文档库 最新最全的文档下载
当前位置:文档库 › 实验一金属箔式应变片——单臂电桥性能实验

实验一金属箔式应变片——单臂电桥性能实验

实验一金属箔式应变片——单臂电桥性能实验
实验一金属箔式应变片——单臂电桥性能实验

目录

实验一金属箔式应变片——单臂电桥性能实验 (1)

实验二金属箔式应变片——半桥性能实验 (4)

实验三金属箔式应变片——全桥性能实验 (6)

实验四直流全桥的应用——电子秤实验 (8)

实验五差动变压器的性能测定 (9)

实验六差动变压器零点残余电压测定及补偿 (11)

实验七激励频率对差动变压器特性的影响 (13)

实验八电容式传感器的位移特性实验 (15)

实验九直流激励时霍尔传感器位移特性实验 (17)

实验十 Pt100热电阻测温实验 (19)

实验一 金属箔式应变片——单臂电桥性能实验

一、 实验目的

了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、 基本原理

金属丝在外力作用下发生机械形变时,其电阻值会发生变化,这就是金属的电阻应变效应。

金属的电阻表达式为:

l

R S

ρ

= (1) 当金属电阻丝受到轴向拉力F 作用时,将伸长l ?,横截面积相应减小S ?,电阻率因晶格变化等因素的影响而改变ρ?,故引起电阻值变化R ?。对式(1)全微分,并用

相对变化量来表示,则有:

R l S R l S ρ

ρ

????=-+ (2) 式中的l

l

?为电阻丝的轴向应变,用ε表示,常用单位με

(1με=1×6

10mm

mm -)。若径向应变为r

r

?,电阻丝的纵向伸长和横向收缩的关系用

泊松比μ表示为l r

r

l μ??=-(),因为S S ?=2(r r

?),则(2)式可以写成:

01212R l l l

k R l l l l l

ρρρμμρ??????=++=++=?()() (3) 式(3)为“应变效应”的表达式。0k 称金属电阻的灵敏系数,从式(3)可见,0

k 受两个因素影响,一个是(1+μ2),它是材料的几何尺寸变化引起的,另一个是ρ

ρε?()

是材料的电阻率ρ随应变引起的(称“压阻效应”)。对于金属材料而言,以前者为主,则μ210+≈k ,对半导体,0k 值主要是由电阻率相对变化所决定。实验也表明,在金属丝拉伸比例极限内,电阻相对变化与轴向应变成比例。通常金属丝的灵敏系数0k =2左右。

用应变片测量受力时,将应变片粘贴于被测对象表面上。在外力作用下,被测对象表面产生微小机械变形时,应变片敏感栅也随同变形,其电阻值发生相应变化。通过转换电路转换为相应的电压或电流的变化,根据(3)式,可以得到被测对象的应变值ε,而根据应力应变关系

εσE = (4)

式中 σ——测试的应力;

E ——材料弹性模量。

可以测得应力值σ。通过弹性敏感元件,将位移、力、力矩、加速度、压力等物理量转换为应变,因此可以用应变片测量上述各量,从而做成各种应变式传感器。电阻应变片可分为金属丝式应变片,金属箔式应变片,金属薄膜应变片。

三、需用器件与单元

传感器实验箱(二)中应变式传感器实验单元、砝码、智能直流电压表(或虚拟仪表中直流电压表)、±15V电源、±5V电源,传感器调理电路挂件。

四、实验内容与步骤

1.应变片的安装位置如图(1-1)所示,应变式传感器已装到应变传感器模块上。传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。可用万用表进行测量,R1=R2=R3=R4=350Ω。

图1-1 应变式传感器安装示意图

2.接入模板电源±15V(从面板上引入),检查无误后,合上主控台电源开关,调节Rw3使之大致位于中间位置,再进行差动放大器调零,方法为:将差放的正、负输入端与地短接,输出端与主控台面板上数显电压表输入端V i相连,调节实验模板上调零电位器Rw4,使数显表显示为零,(数显表的切换开关打到2V档)。关闭主控台电源。(注意:当Rw3的位置一旦确定,就不能改变。)

3.按图1-2将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥,(R5、R6、R7模块内已接好),接好电桥调零电位器Rw1,接上桥路电源±5V,如图1-2所示。检查接线无误后,合上主控箱电源开关,调节Rw1,使数显表显示为零。

4.在砝码盘上放置一只砝码,读取数显表数值,以后每次增加一个砝码并读取相应的数显表值,直到200g砝码加完,记下实验结果填入表1-1,关闭电源。

表1-1

单臂电桥输出电压与所加负载重量值

重量(g) 电压(mv) R1R2

R3 R4

图1-2 应变式传感器单臂电桥实验接线图

5. 根据表1-1计算系统灵敏度W U S ??=/(U ?输出电压的变化量,W ?重量

变化量)和非线性误差δf1=Δm/y FS ×100% 式中m ?(多次测量时为平均值)

为输出值与拟合直线的最大偏差:y FS 满量程输出平均值,此处为200g 。

五、实验注意事项

1.不要在砝码盘上放置超过1kg 的物体,否则容易损坏传感器。 2.电桥的电压为±5V ,绝不可错接成±15V ,否则可能烧毁应变片。 六、思考题

1.单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2)负(受压)应变片(3)正、负应变片均可以。 七、实验报告要求

1.记录实验数据,并绘制出单臂电桥时传感器的特性曲线。 2.从理论上分析产生非线性误差的原因。

实验二 金属箔式应变片——半桥性能实验

一、实验目的

1.了解半桥的工作原理。

2.比较半桥与单臂电桥的不同性能、了解其特点。 二、基本原理

把不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当应变片阻值和应变量相同时,其桥路输出电压U O2=/2EG ε。 式中E 为电桥供电电压。 三、需用器件与单元

传感器实验箱(二)中应变式传感器实验单元,传感器调理电路挂件中应变式传感器实验模板、砝码、智能直流电压表(或虚拟直流电压表)、±15V 电源、±5V 电源。 四、实验内容与步骤

1.接入模板电源±15V (从主控箱引入),检查无误后,合上主控台电源开关,进行差动放大器调零,方法为:将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi 相连,调节实验模板上调零电位器Rw4,使数显表显示为零,(数显表的切换开关打到2V 档)。关闭主控箱电源。

2.根据图2-1接线。R1、R2为实验模板左上方的应变片,注意R2应和R1受力状态相反,即将传感器中两片受力相反(一片受拉、一片受压)的电阻应变片作为电桥的相邻

图2-1 应变式传感器半桥实验接线图

边。接入桥路电源±5V ,调节电桥调零电位器Rw1进行桥路调零,重复实验一中的步骤4、5,将实验数据记入表2-1,计算灵敏度W U S ??=/2,非线性误差2f δ。若实验时显示数值不变化说明R1与R2两应变片受力状态相同。则应更换应变片。

重量(g )

五、实验注意事项

1.不要在砝码盘上放置超过1kg的物体,否则容易损坏传感器。

2.电桥的电压为±5V,绝不可错接成±15V,否则可能烧毁应变片。

六、思考题

1.半桥测量时两片不同受力状态的电阻应变片接入电桥时,应放在:(1)对边(2)邻边。

2.桥路(差动电桥)测量时存在非线性误差,是因为:(1)电桥测量原理上存在非线性(2)应变片应变效应是非线性的(3)调零值不是真正为零。

七、实验报告要求

1.记录实验数据,并绘制出单臂电桥时传感器的特性曲线。

2.分析为什么半桥的输出灵敏度为什么比半桥时高了一倍,而且非线性误差也得到改善。

实验三金属箔式应变片——全桥性能实验

一、实验目的

了解全桥测量电路的原理及优点。

二、基本原理

全桥测量电路中,将受力性质相同的两个应变片接入电桥对边,当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U03=KE 。其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到明显改善。

三、需用器件和单元

传感器实验箱(二)中应变式传感器实验单元,传感器调理电路挂件、砝码、智能直流电压表(或虚拟直流电压表)、±15V电源、±5V电源。

四、实验内容与步骤

1.根据3-1接线,实验方法与实验二相同。将实验结果填入表3-1;进行灵敏度和非线性误差计算。

重量(g)

电压(mV)

图3-1 应变式传感器全桥实验接线图

五、实验注意事项

1.不要在砝码盘上放置超过1kg的物体,否则容易损坏传感器。

2.电桥的电压为±5V,绝不可错接成±15V。

六、思考题

1.全桥测量中,当两组对边(R1、R3为对边)值R相同时,即R1=R3,R2=R4,而R1≠R2时,是否可以组成全桥:(1)可以(2)不可以。

2.某工程技术人员在进行材料拉力测试时在棒材上贴了两组应变片,如何利用这四片电阻应变片组成电桥,是否需要外加电阻。

图3-2 应变式传感器受拉时传感器周面展开图

七、实验报告要求:

1.根据所记录的数据绘制出全桥时传感器的特性曲线。

2.比较单臂、半桥、全桥输出时的灵敏度和非线性度,并从理论上加以分析比较,得出相应的结论。

实验四直流全桥的应用——电子秤实验

一、实验目的

了解应变直流全桥的应用及电路的标定。

二、基本原理

电子秤实验原理与实验三相同,利用全桥测量原理,通过对电路调节使电路输出的电压值为重量对应值,电压量纲(V)改为重量量纲(g)即成为一台原始的电子秤。三、需用器件和单元

传感器实验箱(二)中应变式传感器实验单元,应变式传感器实验模板、砝码、智能直流电压表(或虚拟直流电压表)、±15V电源、±5V电源。

四、实验内容与步骤

1.按实验一中2的步骤,将差动放大器调零,按图3-1全桥接线,合上主控箱电源开关,调节电桥平衡电位器Rw1,使数显表显示0.000V(2V档)。

2.将10只砝码全部置于传感器的托盘上,调节电位器Rw3(增益即满量程调节)使数显表显示为0.200V或-0.200V。

3.拿去托盘上的所有砝码,调节电位器Rw1(零位调节)使数显表显示为0.000V。

4.重复2、3步骤的标定过程,一直到精确为止,把电压量纲V改为重量量纲g,就可以称重,成为一台原始的电子秤。

5.把砝码依次放在托盘上,填入下表4-1。

6.根据上表,计算误差与非线性误差。

五、实验注意事项

1.不要在砝码盘上放置超过1kg的物体,否则容易损坏传感器。

2.电桥的电压为±5V,绝不可错接成±15V。

六、实验报告要求

1.记录实验数据,绘制传感器的特性曲线。

2.分析什么因素会导致电子秤的非线性误差增大,怎么消除,若要增加输出灵敏度,应采取哪些措施。

实验五差动变压器的性能测定

一、实验目的

1.了解差动变压器的工作原理和特性。

2.了解三段式差动变压器的结构。

二、基本原理

差动变压器由一只初级线圈和二只次级线圈及铁芯组成,根据内外层排列不同,有二段式和三段式,本实验采用三段式结构。当传感器随着被测物体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接,即同名端接在一起,就引出差动输出,其输出电势则反映出被测体的位移量。

三、需用器件与单元

传感器实验箱(一)、传感器调理电路挂件、测微头、差动变压器、信号源。

四、实验内容与步骤

1.将差动变压器及测微头安装在传感器支架上。

2.将传感器引线插头插入实验模板的插座中,在模块上按图6-1接线,音频振荡器信号必须从主控台中的音频振荡器的端子(正相或反相)输出,调节音频振荡器的频率,使输出频率为4-5KHz(可用主控台的频率计来监测)。调节输出幅度为峰—峰值Vp-p=2V (可用虚拟示波器监测)。

3.旋动测微头,使示波器第二通道显示的波形Vp-p为最小,这时可以左右位移,假设其中一个方向为正位移,另一个方向为负位移,从Vp-p最小开始旋动测微头,

每0.2mm从示波器上读出输出电压Vp-p值,填入下表6-1,再从Vp-p最小处反向位移做实验,在实验过程中,注意左、右位移时,初、次级波形的相位关系。

图6-1差动变压器连接示意图

表6-1差动变压器位移X值与输出电压数据表

V(mv)

4.实验过程中注意差动变压器输出的最小值即为差动变压器的零点残余电压的大小,根据表6-1画出Vop-p—X曲线,作出量程为±1mm、±3mm灵敏度和非线性误差。

五、实验注意事项

1.在做实验前,应先用示波器监测差动变压器激励信号的幅度,使之为Vp-p值为2V,不能太大,否则差动变压器发热严重,影响其性能,甚至烧毁线圈。

2.模块上L2、L3线圈旁边的“*”表示两线圈的同名端。

六、思考题

1.用差动变压器测量较高频率的振幅,例如1KHz的振动幅值,可以吗?差动变压器测量频率的上限受什么影响?

2.试分析差动变压器与一般电源变压器的异同?

七、实验报告要求

1.根据实验测得的数据,绘制出测微头左移和右移时传感器的特性曲线。

2.分析产生非线性误差的原因。

实验六差动变压器零点残余电压测定及补偿

一、实验目的

了解差动变压零点残余电压组成及其补偿方法。

二、基本原理

由于差动变压器阻抗是一个复数阻抗,有感抗也有阻抗,为了达到电桥平衡,就要求线圈的电阻R相等,两线圈的电感L相等。实际上,这种情况是难以精确达到的,就是说不易达到电桥的绝对平衡。在零点有一个最小的输出电压,一般把这个最小的输出电压称为零点残余电压,如果零点残余电压过大,会使灵敏度下降,非线性误差增大,甚至造成放大器末级趋于饱和,致使仪器电路不能正常工作。造成零残电压的原因,总的来说,是两电感线圈的等效参数不对称造成的。包括差动变压器二只次级线圈的等效参数不对称,初级线圈的纵向排列的不均匀性,二次级的不均匀、不一致,铁芯B-H 特性的非线性等。

三、需用器件与单元

信号源、测微头、差动变压器、传感器调理电路挂件、虚拟示波器、传感器实验箱(一)。

四、实验内容与步骤

1.按图7-1接线,音频信号源从主控箱输出,实验模板上R1、C1、R W1、R W2为电桥单元中调平衡网络。

图7-1 零点残余电压补偿电路之一

2.利用虚拟示波器调整音频振荡器输出为2V峰-峰值。

3.调整测微头,使差动放大器输出电压最小。

4.依次调整Rw1、Rw2,使输出电压降至最小。

5.将第二通道的灵敏度提高,观察零点残余电压的波形,注意与激励电压相比较。

6.从虚拟示波器上观察,差动变压器的零点残余电压值(峰-峰值)。(注:这时的零点残余电压是经放大后的零点残余电压)。

五、实验注意事项

1.在做实验前,应先用示波器监测差动变压器激励信号的幅度,使之为Vp-p值为

2V,不能太大,否则差动变压器发热严重,影响其性能,甚至烧毁线圈。

2.模块上L2、L3线圈旁边的“*”表示两线圈的同名端。

图7-2 零点残余电压补偿电路之二

六、思考题

1.请分析经过补偿后的零点残余电压波形。

2.本实验也可用图7-2所示的电路,请分析原理。

七、实验报告要求

1.分析产生零点残余电压的原因,对差动变压器的性能有哪些不利影响。用哪些方法可以减小零点残余电压。

2.归纳总结前两种补偿电路的优缺点。

实验七激励频率对差动变压器特性的影响

一、实验目的

了解激励频率对差动变压器输出的影响。

二、基本原理

差动变压器的输出电压的有效值可以近似用关系式:

U=

表示,式中L P、R P为初级线圈电感和损耗电阻,Ui、ω为激励电压和频率,M1、M2为初级与两次级间互感系数,由关系式可以看出,当初级线圈激励频率太低时,若R P2>ω2L P2,则输出电压Uo受频率变动影响较大,且灵敏度较低,只有当ω2L P2>>R P2时输出Uo与ω无关,当然ω过高会使线圈寄生电容增大,对性能稳定不利。

三、需用器件与单元

传感器实验箱(一)、传感器调理电路挂件、测微头、虚拟示波器、差动变压器、信号源、±15V直流电源。

四、实验步骤

1.将差动变压器安装在差动变压器实验模板上。

2.按图7-1连接好线。

3.选择音频信号输出频率为1KHz输出,(可用主控台的频率计显示频率)移动铁芯至中间位置即输出信号最小时的位置,调节R w1、R w2使输出变得更小。

4.用示波器监视第二通道,旋动测微头,向左(或右)旋到离中心位置2.50mm处,有较大的输出。将测试结果记入表8-1。

5.分别改变激励频率为1KHZ—9KHZ,幅值不变将测试结果记入下表8-1中。

6.作出幅频特性曲线。

五、实验注意事项

1.在做实验前,应先用示波器监测差动变压器激励信号的幅度,使Vp-p值为2V,不能太大,否则差动变压器发热严重,影响其性能,甚至烧毁线圈。

2.模块上L2、L3线圈旁边的“*”表示两线圈的同名端。

3.传感器要轻拿轻放,绝不可掉到地上。

六、思考题

1.提高激励频率有哪些优点?但是过高的激励频率又会带来哪些不利因素?应怎样确定激励频率。

2.若用差动变压器式传感器测量振动,测量的频率受什么限制?

七、实验报告要求

1.根据实验所得的数据作出传感器的幅频特性曲线。2.归纳总结正确选择激励信号的幅度和频率的特点。

实验八 电容式传感器的位移特性实验

一、实验目的

了解电容式传感器结构及其特点。 二、基本原理

利用平板电容C =/s d ε和其它结构的关系式通过相应的结构和测量电路可以选择

ε、S 、d 中三个参数中,保持两个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d )和测量液位(变S )等多种电容传感器。变面积型电

容传感器中,平板结构对极距特别敏感,测量精度受到影响,而圆柱形结构受极板径向变化的影响很小,且理论上具有很好的线性关系,(但实际由于边缘效应的影响,会引起极板间的电场分布不均,导致非线性问题仍然存在,且灵敏度下降,但比变极距型好得多。)成为实际中最常用的结构,其中线位移单组式的电容量C 在忽略边缘效应时为:

()

2

12ln r r l

C πε=

(1) 式中 l ——外圆筒与内圆柱覆盖部分的长度;

12r r 、——外圆筒内半径和内圆柱外半径。

当两圆筒相对移动l ?时,电容变化量C ?为:

()()()()

222

1110222ln ln ln r r r r r r l l l l l C C l πεπεπε-????=

-== (2) 于是,可得其静态灵敏度为:

()()()()()222

111224/ln ln ln g r r r r r r l l l l C k l l πεπεπε

??+?-??==-?=??????

? (3) 可见灵敏度与,12r r 有关,12r r 与越接近,灵敏度越高,虽然内外极筒原始覆盖长度l 与灵敏度无关,但l 不可太小,否则边缘效应将影响到传感器的线性。

本实验为变面积式电容传感器,采用差动式圆柱形结构,因此可以很好的消除极距变化对测量精度的影响,并且可以减小非线性误差和增加传感器的灵敏度。 三、需用器件与单元

电容传感器、传感器实验箱(一)、传感器调理电路挂件、测微头、直流稳压源。智能直流电压表(或虚拟仪表中直流电压表) 四、实验步骤

1.将电容式传感器装于传感器实验箱(一)的黑色支架上,将传感器引线插头插入传感器调理电路中电容式传感器实验单元的插孔中。

2.Rw 调节到大概中间位置。将电容传感器实验模板的输出端Vo 与智能直流电压表(或虚拟仪表中直流电压表)。

3.接入±15V 电源,旋动测微头改变电容传感器动极板的位置,每隔0.2mm 记下位移X

与输出电压值,填入表8-1。

X(mm)

V(mv)

4.根据表8-1数据计算电容传感器的系统灵敏度S和非线性误差

f

五、实验注意事项

1.传感器要轻拿轻放,绝不可掉到地上。

2.做实验时,不要用手或其它物体接触传感器,否则将会使线性变差。

六、思考题

1.简述什么是电容式传感器的边缘效应,它会对传感器的性能带来哪些不利影响。

2.电容式传感器和电感式传感器相比,有哪些优缺点?

图8-1电容传感器位移实验接线图

七、实验报告要求

1.整理实验数据,根据所得的实验数据做出传感器的特性曲线,并利用最小二乘法做出拟合直线,计算该传感器的非线性误差。

2.根据实验结果,分析引起这些非线性的原因,并说明怎样提高传感器的线性度。

实验九直流激励时霍尔传感器位移特性实验

一、实验目的

了解霍尔式传感器原理与应用。

二、基本原理

金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生电动势,这种物理现象称为霍尔效应。具有这种效应的元件成为霍尔元件,根据霍尔效应,霍尔电势UH=KHIB,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中沿水平方向移动,则输出的霍尔电动势为kxUH,式中k—位移传感器的灵敏度。这样它就可以用来测量位移。霍尔电动势的极性表示了元件的方向。磁场梯度越大,灵敏度越高;磁场梯度越均匀,输出线性度就越好。

三、需用器件与单元

霍尔传感器实验模板、霍尔传感器、±15V直流电源、测微头、数显单元。

四、实验步骤

1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座中,实验板的连接线按图9-1进行。1、3为电源±5V,

2、4为输出。

2、开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。

3、测微头往轴向方向推进,每转动0.2mm记下一个读数,直到读数近似不变,将读

五、实验注意事项

1、对传感器要轻拿轻放,绝不可掉到地上。

2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。

六、思考题

本实验中霍尔元件位移的线性度实际上反映的是什么量的变化?

七、实验报告要求

1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。

2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。

金属箔式应变片——单臂电桥性能实验1

金属箔式应变片——单臂电桥性能实验实验报告 一、实验目的: 了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、实验仪器: 应变传感器实验模块、托盘、砝码、数显电压表、±15V 、±4V 电源、万用表(自备)。 三、实验原理: 电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为 ε?=?k R R (1-1) 式中 R R ?为电阻丝电阻相对变化; k 为应变灵敏系数; l l ?=ε为电阻丝长度相对变化。 金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件。如图1-1所示,将四个金属箔应变片分别贴在双孔悬臂梁式弹性体的上下两侧,弹性体受到压力发生形变,应变片随弹性体形变被拉伸,或被压缩。 图1-1 双孔悬臂梁式称重传感器结构图 通过这些应变片转换弹性体被测部位受力状态变化,电桥的作用完成电阻到电压的比例变化,如图1-2所示R5=R6=R7=R 为固定电阻,与应变片一起构成一个单臂电桥,其输出电压 R R R R E U ??+??=211/40 (1-2) E 为电桥电源电压; 式1-2表明单臂电桥输出为非线性,非线性误差为L=%10021???- R R 。

图1-2 单臂电桥面板接线图 四、实验内容与步骤 1.应变传感器上的各应变片已分别接到应变传感器模块左上方的R1、R2、R3、R4上,可用万用表测量判别,R1=R2=R3=R4=350Ω。 2.差动放大器调零。从主控台接入±15V电源,检查无误后,合上主控台电源开关,将差动放大器的输入端Ui短接并与地短接,输出端Uo2接数显电压表(选择2V档)。将电位器Rw3调到增益最大位置(顺时针转到底),调节电位器Rw4使电压表显示为0V。关闭主控台电源。(Rw3、Rw4的位置确定后不能改动) 3.按图1-2连线,将应变式传感器的其中一个应变电阻(如R1)接入电桥与R5、R6、R7构成一个单臂直流电桥。 4.加托盘后电桥调零。电桥输出接到差动放大器的输入端Ui,检查接线无误后,合上主控台电源开关,预热五分钟,调节Rw1使电压表显示为零。 5.在应变传感器托盘上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g砝码加完,记下实验结果,填入下表。 6.实验结束后,关闭实验台电源,整理好实验设备。 五、数据记录与分析 1、数据记录表格 2、用matlab绘制W-U曲线图如下图所示

实验一 金属箔式应变片实验报告

厦门大学嘉庚学院传感器 实验报告 实验项目:实验一、二、三 金属箔式应变片 ——单臂、半桥、全桥 实验台号: 专 业: 物联网工程 年 级: 2014级 班 级: 1班 学生学号: ITT4004 学生姓名: 黄曾斌 实验时间: 2016 年 5 月 20 日

实验一 金属箔式应变片——单臂电桥性能实验 一.实验目的 了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二.基本原理 金属电阻丝在未受力时,原始电阻值为R=ρL/S 。 电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: 式中R R /?为电阻丝电阻的相对变化,K 为应变灵敏系数,L L /?=ε 为电阻丝长度 相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。 输出电压: 1.单臂工作:电桥中只有一个臂接入被测量,其它三个臂采用固定电阻;输出 U O14/εEK =。 2.双臂工作:如果电桥两个臂接入被测量,另两个为固定电阻就称为双臂工作电桥,又称为半桥形式;半桥电压输出U O2 2/εEK =。 3.全桥方式:如果四个桥臂都接入被测量则称为全桥形式。全桥电压输出U O3 εEK =。 三.需用器件与单元 CGQ-001实验模块、CGQ-013实验模块、应变式传感器、砝码、电压表、±15V 电源、±4V 电源、万用表(自备)。 ()() E R R R R R R R R U O 43213 241++-=

应变片单臂半桥全桥性能比较实验

应变片单臂、半桥、全桥性能比较实验 应变片基本原理: 电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。 所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在 外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象 称为电阻应变效应 (a)丝式应变片 (b)箔式应变片 应变片结构图 (a)单臂(b)半桥

(c)全桥 应变片测量电路 在差动放大器增益相同的情况下:半桥电压表读数是单臂的两倍, 全桥电压表读数是单臂的四倍。因此在整个实验过程中都要保持放大 器增益不变。 单臂:在应变片测量原理图中R1、R2 R3为固定电阻,RX为金属箔式应变片。 半桥:在应变片测量原理图中R1、R2、为固定电阻,R3 RX为金属箔式应变片。R3与RX符号相反。 全桥:在应变片测量原理图中R1、R2、R3 RX全为金属箔式应变片。全桥实验时图中四个电阻均为金属箔式应变片,接线时两相邻的应变片的位置符号相反,对应位置的应变片符号相同。 应变片测量原理图 实验步骤: 一调零: 1 按图接线 差动放大器调零接线示意图 2、增益电位器RW3顺时针轾轻转到底再逆时针回调1圈,再调RW4 使电压表在200mv时显示为零。 单臂实验: 1、按图接线后用RW倜零。 2、把10个20克的法码放到托盘上调增益RW使电压表显示为50mv。 3、把法码全取下再依放上读取数据填于表中。 4、关闭电源,取下法码。 应变片单臂电桥性能实验数据 重量(g)0

金属箔式应变片性能一单臂电桥实验报告

实验一金属箔式应变片性能一单臂电桥 (998 B型) 一、实验目的 了解金属箔式应变片,单臂单桥的工作原理和工作情况。 二、实验仪器 CSY型-998A传感器系统实验仪(直流稳压电源、电桥、差动放大器、双平行梁、测微头、一片应变片、F/V表、主、副电源)。 旋钮初始位置:直流稳压电源打到±2V档,F/V表打到2V档,差动放大增益最大。 三、实验原理 本实验说明箔式应变片及单臂直流电桥的电源的原理和工作情况。 应变片是最常用的测力传感元件。当用应变片测试时,应变片要牢固地粘贴在测试体表面,当测件受力发生形变,应变片的敏感栅随同变形,其电阻也随之发生相应的变化,通过测量电路,转换成电信号输出显示。 电桥电路是最常用的非电量电测电路中的一种,当电桥平衡时,桥路对臂电 阻乘积相等,电桥输出为零,在桥臂四个电阻R 1、R 2 、R 3 、R 4 中,电阻的相对变 化率分别为ΔR 1/R 1 、ΔR 2 /R 2 、ΔR 3 /R 3 、ΔR 4 /R 4 ,当使用一个应变片时,ΣR =ΔR/ R;当二个应变片组成差动状态工作,则有ΣR =2ΔR/ R;用四个应变片组成二 个差对工作,且R 1=R 2 =R 3 =R 4 ,ΣR =4ΔR/ R; 由此可知,单臂、半桥、全桥电路的灵敏度依次增大。 四、实验内容 1、了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,应变片为棕色衬底箔式结构小方薄片。上下二片梁的外表面各贴二片受力应变片和一片补偿应变片,测微头在双平行梁前面的支座上,可以上、下、前、后、左、右调节。 2、将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。将差动放大器的输出端与F/V表的输入插口Vi相连;开启主、副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮使F/V表显示为

惠斯通电桥实验报告南昌大学

南昌大学物理实验报告 课程名称:_____________ 大学物理实验 实验名称:_______________ 惠斯通电桥 学院:___________ 专业班级: 学生姓名:_________ 学号: 实验地点:___________ 座位号: 实验时间:第11周星期4上午10点开始

、实验目的: 1. 掌握电桥测电阻的原理和方法 2. 了解减小测电阻误差的一般方法 、实验原理: (1) 惠斯通电桥原理 惠斯通电桥就是一种直流单臂电桥,适用于测中值电阻,其原理电路如图 7-4所示。若调节电阻到合适阻值时, 可使检流计 G 中无电流流过,即 B 、D 两点的电位相等,这时称为“电桥平衡”。电桥平衡,检流计中无电流通过, 相当于无BD 这一支路,故电源 E 与电阻R ,、R x 可看成一分压电路;电源和电阻 R 1 上面两式可得 R 2 桥达到平衡。故常将 R 、R 2所在桥臂叫做比例 臂,与R x 、R S 相应的桥臂分别叫做测量臂和比 较臂。 V B C 点为参考,贝y D 点的电位V D 与B 点的电位V B 分别为 R 2 R S R S V D R X 因电桥平V B V D 故解 R 2、R S 可看成另一分压电路。若以 R x 为 E 待测电阻,则有 R>< R X R S 上式叫做电桥的平衡条件,它说明电桥平衡时,四个臂的阻值间成比例关系。如果 1 10,10 1等)并固定不变,然后调节 金使电

(2)电桥的灵敏度

n R S R S 灵敏度S 越大,对电桥平衡的判断就越容易,测量结果也越准确。 此时R s 变为R s ,则有:R x R2 R s ,由上两式得R x . R s R s 三、 实验仪器: 线式电桥板、电阻箱、滑线变阻器、检流计、箱式惠斯通电桥、待测电阻、低压直流电源 四、 实验内容和步骤: 1. 将箱式电桥打开平放,调节检流计指零 2. 根据待测电阻(线式电桥测量值或标称值)的大小和 R 3值取满四位有效数字原则,确定比例臂的取值,例如 R 为数千欧的电阻,为保证 4位有效数字,K r 取 3. 调节F 3的值与R <的估计 S _____ S 的表达式 R S R S S-i S 2 _____________________ ES R i R 2 R s R x 1 R E % R i R 2R X Rg 2 R x R s R 2 R - R E 2 R R s R x (3) 电桥的测量误差 电桥的测量误差其来源主要有两方面,一是标准量具引入的误差, 二是电桥灵敏度引入的误差。为减少误差传递, 可采用交换法。 交换法:在测定R x 之后,保持比例臂 R -、R 2不变,将比较臂 R s 与测量臂R x 的位置对换,再调节 R s 使电桥平衡,设 电桥的灵敏程度定义: R i

单臂半桥传感器实验报告总结

单臂半桥传感器实验报告总结 篇一:单臂半桥全桥传感器实验报告 实验一金属箔式应变片――单臂电桥性能实验 一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性 能。 二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化, 这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。对单臂电桥输出电压 Uo1= EKε/4。 图1-1 应变式传感器安装示意图 三、需用器件与单元:应变式传感器实验模板、应变式传感器-电子秤、 砝码、数显表、±15V电源、±4V电源、万用表(自备)。 四、实验步骤: 1.根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上。传感器中各应变片已接入模板的左上方的R1、

R2、R3、R4。加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右。 2.接入模板电源±15V(从主控台引入),检查无误后,合上主控台电源开关,将实验模板调节增益电位器RW3顺时针调节大致到中间位置,再进行差动放大 器调零,方法为将差放的正负输入端与地短接,输出端与主控台面板上数显表 电压输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档)。关闭主控箱电源(注意:当Rw3、Rw4的位置一旦确定,就不能改变。一直到做完实验三为止)。 3.将应变式传感器的其中一个电阻应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已接好),接好电桥调零电位器RW1,接上桥路电源±4V(从主控台引入),此时应将±4地与±15地短接。如图1-2所示。检查接线无误后,合上主控台电源开关。调节RW1,使数显表显示为零。 图1-2应变式传感器单臂电桥实验接线图 4.在电子称上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g(或500 g)砝码加完。记下实验结果填入表1-1,关闭电源。 表1-1单臂电桥测量时,输出电压与加负载重量值

直流电桥实验报告要点

清 华 大 学 实 验 报 告 系别:机械工程系 班号:72班 姓名:车德梦 (同组姓名: ) 作实验日期 2008年 11月 5日 教师评定: 实验3.3 直流电桥测电阻 一、实验目的 (1)了解单电桥测电阻的原理,初步掌握直流单电桥的使用方法; (2)单电桥测量铜丝的电阻温度系数,学习用作图法和直线拟合法处理数据; (3)了解双电桥测量低电阻的原理,初步掌握双电桥的使用方法。 (4)数字温度计的组装方法及其原理。 二、实验原理 1. 惠斯通电桥测电阻 惠斯通电桥(单电桥)是最常用的直流电桥,如图是它的电路原理图。 图中1R 、2R 和R 是已知阻值的标准电阻,它们和被测电阻x R 连成一个四边形,每一条边称作电桥的一个臂。对角A 和C 之间接电源E ;对角B 和D 之间接有检流计G ,它像桥一样。若调节R 使检流计中电流为零,桥两端的B 点和D 点点位相等,电桥达到平衡,这时可得 x R I R I 21=, 1122I R I R = 两式相除可得 R R R R x 1 2 = 只要检流计足够灵敏,等式就能相当好地成立,被测电阻值x R 可以仅从三个标准电阻

的值来求得,而与电源电压无关。这一过程相当于把x R 和标准电阻相比较,因而测量的准确度较高。 单电桥的实际线路如图所示: 将2R 和1R 做成比值为C 的比率臂,则被测电阻为 CR R x = 其中12R R C =,共分7个档,0.001~1000,R 为测量臂,由4个十进位的电阻盘组 成。图中电阻单位为Ω。 2. 铜丝电阻温度系数 任何物体的电阻都与温度有关,多数金属的电阻随文的升高而增大,有如下关系式: )1(0t R R R t α+= 式中t R 、0R 分别是t 、0℃时金属丝的电阻值;R α是电阻温度系数,单位是(℃-1 )。严格 地说,R α一般与温度有关,但对本实验所用的纯铜丝材料来说,在-50℃~100℃的范围内R α的变化很小,可当作常数,即t R 与t 呈线性关系。于是 t R R R t R 00 -= α 利用金属电阻随温度变化的性质,可制成电阻温度计来测温。例如铂电阻温度及不仅准确度高、稳定性好,而且从-263℃~1100℃都能使用。铜电阻温度计在-50℃~100℃范围内因其线性好,应用也较广泛。 3. 双电桥测低电阻 用下图所示的单电桥测电阻时,被测臂上引线1l 、2l 和接触点1X 、2X 等处都有一定

金属箔式应变片性能实验报告

实验报告 姓名:学号:班级: 实验项目名称:实验一金属箔式应变片性能——单臂电桥,半桥 实验目的:了解金属箔式应变片,单臂单桥的工作原理和工作情况;:验证单臂、半桥性能及相互之间关系。 实验原理: 单臂、半桥、全桥是指在电桥组成工作时,有一个桥臂、二个桥臂、全部四个桥臂(用应变片)阻值都随被测物理量而变化。 电桥的灵敏度:电桥的输出电压(或输出电流) 与被测应变在电桥的一个桥臂上引起的电阻变化率之 间的比值,称为电桥的灵敏度。如图是直流电桥,它 的四个桥臂由电阻R1、R2、R3、R4组成,U。是供桥电 压,输出电压为: 当R1×R3=R2×R4则输出电压U为零,电桥处于平 衡状态。 如果将R4换成贴在试件上的应变片,应变片随试件的受力变形而变形,引起应变片电阻R4的变化,平衡被破坏,输出电压U发生变化。当臂工作时,电桥只有R4桥臂为应变片,电阻变为R+R,其余各臂仍为固定阻值R,代入上式有 组桥时,R1和R3,R2和R4受力方向一致。 实验步骤(电路图): (1)了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,测微头在双平行梁前面的支座上,可以上、下、前、后、左、右调节。 (2)将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。将差动放大器的输出端与F/V表的输入插口Vi 相连;开启主、副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮使F/V表显示为零,关闭主、副电源。

(3)根据图1接线R1、R2、R3为电桥单元的固定电阻。R4为应变片;将稳压电源的切换开关置±4V档,F/V表置20V档。调节测微头脱离双平行梁,开启主、副电源,调节电桥平衡网络中的W1,使F/V表显示为零,然后将F/V表置2V档,再调电桥W1(慢慢地调),使F/V表显示为零。 图1金属箔式应变片性能—单臂电桥电路 (4)将测微头转动到10mm刻度附近,安装到双平等梁的自由端(与自由端磁钢吸合),调节测微头支柱的高度(梁的自由端跟随变化)使F/V表显示最小,再旋动测微头,使F/V 表显示为零(细调零),这时的测微头刻度为零位的相应刻度。 (5)——往下或往上旋动测微头,使梁的自由端产生位移记下F/V表显示的值。建议每旋动测微头一周即ΔX=0.5mm 记一个数值填入下表: (6)据所得结果计算灵敏度S=ΔV/ΔX(式中ΔX为梁的自由端位移变化,ΔV为相应F /V表显示的电压相应变化)。 (7) 将R3固定电阻换为与R4工作状态相反的另一应变片即取二片受力方向不同应变片,形成半桥,调节测微头使梁到水平位置(目测),调节电桥W1使F/V表显示表显示为零,重复(5)过程同样测得读数,填入下表: 实验结果及分析: 单臂电桥结果: 位移(mm)-1.0 -0.5 0.5 1.0 1.5 电压(mv)-0.057 -0.044 0.012 0.025 0.036 灵敏度计算:电压变化的平均值=0.013mv S=ΔV/ΔX=0.026mv/mm 结果分析:半桥的灵敏度是单臂电桥灵敏度的2倍。 实验中的注意事项及实验感想、收获或建议等:

应变片单臂半桥全桥性能比较实验

应变片单臂半桥全桥性 能比较实验 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

应变片单臂、半桥、全桥性能比较实验应变片基本原理: 电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。 所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应 (a) 丝式应变片 (b) 箔式应变片 应变片结构图 (a)单臂(b)半桥(c)全桥 应变片测量电路 在差动放大器增益相同的情况下:半桥电压表读数是单臂的两倍,全桥电压表读数是单臂的四倍。因此在整个实验过程中都要保持放大器增益不变。 单臂:在应变片测量原理图中R1、R2、R3为固定电阻,RX为金属箔式应变片。 半桥:在应变片测量原理图中R1、R2、为固定电阻,R3、RX为金属箔式应变片。R3与RX符号相反。

全桥:在应变片测量原理图中R1、R2、R3、RX全为金属箔式应变片。全桥实验时图中四个电阻均为金属箔式应变片,接线时两相邻的应变片的位置符号相反,对应位置的应变片符号相同。 应变片测量原理图 实验步骤: 一、调零: 1、按图接线 差动放大器调零接线示意图 2、增益电位器RW3顺时针轾轻转到底再逆时针回调1圈,再调RW4使电压表在 200mv时显示为零。 二、单臂实验: 1、按图接线后用RW1调零。 2、把10个20克的法码放到托盘上调增益RW3使电压表显示为50mv。 3、把法码全取下再依放上读取数据填于表中。 4、关闭电源,取下法码。 应变片单臂电桥性能实验数据 应变片单臂电桥实验接线示意图 三、半桥实验: 1、按图接线。 应变片半桥实验接线示意图 2、用RW1调零(增益RW3和放大器调零RW4保持在单臂实验壮态不变) 。

自动化传感器实验报告一 金属箔式应变片——单臂电桥性能实验

广东技术师范学院实验报告 学院: 自动化 专业: 自动化 班级: 08自动化 成 绩: 姓名: 学号: 组 别: 组员: 实验地点: 实验日期: 指导教师签名: 实验一 项目名称: 金属箔式应变片——单臂电桥性能实验 一、 实验目的 了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、 基本原理 金属丝在外力作用下发生机械形变时,其电阻值会发生变化,这就是金属的电阻应变效应。金属的电阻表达式为: l R S ρ = (1) 当金属电阻丝受到轴向拉力F 作用时,将伸长l ?,横截面积相应减小S ?,电阻率因晶格变化等因素的影响而改变ρ?,故引起电阻值变化R ?。对式(1)全微分,并用相对变化量来表示,则有: R l S R l S ρρ ????=-+ (2) 式中的l l ?为电阻丝的轴向应变,用ε表示,常用单位με(1με=1×610mm mm -)。 若径向应变为r r ?,电阻丝的纵向伸长和横向收缩的关系用泊松比μ表示为 l r r l μ??=-(),因为S S ?=2(r r ?),则(2)式可以写成: 01212R l l l k R l l l l l ρρρμμρ??????=++=++=?()() (3) 式(3)为“应变效应”的表达式。0k 称金属电阻的灵敏系数,从式(3)可见,0k 受两个因素影响,一个是(1+μ2),它是材料的几何尺寸变化引起的,另一个是ρρε?() ,是 材料的电阻率ρ随应变引起的(称“压阻效应”)。对于金属材料而言,以前者为主,则 μ210+≈k ,对半导体,0k 值主要是由电阻率相对变化所决定。实验也表明,在金属丝拉 伸比例极限内,电阻相对变化与轴向应变成比例。通常金属丝的灵敏系数0k =2左右。 用应变片测量受力时,将应变片粘贴于被测对象表面上。在外力作用下,被测对象表面产生微小机械变形时,应变片敏感栅也随同变形,其电阻值发生相应变化。通过转换电路转换为相应的电压或电流的变化,根据(3)式,可以得到被测对象的应变值ε,而根据应

金属箔式应变片-电桥性能实验

实验一金属箔式应变片――电桥性能实验 (一)单臂电桥性能实验 一、实验目的: 了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、实验仪器: 应变传感器实验模块、托盘、砝码、数显电压表、±15V、±4V电源、万用表(自备)。 三、实验原理: 电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件,如图1-1所示,四个金属箔应变片分别贴在弹性体的上下两侧,弹性体受到压力发生形变,应变片随弹性体形变被拉伸,或被压缩。 图1-1 图1-2 通过这些应变片转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,

如图1-2所示R5、R6、R7为固定电阻,与应变片一起构成一个单臂电桥,其输出电压 Uo= R R R R E ??+?? 211/4 (1-1) E 为电桥电源电压,R 为固定电阻值,式1-1表明单臂电桥输出为非线性,非线性误差为L=%10021???- R R 。 四、实验内容与步骤 1.应变传感器上的各应变片已分别接到应变传感器模块左上方的R1、R2、R3、R4上,可用万用表测量判别,R1=R2=R3=R4=350Ω。 2.差动放大器调零。从主控台接入±15V 电源,检查无误后,合上主控台电源开关,将差动放大器的输入端Ui 短接并与地短接,输出端Uo 2接数显电压表(选择2V 档)。将电位器Rw3调到增益最大位置(顺时针转到底),调节电位器Rw4使电压表显示为0V 。关闭主控台电源。(Rw3、Rw4的位置确定后不能改动) 3.按图1-2连线,将应变式传感器的其中一个应变电阻(如R1)接入电桥与R5、R6、R7构成一个单臂直流电桥。 4.加托盘后电桥调零。电桥输出接到差动放大器的输入端Ui ,检查接线无误后,合上主控台电源开关,预热五分钟,调节Rw1使电压表显示为零。 5.在应变传感器托盘上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g 砝码加完,计下实验结果,填入下表1-1,关闭电源。 表1-1 重量(g) 电压(mV) 五、实验报告 根据表1-1计算系统灵敏度S =ΔU/ΔW (ΔU 输出电压变化量,ΔW 重量变化量)和非线性误差δf1=Δm/y F..S ×100%。(式中Δm 为输出值(多次测量时为平均值)与拟合直线的最大偏差;y F ·S 为满量程(200g )输出平均值) 六、注意事项 加在应变传感器上的压力不应过大,以免造成应变传感器的损坏!

单臂电桥性能实验报告

实验一 金属箔式应变片——单臂电桥性能实验 一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: εK R R =?/ 式中R R /?为电阻丝电阻的相对变化,K 为应变灵敏系数,l l /?=ε为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。单臂电桥输出电压U O14/εEK =。 三、需用器件与单元:应变式传感器实验模块、应变式传感器、砝码、数显表、±15V 电源、±4V 电源、万用表(自备)。 四、实验步骤: 1、根据图1-1应变式传感器已装于应变传感器模块上。传感器中各应变片已接入模块的左上方的R 1、R 2、R 3、R 4。加热丝也接于模块上,可用万用表进行测量判别,R 1= R 2= R 3= R 4=350Ω,加热丝阻值为50Ω左右。 2、接入模块电源±15V (从主控箱引入),检查无误后,合上主控箱电源开关,将实验模块调节增益电位器Rw 3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上的数显表电压输入端Vi 相连,调节实验模块上调零电位器Rw 4,使数显表显示为零(数显表的切换开关打到2V 档)。关闭主控箱电源。 图1-1 应变式传感器安装示意图

3、将应变式传感器的其中一个应变片R 1(即模块左上方的R 1)接入电桥作为一个桥臂与R 5、R 6、R 7接成直流电桥(R 5、R 6、R 7模块内已连接好),接好电桥调零电位器Rw 1,接上桥路电源±4V (从主控箱引入)如图1-2所示。检查接线无误后,合上主控箱电源开关。调节Rw 1,使数显表显示为零。 4、在电子秤上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到500g (或200g )砝码加完。记下实验结果填入表1-1,关闭电源。 表1-1 单臂电桥输出电压与加负载重量值 5、根据表1-1计算系统灵敏度S ,S=W u ??/(u ?输出电压变化量;W ?重量变化量)计算线性误差:δf1=y m /? F ?S ×100%,式中m ?为输出值(多次测量时为平均值)与拟合直线的最大偏差:y F ?S 满量程输出平均值,此处为500g 或200g 。 五、思考题: 单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2)负(受压)应变片(3)正、负应变片均可。 图1-2 应变式传感器单臂电桥实验接线图

用单臂电桥测电阻带实验数据处理

本科实验报告 实验名称: 用单臂电桥测电阻 实验13 用单臂电桥测电阻(略写)【实验目的】 (1)掌握用单臂电桥测量电阻的原理和方法。 (2)学习用交换法减小和消除系统误差。 (3)初步研究电桥的灵敏度。 【实验原理】 单臂电桥,也叫惠斯登电桥,适用于精确测量中值电阻(10~的测量装置。 电桥法测电阻,其实质是把被测电阻与标准电阻相比较,已确定其值。由于电阻的制造可以达到很高的精度,所以用电桥法测电阻也可以达到很高的精度。 电桥分为直流电桥和交流电桥两大类。直流电桥又分为单臂电桥和双臂电桥。惠斯登电桥是直流电桥中的单臂电桥;双臂电桥又称为开尔文电桥,适用于测量低电阻(~10Ω)。 单臂电桥的线路原理 单臂电桥的基本线路如图所示。它是由四个电阻R1,R2,Rs,Rx连成一个四边形ACBD,在对角线AB上接上电源E,在对角线CD上接上检流计P组成。接入检流计(平衡指示)的

对角线称为“桥”,四个电阻称为“桥臂”。在一般情况下,桥路上检流计中有电流通过,因而检流计的指针偏转。若适当调节某一电阻值,例如改变Rs的大小可使C,D两点的电位相等,此时流过检流计P的电流Ip=0,称为电桥平衡。则有 (1) (2) (3) 由欧姆定律知 = 2 (4) =s (5) 由以上两式可得 (6) 此式即为电桥的平衡条件。若R1,R2,Rs已知,Rx即可由上式求出。通常取R1,R2为标准电阻,称为比率臂,将称为桥臂比;Rs为可调电阻,成为比较臂。改变Rs使电桥达到平衡,即检流计P中无电流流过,便可测出被测电阻Rx的值。 用交换法减小和消除系统误差 分析电桥线路和测量公式可知,用单臂电桥测量Rx的误差,除其他因素外,还与标准电阻R1,R2的误差有关。可以用交换法来消除这一系统误差,方法是:先连接好电桥线路,调节Rs使P中无电流,可求出Rs,然后将R1与R2交换位置,再调节Rs使P中无电流, 记下此时的Rs',可得,相乘可得Rx=, 这样就消除了由R1,R2本身的误差引起的对Rx引入的测量误差。Rx的测量误差只与电阻箱Rs的仪器误差有关,而Rs可选用高精度的标准电阻箱,这样系统误差就可减小。 电桥的灵敏度 检流计的灵敏度总是有限的,如实验中所用的检流计,指针偏转一格所对应的电流大约为A。当通过它的电流比A还要小时,指针偏转小于0.1格,就很难察觉出来。假设电桥在R1/R2=1时调到了平衡,则有Rx=Rs。这时,若把Rs改变ΔRs,电桥就失去了平衡,检流计中有电流Ip流过。但是如果Ip小到使检流计觉察不出来,还会认为电桥还是平衡的,因而得出Rx=Rs+ΔRs。这样就会因为检流计的反应不够灵敏而带来一个测量误差ΔRx=ΔRs。为表示此误差对测量结果影响的严重程度,引入电桥灵敏度的概念,定义为 S=(7) 之中,是在电桥平衡后Rx的微小改变量(实际上是改变Rs,可以证明,改变任意臂所得出的电桥灵敏度是一样的)是由于电桥偏离平衡而引起的检流计的偏转格数。S越大,说明电桥越灵敏,带来的误差也越小,举例来说,检流计有五分之一格的偏转时既可以觉察

实验一-金属箔式应变片实验报告

成绩: 预习审核: 评阅签名: 厦门大学嘉庚学院传感器 实验报告 实验项目:实验一、二、三金属箔式应变片——单臂、半桥、全桥 实验台号: 专业:物联网工程 年级:2014级 班级:1班 学生学号:ITT4004 学生姓名:黄曾斌 实验时间:2016 年 5 月20 日

实验一 金属箔式应变片——单臂电桥性能实验 一.实验目的 了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二.基本原理 金属电阻丝在未受力时,原始电阻值为R=ρL/S 。 电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: 式中R R /?为电阻丝电阻的相对变化,K 为应变灵敏系数,L L /?=ε 为电阻丝长度 相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。 输出电压: 1.单臂工作:电桥中只有一个臂接入被测量,其它三个臂采用固定电阻;输出 U O14/εEK =。 2.双臂工作:如果电桥两个臂接入被测量,另两个为固定电阻就称为双臂工作电桥,又称为半桥形式;半桥电压输出U O2 2/εEK =。 3.全桥方式:如果四个桥臂都接入被测量则称为全桥形式。全桥电压输出U O3 εEK =。 三.需用器件与单元 CGQ-001实验模块、CGQ-013实验模块、应变式传感器、砝码、电压表、±15V 电源、±4V 电源、万用表(自备)。 ()() E R R R R R R R R U O 43213 241++-=

1.应变电桥性能实验

实验一金属箔式应变片――单臂电桥性能实验 一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。,对单臂电桥输出电压U o1= EKε/4。 三、需用器件与单元:应变式传感器实验模板、应变式传感器、电子秤、砝码、数显表、±15V电源、±4V电源、万用表(自备)。 四、实验步骤: 1、根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上。传感器中各应 变片已接入模板的左上方的R1、R2、R3、R4。加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右 图1-1 应变式传感器安装示意图 2、接入模板电源±15V(从主控台引入),检查无误后,合上主控台电源开关,将实验 模板调节增益电位器R W3顺时针调节大致到中间位置,再进行差动放大器调零,方

法为将差放的正负输入端与地短接,输出端与主控台面板上数显表输入端V i相连,调节实验模板上调零电位器R W4,使数显表显示为零(数显表的切换开关打到2V 档)。关闭主控箱电源(注意:当R w3、R w4的位置一旦确定,就不能改变。一直到做完实验三为止)。 3、将应变式传感器的其中一个电阻应变片R1(即模板左上方的R1)接入电桥作为一 个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已接好),接好电桥调零电位器R W1,接上桥路电源±4V(从主控台引入)如图1-2所示。检查接线无误后,合上主控台电源开关。调节R W1,使数显表显示为零。 图1-2应变式传感器单臂电桥实验接线图 4、在电子称上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值, 直到200g(或500 g)砝码加完。记下实验结果填入表1-1,关闭电源。 重量(g) 电压(mv)

惠斯通电桥实验报告.pdf

南昌大学物理实验报告 课程名称:惠斯通电桥 实验名称:惠斯通电桥 学院:眼视光学院专业班级:眼视光151班学生姓名:许春芸学号:6303615024 实验地点:210座位号:30 座实验时间:第8周星期6上午10点10开始

一、实验目的: 1.掌握电桥测电阻的原理和方法。 2.了解减小测电阻误差的一般方法。 二、实验原理: 惠斯通电桥的电路四个电阻 R1.R2.R3.Rx 连成一个四边形,每一条边称作电桥的一个臂,对角 A 和 C 加上电源 E,对角 B 和 D 之间连接检流计 G,所谓桥就是指 BD 这条对角线,它的作用就是将桥的两个端点的电势直接进行比较。当 B.D 两点电势相等时,检流计中无电流通过,电桥达到了平衡,这时有:R2/R1=Rx/R3,即*Rx=(R2/R1)R3。若 R1.R2.R3 均已知,则 Rx 可由上式求出。 电桥电路可以这样理解,电源 E.R2.Rx 是一个分压电路,Rx 上的电压为[Rx/(R1+R2)]·E,又 E 和 R1.R3 也是一个分压电路,R3 上的电压等于[R3/(R3+R1)]·E,现在用检流计来比较 Rx 和 R3 的电压,根据电流方向,可以发现哪一个电压更大些。当检流计指零时,说明两电压相等,也就得出*式。 三、实验仪器: 线式电桥板、电阻箱、滑线变阻器、检流计、箱式惠斯通电桥、待测电阻、低压直流电源。 四、实验内容和步骤: 1、标准电阻 Rn 选择开关选择“单桥”档; 2、工作方式开关选择“单桥”档; 3、电源选择开关选在有效量程里; 4、G 开关选择“G 内接”; 5、根据 Rx 的估计值,选好量成倍率,设置好 R1R2 值和 R3 值,将位值电阻 Rx 接入 Rx 接线端子(注意 Rx 端于上方短接片应接好); 6、打开仪器市电开关、面板指示灯亮; 7、建议选择毫伏表作为仪器检流计,释放“接入”键,量程置“2mV”挡,调节“调零”电位器,将数显表调零。调零后将量程转入 200mV 量程,按下“接入”按键,也可以选择微安表做检流计; 8、调节 R3 各盘电阻,粗平衡后,可以选择 20mV 或 2mV 挡,细调 R3,使电桥平衡;

电桥性能实验

直流电桥原理 在进行金属箔式应变片单臂、半桥、全桥性能实验之前,我们有必要先来介绍一下直流电桥的相关知识。电桥电路有直流电桥和交流电桥两种。电桥电路的主要指标是桥路灵敏度、非线性和负载特性。下面具体讨论有关直流电路和与之相关的这几项指标。 一、 平衡条件 直流电桥的基本形式如图1-1所示。R 1, R 2,R 3 , R 4 为电桥的桥臂电阻,R L 为其负载(可以是测量仪表内阻或其他负载)。 当R L ∞时,电桥的输出电压V 0应为 V 0=E( 4 33 211R R R R R R +-+) 当电桥平衡时,V0=0,由上式可得到R 1R 4=R 2R 3 或 4 3 21R R R R = (1-1) 图1-1 式(1-1)秤为电桥平衡条件。平衡电桥就是桥路中相邻两桥臂阻值之比应相等,桥路相邻两臂阻值之比相等方可使流过负载电阻的电流为零。 二、 平衡状态 1.单臂直流电桥 所谓单臂就是电桥中一桥臂为电阻式传感器,且其电阻变化为△R ,其它桥臂为阻值固定不变,这时电桥输出电压V 0≠0(此时仍视电桥为开路状态),则不平衡电桥输出电压V 0为

V 0= E R R R R R R R R R R ? ??? ??+???? ? ?+?+??? ? ?????? ??341211114113 (1-2) 设桥臂比n=1 2R R ,由于△R 1《R 1,分母中11 R R ?可忽略,输出电压便为 V"0= E R R R R R R R R ? ??? ??+???? ? ?+? ?? ? ?????? ??3412114113 这是理想情况,式(1-2)为实际输出电压,由此可求出电桥非线性误差。实际的非线性特性曲线与理想线性曲线的偏差秤为绝对非线性误差。则其相对线性误差r 为: r=''000V V V -= ???? ??+?+???? ???-1211111R R R R R R = ??? ? ??+?+???? ???-n R R R R 11111 (1-3) 由此可见,非线性误差与电阻相对变化11R R ?有关,当11R R ?较大时,就不可忽略误差了。 下面来看电桥电压灵敏度S V 。在式(1-2)中,忽略分母中11 R R ?项,并且考虑到起始平衡条件 4 3 21R R R R = ,从式(1-2)可以得到 V 0'≈1 12)1(R R n n E ?+ (1-4) 电桥灵敏度的定义为 S V = 1 10R R V ?≈11' 0R R V ? = E n n 2 )1(+ (1-5) 当n=1时,可求得S V 最大。也就是说,在电桥电压E 确定后,当R 1=R 2,R 3=R 4 时,电桥电压灵敏度最高。此时可分别将式(1-2)、(1-3)、(1-4)、(1-5)化简为

惠斯通电桥实验报告.doc

云南农业大学 物 理 实 验 报 告 实验名称:惠斯通电桥测量电阻 一、实验目的 (1)了解惠斯通电桥的构造和测量原理。 (2)掌握用惠斯通电桥测电阻的方法。 (3)了解电桥灵敏度的概念及其对电桥测量准确度的影响。 二、实验仪器 滑线式电桥,箱式电桥,检流计,电阻箱,滑动电阻器,待测电阻,电源,开关,导线等。 三、实验原理: 1.惠斯通电桥的测量原理 如图1所示,由已知阻值的三个电阻R 0、R 1、R 2和一个待测电阻R x 组成一个四边形,每一条边称为电桥的一个臂,在对角A 、B 之间接入电源E ,对角C 、D 之间接入检流计G 。适当调节R 0、R 1、R 2的阻值,可以使检流计G 中无电流流过,即C 、D 两点的电势相等,电桥的这种状态称为平衡态。电桥的平衡条件为 1 002 x R R R KR R = = (1) 式中比例系数K 称为比率或倍率,通常将R1、R2称为比率臂,将R0称为比较臂。

2.电桥的灵敏度 式(1)是在电桥平衡的条件下推导出来的,而电桥是否达到真正的平衡状态,是由检流计指针是否有可察觉的偏转来判断的。检流计的灵敏度是有限的,当指针的偏转小于0.1格时,人眼就很难觉察出来。在电桥平衡时,设某一桥臂的电阻是R ,若我们把R 改变一个微小量ΔR ,电桥就会失去平衡,从而就会有电流流过检流计,如果此电流很小以至于我们未能察觉出检流计指针的偏转,我们就会误认为电桥仍然处于平衡状态。为了定量表示检流计的误差,我们引入电桥灵敏度的概念,它定义为 n S R R ?= ? (2) 式中,ΔR 为电桥平衡后电阻R 的微小改变量,Δn 为电阻R 变化后检流计偏离平衡位置的格数,所以S 表示电桥对桥臂电阻相对不平衡值ΔR /R 的反应能力。 3.滑线式惠斯通电桥 滑线式惠斯通电桥的构造如图2所示。A 、B 、C 是装有接线柱的厚铜片(其电阻可以忽略),A 、B 之间为一根长度为L 、截面积和电阻率都均匀的电阻丝。电阻丝上装有接线柱的滑键可沿电阻丝左右滑动,按下滑键任意触头,此时电阻丝被分成两段,设AD 段的长度为L 1、电阻为R 1,DB 的长度为L 2、电阻为R 2,因此当电桥处于平衡状态时,有 111 000221 x R L L R R R R R L L L = ==- (3) 式中,L 1的长度可以从电阻丝下面所附的米尺上读出,R 0用一个十进制转盘式电阻箱作为标准电阻使用。另外电源E 串联了一个滑线变阻器RE ,对电路起保护、调节作用。为了消除电阻丝不均匀带来的误差,可用交换R 0与R x 的位置重新测量的方法来解决。也就是在测定R x 之后,保持R 1、R 2不变(即D 点的位置不变),将R 0与R x 的位置对调,重新调 节R 0为0R ',使电桥达到平衡,则有 221 000 111 x R L L L R R R R R L L -'''= == (4) 所以 221 000 111 x R L L L R R R R R L L -'''= == (5) 由式(5)可知,Rx 与R1、R2(或L1、L2)无关,它仅取决于R0的准确度。可以证明

相关文档
相关文档 最新文档