 112sin ααααα=-=-=-. (3)22tan tan 21tan ααα = -; (4)21cos sin 22 αα-=; (5)21cos cos 22 αα+=; (6)21cos tan 21cos ααα -=+; (7)sin 1cos tan 21cos sin ααααα-==+; (8)sin sin )a A b A A ?++, 其中 cos ?=sin ?. 例2、求值: (2)已知3sin()1225π θ-=,求cos()6πθ-. (3)已知sin()4 m π α+=,求sin 2α. 例3、 已知22()sin 2sin cos 3cos f x x x x x =++,求: (1)f (x )的最大值以及取得最大值的自变量的集合; (2)f (x )的单调区间. 例4、当3[,]44 x ππ∈时,求下列函数的值域 (1)cos2sin y x x =+; (2)sin cos sin cos y x x x x =+-; (3)3sin 4cos y x x =+.

倍角公式和半角公式-拔高难度-讲义

倍角公式和半角公式 知识讲解 一、倍角公式 sin 22sin cos ααα=; 2222cos 2cos sin 12sin 2cos 1ααααα=-=-=- 2 2tan tan 21tan α αα = - 3 sin 33sin 4sin ααα=-;3 cos34cos 3cos ααα=-;32 3tan tan tan 313tan αα αα -=- 二、半角公式 1cos sin 2 2α α-=± ;1cos cos 22αα +=±; 1cos 1cos sin tan 2 1cos sin 1cos α ααα ααα --=± == ++ 三、万能公式 2 2tan 2sin 1tan 2 α αα = +;22 1tan 2cos 1tan 2 ααα -= +;2 2tan 2tan 1tan 2 α αα =- 四、公式的推导 sin 2sin()sin cos cos sin 2sin cos ααααααααα=+=+= 22cos2cos()cos cos sin sin cos sin ααααααααα=+=?-?=- 再利用22sin cos 1αα+=,可得: 2222cos2cos sin 2cos 112sin ααααα=-=-=- ()2tan tan 2tan tan 2tan 1tan tan 1tan ααα αααααα +=+= =-?-

sin 2tan 2 cos 2 αα α ===sin 2sin sin 1cos 22 2tan 2 sin cos 2sin cos 2 22 αα α α αα ααα-=== sin 2cos sin sin 22 2tan 2 1cos cos 2cos cos 2 22 αα α α αα ααα===+ 【说明】这里没有考虑 cos sin 2 2 α α ==,实际处理题目的时候需要把等于0的情况分出 来单独讨论一下. 五、综合运用 1.倍角、半角、和差化积、积化和差等公式的运用 1)并项功能: 2221sin 2sin cos 2sin cos (sin cos )ααααααα±=+±=± 2)升次功能 : 2222cos 2cos sin 2cos 112sin ααααα=-=-=- 3)降次功能: 2 21cos 21cos 2cos ,sin 22 αα αα+-= = 2.三角变换中常用的数学思想方法技巧有: 1)角的变换:和、差、倍、半、互余、互补的相对性,有效沟通条件与结论中角的差异, 比如:3015453060452? ?=?-?=?-?= , ()()22 α ααββαββ=-+=+-=? ()()()()ππ 2()()44 ααβαβαββααα=++-=+--=+-- ()()222βαβαβαααβα? ?-=-+=-=-- ?? ? π π π π π π 244362 αααααα?????????? +-=++-=++-= ? ? ? ? ??????????? π3ππ2ππ5ππ443366αααααα????????????++-=++-=++-= ? ? ? ? ? ?????????????

倍角公式与半角公式习题

两角和与差的三角函数 1.若cos 4,且 5 2 .(本小题满分12 分)(1)求的表达式;(2)设,,,求的值.3.在非等腰△ ABC中, 0, ,则tg 2 已知函数的最 小正周期为,且. a,b,c 分别是三个内角A,B,C的对边,且a=3,c=4 , C=2A. (Ⅰ)求cosA 及 b 的 值; Ⅱ)求cos( 3 2A)的值. 4.已知sin( 6 A .1 ,则cos2()的值是()33 .1 .3 5.若cos 是第三象限的 角 1 ,则 1 tan 2= ( tan 2 A . D .-2 6.己知R,sin 3cosa 5 ,则tan 2a= 7.已知cos( ) 4 8.已知cos( ) 4 4 ,则sin2 5 4 ,则sin2 5 9.在ABC 中,内角A,B,C 的对边分别为a,b,c且a b,已知cosC 2B 2 A sin Acos sin Bcos 22 (Ⅰ)求 a 和b的值;(Ⅱ)求cos(B C) 的值.2 1sin C .2 10.已知函数f (x)2sin( 6)(0,x R)的最小正周期为 1)求的值; 2 2)若f ()2 3 (0, ),求cos2 的值. 8 11.已知函数f (x) 2 2sin xcosx 2sin x 1(x R) . 1)求函数f (x)的最小正周期和单调递增区 间; 2)若在ABC中,角A,B ,C的对边分别为a,b,c, A 为锐角, 且f (A 2,求ABC面积S的最大值.3

12.已知函数 y log a (x 1) 3,(a 0且 a 1)的图象恒过点 P ,若角 的终边经 过点 P ,则 sin 2 sin2 的值等于 ________ 又是偶函数; 23. y 2sin 2 x 的值域是( 13.已知 (0, ) ,且 sin cos 1 ,则 cos2 的值为( ) 2 A . 14.已知函数 f x Asin( x )(x R, A 0, 0,| | ) 的部分图象如图所 示. 1)试确定函数 f x 的解析式; (2) 若 f ( 2 15 . 已知 sin( 16 . 已知 sin( 17 . 已知 18 . 已知 19 . 设 sin2 20 . 设 f ( ) 21 . ①存在 sin 0; 1 ,求 3 cos(2 3 )的值. 45 ) 45 ) 2 10 2 10 2 ,0),cos( 2 ,0),cos( sin 2cos 3 sin 2(2 且0 且0 4 5 4 5 90 , 90 , ,则 tan2 ,则 tan2 则 cos2 则 cos2 ),则 tan2 的值是 ) sin(2 2 2 2cos 2 ( ) (0, ) 使 sina cosa 2 的值为 的值为 cos( ) 3 ,求 f (3)的值。 1 ;②存在区间 (a,b )使 y cos x 为减函数而 3 ③ y tanx 在其定义域内为增函数;④ y cos2x sin ( x ) 既有最大、最小值, 2 ⑤ y sin |2x | 最小正周期为 6 22 .在△ ABC 中,若 sin ( A )等腰三角形 ( C )等腰或直角三角形 以上命题错误的为 A+B-C ) =sin (B ) (D ) A-B+C ),则△ ABC 必是( ) 直角三角形 等腰直角三角形 A .[ -2,2] B .[0,2] .[ - 2,0] D . R 24 . 已 知 sin 是 方 程 5x 2 7x 6 0 的 根 , 且 是 第 三 象 限 角 , 求 ) ( (

《倍角公式和半角公式》教案1汇总

《倍角公式和半角公式》教案1 一、教学目标 1.知识目标 掌握公式的推导,明确的取值范围。 能运用二倍角公式求三角函数值。 2.能力目标 通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力。 通过综合运用公式,掌握有关技巧,提高分析问题、解决问题的能力。 3.情感目标 通过公式的推导,了解半角公式间以及它们与和角公式之间的内在联系,从而培养逻辑推理能力和辩证唯物主义观点。 二、教学重点、难点 重点是二倍角的正弦、余弦、正切公式以及公式的两种变形。 难点是倍角公式与以前学过的同角三角函数的基本关系、诱导公式、和角公式的综合应用。 三、教学方法 本节课采用观察、赋值、启发探究相结合的教学方法,运用现代化多媒体教学手段,进行教学活动,通过设置问题引导学生观察分析,使学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得倍角公式,对于倍角公式的应用采取讲、练结合的方式进行处理,使学生边学边练,及时巩固,同时设计问题,探究问题,深化对公式的记忆。 四、课时 1课时

五、教学过程 教学环 节 教学内容师生互动设计意图复 习引入复习两角和与 差的三角函数 公式 先让学生回忆两角和与 差的正弦、余弦、正切 公式的来龙去脉,并请 一个同学把这六个公式 写在黑板上 学生板演 教师点评这些公式:一 方面要从公式的推导上 去理解它,另一方面要 从公式的结构特点上去 记忆,还要注意公式的 正、用、逆用和变用。 今天,我们继续学习二 倍角的正弦、余弦和正 切公式 温旧知新,让 学生明确学习 的内容 公 式的推导探索研究 二倍角的 正弦、余弦 和正切公式 请学生想一想,在公式 中对 如何合理赋值,才 能出现 sin2,cos2,tan2 的表达式,并请同学把 对应的等式写在黑板上 1. 引导学生运用已 学过的两角和的三角 函数公式推得二倍角 公式,使学生理解二 倍角公式就是两角和 的三角函数公式的特 例,这样有助于公式 的记忆

第五讲:倍角半角公式汇总

倍角半角公式 题型一:化简与求值 例 1求值:0 01000 1cos 20sin10(tan5tan 5 2sin 20 -+-- 2 = 3. 化简 tan 70cos10201 - 4.化简下列各式: (1 ???? ???????∈+-ππαα2232cos 21212121 , (2 ?? ? ??-?????--απαπα α4cos 4tan 2sin cos 222。 5 .求值:(1 0

00078sin 66sin 42sin 6sin ; (2 0 0020250cos 20sin 50cos 20sin ++ (3 log 92cos log 9 cos log 222ππ ++ 6. 已知函数 2 sin( 2cos(21 (π + - += x x x f . (1求 (x f 的定义域; (2若角α在第一象限且 5 3 cos =α,求(αf 的值 . 1已知 (,0 2

x π ∈- , 4 cos 5 x = ,则 =x 2tan ( A 247 B247-7 24 D724- 2 已知 cos 23 θ= ,则 44 sin cos θθ+的值为( A 1813 B18 11 C97 D 1- 3. 函数 221tan 21tan 2x y x -=+的最小正周期是 (

A 4π B 2 π Cπ D2π 4已知 3 sin( , 45x π -=则 sin 2x 的值为( A 1925 B1625 C1425725 5 函数 x x y 2 4cos sin +=的最小正周期为( A 4π B2π C π D2π 6. 函数 1cos sin x y x -=的周期是( A. 2 π B. π C . 2π D. 4π 7. 若 2 2 4

倍角、半角、和差化积公式

倍角、半角、和差化积公式 一. 教学内容: 3.1 和角公式 3.2 倍角公式和半角公式 二. 教学目的 1. 了解两角和与差的余弦、正弦、正切公式的推导和证明过程,能够利用两角和与差的余弦、正弦、正切公式进行简单的三角函数式的求值、化简和证明,了解两角和与差的余弦、正弦、正切公式的内在联系; 2. 掌握倍角、半角的正弦、余弦、正切公式的推导过程,能够利用倍角、半角的正弦、余弦、正切公式进行求值、化简和证明,了解倍角、半角的正弦、余弦、正切公式的内在联系。 三. 教学重点、难点 重点:能够推导并掌握两角和与差的余弦、正弦、正切公式及倍角、半角的正弦、余弦、正切公式,并应用上述公式进行求值、化简、证明。 难点:能够正确利用上述公式进行求值、化简、证明,并能解决简单实际问题。 四. 知识分析 (一)两角和与差的余弦 1、两角差的余弦公式 推导方法1:向量法 把看成是两个向量夹角的余弦,可以考虑利用两个向量的数量积来研究。如图1,设的终边分别与单位圆交于点P l (,),P2 (,),由于余弦函数是周期为2π的偶函数,所以,我们只需考虑的情况。 图1 设向量 则。 另一方面,由向量数量积的坐标表示,有 于是,对于任意的,都有上述式子成立。 推导方法2:三角函数线法 设、都是锐角,如图2 ,角的终边与单位圆的交点为P l,∠POP1=,则∠Pox=。过点P作MN⊥x 轴于M,则OM即为的余弦线。在这里,我们想法用的三角函数线来表示OM。

图2 过点P作PA⊥OP1于A,过点A作AB⊥x轴于B,过P作PC⊥AB于C,则OA表示,AP表示,并且∠PAC=∠P1Ox=,于是 即 要说明此结果是否对任意角都成立,还要做不少推广工作,并且这项推广工作的过程也是比较繁难的,在此就不进行研究了。 2. 两角和的余弦公式 比较与,并且注意到与之间的联系: 则由两角差的余弦公式得: 即 3. 对公式的理解和记忆 (1)上述公式中的都是任意角。 (2)公式右端的两部分为同名三角函数之积,连接符号与左边的连接符号相反。 (3)要注意和(差)角的相对性,掌握角的变化技巧,如,等。 (二)两角和与差的正弦 1. 公式的导出 即 2. 公式的理解 (1)一样,对任意角均成立,是恒等式。 (2)“和差”公式是诱导公式的推广,诱导公式是“和差”公式的特殊形式。 如

九年级数学半角公式

普通高中课程标准实验教科书—数学第四册[人教版B] 第三章 三角恒等变换 3.2.2半角公式 教学目标: 要求学生能较熟练地运用倍角公式推导半角公式,增强学生灵活运用数学知识和逻辑推理能力 教学重点:半角公式的应用 教学过程 一、复习引入 二倍角公式:αααcos sin 22sin =;)(2αS ααα22sin cos 2cos -=;)(2αC 1cos 22-=αα2sin 21-= α αα2tan 1tan 22tan -= ;)(2αT 二、讲解新课 1、半角公式 α+α-±=αα+±=αα-±=αcos 1cos 12tan ,2cos 12cos ,2cos 12sin α α-=α+α=αsin cos 1cos 1sin 2tan 证:1?在 α-=α2sin 212cos 中,以α代2α, 2 α代α 即得: 2sin 21cos 2α-=α ∴2 cos 12sin 2α-=α 2?在 1cos 22cos 2-α=α 中,以α代2α,2 α代α 即得: 12 cos 2cos 2-α=α ∴2cos 12cos 2α+=α 3?以上结果相除得:α+α-=αcos 1cos 12tan 2

4? 2tan 2cos 2sin 2cos 2sin 2)2sin 21(1sin cos 12αααα α==--=- 2tan 2cos 2sin 12cos 212cos 2sin 2cos 1sin 2ααα ααα α α==-+=+ 2、例子 1如果|cos θ|= 51,25π<θ<3π,则sin 2 θ的值等于 2设5π<θ<6π且cos 2θ=a ,则sin 4 θ等于 3.tan 12π-cot 12π的值等于 4.设25sin 2x+sin x-24=0且x是第二象限角,求tan 2 x 小结:运用倍角公式推导半角公式,增强学生灵活运用数学知识和逻辑推理能力 课堂练习:第154页练习A 、B 课后作业:第155页习题B 3

倍角公式和半角公式一

倍角公式和半角公式一-CAL-FENGHAI.-(YICAI)-Company One1

倍角公式和半角公式一 目标认知: 学习目标: 1.能从两角和差公式导出二倍角的正弦,余弦,正切公式; 2.能运用倍角公式进行简单的恒等变换(包括导出半角公式,积化和差,和差化积公式); 3.体会换元思想,化归思想,方程思想等在三角恒等变换中的作用. 学习重点: 倍角公式及其变形. 学习难点: 倍半角公式变形及应用. 内容解析: 1.倍角公式 在和角公式中令=,即得二倍角公式: ; ; . 注意: (1)二倍角公式的作用在于用单角的三角函数来表达二倍角的三角函数,它适用于二倍角与单角的三 角函数之间的互化问题. (2)“倍角”的意义是相对的,不局限于与的形式.例如与, 与等,也为 引出半角作准备. (3)二倍角公式的记忆可联想相应的和角公式. (4)二倍角的正切公式成立的条件:. (5)熟悉“倍角”与“二次”的关系(升角—降次,降角—升次). (6)公式的逆用及变形:.

2.半角公式 由倍角公式变形得到: ;;; 前两个公式在化简中多用于降次,而开方即得到半角公式: ;;; 其中正负号由的象限确定. 借助倍角公式还可得到另一个半角公式:,好处在 于可以不必考虑正负. 3.积化和差与和差化积(整理的方向,适当换元) (1)积化和差: (2)和差化积: 本周典型例题: 1.已知,求sin2a,cos2a,tan2a的值.解析:∵∴

∴sin2a = 2sinacosa = cos2a = tan2a = 2.已知,求. 解析:注意公式的选择,避开不必要的计算和讨论. =. 3.求值: (1);(2); (3);(4);(5)cos20°cos40°cos80°; 解析:(1)=; (2)=; (3)=; (4)=; (5)cos20°cos40°cos80° = 注意:关注(5)的结构特点.

和差公式二倍角公式及半角公式

三 角 函 数 1.两角和与差的三角函数 βαβαβαsin cos cos sin )sin(±=±; βαβαβαsin sin cos cos )cos( =±; tan tan tan()1tan tan αβαβαβ ±±=。 2.二倍角公式 αααcos sin 22sin =; ααααα2222sin 211cos 2sin cos 2cos -=-=-=; 22tan tan 21tan ααα =-。 3.半角公式: 22cos 1sin 2αα-=,22cos 1cos 2αα+=,2sin 2cos 12αα=-,2cos 2cos 12αα=+ sin 2α =cos 2α= sin 1cos tan 21cos sin α αααα-===+ 4.辅助角公式 | ()sin cos sin a x b x x ?+=+, sin cos ??==其中 5.积化和差公式: ()()[]βαβαβ-++=sin sin 21cos sin a , ()()[]βαβαβ--+=sin sin 2 1sin cos a ()()[]βαβαβ-++= cos cos 21cos cos a , ()()[]βαβαβ--+-=cos cos 21sin sin a 6. 和差化积公式: sin sin 2sin cos 22αβ αβ αβ+-+=, sin sin 2cos sin 22αβ αβ αβ+--=

cos cos 2cos cos 22αβαβαβ+-+=, cos cos 2sin sin 22αβαβαβ+--=- 例题: 例1. 已知α∈( 2π,π),sin α=53,则tan(4 πα+)的值. , 例2.sin163°sin223°+sin253°sin313°的值. 例2. 已知0cos cos 1 sin sin =+=+βαβα,,求cos )的值(βα+。 ¥ 例3. 若的值求,x x x x x tan 1cos 22sin ,471217534cos 2-+<<=??? ??+πππ。 ' 例5.已知正实数a,b 满足的值,求a b b a b a 158tan 5sin 5cos 5cos 5sin ππππ π=-+。

(完整版)两倍角与半角公式与万能公式.doc

两倍角公式、半角公式、万能公式 ① sin( ) sin cos cos sin ; ② cos( ) cos cos sin sin ; ③ tan( ) tan tan 令1 tan tan 二倍角公式: ① sin 2 2sin cos ; ② cos2 cos2 sin 2 2 cos2 1 1 2sin 2 ; ③ tan 2 2 tan 1 tan 2 两倍角公式中 sin 2 2 sin cos 是两个函数之积,可在(sincos ) 2 中产生。两倍角是“相对的” ,应该广义地理解。 如 cos4 cos2 2 sin 2 2 2 cos2 2 1 1 2 sin 2 2 tan( ) 2tan 2 等等tan 2 1 2 升次公式: sin2 1 cos2 、 cos2 1 cos2 ; 2 2 见到平方就降次,降次角加倍 降次公式: 1 cos 2 cos2 2 1 cos 2 sin 2 2 见到 1 cos 、 1 cos 就升次,升次角减半并项公式 : 1 sin 2 = (sin cos ) 2 半角公式: sin =±1 cos , 2 2 cos =±1 cos , 2 2 1

tg =± 1 cos = sin = 1 cos . 2 1 cos 1 cos sin 半角公式中的正负号如何选取?依照左边的函数值而定。 2 如果给你象限角,如I ,的终边在第几象限?公式前的号如何选取? 2 如果给你区间角,如 3 ,4 ,的终边在第几象限?公式前的号如何选取? 2 如果给你三角比值,如sin cos 0 的终边在第几象限?公式前的号如何选取?tan cos , 0 2 半角的正切公式中的后两个tg = sin =1 cos 前面没有正负号, 2 1 cos sin 万能公式:(并非万能,仅是用tan 可将 sin 、 cos 、 tan 都表示出来的含义) 2 sin α = 2 tan 2 , 1 tan2 2 1 tan 2 cos α = 2 , 1 tan2 2 2 tan tan α = 2 1 tan2 2 题型一、求值问题 补充问题 已知 cos( ) 1 , sin( ) 2 ,且 4 2 , 4 2 9 2 3 4 求 cos( ) 的值 解:考虑目标角和已知角的关系:()—()= 22 2 再运用两倍角公式求值 题型二、化简问题 2

倍角公式和半角公式推导过程

这篇文章小编给大家分享三角函数倍角公式和半角公式以及倍角公式和半角公式的推导过程,一起看看具体内容。 三角函数半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) 三角函数倍角公式 Sin2A=2SinA·CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=2tanA/1-tanA^2 二倍角公式推导过程 sin2A=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA cos2A=cos(A+A)=cosAcosA-sinAsinA=(cosA)^2-(sinA)^2=2(cosA)^2-1 =1-2(sinA)^2 tan2A=tan(A+A)=(tanA+tanA)/(1-tanAtanA)=2tanA/[1-(tanA)^2] 半角公式推导过程 已知公式 sin2α=sin(α+α)=sinαcosα+cosαsinα=2sinαcosα cos2α=cos(α+α)=cosαcosα-sinαsinα=cos2α-sin2α=2cos2α-1=1-2sin2α① 半角正弦公式

由等式①,整理得:sin2α=1-cosα/2 将α/2带入α,整理得:sin2α/2=1-cosα/2 开方,得sinα/2=±√((1-cosα)/2) 半角余弦公式 由等式①,整理得:cos2α+1=2cos2α 将α/2带入,整理得:cos2α/2=cosα+1/2 开方,得cos(α/2)=±√((1+cosα)/2) 半角正切公式 tan(α/2)=[sin(α/2)]/[cos(α/2)]=±√((1-cosα)/((1+cosα))

倍角公式和半角公式

第三章 第六节 倍角公式和半角公式 一、选择题 1.定义运算a b =a 2-ab -b 2,则sin π6cos π6 = ( ) A .-12+34 B .-12-34 C .1+34 D .1-34 2.若点P (cos α,sin α)在直线y =-2x 上,则sin2α+2cos2α的值是 ( ) A .-145 B .-75 C .-2 D.45 3.已知角α在第一象限且cos α=35,则1+2cos(2α-π4)sin(α+π2 )等于 ( ) A.25 B.75 C.145 D .-25 4.sin(180°+2α)1+cos2α·cos 2αcos(90°+α) 等于 ( ) A .-sin α B .-cos α C .sin α D .cos α 5.当0

倍角公式与半角公式习题(绝对物超所值)

两角和与差的三角函数 1.若4 cos 5α= ,且()0,απ∈,则tg 2 α= . 2.(本小题满分12分)已知函数 ()sin() 6f x A x π ω=+(0,0)A ω>>的最小正周期为6T π=,且(2)2f π=. (1)求()f x 的表达式; (2)设 ,[0,] 2π αβ∈, 16(3)5f απ+= ,520 (3)213f πβ+=- ,求cos()αβ-的值. 3.在非等腰△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,且a=3,c=4,C=2A . (Ⅰ)求cosA 及b 的值; (Ⅱ)求cos(3π –2A)的值. 4.已知31)6sin(=-απ,则)3 (2cos απ +的值是( ) A . 97 B .31 C .31- D .9 7- 5.若4cos 5θ=- ,θ是第三象限的角,则 1tan 21tan 2 θ θ-+=( ) A .12 B .12- C .3 5 D .-2 6.己知 ,sin 3cos 5a R a a ∈+=,则tan 2a=_________. 7.已知==+ απ α2sin ,54 )4cos(则 . 8.已知==+απα2sin ,5 4 )4cos(则 . 9.在ABC ?中,内角,,A B C 的对边分别为,,a b c 且a b >,已知4 cos 5 C = ,32c =,2 221sin cos sin cos sin 222 B A A B C ++=. (Ⅰ)求a 和b 的值; (Ⅱ)求cos()B C -的值. 10.已知函数()2sin()(0,)6 f x x x R ωωπ=+>∈的最小正周期为π. (1)求ω的值; (2)若2 ()3 f α= ,(0,)8πα∈,求cos 2α的值. 11.已知函数2 ()2sin cos 2sin 1()f x x x x x R =-+∈.

倍角公式和半角公式一

倍角公式和半角公式一目标认知:Ej 学习目标:in 1.能从两角和差公式导出二倍角的正弦,余弦,正切公式; 2.能运用倍角公式进行简单的恒等变换(包括导出半角公式,积化和差,和差化积公式); 3.体会换元思想,化归思想,方程思想等在三角恒等变换中的作用. 学习重点:Q 倍角公式及其变形. 学习难点:s 倍半角公式变形及应用. 内容解析:Ei 1 .倍角公式口 在和角公式中令凸=Q,即得二倍角公式: sm3Q;= ^EincK 匚os a ; F r *"■a cos2□:= CCS a- sin a = 2cos G-1 = 1-2sin a ; 亠r 2 tan ft tan 2Q:=--- 2—— 1 - tan a 注意: (1)二倍角公式的作用在于用单角的三角函数来表达二倍角的三角函数,它适用于二倍角与单角的三 角函数之间的互化问题. a 0;+ P e + Q (2) “倍角”的意义是相对的,不局限于2◎与^的形式.例如□■与3,2 与4 等,也为 引出半角作准备. 二倍角公式的记忆可联想相应的和角公式. 二倍角的正切公式成立的条件: U丰此兀+ 理— + —,归E Z 2 2 A 熟悉“倍角”与“二次”的关系(升角一降次,降角一升次) (6) 3 COE or = 公式的逆用及变形: 1 +cos 2a . 1 1 - c

2.半角公式E1 由倍角公式变形得到: 曲吧=上更竺 2 l-HCOSd :; 前两个公式在化简中多用于降次,而开方即得到半角公式: a 其中正负号由2的象限确定. 不必考虑正负. 3.积化和差与和差化积(整理的方向,适当换元) S3 (1)积化和差: sin 戸=—凶n (臂+ Q ) +徂口(说一用]. COE sin 戸二一Win (臂十 戸)- COE cos 戸=—+ 戸)+UQ 占(◎一 戸打. sin iXsin # = — — + Q-cos (门;一0)]. 2 (2)和差化积: .C r .时 0 口一 0 sm ci' + sin p=2ELn ----- c os ----- . 2 2 .c r 6r+0 . a sin sin Q = £ COE ------- s in ----- . 2 2 . 0^+ 8 a- 6 COE O^ + COE Q = 2 COS --- cos ---- . L 2 2 - r . a+声.a-fi COE ①一匚OK 0 = —2 fin Ein ---- L 2 2 本周典型例题:闺 沁■X = 2.otE 〔卫加 1 .已知 口 2 ,求 sin2a , cos2a , tan2a 的值.庄3 飢£ ”中図鼻,盟£ = ±旗心厘 2^2; 2 2 y 1+ COSO :; 借助倍角公式还可得到另一个半角公式: tan — 1 1 + CCS sin a _ 1- cosct 左口 H ,好处在于可以

三角函数半角公式

三角函数半角公式 复习重点:半角角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 复习难点:半角公式的应用 复习内容: 倍角和半角相对而言,两倍角余弦公式的变形可引出半角公式.推导过程中可得到一组降次公式,即,进一步得到半角公式: 降次公式在三角变换中应用得十分广泛,“降次”可以作为三角变换中的一个原则.半角公式在运用时一定要注意正、负号的选取,而是正是负取决于所在的象限.而半角的正切可用α的正弦、余弦表示,即:.这个公式可由二倍角公式得出,这个公式不存在符号问题,因此经常采用.反之用tan也可表示sinα, cosα, tanα,即: ,,这组公式叫做“万能”

公式. 教材中只要求记忆两倍角公式,其它公式并没有给出,需要时可根据二倍角公式及同角三角函数公式推出.

例3.化简求值:(1) csc10°-sec10°(2) tan20°+cot20°-2sec50°解:(1) csc10°-sec10° (2) tan20°+cot20°-2sec50° 例4.求:sin220°+cos250°+sin30°sin70° 解:sin220°+cos250°+sin30°sin70° 例5.已知:.求:cos4θ+sin4θ的值. 解:∵,

积化和差 和差化积 倍角公式 半角公式

1.积化和差公式 证明方法:用和(差)角公式将右边展开即得公式. 积化和差公式记忆口诀 积化和差角加减,二分之一排前边 正余积化正弦和,余正积化正弦差 余弦积化余弦和,正弦积化负余差 2.和差化积公式 sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】 和差化积公式记忆口诀 和差化积2排前,半角加减放右边 正弦和化正余积,正弦差化余正积 余弦和化余弦积,余弦差化负正积。

以上四组公式可以由积化和差公式推导得到 证明过程 sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程因为 sin(α+β)=sinαcosβ+cosαsinβ, sin(α-β)=sinαcosβ-cosαsinβ, 将以上两式的左右两边分别相加,得 sin(α+β)+sin(α-β)=2sinαcosβ, 设α+β=θ,α-β=φ 那么 α=(θ+φ)/2,β=(θ-φ)/2 把α,β的值代入,即得 sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2] 正切的和差化积 tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明) cotα±cotβ=sin(β±α)/(sinα·sinβ) tanα+cotβ=cos(α-β)/(cosα·sinβ) tanα-cotβ=-cos(α+β)/(cosα·sinβ)【注意右式前的负号】证明:左边=tanα±tanβ=sinα/cosα±sinβ/cosβ =(sinα·cosβ±cosα·sinβ)/(cosα·cosβ) =sin(α±β)/(cosα·cosβ)=右边 ∴等式成立

倍角公式和半角公式

半角公式 利用某个角(如A)的正弦,余弦,正切,及其他三角函数,来求某个角的半角(如A/2)的正弦,余弦,正切,及其他三角函数的公式。 sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα=+或-[1-cosα)/(1+cosα)]开二次方 倍角公式是三角函数中非常实用的一类公式. 现列出公式如下: sin2α=2sinαcosα tan2α=2tanα/(1-tan^2(α)) cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 可别轻视这些字符,它们在数学学习中会起到重要作用. 号外: tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα tan(2α)=2tanα/[1-tan^2(α)] ·倍角公式: sin(2α)=2sinα·cosα cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] 其他一些公式 ·三倍角公式: sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα tan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2) ·半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] ·积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] ·其他:

半角及倍角

倍角公式和半角公式: 目标认知: 学习目标: 1.能从两角和差公式导出二倍角的正弦,余弦,正切公式; 2.能运用倍角公式进行简单的恒等变换(包括导出半角公式,积化和差,和差化积公式); 3.体会换元思想,化归思想,方程思想等在三角恒等变换中的作用. 学习重点: 倍角公式及其变形. 学习难点: 倍半角公式变形及应用. 内容解析: 1.倍角公式 在和角公式中令=,即得二倍角公式: ; ; . 注意: (1)二倍角公式的作用在于用单角的三角函数来表达二倍角的三角函数,它适用于二倍角与单角的三 角函数之间的互化问题. (2)“倍角”的意义是相对的,不局限于与的形式.例如与,与 等,也为 引出半角作准备. (3)二倍角公式的记忆可联想相应的和角公式. (4)二倍角的正切公式成立的条件:. (5)熟悉“倍角”与“二次”的关系(升角—降次,降角—升次). (6)公式的逆用及变形:.

2.半角公式 由倍角公式变形得到: ;;; 前两个公式在化简中多用于降次,而开方即得到半角公式: ;;; 其中正负号由的象限确定. 借助倍角公式还可得到另一个半角公式:,好处在于可以不必考虑正负. 3.积化和差与和差化积(整理的方向,适当换元) (1)积化和差: (2)和差化积: 例题: 1.已知,求sin2a,cos2a,tan2a的值. 解析:∵∴ ∴sin2a = 2sinacosa =

cos2a = tan2a = 2.已知,求. 解析:注意公式的选择,避开不必要的计算和讨论. =. 3.求值: (1);(2); (3);(4); (5)cos20°cos40°cos80°; 解析:(1)=; (2)=; (3)=; (4)=; (5)cos20°cos40°cos80°= 注意:关注(5)的结构特点. 4.化简: (1)

倍角公式和半角公式一

倍角公式和半角公式一 Prepared on 24 November 2020

倍角公式和半角公式一 目标认知: 学习目标: 1.能从两角和差公式导出二倍角的正弦,余弦,正切公式; 2.能运用倍角公式进行简单的恒等变换(包括导出半角公式,积化和差,和差化积公式); 3.体会换元思想,化归思想,方程思想等在三角恒等变换中的作用. 学习重点: 倍角公式及其变形. 学习难点: 倍半角公式变形及应用. 内容解析: 1.倍角公式 在和角公式中令=,即得二倍角公式: ; ; . 注意: (1)二倍角公式的作用在于用单角的三角函数来表达二倍角的三角函数,它适用于二倍角与单角的三 角函数之间的互化问题.

(2)“倍角”的意义是相对的,不局限于与的形式.例如与,与等,也为 引出半角作准备. (3)二倍角公式的记忆可联想相应的和角公式. (4)二倍角的正切公式成立的条件:.(5)熟悉“倍角”与“二次”的关系(升角—降次,降角—升次). (6)公式的逆用及变形:. 2.半角公式 由倍角公式变形得到: ;;; 前两个公式在化简中多用于降次,而开方即得到半角公式: ;;; 其中正负号由的象限确定. 借助倍角公式还可得到另一个半角公式:,好处在于可以不必考虑正负. 3.积化和差与和差化积(整理的方向,适当换元) (1)积化和差:

(2)和差化积: 本周典型例题: 1.已知,求sin2a,cos2a,tan2a的值.解析:∵∴ ∴sin2a = 2sinacosa = cos2a = tan2a = 2.已知,求. 解析:注意公式的选择,避开不必要的计算和讨论. =. 3.求值:

三角函数半角公式

三角函数半角公式-CAL-FENGHAI.-(YICAI)-Company One1

三角函数半角公式 复习重点:半角角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 复习难点:半角公式的应用 复习内容: 倍角和半角相对而言,两倍角余弦公式的变形可引出半角公式.推导过程中可得到一组降次公式,即,进一步得到半角公式: 降次公式在三角变换中应用得十分广泛,“降次”可以作为三角变换中的一个原则.半角公式在运用时一定要注意正、负号的选取,而是正是负取决于所在的象限.而半角的正切可用α的正弦、余弦表示,即:.这个公式可由二倍角公式得出,这个公式不存在符号问题,因此经常采用.反之用tan也可表示sinα, cosα, tanα,即:

,,这组公式叫做“万能”公式. 教材中只要求记忆两倍角公式,其它公式并没有给出,需要时可根据二倍角公式及同角三角函数公式推出. 例3.化简求值:(1) csc10°-sec10°(2) tan20°+cot20°-2sec50° 解:(1) csc10°-sec10° (2) tan20°+cot20°-2sec50° 例4.求:sin220°+cos250°+sin30°sin70°

相关文档