文档库 最新最全的文档下载
当前位置:文档库 › 常用截面几何性质计算公式JX

常用截面几何性质计算公式JX

最新几何图形计算公式汇总

小学数学图形计算公式 (C :周长 S :面积 a :边长、长 、底、上底、棱长 b: 宽 、下底 h: 高 d :直径 r :半径 V:体积 ) 1、长方形周长=(长+宽)×2 C=2(a+b) 长方形面积=长×宽 S=ab 2、正方形周长=边长×4 C = 4a 正方形面积=边长×边长 S = a×a = a 2 3、平行四边形面积=底×高 s=ah 4、三角形面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 h = 2s ÷a 三角形底=面积 ×2÷高 5、梯形面积=(上底+下底)×高÷2 s=(a+b)× h÷2 6、圆的周长=直径×圆周率=2×圆周率×半径 C=лd=2лr d=C π r=C 2π 圆的面积=半径×半径×圆周率 S = πr 2 环形的面积=外圆的面积-内圆的面积 S 环=π(R 2-r 2) 7、长方体的棱长总和 = 长×4 + 宽×4 + 高×4 =(长 + 宽 + 高)×4 长方体表面积=(长×宽+长×高+宽×高)×2 S = 2( ab + ah + bh ) 长方体体积=长×宽×高 = 底面积×高 V=abh = sh 8、正方体的棱长总和=棱长×12 正方体表面积=棱长×棱长×6 S 表 = a×a×6 = 6a 2 正方体体积=棱长×棱长×棱长=底面积×高 V = a×a×a = a 3 = sh 9、圆柱的侧面积=底面周长×高 s 侧=ch=πdh=2πrh 圆柱表面积=侧面积+底面积×2 s 表=s 侧+s 底×2 圆柱体积=底面积×高 V 柱 = sh =πr 2h 10、圆锥体体积=底面积×高×13 V 锥 = 13 sh = 1 3 πr 2h 小学数学图形计算公式 (C :周长 S :面积 a :边长、长 、底、上底、棱长 b: 宽 、下底 h: 高 d :直径 r :半径 V:体积 ) 1、长方形周长=(长+宽)×2 C=2(a+b) 长方形面积=长×宽 S=ab 2、正方形周长=边长×4 C = 4a 正方形面积=边长×边长 S = a×a = a 2 3、平行四边形面积=底×高 s=ah 4、三角形面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 h = 2s ÷a 三角形底=面积 ×2÷高 5、梯形面积=(上底+下底)×高÷2 s=(a+b)× h÷2 6、圆的周长=直径×圆周率=2×圆周率×半径 C=лd=2лr d=C π r=C 2π 圆的面积=半径×半径×圆周率 S = πr 2 环形的面积=外圆的面积-内圆的面积 S 环=π(R 2-r 2) 7、长方体的棱长总和 = 长×4 + 宽×4 + 高×4 =(长 + 宽 + 高)×4 长方体表面积=(长×宽+长×高+宽×高)×2 S = 2( ab + ah + bh ) 长方体体积=长×宽×高 = 底面积×高 V=abh = sh 8、正方体的棱长总和=棱长×12 正方体表面积=棱长×棱长×6 S 表 = a×a×6 = 6a 2 正方体体积=棱长×棱长×棱长=底面积×高 V = a×a×a = a 3 = sh 9、圆柱的侧面积=底面周长×高 s 侧=ch=πdh=2πrh 圆柱表面积=侧面积+底面积×2 s 表=s 侧+s 底×2 圆柱体积=底面积×高 V 柱 = sh =πr 2h 10、圆锥体体积=底面积×高×13 V 锥 = 13 sh = 1 3 πr 2h 中小学教师信息技术考试理论试题 一选择题(40分,每一题1分) 1.下面选项是对信息的实质的理解和说明,其中错误的选项是________. A. 信息就是计算机的处理对象 B. 信息就是关于事物运动的状态和规律的知识 C. 信息就是信息,既不是物质,也不是能量 D. 信息就是人类同外部世界进行交换的内容的名称 2. 信息技术在教学中常用作获取学习资源的工具,人们常说,"因特网是知识的海洋".

midas截面几何性质计算

下面我们来讲一下预制梁的横向力分布系数计算 从上面我能看出常见的预制梁包括板梁、小箱梁、T梁 跨中横向力分布系数: 对于板梁和小箱梁由于横向联系比较薄弱,所以采用铰接板梁法 对于T梁有横隔板比较多,认为是刚接,所以采用刚接板梁法 梁端横向力分布系数: 通常采用杠杆法 下面就讲一下30米简支转连续T梁横向力分布系数计算: 主梁横断面见附件 桥博计算横向力分布系数计算需要输入的数据见附件 包括主梁宽、抗弯、抗扭、左板长、左板惯矩、右板长、右板惯矩、主梁跨度 G/E等 首先计算主梁的抗弯抗扭惯矩(中梁、边梁断面尺寸见附件,梁高200cm) 中梁: ==================================================== = MIDAS SPC TEXT OUTPUT FILE = = (Tue Jun 17 20:45:16 2008) = = - - = ==================================================== ==================================================== UNIT: KN . M ==================================================== ==================================================== * Section-P1 (PLANE) ==================================================== * A : * Asx : * Asy : * Ixx : 抗弯惯矩 * Iyy : 0. * Ixy : * J : 抗扭惯矩---------------------------------------------------- * (+)Cx : * (-)Cx : * (+)Cy :

常用几何公式大全

常用几何公式大全 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

材料力学截面的几何性质答案

15-1(I-8) 试求图示三角形截面对通过顶点A并平行于底边BC的轴的惯性矩。 解:已知三角形截面对以BC边为轴的惯性矩是,利用平行轴定理,可求得截面对形心轴的惯性矩 所以 再次应用平行轴定理,得 返回 15-2(I-9) 试求图示的半圆形截面对于轴的惯性矩,其中轴与半圆形 的底边平行,相距1 m。 解:知半圆形截面对其底边的惯性矩是,用 平行轴定理得截面对形心轴的惯性矩

再用平行轴定理,得截面对轴的惯性矩 返回 15-3(I-10) 试求图示组合截面对于形心轴的惯性矩。 解:由于三圆直径相等,并两两相切。它们的圆心构成一个边长为的等边三角形。该等边三角形的形心就是组合截面的形心,因此下面两个圆的圆心,到形心轴的距离是 上面一个圆的圆心到轴的距离是。 利用平行轴定理,得组合截面对轴的惯性矩如下: 返回 15-4(I-11) 试求图示各组合截面对其对称轴的惯性矩。

解:(a)22a号工字钢对其对称轴的惯性矩是。 利用平行轴定理得组合截面对轴的惯性矩 (b)等边角钢的截面积是,其形心距外边缘的距离是28.4 mm,求得组合截面对轴的惯性矩如下: 返回 15-5(I-12) 试求习题I-3a图所示截面对其水平形心轴的惯性矩。关于形心位置,可利用该题的结果。 解:形心轴位置及几何尺寸如图 所示。惯性矩计算如下: 返回 15-6(I-14) 在直径的圆截面中,开了一个的矩形孔,如图所示, 试求截面对其水平形心轴和竖直形心轴的惯性矩和 。

解:先求形心主轴的位置 即 返回 15-7(I-16) 图示由两个20a号槽钢组成的组合截面,若欲使截面对两对称轴的惯性矩和相等,则两槽钢的间距应为多少? 解:20a号槽钢截面对其自身的形心轴、的惯性矩是,;横截面积为;槽钢背到其形心轴的距离是。 根据惯性矩定义和平行轴定理,组合截面对, 轴的惯性矩分别是 ; 若 即

材料力学大作业-组合截面几何性质计算

Harbin Institute of Technology 材料力学电算大作业 课程名称:材料力学 设计题目:组合截面几何性质计算 作者院系: 作者班级: 作者姓名: 作者学号: 指导教师: 完成时间:

一、软件主要功能 X4,X5,X6分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面的形心位置X与面积的乘积 Y4,Y5,Y6分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面的形心位置Y与面积的乘积 Xc,Yc是总截面的形心坐标 Ix1,Ix2,Ix3分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面对通过形心且与x轴平行的轴的惯性矩 Iy1,Iy2,Iy3分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面对通过形心且与y轴平行的轴的惯性矩 Ixy1,Ixy2,Ixy3分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面对通过形心且与x,y轴平行的两轴的惯性积 a是通过形心的主轴与x轴的夹角 Imax,Imin分别是截面对形心主轴的主惯性矩 软件截图: 二、程序源代码 Dim n1 As Double Dim d1(10) As Double Dim X1(10) As Double Dim Y1(10) As Double Dim n2 As Double Dim d2(10) As Double

Dim d3(10) As Double Dim X2(10) As Double Dim Y2(10) As Double Dim n3 As Double Dim h(10) As Double Dim d(10) As Double Dim X3(10) As Double Dim Y3(10) As Double Dim S1 As Double, S2 As Double, S3 As Double Dim X4 As Double, Y4 As Double, X5 As Double, Y5 As Double, X6 As Double, Y6 As Double Dim Xc As Double, Yc As Double Dim Ix1 As Double, Iy1 As Double, Ix2 As Double, Iy2 As Double, Ix3 As Double, Iy3 As Double, Imax As Double, Imin As Double Dim Ixy1 As Double, Ixy2 As Double, Ixy3 As Double Dim a As Double Private Sub Text1_Change() n1 = Val(Text1.Text) For i = 1 To n1 d1(i) = Val(InputBox("输入第" & (i) & "个圆的直径")) X1(i) = Val(InputBox("输入第" & (i) & "个圆的圆心的x坐标值")) Y1(i) = Val(InputBox("输入第" & (i) & "个圆的圆心的y坐标值")) Next i For i = 1 To n1 S1 = S1 + 3.14159 * d1(i) * d1(i) / 4 X4 = X4 + X1(i) * 3.14159 * d1(i) * d1(i) / 4 Y4 = Y4 + Y1(i) * 3.14159 * d1(i) * d1(i) / 4 Next i End Sub Private Sub Text2_Change() n2 = Val(Text2.Text) For i = 1 To n2 d2(i) = Val(InputBox("输入第" & (i) & "个圆环的外径")) d3(i) = Val(InputBox("输入第" & (i) & "个圆环的内径")) X2(i) = Val(InputBox("输入第" & (i) & "个圆的圆心的x坐标值")) Y2(i) = Val(InputBox("输入第" & (i) & "个圆的圆心的y坐标值")) Next i For i = 1 To n2 S2 = S2 + 3.14159 * (d2(i) * d2(i) - d3(i) * d3(i)) / 4 X5 = X5 + X2(i) * 3.14159 * (d2(i) * d2(i) - d3(i) * d3(i)) / 4 Y5 = Y5 + Y2(i) * 3.14159 * (d2(i) * d2(i) - d3(i) * d3(i)) / 4 Next i End Sub Private Sub Text3_Change()

材料力学截面的几何性质答案

~ 15-1(I-8) 试求图示三角形截面对通过顶点A并平行于底边BC的轴的惯性矩。 解:已知三角形截面对以BC边为轴的惯性矩是,利用平行轴定理,可求得截面对形心轴的惯性矩 所以 再次应用平行轴定理,得 返回 ) 15-2(I-9) 试求图示的半圆形截面对于轴的惯性矩,其中轴与半圆形的底边平行,相距1 m。

解:知半圆形截面对其底边的惯性矩是,用 平行轴定理得截面对形心轴的惯性矩 再用平行轴定理,得截面对轴的惯性矩 / 返回 15-3(I-10) 试求图示组合截面对于形心轴的惯性矩。 解:由于三圆直径相等,并两两相切。它们的圆心构成一个边长为的等边三角形。该等边三角形的形心就是组合截面的形心,因此下面两个圆的圆心,到形心轴的距离是 上面一个圆的圆心到轴的距离是。 利用平行轴定理,得组合截面对轴的惯性矩如下: {

返回 15-4(I-11) 试求图示各组合截面对其对称轴的惯性矩。 解:(a)22a号工字钢对其对称轴的惯性矩是。 利用平行轴定理得组合截面对轴的惯性矩 (b)等边角钢的截面积是,其形心距外边缘的距离是 mm,求得组合截面对轴的惯性矩如下: : 返回 15-5(I-12) 试求习题I-3a图所示截面对其水平形心轴的惯性矩。关于形心位置,可利用该题的结果。 解:形心轴位置及几何尺寸如图 所示。惯性矩计算如下:

返回 15-6(I-14) 在直径的圆截面中,开了一个的矩形孔,如图所 示,试求截面对其水平形心轴和竖直形心轴的惯性矩 和。 解:先求形心主轴的位置 ! 即 返回 15-7(I-16) 图示由两个20a号槽钢组成的组合截面,若欲使截面对两对称轴的惯性矩和相等,则两槽钢的间距应为多少 ( 解:20a号槽钢截面对其自身的形心轴、的惯性矩是,;横截面积为;槽钢背到其形心轴的距离是。

midas截面几何性质计算2

看大家对横向力分布系数计算疑惑颇多,特在这里做一期横向力分布系数计算教程(本教程讲的比较粗浅,适用于新手)。 总的来说,横向力分布系数计算归结为两大类(对于新手能够遇到的): 1、预制梁(板梁、T梁、箱梁) 这一类也可分为简支梁和简支转连续 2、现浇梁(主要是箱梁) 首先我们来讲一下现浇箱梁(上次lee_2007兄弟问了,所以先讲这个吧) 在计算之前,请大家先看一下截面 这是一个单箱三室跨径27+34+27米的连续梁,梁高1.55米,桥宽12.95米!! 支点采用计算方法为为偏压法(刚性横梁法) mi=P/n±P×e×ai/(∑ai x ai) 跨中采用计算方法为修正偏压法(大家注意两者的公式,只不过多了一个β) mi=P/n±P×e×ai×β/(∑ai x ai) β---抗扭修正系数β=1/(1+L^2×G×∑It/(12×E×∑ai^2 Ii) 其中:∑It---全截面抗扭惯距 Ii ---主梁抗弯惯距Ii=K Ii` K为抗弯刚度修正系数,见后 L---计算跨径 G---剪切模量G=0.4E 旧规范为0.43E P---外荷载之合力 e---P对桥轴线的偏心距 ai--主梁I至桥轴线的距离 在计算β值的时候,用到了上次课程https://www.wendangku.net/doc/fc7068927.html,/thread-54712-1-1.html 我们讲到的计算截面几何性质中的抗弯惯矩和抗扭惯矩,可以采用midas计算抗弯和抗扭,也可以采用桥博计算抗弯, 或者采用简化截面计算界面的抗扭,下面就介绍一下这种大箱梁是如何简化截面的: 简化后箱梁高度按边肋中线处截面高度(1.55m)计算,悬臂比拟为等厚度板。 ①矩形部分(不计中肋): 计算公式:It1=4×b^2×h1^2/(2×h/t+b/t1+b/t2) 其中:t,t1,t2为各板厚度

截面几何性质答案

第七章 截面几何性质 基本要求与重点 1.形心与重心 (1)理解重心与形心,熟知常见规则图形形心的位置。 (2)记住以下常见规则几何图形的形心位置:圆及圆环、矩形、三角形。 (3)能熟练计算,由规则图形构成的组合图形的形心位置。 2.面积静矩(又称静矩或面矩) (1)了解面积静矩的积分定义,掌握其有限式定义。 (2)能熟练计算组合图形的静矩。 (3)熟知面积静矩的重要性质。 3.惯性矩与极惯性矩。 (1)理解惯性矩与极惯性矩 (2)了解惯性矩与极惯性矩的定义 (3)掌握惯性矩与极惯性矩之间的关系 (4)掌握平行轴定理及组合图形惯性矩的计算方法。 (5)记住圆及圆环对圆心的极惯性矩 (6)记住矩形截面对其对称轴的惯性矩。 4.了解惯性积、形心主轴的概念 主要内容 1.形心与重心 (1)概念与性质 重心是物体的重力中心,形心是几何体的形状中心。对均质物体,重心与形心位置重合。 若存在几何对称同,则形心必在对称轴上。 (2)计算 形心位置的计算公式分积分式与代数式两种。其中,常用的是代数形式的计算公式: 11n n ic i ic i i i c c x A y A x y A A ==????==∑∑, 2.面积静矩(又称静矩或面矩) (1)定义:分为代数式和积分式两种形式 有限式:几何图形的面积乘以形心到某轴的距离的坐标值,称为该图形对该轴的静矩。 积分式:几何图形的元面积乘以点到某轴的距离的坐标值,称为该元面积对该轴的静矩;所有点的元面积静矩之和,为几何图形的对该轴的静矩。 (2)面积静矩的重要性质:若图形对某轴的面积静矩为零,则该轴过这一图形的形心;反之亦然。也就是说,静矩为零与轴过形心互为充要条件。

《材料力学》i截面的几何性质习题解

附录I 截面的几何性质 习题解 [习题I-1] 试求图示各截面的阴影线面积对x 轴的静积。 (a ) 解:)(24000)1020()2040(3 mm y A S c x =+??=?= (b ) 解:)(422502 65 )6520(3mm y A S c x =??=?= (c ) 解:)(280000)10150()20100(3 mm y A S c x =-??=?= (d ) 解:)(520000)20150()40100(3 mm y A S c x =-??=?= [习题I-2] 试积分方法求图示半圆形截面对x 轴的静矩,并确定其形心的坐标。 解:用两条半径线和两个同心圆截出一微分面积如图所示。 dx xd dA ?=)(θ;微分面积的纵坐标:θsin x y =;微分面积对x 轴的静矩为: θθθθθdxd x x dx xd y dx xd y dA dS x ?=??=??=?=sin sin )(2 半圆对x 轴的静矩为:

3 2)]0cos (cos [3]cos []3[sin 3300300 2 r r x d dx x S r r x =--?=-?=?=?? πθθθπ π 因为c x y A S ?=,所以c y r r ??=232132π π 34r y c = [习题I-3] 试确定图示各图形的形心位置。 (a ) 解: 习题I-3(a): 求门形截面的形心位置 矩形 L i B i Ai Y ci AiYci Yc 离顶边 上 400 2 8000 160 1280000 左 150 2 3000 7 5 225000 右 150 2 0 3000 7 5 225000 14000 1730000 Ai=Li*Bi Yc=∑AiYci/∑Ai (b) 解: 习题I-3(b): 求L 形截面的形心位置 矩形 L i B i Ai Y ci AiYc i Y c X ci AiX ci X c 下 1 60 10 160 5 8000 8 128 000

截面几何性质计算

截面几何性质计算 计算过上部的人都知道,在计算横向力分布系数和冲击系数的时候都需要计算截面的抗弯惯距和抗扭惯距,下面就介绍几种方法来计算抗弯惯距和抗扭惯距(本教程拿30米简支转连续箱梁截面做样例): 一、在AUTOCAD中有一个命令massprop可以计算截面的面积、周长、质心、惯性矩 操作简介: 1、首先在CAD中画出如下图的图形; 2、用region命令将图形转化成内外两个区域; 3、用subtract命令求内外区域的差集; 4、用move命令将图形移动至(0,0,0),用scale命令将图形单位调整为米; 5、用massprop命令计算截面性质(可惜这个命令不能计算抗扭惯距) Command: mas MASSPROP Select objects: 1 found Select objects: ---------------- REGIONS ---------------- Area(面积): 1.2739 Perimeter(周长): 13.7034 Bounding box(边缘): X: -1.7000 -- 1.7000 Y: 0.0000 -- 1.6000 Centroid(质心): X: 0.0000 Y: 1.0458 Moments of inertia: X: 1.7883 Y: 0.7922 Product of inertia: XY: 0.0000 Radii of gyration: X: 1.1848 Y: 0.7886 Principal moments and X-Y directions about centroid: I: 0.3950 along [1.0000 0.0000]这就是惯距 J: 0.7922 along [0.0000 1.0000] 2008-6-6 23:10

初中几何证明题公式

1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

截面的几何性质

附录Ⅰ 截面的几何性质 §I ?1 截面的静矩和形心位置 如图I ?1所示平面图形代表一任意截面,以下两积分 ? ??? ?==??A z S A y S A y A z d d (I ?1) 分别定义为该截面对于z 轴和y 轴的静矩。 静矩可用来确定截面的形心位置。由静力学中确定物体重心的公式可得 ? ??? ??? == ??A A z z A A y y A C A C d d 利用公式(I ?1),上式可写成 ? ??? ? ? ?==== ??A S A A z z A S A A y y y A C z A C d d (I ?2) 或 ? ? ? ==C y C z Az S Ay S (I ?3) ? ??????== A S z A S y y C z C (I ?4) 如果一个平面图形是由若干个简单图形组成的组合图形,则由静矩的定义可知,整个图形对某一坐标轴的静矩应该等于各简单图形对同一坐标轴的静矩的代数和。即: ?? ??? ?? ==∑∑==n i ci i y n i ci i z z A S y A S 11 (I ?5) 式中A i 、y ci 和z ci 分别表示某一组成部分的面积和其形心坐标,n 为简单图形的个数。 将式(I ?5)代入式(I ?4),得到组合图形形心坐标的计算公式为 图I ?1

??? ? ?????????==∑∑∑∑====n i i n i ci i c n i i n i ci i c A z A z A y A y 111 1 (I ?6) 例题I ?1 图a 所示为对称T 型截面,求该截面的形心位置。 解:建立直角坐标系zOy ,其中y 为截面的对称轴。因图形相对于y 轴对称,其形心一定在该对称轴上,因此z C =0,只需计算y C 值。将截面分成Ⅰ、Ⅱ两个矩形,则 A Ⅰ=0.072m 2,A Ⅱ=0.08m 2 y Ⅰ=0.46m ,y Ⅱ=0.2m m 323.008.0072.02 .008.046.0072.0II I II II I I 1 1 =+?+?= ++= = ∑∑==A A y A y A A y A y n i i n i ci i c §I ?2 惯性矩、惯性积和极惯性矩 如图I ?2所示平面图形代表一任意截面,在图形平面内建立直角坐标系 zOy 。现在图形内取微面积d A ,d A 的形心在坐标系zOy 中的坐标为y 和z ,到坐标原点的距离为ρ。现定义y 2d A 和z 2d A 为微面积d A 对z 轴和y 轴的惯性矩,ρ2d A 为微面积d A 对坐标原点的极惯性矩,而以下三个积分 ? ??? ? ? ?===???A ρI A z I A y I A A y A z d d d 2 P 22 (I ?7) 分别定义为该截面对于z 轴和y 轴的惯性矩以及对坐标原点的极惯性矩。 由图(I ?2)可见,222z y +=ρ,所以有 ??+=+==A y z A I I A z y A ρI )d (d 222P (I ?8) 即任意截面对一点的极惯性矩,等于截面对以该点为原点的两任意正交坐标轴的惯性矩之和。 另外,微面积d A 与它到两轴距离的乘积zy d A 称为微面积d A 对y 、z 轴的惯性积,而积分 A zyd I A yz ?= (I ?9) 例题I ?1图 图I ?2

各类几何图形计算公式大全

多面体的体积和表面积 心乱方-边长 1高 尸-底面积 □-底面中线的交点 一个组合三角形的面积 jl -iS?Ξ角形的个数 O-锥底各对角线交直 务F 2 -两平行底面的面粧 Ji-底面间距离 闻-一个爼合梯形的面积 相-组合梯老数 7 = ∣^ + ?÷√η?) £ = M +斤4■爲 ^-Cn 厲-对角銭 S-表面耕 加-侧表面积 尺寸符号 心爲1?-边长 0」底面对角线的交点 体积附)底面积(F ) 表面积(小侧表面积(阳 S=6a 2 V = a??* A S = 2(∣z *? + a??+??ft) 51=2?(α + ?) 柱 和 空 心 圆 柱 ∧ 管 F-外半径 1内半径 f-柱壁厚度 P -平均半径 内 外侧面积 圆柱: y = rtS a *? * ft +2∕τfi a ?=-3d??? 空心言圆拄: y r = ∕ACΛa -r a )^3s?ft ^ = 2f rC Λ+r)Λ + 2√Λi -r a ) S=S +? +c)?Λ+2J 7 (Si = (a+if+c)*h

V y = ψ?(j?2 3 + √+?) 5*1 = KHR+r) I= y ∣(R-r)2+h 2 £ =址十疔 ( 0+/) y = -jιr? =2W44r? 3 y=^(4ft+rf) = 157f(??+^ £ 斜 线 直 圆 柱 ?-≡小高度 ?-盘大高度 T -底面半径 ^-^c?+?>rtf 1?α+J —) cc≤ α S l - πr(? +?) r-廐面半径 卜母线长 +?2 =鈕 球半径 d ?弓定底11直径 A-弓形高 一半径 d-直径 4 3 皿' — L.P V = Lf I f =——=0.5236 护 3 6 S=A f tr 2 = =

各种几何图形面积和周长公式

正方形 面积:边长×边长 周长:边长×4 长方形 面积:长×宽 周长:(长+宽)*2 平行四边形 面积=底边*高/2 周长=(底+高)×2 三角形 面积S=√p(p-a)(p-b)(p-c), p=(a+b+c)/2,a.b.c,为三角形三边 周长c=a+b+c 梯形 面积={(上底+下底)×高}÷2 周长=四边之和 圆形 面积=πR2 周长=2πR (R为半径) 椭圆形 面积=A = PI * 半长轴长* 半短轴长 周长= 4A * SQRT(1-E^SIN^T)的(0 - π/2)积分, 其中A为椭圆长轴,E为离心率精确计算要用到积分或无穷级数的求和 半圆形 周长=2R(丌+1) 面积=(丌R的平方)/2 正多边形 面积: 正多边形内角计算公式与半径无关 要已知正多边形边数为N 内角和=180(N-2) 半径为R

圆的内接三角形面积公式:(3倍根号3)除以4再乘以R方 外切三角形面积公式:3倍根号3 R方 外切正方形:4R方 内接正方形:2R方 五边形以上的就分割成等边三角形再算 内角和公式——(n-2)*180` 我们都知道已知A(x1,y1)、B(x2,y2)、C(x3,y3)三点的面积公式为 |x1 x2 x3| S(A,B,C) = |y1 y2 y3| * 0.5 = [(x1-x3)*(y2-y3) - (x2-x3)*(y1-y3)]*0.5 |1 1 1 | (当三点为逆时针时为正,顺时针则为负的) 对多边形A1A2A3、、、An(顺或逆时针都可以),设平面上有任意的一点P,则有: S(A1,A2,A3,、、、,An) = abs(S(P,A1,A2) + S(P,A2,A3)+、、、+S(P,An,A1)) P是可以取任意的一点,用(0,0)时就是下面的了: 设点顺序(x1 y1) (x2 y2) ... (xn yn) 则面积等于 |x1 y1| |x2 y2| |xn yn| 0.5 * abs( | | + | | + ...... + | | ) |x2 y2| |x3 y3| |x1 y1| 其中 |x1 y1| | |=x1*y2-y1*x2 |x2 y2| 因此面积公式展开为: |x1 y1| |x2 y2| |xn yn| 0.5 * abs( | | + | | + ...... + | | )=0.5*abs(x1*y2-y1*x2+x2*y3-y2*x3+...+xn*y1-yn*x1) |x2 y2| |x3 y3| |x1 y1| 周长=n*边长 扇形 面积=1/2rl或1/2ar^2 r为半径,l为扇形弧长,a为扇形的圆心角 l=ar 周长=弧长+2r=nπr/180 +2r

几何公式大全全套

几何公式大全全套 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12 两直线平行,同位角相等

13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论 1 直角三角形的两个锐角互余 19 推论 2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论 3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22 边角边公理有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理有两角和它们的夹边对应相等的两个三角形全等 24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等 26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等

27 定理 1 在角的平分线上的点到这个角的两边的距离相等 28 定理 2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 31 推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和高互相重合 33 推论 3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论 1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的 直角边等于斜边的一半

空间几何体的表面积与体积公式大全

空间几何体的表面积与体积公式大全 一、 全(表)面积(含侧面积) 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥:h c S ‘ 底棱锥侧2 1= ② 圆锥:l c S 底圆锥侧2 1 = 3、 台体 ① 棱台:h c c S )(21 ‘下底上底棱台侧+= ② 圆台:l c c S )(2 1 下底上底棱台侧+= 4、 球体 ① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥 ② 圆锥

3、 ① 棱台 ② 圆台 4、 球体 ① 球:r V 33 4 π=球 ② 球冠:略 ③ 球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高h ' 计算;而圆锥、圆台的侧面积计算时使用母线l 计算。 三、 拓展提高 1、 祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、 阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是r 2的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的3 2 。

分析:圆柱体积:r r h S V r 3 222)(ππ=?==圆柱 圆柱侧面积:r h c S r r 2 42)2(ππ=?==圆柱侧 因此:球体体积:r r V 333 423 2ππ=?=球 球体表面积:r S 24π=球 通过上述分析,我们可以得到一个很重要的关系(如图) + = 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、 台体体积公式 公式: )(31 S S S S h V 下下 上 上 台++= 证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。 延长两侧棱相交于一点P 。 设台体上底面积为S 上,下底面积为S 下高为h 。 易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1 由相似三角形的性质得:PF PE AB CD =

i-截面几何性质-习题答案

习题 I ?1 试求平面图形的形心位置。 [ 解:由对称 m 3.0c =z m 357.02 .04.04.02.02.06.07 .02.04.04.04.02.01.02.06.0c =?+?+???+??+??=y 解:m 093.04 .01.01.03.005 .04.01.015.01.03.0c =?+???+??= z 、 m 193.04 .01.01.03.03 .04.01.005.01.03.0c =?+???+??= y I ?2 试求平面图形的形心坐标。 " O (c) (a) z y — (b)

解: l n n dz z zdz z z l n l n 2 1 0c ++= = ?? ()2 c += -=??n l dz z ydy y l y n l n l n n · 解:由对称 r z =c πππ342 322223 20 2 2c r r r r ydy y r y r ==-= ? I ?3 试求图示截面的阴影线面积对z 轴的静矩。(图中C 为截面形心) — 解:3 c **mm 24000302040=??==y A S z z O (d) (a)

解:3 c **mm 422505.322065=??==y A S z ( I ?4 求以下截面对z 轴的惯性矩。(z 轴通过截面形心) ) 解:() 64 64 64 42414 24 1d d d d I z -= - = πππ 【 解:12 12124 2 414241a a a a I z -=-= I ?5 试求图示三角形截面对通过顶点A 并平行于底边BC 的z 轴的惯性矩。 解: (a) [ (b) |

几何公式大全全套

几何公式大全全套 1过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等

13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理有两角和它们的夹边对应相等的两个三角形全等 24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等

26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

相关文档
相关文档 最新文档