文档库 最新最全的文档下载
当前位置:文档库 › 多晶硅制备技术

多晶硅制备技术

多晶硅制备技术
多晶硅制备技术

第二章太阳能级多晶硅生产工艺简介

近年来出现了不少新技术、新工艺,其中改良西门子法、硅烷热分解法、流化床反应器法三种技术已比较成熟,应用也较为广泛,既可用于太阳能级多晶硅的生产,也可用于电子级多晶硅的生产,其它几种则主要是用于太阳能级多晶硅的生产。

2.1 改良西门子法—闭环式SiHCI3氢还原法

1955年西门子公司研究成功开发了用H2还原SiHCI3,生成的硅沉积在发热的硅芯上的工艺技术,并于1957年建厂进行工业规模生产,这就是通常所说的西门子法。随后,西门子工艺的改进主要集中在减少单位多晶硅产品的原料、辅料、电能消耗以及降低成本等方面,于是形成当今广泛应用的改良西门子法5。

改良西门子法在西门子法工艺基础上,增加还原尾气干法回收系统、SiCl4氢化工艺,实现了闭路循环,所以又称(闭环式SiHCI3氢还原法)。

改良西门子法包括5个主要生产环节:

(1)、SiHCI3的合成

2Si+10HCI 200---800或0.05---3MPa 2SiHCI3+SiCl4+4H2

该反应所用反应器经历了从固定床、搅拌床到流化床的发展过程。工艺也从间歇式发展到连续式。反应器由碳钢制成,预先将硅粉加到反应器中,然后加热到所需地温度后,从底部连续通入氯化氢气体,产物及未反应的物料被连续输出,经除尘精制后,用于生产高纯多晶硅和高纯硅烷。且上述反应为放热反应,反应热为-141.8KJ/mol· L。高温有利于提高反应速率,但同时也导致了三氯氢硅的选择性下降,通过优化反应温度,可明显提高三氯氢硅的选择率。例如在310-—420℃和2—5KPa条件下,硅和氯化氢反应,产物以700—950Kg/h输出,三氯氢硅的选择率竟高达70—78%,或者在冶金级多晶硅中掺入微量的铝时,会加快反

应的速度,降低反应的温度,提高了三氯化硅的收率,其中副产物包括质量分数为1%—2%二氯硅烷和1—4%的缩聚物,其余为四氯化硅。氯化氢气体中的水分会影响三氯氢硅的收率,因此必须严格干燥。硅与氯化氢生成三氯氢硅的反应应该是零级反应,使用纯度大于99.99%的原料硅时,硅的收率较低。

(2) SiHCI3的精馏提纯的原理和流程

利用原料各组分或成分在一定压力下,温度下挥发度不同的特点,采用高效筛板塔进行有效分离,最终得到产品纯度满足太阳能级要求的三氯氢硅产品。6

三氯氢硅精馏的原理图1

图2

三氯氢硅精馏的流程

(3)SiHCI 3的氢还原、

经过精馏提纯过的三氯氢硅在纯氢气环境下,在980℃的硅芯表面上沉积,

生成棒状多晶硅。

SiHCI 3 +2H 2 一定压力、一定温度下 Si + 4 HCI 料液, x F

塔顶产品, x D (Overhead product )

塔底产品 X W (Bottoms product )

液相回流(Liquid reflux )

汽相回流(Vapor reflux )

精馏段(Rectifying section )

提馏段(Stripping section )

再沸器(Reboiler )

冷凝器(condenser )

(4) 尾气的回收

三氯氢硅制备多晶硅的过程中,有约60%的三氯氢硅没有参加反应,过程中氢气的供应主要是保护作用,该反应为释放氢气以及反应产生的氯化氢,四氯化硅,都是重要的原料或工业产品,无论从环保还是从降低物耗的角度出发,均需对尾气中各组分进行回收利用。还原反应后的尾气通过加压低温分离回收.分离出的氯硅烷到精馏塔提纯,氢气回还原炉循环使用,氯化氢送到氯氢化车间合成三氯氢硅7 8。

(5)、SiCl4的氢化分离

3SiCl4+2H2+Si反应温度400—800℃压2—4MPa 4 SiHCI3

该反应为平衡反应,为提高三氯氢硅的收率,优选在氯化氢存在下进行,原料采用冶金级产品通过预活化除去表面的氧化物后,可进一步提高三氯氢硅的收率。三氯氢硅与四氯化硅沸点差距25℃,且不产生共沸物,所以比较容易分离。

改良西门子法的生产流程是用氯和氢化合生成HCI(或外购HCI),HCI 和工业硅微粉在一定的温度下合成SiHCI3,然后对SiHCI3进行分离精馏提纯,提纯后的SiHCI3在氢还原炉内进行化学汽相沉积(CVD)反应生产高纯度多晶硅。该方法通过采用大型还原炉,降低了单位产品的能耗;通过采用SiCl4氢化和尾气干法回收工艺,明显降低了原辅材料的消耗,所生产的多晶硅占当今世界生产总量的65~75%。改良西门子法生产的多晶硅属于高耗能的产业,其中电力成本约占总成本的75%左右9。

目前,国内外现有的多晶硅厂绝大部分采用此法生产太阳能级多晶硅与电子级多晶硅。我国目前已经投产的企业包括峨嵋半导体材料厂(四川峨眉山市)、洛阳中硅(河南洛阳)、新光硅业(四川乐山),在建的企业包括宁夏阳光(宁夏石嘴山)、深圳南玻(湖北宜昌)、爱信硅科技(云南曲靖)、江苏中能(江苏徐州)、江苏顺大(江苏扬州)、亚洲硅业(青海西宁)、江苏大全集团(重庆万州)等。

2.2 新硅烷法——硅烷热分解法

1956年,英国国际标准电气公司的标准电讯实验所研究成功了SiH4热分解制备多晶硅的方法,被称为硅烷法。1959年日本的石冢研究所也同样成功研究出该方法。美国联合碳化物公司(Union Carbide Corporation)研究歧化法制备SiH4,1980年发表最终报告,综合上述工艺并加以改进,诞生了新硅烷法多晶硅生产工艺10。

硅烷法与改良西门子法接近,但中间产品不同,改良西门子法的中间产品是三氯氢硅(SiHCI3),硅烷法的中间产品是硅烷(SiH4)。硅烷是以SiCl4氢化法、硅合金分解法、氢化物还原法、硅的直接氢化法等方法制取,然后将制得的硅烷气提纯后在热分解炉中生产纯度较高的棒状多晶硅。采用该方法生产粒状多晶硅的主要厂商——美国MEMC Pasadena公司是以四氟化硅为原料,采用无氯化工艺生产硅烷,经过提纯的高纯硅烷以液体的形态被贮存在贮罐内。然后将很小的籽晶颗粒导入热分解反应器内,硅烷及氢气按一定比例通入热分解反应器,硅烷在流化床上的籽晶周围进行热分解反应,籽晶颗粒逐渐长大,长到平均尺寸1000 μm左右为止11。

新硅烷法和改良西门子法是目前世界上两种主要的多晶硅生产方法。新硅烷法既可生产粒状多晶硅又可生产棒状多晶硅,改良西门子法主要用于生产棒状多晶硅。新硅烷法与改良西门子法相比, 具有反应温度较低、热效率高、耗电省、原料消耗低、硅烷提纯容易、产品纯度高等特点。特别是随着近几年来直拉单晶硅采用连续加料系统制造技术的发展及其在直拉单晶硅生产工艺上的应用,新硅烷法生产粒状多晶硅工艺成为一种很有前途的新工艺,到较快的发展。

2.3 流化床反应器法

流化床法是美国联合碳化合物公司早年研发的多晶硅制备工艺技术。该方法以SiCl4、H2、HCI和工业硅为原料,在高温高压流化床内(沸腾床)生成SiHCI3,将SiHCI3再进一步歧化加氢反应生成SiH2Cl2,继而生成硅烷气。制得的硅烷气通入加有硅粉的流化床反应器内进行连续热分解反应,生成粒状多晶硅产品。因

为在流化床反应器内参与反应的硅表面积大,所以该方法生产效率高、电耗低、成本低。该方法的缺点是安全性差,危险性大,还有就是产品纯度不高,不过基本能满足太阳能电池生产的使用。因而,该方法比较适合大规模生产廉价太阳能级多晶硅。

目前采用该方法生产颗粒状多晶硅的公司包括:美国MEMC公司、挪威可再生能源公司(REC)、德国威克公司(Wacker)等。特别是REC,它以硅烷气为原料,利用流化床反应器闭环绿色工艺制备颗粒状多晶硅,纯度甚至接近电子级硅,而且基本上不产生副产品和废弃物,这一特有专利技术使得REC在全球太阳能行业中处于独一无二的地位。

REC积极致力于开发新型专利技术,其开发的粒状多晶硅沉积技术——流化床反应器技术(Fluidized Bed Reacto Technology,FBR)的特点是让多晶硅在流化床反应器中沉积,而不是传统的热解沉积炉、西门子反应器。该技术可以极大地降低建厂投资和生产能耗,被认为最有可能成为太阳能专属的多晶硅量产技术。过去几年中,REC进行了该技术的试产,于2006年3月在华盛顿Moses Lake 新建了其第三座硅工厂,利用该技术生产太阳能级多晶硅,并于2006年11月完成了硅烷单元的升级,这使得其太阳能级多晶硅产能翻倍,2008年生产能力将增至13500t。

此外,REC正积极开发下一代流化床多晶硅沉积(Fluidized bed polysilicon deposition,预计2008年可以用于试产13)技术和改良的西门子-反应器技术(Modified Siemens-reactor technology)以进一步降低能耗,从而降低成本。

2.4 冶金法

1996年起,在日本新能源产业技术综合开发机构(NEDO)支持下,日本川崎制铁公司(Kawasaki Steel)开发出由冶金级硅生产太阳能级硅方法,该方法采用电子束和等离子冶金技术结合定向凝固方法,是世界最早宣布成功的冶金法(metallurgical method)。

冶金法的主要工艺是:选择纯度较好的工业硅(即冶金硅)进行水平区熔单

向凝固成硅锭,去除硅锭中金属杂质聚集的部分和外表部分后,进行粗粉碎与清洗,在等离子体融解炉中去除硼杂质,再进行第二次水平区熔单向凝固成硅锭,去除第二次区熔硅锭中金属杂质聚集的部分和外表部分,经粉碎与清洗后,在电子束融解炉中去除碳和磷杂质,直接生成太阳能级多晶硅。

此外,一些公司分别提出了一些湿法精炼的方法,例如德国Wacker公司首先采用酸浸,使得硅金属中的金属杂质进入溶液,随后对浸出后的渣滓进行熔化,最后进行定向凝固;而Bayer AG公司首先也采用酸浸,然后在反应性气体(氢气、水蒸气、四氯化硅)中熔化,以除去其中的一些杂质。最后采用真空和定向凝固的方法,已达到除杂的效果;挪威Elkem公司的方法主要是:金属硅进行破碎后进入酸浸,然后加入高纯金属,采用定向凝固等方法处理硅中的杂质。Elkem 公司已建厂投产,预计到2008年底将形成5000t/年的生产能力。

2.5 蒸汽-液体沉积法

蒸汽-液体沉积法/汽-液沉积法(vapor to liquid deposition,又称作“熔融析出法”)是多晶硅制造商日本德山公司(Tokuyama)于1999~2005年开发出的具有专利权的太阳能级多晶硅制备技术。德山公司开发该技术的最初目标是“低成本”,即尽量从三氯硅烷中找到最大沉积率,而不是追求纯度。利用VLD技术生产出的硅不是粒状,而是大的结晶块。

主要工艺是:将反应器中的石墨管的温度升高到1500℃,流体三氯氢硅和氢气从石墨管的上部注入,在石墨管内壁1500℃的高温下反应生成液体状硅,然后滴入底部,温度回升变成固体粒状的太阳能级多晶硅。据称其沉积速度大大高于制造半导体级多晶硅所达到的水平。

目前,德山公司已经解决与使用VLD法相联系的技术上的大部分困难,完成了年产200t/Y试验线建设, 并开始试生产,但由于扩大生产工艺存在一些问题,原定于2008年的大型商业性工厂建设计划推迟进行,VLD技术完全投入商业应用可能还需要数年时间。

2.6 热交换炉法

美国Crystal Systems公司采用热交换炉法(Heat Exchanger Method)提纯冶金级硅,制备出200 kg、58 cm的方形硅锭。主要工艺为加热-熔化-晶体生长-退火-冷却循环过程,整个生产工艺都由计算机程序控制。该工艺可与各种太阳能电池

工艺兼容,提纯各种低质硅以及硅废料等,还可使冶金级硅的难以提纯的B、P杂质降到了一个理想的数值,所以又称“重掺硅废料提纯法”,该方法最终成本价可望控制在20美元/kg以下。

2.7 无氯技术

无氯技术(Chlorine Free Technology)是由俄罗斯INTERSOLAR中心和美国国家可再生能源实验室(NREL)在前苏联的SiH4热分解法抽取多晶硅的工艺基础上改进开发出的一种专利技术,是一种很有发展前途的太阳能级多晶硅制备技术。其原料为冶金级硅,工艺流程包括:

(1)冶金级硅与乙醇在催化剂作用下280℃时与C2H5OH反应生成Si(OC2H5)3H;

(2)Si(OC2H5)3H在催化剂作用下又分解为SiH4和Si(OC2H5)4;

(3)利用低能耗浓缩与吸附方法从上述混合物中提纯的SiH4在850~900℃的高温下热解生成高纯多晶硅和氢气;水解Si(OC2H5)4可以得到高纯SiO2或硅胶,生成的乙醇可回收利用。利用该工艺技术生产1 kg的多晶硅需要15~30 kWh 的能量,硅产量(多晶硅、主要副产品、硅溶胶)可达80~90%。具体工艺如下:

Si +3 C2H5OH 280℃或催化剂Si(OC2H5)3H+H2

Si(OC2H5)3H 催化剂SiH4 + Si(OC2H5)4

SiH4850~900℃Si + 2H2

Si(OC2H5)4热分解SiO2 +4 C2H5OH

2.8 碳热还原法

碳热还原法是采用高纯碳还原二氧化硅,该方法主要是基于以下反应:

2C + SiO2 电弧1700℃Si + 2 CO

西门子公司的碳热还原工艺为:将高纯石英砂制成团后用压块的炭黑在电弧炉中进行还原12。炭黑是用热HCI浸过,其纯度和氧化硅相当,因此杂质含量

得到了大幅度降低。目前该方法存在的主要问题是碳的纯度得不到保障,炭黑的

来源比较困难。因此如果能采用纯度较高的木炭、焦煤和SiO2作为原材料,这

种方法将非常有发展前景。

目前,碳热还原方法的主要研究方向包括:优化给料的形状、粒度组成;优化反应炉内的温度模式;选择硅从反应炉中提取的最佳条件;优化废气利用(碳

热还原法与其它不同多晶硅制备工艺进行了比较)。

表1 多晶硅制备工艺比较

制备方法西门子法硅烷法碳热还原法每公斤多晶硅耗能

(千瓦时)

170 40~100 30~50 成本(美元)40~80 <20 <20

合成方法(温度、压力)

三氯硅烷(1大气

压、280℃)

硅烷(1大气压、

-180℃)

SiO2+C(1大

气压,1700℃)

反应炉的结构材料高锰、抗腐蚀钢碳钢钢、石英、石

2.9铝热还原法

铝热还原法是利用CaO-SiO2液相助熔剂在1600~1700℃下进行下列反应,对石英砂进行铝热还原。

SiO2 + 4Al →3Si + Al2O3

CaO-SiO2液相助熔剂一方面可以溶解副产物氧化铝,同时又可作为液-液萃取介质。一旦硅被释放出来,因与助熔剂互不相融从而被分离开来。由于硅的密度较小,它将浮在上层,经过一段时间后,将其灌入铸模中进行有控制的正常凝固,以便分离分凝系数小的杂质。用这种新的、半连续的工艺能得到比通常冶金级硅纯度高的硅。它具有较低的硼、碳含量,然后将其进行破碎、酸洗和气—液萃取。

此外,采用高纯金属还原硅的卤化物也是一条比较理想的途径。许多研究人员已采用不同的高纯还原剂还原硅的卤化物,得到纯度比较高的太阳能级多晶硅。但是由于成本和最后产品质量等原因,到目前为止还没有实现工业化生产。

2.10 常压下碘化学气相传输净化法

美国国家可再生能源实验室报道了一种从冶金级硅中制造太阳能级硅的新方法—常压碘化学气相传输净化法(atmospheric pressure iodine chemical vapor transport purification,APIVT)。

首先,碘(I)与冶金级硅反应生成SiI4,高温下SiI4进一步与冶金级硅反应生成SiI2。当原材料Si的温度约为1200℃、衬底温度为1000℃时,SiI2很容易分解,此时Si的沉积速率将大于5 μm/min。

Si + 2I2→SiI4

SiI4 + Si →SiI2

SiI2 →Si + I2

再通过以下几种途径可有效剔除冶金级硅中的杂质:

1)碘与冶金级硅初步反应时,碘化物杂质的形成早于或迟于SiI4的生成

2)SiI4的循环蒸馏提纯过程将使蒸汽压低于SiI4的金属碘化物留在蒸馏塔的底部,而高于SiI4者则到达蒸馏塔的顶部,巨大的蒸汽压差使它们易于分离开来。

3)在Si从SiI2中沉积的过程中,多数金属碘化物的标准生成自由能的负值较大,因而比SiI4和SiI2要稳定得多,且很容易保持为气相,从而在沉积区域不会被重新还原出来。

2.11 锌还原法

在第二次世界大战期间,美国杜邦公司曾采用锌(Zn)还原SiCl4制出多晶硅,供美国的电子公司生产高频二极管,但用途未扩大。此后,日本智索(CHISSO)公司一直以锌还原法制造太阳能级硅的技术为目标,并取得重要进展。日本智索、新日控股、东邦钛3家公司于2007年1月31日设立研究、制造及销售太阳能电池用多晶硅的新公司“日本太阳硅公司”,目标是力争2008年6月确立太阳能电池用多晶硅的量产化技术。

日本智索公司的太阳能级硅新技术工艺是基于四氯化硅(SiCl4)用锌(Zn)还原反应生产多晶硅。虽然这一技术不是新技术,但该新工艺可以生产出6个9纯度的太阳能级硅,而且采用全封闭系统,具有较低的成本。该工艺的具体流程是:

第一:在流化床反应器中,利用Cl2-N2混合物将金属硅氯化为四氯化硅(SiCl4),该反应产率约为100%。

第二:氯化硅蒸汽用蒸馏提纯。

第三:用锌蒸汽还原生成ZnCl2和Si的针状结晶。

副产物ZnCl2从未反应气体中用冷凝法分除,然后固化,经电解可以重复作为原料使用;未反应的SiCl4可再用于还原过程中。

氯化反应是使用日本智索公司的氯硅烷(Chlorosilane)制造技术,还原反应利用日本智索公司上世纪60年代开发的技术。同时还融合了东邦钛为制造金

属钛而开发的电解技术以及新日控股的高纯度金属技术。此次的制造技术于

2002~2005年度与日本新能源和产业技术开发组织(NEDO)共同开发而成。

利用该工艺生产出的太阳能级多晶硅,含杂质Zn量小于1 ppm,其它所有杂质未检出,完全符合太阳能的性能。该工艺生产成本完全可与约2000t/年生产

规模的工厂相竞争。

表2 太阳能级多晶硅生产新工艺研究概况

企业名称国别新工艺研究概况

日本智索

公司

日本计划开展SiCl4锌还原法量产验证性研究

Crystal

Systems

美国热交换炉法

ECN荷兰Energy Research Center of the Nethererlands(ECN)正在研究碳

热还原工艺,目标是研发低成本太阳能级工艺,目前处于实验室阶

段。

Elkem Solar 挪威其开发的冶金级硅化学提纯工艺为:选用纯冶金级硅→渣化→定向凝固→破碎→磨光→化学浸出。Elkem Solar 公司已建厂投产,

预计到2008年底将形成5000t/年的生产能力。

Dow Corning 美国2006年,Dow Corning、Crystal systems Inc 和GE Energy (原Astropower Inc) 合作研发,采用冶金精炼法制备出具有商业价值的

PV1101 太阳能级多晶硅。与传统多晶硅混合使用,获得良好的太阳

能电池特性。虽未见到有关Dow Corning 制备太阳能级多晶硅的工

艺报道,但与它合作的Crystal System Inc 通过熔融金属硅渣化与水

气反应去除硼和磷,然后用HEM炉定向凝固。

HemLock 美国2008年实现以三氯氢硅、二氯二氢硅、硅烷为原料,采用流化

床反应器的多晶硅生产新技术,主工艺过程仍属于西门子工艺。

Invensil 法国等离子纯化冶金硅工艺

JFE Steel 日本1996年起,Kawasaki Steel在NEDO支持下开发的由冶金级硅

生产太阳能级硅方法。采用电子束和等离子冶金技术结合定向凝固

方法,曾建立试验厂,是世界最早宣布成功的冶金法,但一直未用

于生产。JFE Steel在此基础上,加上新的工艺改进,提升了精炼能

力,于2006年6月公告建成年产100t商业线,于10月开始运转,

并宣布要建大生产线。

JSSI 德国利用Silane-FSR(free-space Reactor)生产出粉状硅,然后压制

成型再使用,2008年将形成850t/年的生产能力。

MEMC 美国MEMC 本土工厂采用H2SiF6 与NaAlH4 反应生成的甲硅烷

气为原料,通过流化床反应器闭环工艺生产粒状多晶硅,年生产能

力达2 700t,基本上不产生副产品和废弃物。

NTNU

and SINTEF

挪威熔盐电解法

REC Silicon 挪威其发的流化床反应器技术使多晶硅在流化床反应器中沉积,该技术可以极大地降低建厂投资和生产能耗。2005 年一季度年生产

200t的反应器开始生产性试验。REC正积极开发流化床多晶硅沉积

技术和改良的西门子-反应器技术。

Tokuyam a 日本气态TCS 和氢气从上端进入加热至1500℃的石墨管,被还原出的硅以液态的形式沉积,并滴落,冷却成粒状。完成了年产200t 试

验线建设,并开始试生产。VLD 引导线原计划于2006 年作样品质

量评价和成本目标验证,由于扩大生产工艺存在点问题,原计划均

推迟进行。

Wacker 德国以三氯氢硅和氢气为原料,流化床反应器,工业级试验线用了

两个多晶硅反应器,反应器为FBR型。100t试验线在2004年10月

投入运行,除反应器以外主工艺仍属于西门子工艺。

第三章结果与讨论

随着信息产业和光伏产业的迅速发展,引发了其基础产业—多晶硅的迅猛发展。目前多晶硅材料的生产技术长期以来掌握在美、日、德等3个国家7个公司的l0家工厂手中,形成技术封锁、市场垄断的状况,硅原料供给不足和成本过高已成为制约我国光伏产业发展的瓶颈。近年来出现了不少新技术、新工艺,其中改良西门子法、硅烷热分解法、流化床反应炉法三种技术已比较成熟,应用也较为广泛,既可用于太阳能级多晶硅的生产,也可用于电子级多晶硅的生产,其它几种则主要是用于太阳能级多晶硅的生产。

本文就生产多晶硅的技术以及自己在公司的学习,简要的介绍了改良西门子的生产流程及其存在的优缺点。改良西门子法的生产流程是用氯和氢化合生成HCI(或外购HCI),HCI和工业硅微粉在一定的温度下合成SiHCI3,然后对SiHCI3进行分离精馏提纯,提纯后的SiHCI3在氢还原炉内进行化学汽相沉积(CVD)反应生产高纯度多晶硅。该方法通过采用钟罩式还原炉,降低了单位产品的能耗;通过采用SiCl4氢化和尾气干法回收工艺,明显降低了原辅材料的消耗,减少了对大气的污染。

但同时存在以下的问题需要解决:

(1)能耗问题: 多晶硅行业高耗能,而我国现有工艺耗能远高于国际水平,电价又高度管制,并无价格优势。国际上新的低成本太阳能级多晶硅生产工艺层出不穷,随时有产业化的可能,而我国现有项目绝大多数为改良西门子法。

(2)工艺设备落后,同类产品物料和电力消耗过大,三废问题多,与国际水平相比,国内多晶硅生产物耗能耗高出l倍以上,产品成本缺乏竞争力。

(3)中国光伏产业正在迅速膨胀,很多投资者还在涌入,而可以预见的国内市场又很有限,一方面应当敲响警钟,不要盲目投资;另一方面则应下大力气拉动国内光伏发电市场。

展望

目前多晶硅材料的生产技术长期以来掌握在美、日、德等3个国家7个公司的10家工厂手中,形成技术封锁、市场垄断的状况,硅原料供给不足和成本过高已成为制约我国光伏产业发展的瓶颈。从国际市场上来看,生产方面,未来多晶硅产量的增加来源于:传统大厂的扩产、新进入厂商的产量、物理法等新技术增加的产量。到目前,太阳能级多晶硅生产已有了许多技术突破,诸如上海技术所自主研发的物理提纯法,产出99.9999%以上纯度的太阳能电池硅产品,电耗和水耗分别只有“西门子化学法”的1/3和1/10,不仅使我国有了太阳能基础材料的高地,还首次实现了对日、德等原进口国的出口,确立了在国际光伏产业链上的地位。目前来看,世界市场:2006年全球多晶硅产能为29000吨/年,产量为28800吨。据国际光伏组织预测,至2008年全球多晶硅需求量将达到49550吨,至2010年将达到58800吨。预计到2010年全球多晶硅需求量将达到85000吨,缺口26200吨。国内市场:目前国内多晶硅生产能力约600吨/年,2005年国内多晶硅产量为80吨。预计2007年后,国内多晶硅生产能力将达到l500吨/年。如果目前在建和扩建项目全部达产,到2008年后国内多晶硅产能将达到(4000~5000)吨/年。由于国内太阳能电池产业年增长速度达到35%~5O%,行业预测到2010年我国多晶硅需求量将达到12000吨,缺口达到(7000~8000)吨/年。由于多晶硅产业存在着产能发展规划过大,用量相对有限,国内没有掌握多晶硅核心技术,以及成本高利润空间较小等风险和隐忧,我个人认为目前我国各有关部门应冷静的把握好多晶硅产业发展布局,有关科研机构和相关企业应集中力量突破多晶硅核心技术,为多晶硅发展创造条件。随着科学技术日益快速的发展和太阳能的大规模开发利用,多晶硅的用途越来越广,用量也越来越大,价格也大幅度的提高。我相信通过不断的研究、不断的探索、不断的改进与完善,国内多晶硅产业技术将赶上世界先进水平。

主要参考文献

[1] 蒋荣华,肖顺珍.国内外多晶硅发展现状[J].半导体技术,2001,26(11):7—10.

[2] 郭瑾,李积和.国内外多晶硅工业现状[J].上海有色金属,2007,28(1):20-25,46

[3] 王春江.多晶硅生产与发展[J].化工科技市场,2000,(5):7—9.

[4] 于站良,马文会等.太阳能级硅制备新工艺研究进展[J].轻金属2006,(3):43-47

[5] 梁骏吾.电子级多晶硅的生产工艺[J].中国工程科学,2000,2(12):34—39.

[6] 莫运筹.现行多晶硅生产流程中如何增效降耗问题的探讨[J].世界有色金属,1997,(8):34—37.

[7] 朱骏业.三氯氢硅合成尾气的综合回收[J].世界有色金属,1995,(6):25—28.

[8] 刘建军.多晶硅生产中回收氢气的净化[J].有色冶炼,2000,29(6):17

[9] 丁国江.三氯氢硅和四氯化硅混合比对多晶硅生产的影响[J].四川有色金属,1998,(3):14—15.

[10] ebedev, A. Pinov, Y. Tsuo, E. Ryabenko, D.Strebkov, Е. Chernyshev, Preparation Method for High Purity Silane[J], Russian Patent No. 2129984 (Priority claimed: June 25, 1998. Publ.: Russian Patent Bulletin No. 13, May 5, 1999).

[11] Y. Tsuo, E. Belov, V. Gerlivanov, V. Zadde, S. Kleschevnikova, N. Korneev, E. Lebedev, A. Pinov, E. Ryabenko, D. Strebkov, E. Chernyshev, Method of High Purity Silane Preparation[J], US Patent No. 6,103,942 (Publ.:Aug. 15, 2000. Priority claimed:Apr. 8, 1999).

[12] 汤传斌. 粒状多晶硅生产概况[J]. 有色冶炼, 2001,(3):29-31,42—19.

致谢

本论文在我的指导教师李宗磊老师的悉心指导下完成的。在三年的学习中,李老师不仅在学业上对我悉心指导,在整个研究的思路拓展方面给予了很大的帮助,更在生活上给予了热情的关怀,使我在做人做事上得到全面锻炼。李老师严谨的治学态度,渊博的知识,使学生受益终身。论文得以顺利完成,凝聚了李老师大量的心血,在此,谨向李老师致以最诚挚的谢意。

在三年的大学学习生活中,感谢我的老师李宗磊、乔德阳、赵琪、吴昊、王静等人在生活学习上给予我的帮助。感谢我的家人多年来对我的真诚爱护以及对我学习上的理解和支持,是他们给了我不断前进的勇气和动力,在此表达我深挚的敬意。

最后,向所有关心、支持和帮助过我的老师和同学致以真诚的感谢!

多晶硅的三大生产工艺之比较

多晶硅的三大生产工艺之比较 从西门子法到改良西门子法的演进是一个从开环到闭环的过程。 1955年,德国西门子开发出以氢气(H2)还原高纯度三氯氢硅(SiHCl3),在加热到1100℃左右的硅芯(也称“硅棒”)上沉积多晶硅的生产工艺;1957年,这种多晶硅生产工艺开始应用于工业化生产,被外界称为“西门子法”。 由于西门子法生产多晶硅存在转化率低,副产品排放污染严重(例如四氯化硅SiCl4)的主要问题,升级版的改良西门子法被有针对性地推出。改良西门子法即在西门子法的基础上增加了尾气回收和四氯化硅氢化工艺,实现了生产过程的闭路循环,既可以避免剧毒副产品直接排放污染环境,又实现了原料的循环利用、大大降低了生产成本(针对单次转化率低)。因此,改良西门子法又被称为“闭环西门子法”。 改良西门子法一直是多晶硅生产最主要的工艺方法,目前全世界有超过85%的多晶硅是采用改良西门子法生产的。过去很长一段时间改良西门子法主要用来生产半导体行业电子级多晶硅(纯度在99.9999999%~99.999999999%,即9N~11N的多晶硅);光伏市场兴起之后,太阳能级多晶硅(对纯度的要求低于电子级)的产量迅速上升并大大超过了电子级多晶硅,改良西门法也成为太阳能级多晶硅最主要的生产方法。 2.改良西门子法生产多晶硅的工艺流程 (改良西门子法工艺流程示意图) 改良西门子法是一种化学方法,首先利用冶金硅(纯度要求在99.5%以上)与氯化氢(HCl)合成产生便于提纯的三氯氢硅气体(SiHCl3,下文简称TCS),然后将TCS精馏提纯,最后通过还原反应和化学气相沉积(CVD)将高纯度的TCS转化为高纯度的多晶硅。 在TCS还原为多晶硅的过程中,会有大量的剧毒副产品四氯化硅(SiCl4,下文简称STC)生成。改良西门子法通过尾气回收系统将还原反应的尾气回收、分离后,把回收的STC送到氢化反应环节将其转化为TCS,并与尾气中分离出来的TCS一起送入精馏提纯系统循环利用,尾气中分离出来的氢气被送回还原炉,氯化氢被送回TCS合成装置,均实现了闭路循环利用。这是改良西门子法和传统西门子法最大的区别。

薄膜的材料及制备工艺

薄膜混合集成电路的制作工艺 中心议题:多晶硅薄膜的制备 摘要:本文主要介绍了多晶硅薄膜制备工艺,阐述了具体的工艺流程,从低压化学气相沉积(LPCVD),准分子激光晶化(ELA),固相晶化(SPC)快速热退火(RTA),等离子体增强化学反应气相沉积(PECVD等,进行详细说明。 关键词:低压化学气相沉积(LPCVD);准分子激光晶化(ELA); 快速热退火(RTA)等离子体增强化学反应气相沉积(PECVD) 引言 多晶硅薄膜材料同时具有单晶硅材料的高迁移率及非晶硅材料的可大面积、低成本制备的优点。因此,对于多晶硅薄膜材料的研究越来越引起人们的关注,多晶硅薄膜的制备工艺可分为两大类:一类是高温工艺,制备过程中温度高于600℃,衬底使用昂贵的石英,但制备工艺较简单。另一类是低温工艺,整个加工工艺温度低于600℃,可用廉价玻璃作衬底,因此可以大面积制作,但是制备工艺较复杂。 1薄膜集成电路的概述

在同一个基片上用蒸发、溅射、电镀等薄膜工艺制成无源网路,并组装上分立微型元件、器件,外加封装而成的混合集成电路。所装的分立微型元件、器件,可以是微元件、半导体芯片或单片集成电路。 2物理气相沉积-蒸发 物质的热蒸发利用物质高温下的蒸发现象,可制备各种薄膜材料。与溅射法相比,蒸发法显著特点之一是在较高的真空度条件下,不仅蒸发出来的物质原子或分子具有较长的平均自由程,可以直接沉积到衬底表面上,且可确保所制备的薄膜具有较高纯度。 3 等离子体辅助化学气相沉积--PECVD

传统的CVD技术依赖于较高的衬底温度实现气相物质间的化学反应与薄膜沉积。PECVD在低压化学气相沉积进行的同时,利用辉光放电等离子体对沉积过程施加影响。促进反应、降低温度。 降低温度避免薄膜与衬底间不必要的扩散与化学反应;避免薄膜或衬底材料结构变化与性能恶化;避免薄膜与衬底中出现较大的热应力等。 4低压化学气相沉积(LPCVD)

薄膜制备技术论文

薄膜制备技术论文 高阻隔薄膜的制备技术 【摘要】本文介绍了包装领域中阻隔薄膜的几种基本的制备技术,并对其技术原理和技术特点做了简要的概述,重点介绍普通包装薄 膜表面沉积纳米SiOx作为阻隔材料的优越性和制备方法。纳米氧化 硅薄膜制备包括:物理气相沉积,化学气相沉积两种。物理气相沉 积技术较成熟,已广泛用于当今的众多薄膜生产厂家;化学气相沉积 技术由于沉积速率慢,生产成本高,耗资大,限制了工业化应用。 本文还介绍了一种能够克服上述限制因素的新技术,从而使薄膜的 阻隔性能大大提高。 【关键词】纳米氧化硅薄膜阻隔性能物理气相沉积化学气相沉积引言 社会发展表现在不仅对普通包装材料数量上的增加,对优质保质保鲜包装材料品种和质量的需求也在日益增加。如在食品和医药包 装领域中,包装材料的阻水阻气要求越来越高。高阻隔包装材料通 常指对气液渗透物具有高阻尼作用的材料,即防止氧的侵入以免商 品氧化变质,防止水或水蒸气的渗透以免商品受潮霉变,防止香气、香味和二氧化碳外逸,以免商品变味和变质等。目前阻隔性包装材 料已经成为包装材料的发展趋势,并广泛用于各种应用领域,如电 子显示领域的OLED[1]。 1阻隔材料的发展历程及趋势 阻隔包装材料的发展历程可分为三个阶段:第一代包装材料如PE、PP、PET、PVDC、PVC等。因其阻隔性达不到要求(见表1),使 用越来越少。采用高聚物(比如PEN)可以解决阻隔性和用金属探测 器检查问题,但是成本太高,并且难于循环利用。采用复合膜结构,如三层复合膜PA/黏合剂/PE、五层复合膜LDPE/粘合剂/EVOH/黏合 剂/LDPE等,阻隔性能大大提高,但工艺复杂、回收困难、污染环

多晶硅生产工艺流程.doc

多晶硅生产工艺流程(简介) -------------------------来自于网络收集多晶硅生产工艺流程,多晶硅最主要的工艺包括,三氯氢硅合成、四氯化硅的热氢化(有的采用氯氢化),精馏,还原,尾气回收,还有一些小的主项,制氢、氯化氢合成、废气废液的处理、硅棒的整理等等。 主要反应包括:Si+HCl---SiHCl3+H2(三氯氢硅合 成);SiCl4+H2---SiHCl3+HCl(热氢化);SiHCl3+H2---SiCl4+HCl+Si (还原)多晶硅是由硅纯度较低的冶金级硅提炼而来,由于各多晶硅生产工厂所用主辅原料不尽相同,因此生产工艺技术不同;进而对应的多晶硅产品技术经济指标、产品质量指标、用途、产品检测方法、过程安全等方面也存在差异,各有技术特点和技术秘密,总的来说,目前国际上多晶硅生产主要的传统工艺有:改良西门子法、硅烷法和流化床法。改良西门子法是目前主流的生产方法,采用此方法生产的多晶硅约占多晶硅全球总产量的85%。但这种提炼技术的核心工艺仅仅掌握在美、德、日等7家主要硅料厂商手中。这些公司的产品占全球多晶硅总产量的90%,它们形成的企业联盟实行技术封锁,严禁技术转让。短期内产业化技术垄断封锁的局面不会改变。 西门子改良法生产工艺如下: 这种方法的优点是节能降耗显著、成本低、质量好、采用综合利用技术,对环境不产生污染,具有明显的竞争优势。改良西门子工艺

法生产多晶硅所用设备主要有:氯化氢合成炉,三氯氢硅沸腾床加压合成炉,三氯氢硅水解凝胶处理系统,三氯氢硅粗馏、精馏塔提纯系统,硅芯炉,节电还原炉,磷检炉,硅棒切断机,腐蚀、清洗、干燥、包装系统装置,还原尾气干法回收装置;其他包括分析、检测仪器,控制仪表,热能转换站,压缩空气站,循环水站,变配电站,净化厂房等。 (1)石英砂在电弧炉中冶炼提纯到98%并生成工业硅, 其化学反应SiO2+C→Si+CO2↑ (2)为了满足高纯度的需要,必须进一步提纯。把工业硅粉碎并用无水氯化氢(HCl)与之反应在一个流化床反应器中,生成拟溶解的三氯氢硅(SiHCl3)。 其化学反应Si+HCl→SiHCl3+H2↑ 反应温度为300度,该反应是放热的。同时形成气态混合物 (Н2,НС1,SiНС13,SiC14,Si)。 (3)第二步骤中产生的气态混合物还需要进一步提纯,需要分解:过滤硅粉,冷凝SiНС13,SiC14,而气态Н2,НС1返回到反应中或排放到大气中。然后分解冷凝物SiНС13,SiC14,净化三氯氢硅(多级精馏)。

(完整版)多晶硅生产工艺学

多晶硅生产工艺学 绪论 一、硅材料的发展概况半导体材料是电子技术的基础,早在十九世纪末,人们就发现了半导体材料,而真正实用还是从二十世纪四十年代开始的,五十年代以后锗为主,由于锗晶体管大量生产、应用,促进了半导体工业的出现,到了六十年代,硅成为主要应用的半导体材料,到七十年代随着激光、发光、微波、红外技术的发展,一些化合物半导体和混晶半导体材料:如砷化镓、硫化镉、碳化硅、镓铝砷的应用有所发展。一些非晶态半导休和有机半导休材料(如萘、蒽、以及金属衍生物等)在一定范围内也有其半导休特性,也开始得到了应用。 半导休材料硅的生产历史是比较年青的,约30 年。美国是从 1949?1951年从事半导体硅的制取研究和生产的。几年后其产量就翻了几翻,日本、西德、捷克斯洛伐克,丹麦等国家的生产量也相当可观的。 从多晶硅产量来看,就79 年来说,美国产量1620?1670 吨日本420

?440 吨。西德700?800 吨。预计到85 年美国的产量将达到2700 吨、日本1040 吨、西德瓦克化学电子有限公司的产量将达到3000 吨。 我国多晶硅生产比较分散,真正生产由58 年有色金属研究院开始研究,65 年投入生产。从产量来说是由少到多,到七七年产量仅达70?80吨,预计到85年达到300吨左右。 二、硅的应用半导体材料之所以被广泛利用的原因是:耐高压、硅器件体积小,效率高,寿命长,及可靠性好等优点,为此硅材料越来越多地应用在半导体器件上。硅的用途: 1、作电子整流器和可控硅整流器,用于电气铁道机床,电解食盐,有色金属电解、各种机床的控制部分、汽车等整流设备上,用以代替直流发电机组,水银整流器等设备。 2、硅二极管,用于电气测定仪器,电子计算机装置,微波通讯装置等。 3、晶体管及集成电路,用于各种无线电装置,自动电话交换台,自动控制系统,电视摄相机的接收机,计测仪器髟来代替真空管,在各种无线电设备作为放大器和振荡器。 4、太阳能电池,以单晶硅做成的太阳能电池,可以直接将太阳能转变为电能。 三、提高多晶硅质量的措施和途径:为了满足器件的要求,硅材料的质量好坏,直接关系到晶体管的合格率与电学性能,随着大规模集成电路和MOS 集成电路的发展而获得电路的高可靠性,适应性。因此对半导体材料硅的要求越来越高。 1、提高多晶硅产品质量的措施:在生产过程中,主要矛盾是如何稳定产品的质 量问题,搞好工艺卫生是一项最重要的操作技术,在生产实践中要树立

多晶硅生产工艺及其应用

多晶硅生产工艺及其应用 摘要:随着人们对能源需求的不断增长以及面临传统能源日渐枯竭的问题,人们开始关注新能源的研究,而多晶硅作为制备太阳能电池板重要的原材料也被重视起来。本文主要介绍了多晶硅的生产工艺,主要包括改良西门子法、硅烷法、流化床法等,以及多晶硅在能源方面的应用。 关键词:多晶硅生产工艺应用 在传统能源逐渐被消耗殆尽的情况下,人们开始关注其他新型能源的研究,太阳能作为一种最具潜力、最清洁和最普遍的的新型能源被高度重视。在所有的太阳能电池中得到广泛应用的是硅太阳能电池,这主要是由于硅在自然界中的蕴含量极为丰富,并且它还有良好的机械性能和电学性能。此外,硅材料中的晶体硅,是目前所有光伏材料中研究和应用比较成熟的。在过去几十年中被泛应用,而其在商业太阳能电池应用中也有很高的转换率。因此,在以后的光伏产业中,硅材料特别是多晶硅的研究将会有一个广阔的发展空间。 一、多晶硅的性质 多晶硅作为单质硅的一种特殊存在形态,主要是熔融的单质硅在温度较低状态下凝固时,硅原子会以金刚石晶格形式排列成很多晶核,如果这些晶核生长成不同晶面取向的晶粒时,那么这些晶粒就会结合起来,便结晶形成多晶硅。多晶硅可作为拉制单晶硅的原料,单晶硅与多晶硅的不同主要表现在物理性质方面,例如,在光学性质、热学性质和力学性质等向异性方面;在电学性质方面,单晶硅的导电性也比多晶硅明显。但在化学性质方面,两者则没有明显区别[1]。 二、多晶硅生产工艺 目前,已经工业上制备多晶硅的化学方法主要有改良西门子法、硅烷法和流化床法。 1、改良西门子法 3、流化床法 另外制备多晶硅的工艺还有:冶金法、气液沉积法、高纯金属还原法等。 三、多晶硅的应用 高纯度多晶硅作为重要的电子信息材料,被称为“微电子大厦的基石”。多品硅有比较广泛的用途,除信息产业外,多晶硅还被用来制备太阳能电池板以及生产可控硅元件。基于硅材料质量好、原料丰富、价格较低、工艺较成熟,因此在未来几十年里,没有其他材料可以代替多晶硅成为光伏产业和电子信息产业的原

改良西门子法生产多晶硅工艺流程

改良西门子法生产多晶硅工艺流程 1. 氢气制备与净化工序 在电解槽内经电解脱盐水制得氢气。电解制得的氢气经过冷却、分离液体后,进入除氧器,在催化剂的作用下,氢气中的微量氧气与氢气反应生成水而被除去。除氧后的氢气通过一组吸附干燥器而被干燥。净化干燥后的氢气送入氢气贮罐,然后送往氯化氢合成、三氯氢硅氢还原、四氯化硅氢化工序。 电解制得的氧气经冷却、分离液体后,送入氧气贮罐。出氧气贮罐的氧气送去装瓶。气液分离器排放废吸附剂,氢气脱氧器有废脱氧催化剂排放,干燥器有废吸附剂排放,均由供货商回收再利用。 2. 氯化氢合成工序 从氢气制备与净化工序来的氢气和从合成气干法分离工序返回的循环氢气分别进入本工序氢气缓冲罐并在罐内混合。出氢气缓冲罐的氢气引入氯化氢合成炉底部的燃烧枪。从液氯汽化工序来的氯气经氯气缓冲罐,也引入氯化氢合成炉的底部的燃烧枪。氢气与氯气的混合气体在燃烧枪出口被点燃,经燃烧反应生成氯化氢气体。出合成炉的氯化氢气体流经空气冷却器、水冷却器、深冷却器、雾沫分离器后,被送往三氯氢硅合成工序。 为保证安全,本装置设置有一套主要由两台氯化氢降膜吸收器和两套盐酸循环槽、盐酸循环泵组成的氯化氢气体吸收系统,可用水吸收因装置负荷调整或紧急泄放而排出的氯化氢气体。该系统保持连

续运转,可随时接收并吸收装置排出的氯化氢气体。 为保证安全,本工序设置一套主要由废气处理塔、碱液循环槽、碱液循环泵和碱液循环冷却器组成的含氯废气处理系统。必要时,氯气缓冲罐及管道内的氯气可以送入废气处理塔内,用氢氧化钠水溶液洗涤除去。该废气处理系统保持连续运转,以保证可以随时接收并处理含氯气体。 3. 三氯氢硅合成工序 原料硅粉经吊运,通过硅粉下料斗而被卸入硅粉接收料斗。硅粉从接收料斗放入下方的中间料斗,经用热氯化氢气置换料斗内的气体并升压至与下方料斗压力平衡后,硅粉被放入下方的硅粉供应料斗。供应料斗内的硅粉用安装于料斗底部的星型供料机送入三氯氢硅合成炉进料管。 从氯化氢合成工序来的氯化氢气,与从循环氯化氢缓冲罐送来的循环氯化氢气混合后,引入三氯氢硅合成炉进料管,将从硅粉供应料斗供入管内的硅粉挟带并输送,从底部进入三氯氢硅合成炉。 在三氯氢硅合成炉内,硅粉与氯化氢气体形成沸腾床并发生反应,生成三氯氢硅,同时生成四氯化硅、二氯二氢硅、金属氯化物、聚氯硅烷、氢气等产物,此混合气体被称作三氯氢硅合成气。反应大量放热。合成炉外壁设置有水夹套,通过夹套内水带走热量维持炉壁的温度。 出合成炉顶部挟带有硅粉的合成气,经三级旋风除尘器组成的干法除尘系统除去部分硅粉后,送入湿法除尘系统,被四氯化硅液体洗

薄膜制备方法

薄膜制备方法 1.物理气相沉积法(PVD):真空蒸镀、离子镀、溅射镀膜 2.化学气相沉积法(CVD):热CVD、等离子CVD、有机金属CVD、金属CVD。 一、真空蒸镀即真空蒸发镀膜,是制备薄膜最一般的方法。这种方法是把装有基片的真空室抽成真空,使气体压强达到10ˉ2Pa以下,然后加热镀料,使其原子或者分子从表面气化逸出,形成蒸汽流,入射到温度较低的基片表面,凝结形成固态薄膜。其设备主要由真空镀膜室和真空抽气系统两大部分组成。 保证真空环境的原因有?防止在高温下因空气分子和蒸发源发生反应,生成化合物而使蒸发源劣化。?防止因蒸发物质的分子在镀膜室内与空气分子碰撞而阻碍蒸发分子直接到达基片表面,以及在途中生成化合物或由于蒸发分子间的相互碰撞而在到达基片前就凝聚等?在基片上形成薄膜的过程中,防止空气分子作为杂质混入膜内或者在薄膜中形成化合物。 蒸发镀根据蒸发源的类别有几种: ⑴、电阻加热蒸发源。通常适用于熔点低于1500℃的镀料。对于蒸发源的要求为a、熔点高 b、饱和蒸气压低 c、化学性质稳定,在高温下不与蒸发材料发生化学反应 d、具有良好的耐热性,功率密度变化小。 ⑵、电子束蒸发源。热电子由灯丝发射后,被电场加速,获得动能轰击处于阳极的蒸发材料上,使蒸发材料加热气化,而实现蒸发镀膜。特别适合制作高熔点薄膜材料和高纯薄膜材料。优点有a、电子束轰击热源的束流密度高,能获得远比电阻加热源更大的能量密度,可以使高熔点(可高达3000℃以上)的材料蒸发,并且有较高的蒸发速率。b、镀料置于冷水铜坩埚内,避免容器材料的蒸发,以及容器材料与镀料之间的反应,这对于提高镀膜的纯度极为重要。c、热量可直接加到蒸发材料的表面,减少热量损失。 ⑶、高频感应蒸发源。将装有蒸发材料的坩埚放在高频螺旋线圈的中央,使蒸发材料在高频电磁场的感应下产生强大的涡流损失和磁滞损失(铁磁体),从而将镀料金属加热蒸发。常用于大量蒸发高纯度金属。 分子束外延技术(molecularbeamepitaxy,MBE)。外延是一种制备单晶薄膜的新技术,它是在适当的衬底与合适条件下,沿衬底材料晶轴方向逐层生长新单晶薄膜的方法。外延薄膜和衬底属于同一物质的称“同质外延”,两者不同的称为“异质外延”。 10—Pa的超真空条件下,将薄膜诸组分元素的分子束流,在严格监控之下,直接喷射到衬MBE是在8 底表面。其中未被基片捕获的分子,及时被真空系统抽走,保证到达衬底表面的总是新分子束。这样,到达衬底的各元素分子不受环境气氛的影响,仅由蒸发系统的几何形状和蒸发源温度决定。二、离子镀是在真空条件下,利用气体放电使气体或被蒸发物质离化,在气体离子或被蒸发物质离子轰击作用的同时,把蒸发物或其反应物蒸镀在基片上。 常用的几种离子镀: (1)直流放电离子镀。蒸发源:采用电阻加热或电子束加热;充入气体:充入Ar或充入少量反应气体;离化方式:被镀基体为阴极,利用高电压直流辉光放电离子加速方式:在数百伏至数千伏的电压下加速,离化和离子加速一起进行。 (2)空心阴极放电离子镀(HCD,hollowcathodedischarge)。等离子束作为蒸发源,可充入Ar、其他惰性气体或反应气体;利用低压大电流的电子束碰撞离化,0至数百伏的加速电压。离化和离子加速独立操作。 (3)射频放电离子镀。电阻加热或电子束加热,真空,Ar,其他惰性气体或反应气体;利用射频等离子体放电离化,0至数千伏的加速电压,离化和离子加速独立操作。 (4)低压等离子体离子镀。电子束加热,惰性气体,反应气体。等离子体离化,DC或AC50V

单晶多晶硅片生产工艺流程详解word版本

在【技术应用】单晶、多晶硅片生产工艺流程详解(上)中,笔者介绍了单晶和多晶硅片工艺流程的前半部分,概述了一些工艺流程和概念,以及术语的相关知识。而本文则是从切片工艺开始了解,到磨片和吸杂,看硅片如何蜕变。 切片 切片综述 当单晶硅棒送至硅片生产区域时,晶棒已经过了头尾切除、滚磨、参考面磨制的过程,直接粘上碳板,再与切块粘接就能进行切片加工了。 为了能切割下单个的硅片,晶棒必须以某种方式进行切割。切片过程有一些要求:能按晶体的一特定的方向进行切割;切割面尽可能平整;引入硅片的损伤尽可能的少;材料的损失尽量少。 碳板 当硅片从晶棒上切割下来时,需要有某样东西能防止硅片松散地掉落下来。有代表性的 是用碳板与晶棒通过环氧粘合在一起从而使硅片从晶棒上切割下来后,仍粘在碳板上。 碳板不是粘接板的唯一选择,任何种类的粘接板和环氧结合剂都必须有以下几个特性:能支持硅片,防止其在切片过程中掉落并能容易地从粘板和环氧上剥离;还能保护硅片不受 污染。其它粘板材料还有陶瓷和环氧。 石墨 是一种用来支撑硅片的坚硬材料,它被做成与晶棒粘接部位一致的形状。大多数情况下, 碳板应严格地沿着晶棒的参考面粘接,这样碳板就能加工成矩形长条。当然,碳板也可以和 晶棒的其它部位粘接,但同样应与该部位形状一致。碳板的形状很重要,因为它要求能在碳板和晶棒间使用尽可能少的环氧和尽量短的距离。这个距离要求尽量短,因为环氧是一种相 当软的材料而碳板和晶棒是很硬的材料。当刀片从硬的材料切到软的材料再到硬的材料,可能会引起硅片碎裂。 这里有一些选择环氧类型参考:强度、移动性和污染程度。粘接碳板与晶棒的环氧应有足够强的粘度,才能支持硅片直到整根晶棒切割完成,因此,它必须能很容易地从硅片上移走,只有最小量的污染。 刀片 当从晶棒上切割下硅片时,期望切面平整、损伤小、沿特定方向切割并且损失的材料尽量小。有一个速度快、安全可靠、经济的切割方法是很值得的。 在半导体企业,两种通常被应用的方法是环型切割和线切割。环型切割通常是指内圆切 割,是将晶棒切割为硅片的最广泛采用的方法。 内圆切割

多晶硅薄膜的制备方法

多晶硅薄膜的制备方法 2010年01月21日作者:胡志鹏来源:中国电源博览总第106期编辑:杨宇 摘要:本文介绍了太阳能多晶硅薄膜的主要制备方法。其中化学气相沉积法(CVD)是制备多晶硅薄膜最广泛使用的方法,其中主要有等离子体增强化学气相沉积(PECVD)法、甚高频等离子体增强化学气相沉积系统(VHF-PECVD)、低压化学气相沉积LPCVD和快速热化学气相沉积(RTCVD)。固相晶化技术(SPC)是指通过使固态下的非晶硅薄膜的硅原子被激活,重组,从而使非晶硅薄膜转化为多晶硅薄膜的晶化技术,其中主要包括常规高温炉退火、金属诱导晶化(MIC)。另外还有金属诱导非晶硅晶化。 关键词:太阳能多晶硅薄膜制备方法 为了减少材料浪费,降低成本,单晶硅和多晶硅太阳能电池都在朝薄型化发展。目前晶体硅薄膜电池的晶粒大小从纳晶直到毫米级都有,为了方便,光伏界将它们统称为多晶硅薄膜太阳能电池。由于多晶硅薄膜生产成本低、效率稳定性好、光电转换效率高,近年来随着人们在陷光技术、钝化技术以及载流子束缚等技术方面不断取得进展,多晶硅薄膜电池的研究日益受到人们的重视,未来将成为太阳能电池的主要竞争者。在研究怎样把硅片切薄的同时,人们加大了对多晶硅薄膜电池的研究。 制备多晶硅薄膜的方法有很多种,其中化学气相沉积法(CVD)是制备多晶硅薄膜最广泛使用的方法。在这种方法中,气源,例如硅烷(SiH4),可以在等离子体(PECVD)、催化作用(Hot-Wire CVD)等方法中有几种不同的可行性的分解过程。分解后的物质在经过一系列的气相反应后抵达衬底并沉积生长。在多数情况下,用氢气稀释后的气源来制备多晶硅薄膜,而用纯硅烷来制备非晶硅薄膜。然而,电子束蒸发法(EBE)也有着它独特的优点:相比气相沉积法使用气源,以固体硅材料作为原料的EBE可以有更高的原料利用率。此外,为了获得更高质量的多晶硅薄膜,还可以通过两步法(Two Steps Process)来制备多晶硅薄膜,即:先用CVD或者电子束蒸发(EBE)法制得非晶硅薄膜,再经固相晶化法(SPC)或者快速热处理法(RTP)等进一步制得多晶硅薄膜。 一、化学气相沉积法 1.等离子体增强化学气相沉积(PECVD)法 等离子体增强化学气相沉积法(PEcvD)l61是化学气相沉积方法的一种,是在低压化学气相沉积的同时,利用辉光放电等离子体对过程施加影响,利用PECVD技术可以在非硅衬底上制备晶粒较小的多晶硅薄膜。 在用等离子体增强化学气相沉积方法来制备多晶硅薄膜的过程中,目前都是通入SiH4和H2两者的混合气体作为气源,如若仅仅引入纯SiH4气体,PECVD在衬底上面沉积而得的

多晶硅生产工艺流程定稿版

多晶硅生产工艺流程 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

多晶硅生产工艺流程(简介) -------------------------来自于网络收集 多晶硅生产工艺流程,多晶硅最主要的工艺包括,三氯氢硅合成、四氯化硅的热氢化(有的采用氯氢化),精馏,还原,尾气回收,还有一些小的主项,制氢、氯化氢合成、废气废液的处理、硅棒的整理等等。 主要反应包括:Si+HCl---SiHCl3+H2(三氯氢硅合成);SiCl4+H2---SiHCl3+HCl(热氢化);SiHCl3+H2---SiCl4+HCl+Si(还原)多晶硅是由硅纯度较低的冶金级硅提炼而来,由于各多晶硅生产工厂所用主辅原料不尽相同,因此生产工艺技术不同;进而对应的多晶硅产品技术经济指标、产品质量指标、用途、产品检测方法、过程安全等方面也存在差异,各有技术特点和技术秘密,总的来说,目前国际上多晶硅生产主要的传统工艺有:改良西门子法、硅烷法和流化床法。改良西门子法是目前主流的生产方法,采用此方法生产的多晶硅约占多晶硅全球总产量的85%。但这种提炼技术的核心工艺仅仅掌握在美、德、日等7家主要硅料厂商手中。这些公司的产品占全球多晶硅总产量的90%,它们形成的企业联盟实行技术封锁,严禁技术转让。短期内产业化技术垄断封锁的局面不会改变。 西门子改良法生产工艺如下: 这种方法的优点是节能降耗显着、成本低、质量好、采用综合利用技术,对环境不产生污染,具有明显的竞争优势。改良西门子工艺法生产多晶硅所用设备主要有:氯化氢合成炉,三氯氢硅沸腾床加压合成炉,三氯氢硅水解凝胶处理系统,三氯氢硅粗馏、精馏塔提纯系统,硅芯炉,节电还原炉,磷检炉,硅棒切断机,腐蚀、清洗、干燥、包装系统装置,还原尾气干法回收装置;其他包括分析、检测仪器,控制仪表,热能转换站,压缩空气站,循环水站,变配电站,净化厂房等。 (1)石英砂在电弧炉中冶炼提纯到98%并生成工业硅, 其化学反应SiO2+C→Si+CO2↑

多晶硅薄膜的制备方法

多晶硅薄膜的制备方法 陈文辉 08级光伏材料专科班学号是081503060107 制备多晶硅薄膜的方法有很多种,其中化学气相沉积法(CVD)是制备多晶硅薄膜最广泛使用的方法。在这种方法中,气源,例如硅烷(SiH4),可以在等离子体(PECVD)、催化作用(Hot-Wire CVD)等方法中有几种不同的可行性的分解过程。分解后的物质在经过一系列的气相反应后抵达衬底并沉积生长。在多数情况下,用氢气稀释后的气源来制备多晶硅薄膜,而用纯硅烷来制备非晶硅薄膜。然而,电子束蒸发法(EBE)也有着它独特的优点:相比气相沉积法使用气源,以固体硅材料作为原料的EBE可以有更高的原料利用率。此外,为了获得更高质量的多晶硅薄膜,还可以通过两步法(Two Steps Process)来制备多晶硅薄膜,即:先用CVD 或者电子束蒸发(EBE)法制得非晶硅薄膜,再经固相晶化法(SPC)或者快速热处理 法(RTP)等进一步制得多晶硅薄膜。 一、化学气相沉积法 1.等离子体增强化学气相沉积(PECVD)法 等离子体增强化学气相沉积法(PEcvD)l61是化学气相沉积方法的一种,是在低压化学气相沉积的同时,利用辉光放电等离子体对过程施加影响,利用PECVD 技术可以在非硅衬底上制备晶粒较小的多晶硅薄膜。 在用等离子体增强化学气相沉积方法来制备多晶硅薄膜的过程中,目前都是通入SiH4和H2两者的混合气体作为气源,如若仅仅引入纯SiH4气体,PECVD 在衬底上面沉积而得的薄膜都是非晶硅薄膜。在多晶硅薄膜的沉积过程中,通过射频辉光放电法(Radio Frequency Glow Discharge)分解硅烷,在射频功率的作用下,硅烷气体被分解成多种新的粒子:原子、自由基团以及各种离子等等离子体。这些新的粒子通过迁移、脱氢等一系列复杂的过程后沉积于基板。总体来说多晶硅薄膜的沉积过程可以分为两个步骤:即SiH4气体的分解以及基团的沉积。而SiH4气体的分解又分为两个阶段:首先,在辉光放电下,高能电子与SiH4气体碰撞,使SiH4发生分解。反应中沉积过程的微观过程如图1所示。

多晶硅生产工艺流程电子版本

多晶硅生产工艺流程

多晶硅生产工艺流程(简介) -------------------------来自于网络收集多晶硅生产工艺流程,多晶硅最主要的工艺包括,三氯氢硅合 成、四氯化硅的热氢化(有的采用氯氢化),精馏,还原,尾气回收,还有一些小的主项,制氢、氯化氢合成、废气废液的处理、硅 棒的整理等等。 主要反应包括:Si+HCl---SiHCl3+H2(三氯氢硅合 成);SiCl4+H2---SiHCl3+HCl(热氢化);SiHCl3+H2--- SiCl4+HCl+Si(还原)多晶硅是由硅纯度较低的冶金级硅提炼而 来,由于各多晶硅生产工厂所用主辅原料不尽相同,因此生产工艺 技术不同;进而对应的多晶硅产品技术经济指标、产品质量指标、 用途、产品检测方法、过程安全等方面也存在差异,各有技术特点 和技术秘密,总的来说,目前国际上多晶硅生产主要的传统工艺 有:改良西门子法、硅烷法和流化床法。改良西门子法是目前主流 的生产方法,采用此方法生产的多晶硅约占多晶硅全球总产量的85%。但这种提炼技术的核心工艺仅仅掌握在美、德、日等7家主要硅料厂商手中。这些公司的产品占全球多晶硅总产量的90%,它们形成的企业联盟实行技术封锁,严禁技术转让。短期内产业化技 术垄断封锁的局面不会改变。 西门子改良法生产工艺如下:

这种方法的优点是节能降耗显著、成本低、质量好、采用综合 利用技术,对环境不产生污染,具有明显的竞争优势。改良西门子 工艺法生产多晶硅所用设备主要有:氯化氢合成炉,三氯氢硅沸腾 床加压合成炉,三氯氢硅水解凝胶处理系统,三氯氢硅粗馏、精馏 塔提纯系统,硅芯炉,节电还原炉,磷检炉,硅棒切断机,腐蚀、 清洗、干燥、包装系统装置,还原尾气干法回收装置;其他包括分析、检测仪器,控制仪表,热能转换站,压缩空气站,循环水站, 变配电站,净化厂房等。 (1)石英砂在电弧炉中冶炼提纯到98%并生成工业硅, 其化学反应SiO2+C→Si+CO2↑ (2)为了满足高纯度的需要,必须进一步提纯。把工业硅粉碎并用无水氯化氢(HCl)与之反应在一个流化床反应器中,生成拟溶解的三氯氢硅(SiHCl3)。 其化学反应Si+HCl→SiHCl3+H2↑  反应温度为300度,该反应是放热的。同时形成气态混合物(Н2,НС1,SiНС13,SiC14,Si) 。 (3)第二步骤中产生的气态混合物还需要进一步提纯,需要分解:过滤硅粉,冷凝SiНС13,SiC14,而气态Н2,НС1返回到反应中

多晶硅生产工艺学

多晶硅生产工艺学

绪论 一、硅材料的发展概况 半导体材料是电子技术的基础,早在十九世纪末,人们就发现了半导体材料,而真正实用还是从二十世纪四十年代开始的,五十年代以后锗为主,由于锗晶体管大量生产、应用,促进了半导体工业的出现,到了六十年代,硅成为主要应用的半导体材料,到七十年代随着激光、发光、微波、红外技术的发展,一些化合物半导体和混晶半导体材料:如砷化镓、硫化镉、碳化硅、镓铝砷的应用有所发展。一些非晶态半导休和有机半导休材料(如萘、蒽、以及金属衍生物等)在一定范围内也有其半导休特性,也开始得到了应用。 半导休材料硅的生产历史是比较年青的,约30年。美国是从1949~1951年从事半导体硅的制取研究和生产的。几年后其产量就翻了几翻,日本、西德、捷克斯洛伐克,丹麦等国家的生产量也相当可观的。 从多晶硅产量来看,就79年来说,美国产量1620~1670吨。日本420~440吨。西德700~800吨。预计到85年美国的产量将达到2700吨、日本1040吨、西德瓦克化学电子有限公司的产量将达到3000吨。 我国多晶硅生产比较分散,真正生产由58年有色金属研究院开始研究,65年投入生产。从产量来说是由少到多,到七七年产

量仅达70~80吨,预计到85年达到300吨左右。 二、硅的应用 半导体材料之所以被广泛利用的原因是:耐高压、硅器件体积小,效率高,寿命长,及可靠性好等优点,为此硅材料越来越多地应用在半导体器件上。硅的用途: 1、作电子整流器和可控硅整流器,用于电气铁道机床,电解食盐,有色金属电解、各种机床的控制部分、汽车等整流设备上,用以代替直流发电机组,水银整流器等设备。 2、硅二极管,用于电气测定仪器,电子计算机装置,微波通讯装置等。 3、晶体管及集成电路,用于各种无线电装置,自动电话交换台,自动控制系统,电视摄相机的接收机,计测仪器髟来代替真空管,在各种无线电设备作为放大器和振荡器。 4、太阳能电池,以单晶硅做成的太阳能电池,可以直接将太阳能转变为电能。 三、提高多晶硅质量的措施和途径: 为了满足器件的要求,硅材料的质量好坏,直接关系到晶体管的合格率与电学性能,随着大规模集成电路和MOS集成电路的发展而获得电路的高可靠性,适应性。因此对半导体材料硅的要求越来越高。 1、提高多晶硅产品质量的措施: 在生产过程中,主要矛盾是如何稳定产品的质量问题,搞好

多晶硅制备及工艺

多晶硅制备及工艺 蒋超 材料与化工学院 材料1103班 【摘要】工业硅是制造多晶硅的原料,它由石英砂(二氧化硅)在电弧炉中用碳还原而 成。化学提纯制备高纯硅的方法有很多,其中SiHCl3 氢还原法具有产量大、质量高、成本低等优点,是目前国内外制取高纯硅的主要方法。硅烷法可有效地除去杂质硼和其他金属杂质,无腐蚀性、不需要还原剂、分解温度低和收率高,所以是个有前途的方法。下面介绍SiHCl3 氢还原法(改良西门子法)和硅烷法。 【关键词】改良西门子法硅烷法高纯硅 改良西门子法 1955年,西门子公司成功开发了利用氢气还原三氯硅烷(SiHCl3)在硅芯发热体上沉积硅的工艺技术,并于1957年开始了工业规模的生产,这就是通常所说的西门子法。 在西门子法工艺的基础上,通过增加还原尾气干法回收系统、SiCl4氢化工艺,实现了闭路循环,于是形成了改良西门子法——闭环式SiHCl3氢还原法。 改良西门子法的生产流程是利用氯气和氢气合成HCl(或外购HCl),HCl和冶金硅粉在一定温度下合成SiHCl3,分离精馏提纯后的SiHCl3进入氢还原炉被氢气还原,通过化学气相沉积反应生产高纯多晶硅。具体生产工艺流程见图1。 改良西门子法包括五个主要环节:SiHCl3合成、SiHCl3精馏提纯、SiHCl3的氢还原、尾气的回收和SiCl4的氢化分离。该方法通过采用大型还原炉,降低了单位产品的能耗。通过采用SiCl4氢化和尾气干法回收工艺,明显降低了原辅材料的消耗。 图1:改良西门子法生产工艺流程图

改良西门子法制备的多晶硅纯度高,安全性好,沉积速率为8~10μm/min,一次通过的转换效率为5%~20%,相比硅烷法、流化床法,其沉积速率与转换效率是最高的。沉积温度为1100℃,仅次于SiCl4(1200℃),所以电耗也较高,为120 kWh/kg(还原电耗)。改良西门子法生产多晶硅属于高能耗的产业,其中电力成本约占总成本的70%左右。SiHCl3还原时一般不生产硅粉,有利于连续操作。该法制备的多晶硅还具有价格比较低、可同时满足直拉和区熔要求的优点。因此是目前生产多晶硅最为成熟、投资风险最小、最容易扩建的工艺,国内外现有的多晶硅厂大多采用此法生产SOG硅与EG硅,所生产的多晶硅占当今世界总产量的70~80%。 硅烷法 1956年,英国标准电讯实验所成功研发出了硅烷(SiH4)热分解制备多晶硅的方法,即通常所说的硅烷法。1959年,日本的石冢研究所也同样成功地开发出了该方法。后来,美国联合碳化合物公司采用歧化法制备SiH4,并综合上述工艺且加以改进,便诞生了生产多晶硅的新硅烷法。 硅烷法以氟硅酸、钠、铝、氢气为主要原辅材料,通过SiCl4氢化法、硅合金分解法、氢化物还原法、硅的直接氢化法等方法制取SiH4,然后将SiH4气提纯后通过SiH4热分解生产纯度较高的棒状多晶硅。硅烷法与改良西门子法接近,只是中间产品不同:改良西门子法的中间产品是SiHCl3;而硅烷法的中间产品是SiH4. 图2:硅烷法生产工艺流程图 硅烷法存在成本高、硅烷易爆炸、安全性低的缺点;另外整个过程的总转换效率为0.3,转换效率低;整个过程要反复加热和冷却,耗能高;SiH4分解时容易在气相成核,所以在反应室内生成硅的粉尘,损失达10%~20%,使硅烷法沉积速率(3~8μm/min)仅为西门子法

多晶硅的用途与生产工艺简介

多晶硅产品 的用途与生产工艺简介 黎展荣编写 2008-03-15 多晶硅产品的用途与生产工艺简介 讲课提纲: 一、多晶硅产品的用途 二、国内外多晶硅生产情况与市场分析 三、多晶硅生产方法 四、多晶硅生产的主要特点 五、多晶硅生产的主要工艺过程 讲课想要达到的目的: 通过介绍,希望达到以下几点目的: 1,了解半导体多晶硅有关基本概念与有关名词,为今后进一步学习、交流与提高打下基础; 2,了解多晶硅的主要用途与国内外多晶硅的生产和市场情况,热爱多晶硅事业与行业; 3,了解多晶硅生产方法和多晶硅生产的主要特点,加深对多晶硅生产工艺流程的初步认识; 4,了解公司3000吨/年多晶硅项目的主要工艺过程、工厂的概况、规模、车间工序的相互关联,有利于今后工作的开展。 一、多晶硅产品的用途 在讲多晶硅的用途前,我们先讲一讲半导体多晶硅的有关概念和有关名词。 1,什么是多晶硅? 我们所说的多晶硅是半导体级多晶硅,或太阳能级多晶硅,它主要是用工业硅或称冶金硅(纯度98-99%)经氯化合成生产硅氯化物,将硅氯化物精制提纯后得到纯三氯氢硅,再将三氯氢硅用氢进行还原生成有金属光泽的、银灰色的、具有半导体特性产品,称为半导体级多晶硅。 2,什么是半导体? 所谓半导体是界于导体与绝缘体性质之间的一类物质,导体、半导体与绝缘体的大概分别是以电阻率来划分的,见表1。 3,纯度表示法 半导体的纯度表示与一般产品的纯度表示是不一样的,一般产品的纯度是以主体物质的含量多少来表示,半导体的纯度是以杂质含量与主体物质含量之比来表示的。见表2。 表2 纯度表示法

外购的工业硅纯度是百分比,1个九,“1N”,98%,两个九,“2N”,99%,是指扣除测定的杂质元素重量后,其余作为硅的含量(纯度)。如工业硅中Fe≤0.4%,AL≤0.3%,Ca≤0.3%,共≤1%, 则工业硅的纯度是:(100-1)X100%=99% 。 2),半导体纯度 工业硅中的B含量是0.002%(W),则工业硅纯度对硼来说被视为99.998%,即4N(对B来说)。 半导体硅中的B含量,如P型电阻率是3000Ω.Cm时,查曲线图得B的原子数为4.3X1012原子/Cm3,则半导体的纯度是:4.3X1012 /4.99X1022=0.86X10-10=8.6X10-11(~11N,0.086PPba),或(4.3X1012 X10.81) /(4.99X1022X28)=0.33X10-10=0.033PPbw=3.3X10-11(~11N)。 对B来说,从工业硅的4N提高到11N,纯度提高7个数量级(,千万倍)即B杂质含量要降低6个数量级(1000000,百万倍),因此生产半导体级多晶硅是比较困难的。 3),集成电路的元件数 集成电路的元件数的比较,列于表3。集成电路的集成度越高,则对硅材料纯度的要求越高。 表3 集成电路的元件数比较 据报导:日本在6.1X5.8 mm的硅芯片上制出的VLSI有15万6千多个元件 4),硅片(单晶硅)发展迅速 硅片(单晶硅)发展迅速,见表4。 大规模生产中多晶硅直径一般公认为是120-150 mm比较合适,也研发过200-250 mm。 5),多晶硅、单晶硅、硅片与硅外延片 多晶硅:内部硅原子的排列是不规则的杂乱无章的。 单晶硅:内部硅原子的排列是有规则的(生产用原料是多晶硅)。 硅片:单晶硅经滚磨、定向后切成硅片,分磨片与抛光片。 硅外延片:抛光片经清洗处理后用CVD方法在其上再生长一层具有需求电阻率的单晶硅层,目前

多晶硅薄膜的制备方法

多晶硅薄膜的制备方法 多晶硅薄膜材料同时具有单晶硅材料的高迁移率及非晶硅材料的可大面积、低成本制备的优点。因此,对于多晶硅薄膜材料的研究越来越引起人们的关注,多晶硅薄膜的制备工艺可分为两大类:一类是高温工艺,制备过程中温度高于600C ,衬底使用昂贵的石英,但制备工艺较简单。另一 类是低温工艺,整个加工工艺温度低于600C,可用廉价玻璃作衬底,因此可以大面积制作,但 是制备工艺较复杂。目前制备多晶硅薄膜的方法主要有如下几种: 低压化学气相沉积( LPCVD) 这是一种直接生成多晶硅的方法。LPCVD是集成电路中所用多晶硅薄膜的制备中普遍采 用的标准方法,具有生长速度快,成膜致密、均匀、装片容量大等特点。多晶硅薄膜可采用硅烷气体通过LPCVD法直接沉积在衬底上,典型的沉积参数是:硅烷压力为13.3?26.6Pa,沉积温 度Td=580?630C,生长速率5?10nm/min。由于沉积温度较高,如普通玻璃的软化温度处于 500? 600C,则不能采用廉价的普通玻璃而必须使用昂贵的石英作衬底。 LPCVD法生长的多晶硅薄膜,晶粒具有择优取向,形貌呈“ V'字形,内含高密度的微挛晶缺陷,且晶粒尺寸小,载流子迁移率不够大而使其在器件应用方面受到一定限制。虽然减少硅 烷压力有助于增大晶粒尺寸,但往往伴随着表面粗糙度的增加,对载流子的迁移率与器件的电学稳定性产生不利影响。 固相晶化 (SPC) 所谓固相晶化,是指非晶固体发生晶化的温度低于其熔融后结晶的温度。这是一种间接 生成多晶硅的方法,先以硅烷气体作为原材料,用LPCVD方法在550C左右沉积a-Si:H 薄膜, 然后将薄膜在600C以上的高温下使其熔化,再在温度稍低的时候岀现晶核,随着温度的降低熔融的硅在晶核上继续晶化而使晶粒增大转化为多晶硅薄膜。使用这种方法,多晶硅薄膜的晶粒大 小依赖于薄膜的厚度和结晶温度。退火温度是影响晶化效果的重要因素,在700C以下的退火温 度范围内,温度越低,成核速率越低,退火时间相等时所能得到的晶粒尺寸越大;而在700C以上,由于此时晶界移动引起了晶粒的相互吞并,使得在此温度范围内,晶粒尺寸随温度的升高而增大。经大量研究表明,利用该方法制得的多晶硅晶粒尺寸还与初始薄膜样品的无序程度密切相关, T.Aoyama 等人对初始材料的沉积条件对固相晶化的影响进行了研究,发现初始材料越无序,固相晶化过程中成核速率越低,晶粒尺寸越大。由于在结晶过程中晶核的形成是自发的,因此, SPC多晶硅薄膜晶粒的晶面取向是随机的。相邻晶粒晶面取向不同将形成较高的势垒,需要进行氢化处理来提高 SPC多晶硅的性能。这种技术的优点是能制备大面积的薄膜,晶粒尺寸大于直接 沉积的多晶硅。可进行原位掺杂,成本低,工艺简单,易于形成生产线。由于SPC是在非 晶硅熔融温度下结晶,属于高温晶化过程,温度高于600C,通常需要1100C左右,退火时 间长达10 个小时以上,不适用于玻璃基底,基底材料采用石英或单晶硅,用于制作小尺寸器件,如液晶光阀、摄像机取景器等。 准分子激光晶化 (ELA) 激光晶化相对于固相晶化制备多晶硅来说更为理想,其利用瞬间激光脉冲产生的高能量入射到非晶硅薄膜表面,仅在薄膜表层100nm厚的深度产生热能效应,使 a-Si薄膜在瞬间达到

相关文档