文档库 最新最全的文档下载
当前位置:文档库 › NACE12热喷铝的检验和施工

NACE12热喷铝的检验和施工

NACE12热喷铝的检验和施工
NACE12热喷铝的检验和施工

Item No. 21100
Joint Standard NACE No. 12/AWS C2.23M/SSPC-CS 23.00 Specification for the Application of Thermal Spray Coatings (Metallizing) of Aluminum, Zinc, and Their Alloys and Composites for the Corrosion Protection of Steel
This NACE International (NACE)/American Welding Society (AWS)/SSPC: The Society for Protective Coatings standard represents a consensus of those individual members who have reviewed this document, its scope, and provisions. It is intended to aid the manufacturer, the consumer, and the general public. Its acceptance does not in any respect preclude anyone, whether he has adopted the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not addressed in this standard. Nothing contained in this NACE/AWS/SSPC standard is to be construed as granting any right, by implication or otherwise, to manufacture, sell, or use in connection with any method, apparatus, or product covered by Letters Patent, or as indemnifying or protecting anyone against liability for infringement of Letters Patent. This standard represents current technology and should in no way be interpreted as a restriction on the use of better procedures or materials. Neither is this standard intended to apply in all cases relating to the subject. Unpredictable circumstances may negate the usefulness of this standard in specific instances. NACE, AWS, and SSPC assume no responsibility for the interpretation or use of this standard by other parties and accept responsibility for only those official interpretations issued by NACE, AWS, or SSPC in accordance with their governing procedures and policies which preclude the issuance of interpretations by individual volunteers. Users of this NACE/AWS/SSPC standard are responsible for reviewing appropriate health, safety, environmental, and regulatory documents and for determining their applicability in relation to this standard prior to its use. This NACE/AWS/SSPC standard may not necessarily address all potential health and safety problems or environmental hazards associated with the use of materials, equipment, and/or operations detailed or referred to within this standard. Users of this NACE/AWS/SSPC standard are also responsible for establishing appropriate health, safety, and environmental protection practices, in consultation with appropriate regulatory authorities if necessary, to achieve compliance with any existing applicable regulatory requirements prior to the use of this standard. CAUTIONARY NOTICE: NACE/AWS/SSPC standards are subject to periodic review, and may be revised or withdrawn at any time without prior notice. The user is cautioned to obtain the latest edition. NACE, AWS, and SSPC require that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of initial publication. Approved July 2003 ISBN 0-87171-713-1 ?2003, NACE International, American Welding Society, and SSPC: The Society for Protective Coatings An American National Standard Approved March 2003 NACE International 1440 South Creek Drive Houston, TX 77084-4906 (telephone +1 281/228-6200) American Welding Society 550 NW LeJeune Road Miami, FL 33126 (telephone +1 800-443-9353) Printed by NACE International SSPC: The Society for Protective Coatings 40 24th Street, Sixth Floor Pittsburgh, PA 15222-4656 (telephone +1 412/281-2331)
Copyright NACE International Provided by IHS under license with NACE No reproduction or networking permitted without license from IHS
Not for Resale
--`,,,,,-`-`,,`,,`,`,,`---
//^:^^#^~^^"^~:""::$:@@:"#:$@"@@"**^::~^*^~:~^#"~^"@@\\

NACE No. 12/AWS C2.23M/SSPC-CS 23.00
________________________________________________________________________ Foreword
This “Specification for the Application of Thermal Spray Coatings (Metallizing) of Aluminum, Zinc, Their Alloys, and Composites for the Corrosion Protection of Steel” is issued to meet a critical industry and government need. Thermal spray coatings (TSCs) are used extensively for the corrosion protection of steel and iron in (1) a wide range of environments. The corrosion tests carried out by the American Welding Society (2) and the marine-atmosphere performance reports of ASTM and the LaQue Center for Corrosion (3) Technology confirm the effectiveness of flame-sprayed aluminum and zinc coatings over long periods of time in a wide range of hostile environments. The British Standards Institution “Code of (4) Practice for the Corrosion Protection of Steel” specifies that only TSCs give protection for more than 20 years to first maintenance for the 19 industrial and marine environments considered and that only sealed, sprayed aluminum or zinc gives such protection in seawater immersion or splash zones. This standard may be used by owners, and design, fabrication, and maintenance engineers to detail and contract for the application of TSCs for the preservation and maintenance of steel structures. This standard may also be used by TSC inspectors and TSC applicators to develop and maintain application procedures, equipment inventory, and an operator-training program. This standard presents the basic need-to-know information for the application of quality TSCs. Appendixes present amplifying information. The Table of Contents gives an overview of this standard and may be used to find specific information. This standard was prepared by the AWS C2B Subcommittee on Thermal Spray Coatings for Corrosion Protection, SSPC C.1.2.B Committee on Thermal Spraying, and NACE Task Group (TG) 146 on Thermal Spray Coatings. TG 146 is administered by Specific Technology Group (STG) 02 on Protective Coatings and Linings—Atmospheric, and is sponsored by STG 39 on Process Industry—Materials Applications.
--`,,,,,-`-`,,`,,`,`,,`---
________________________________________________________________________
___________________________
AWS C2.14-74, “Corrosion Tests of Flame-Sprayed Coated Steel, 19-Year Report” (Miami, FL: AWS). AWS standards can be obtained from Global Engineering, 15 Inverness Way East, Engelwood, CO 80112-5776, Telephone (800)-854-7179, Fax (303) 307-2740, Internet www https://www.wendangku.net/doc/fe15357110.html, (2) R.M. Kain, E.A. Baker, “Marine Atmospheric Corrosion Museum Report on the Performance of Thermal Spray Coatings on Steel,” ASTM STP 947 (West Conshohocken, PA: ASTM, 1987). Available from ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. (3) S.J. Pikul, “Appearance of Thermal Sprayed Coatings After 44 Years Marine Atmospheric Exposure at Kure Beach, North Carolina,” LaQue Center for Corrosion Technology, Inc, February 1996. Available from the LaQue Center for Corrosion Technology, Inc., 702 Causeway Drive, Wrightsville Beach, NC 28480. (4) BS 5493, “Code of Practice for Protective Coatings of Iron and Steel Structures Against Corrosion” (London, UK: British Standards Institution). Available from the American National Standards Institute (ANSI), 11 West 42nd Street, New York, NY 10036-8002, USA; and the British Standards Institution (BSI), British Standards House, 389 Chiswick High Rd., London W4 4AL, UK.
(1)
NACE International
Copyright NACE International Provided by IHS under license with NACE No reproduction or networking permitted without license from IHS
i
Not for Resale
//^:^^#^~^^"^~:""::$:@@:"#:$@"@@"**^::~^*^~:~^#"~^"@@\\

NACE No. 12/AWS C2.23M/SSPC-CS 23.00 ________________________________________________________________________
Joint Standard NACE No. 12/AWS C2.23M/SSPC-CS 23.00 Specification for the Application of Thermal Spray Coatings (Metallizing) of Aluminum, Zinc, and Their Alloys and Composites for the Corrosion Protection of Steel
Contents 1. General ......................................................................................................................... 1 2. Referenced Documents ................................................................................................ 2 3. Definitions ..................................................................................................................... 2 4. Summary of Practice..................................................................................................... 4 5. Surface Finish Requirements........................................................................................ 4 6. TSC Requirements........................................................................................................ 4 7. TSC Application Procedure........................................................................................... 8 8. TSC Application ............................................................................................................ 9 9. Application of Sealers and Topcoats .......................................................................... 10 10. Records ....................................................................................................................... 11 11. Debris Containment and Control................................................................................. 11 12. Work Procedures and Safety ...................................................................................... 11 13. Documentation ............................................................................................................ 11 14. Contract Pre-Award Evaluation, Demonstration, and Validation ................................ 12 15. TSC Applicator Warranty ............................................................................................ 12 Further Reading ................................................................................................................ 13 Appendix A: Model Procurement Specification ............................................................... 14 Appendix B: Model Job Control Method .......................................................................... 21 Appendix C: Procedure for Calibration of Portable Test Instruments to the ASTM C 633 Test Method ................................................................................................................ 23 Appendix D: Application Process Method ....................................................................... 24 Figure 1: Thermal Spray Coating Process ........................................................................ 1 Figure 2: Job Reference Standard Illustration ................................................................... 3 Figure 3: Line and Spot Measurements ............................................................................ 6 Figure 4: TSC Bend Test: Pass and Fail Samples ............................................................ 8 Figure 5: Thickness and Tensile-Bond Measurements for JRS Qualifications ............... 12 Figure C1: Calibration Fixture.......................................................................................... 24 Figure D1: Key Production and Quality Control Checkpoints (QCCPs) for Applying Thermal Spray Coatings ............................................................................................. 25 Figure D2: Proper Spray Gun Adjustment....................................................................... 30 Figure D3: Line and Spot Measurements........................................................................ 30 Table 1: TSC System Requirements and Acceptance Tests ............................................ 5 Table 2: Blasting Media and Mesh Size Found Suitable for TSCs on Steel Substrates ... 6 Table 3: Minimum Tensile Bond Requirements................................................................. 7 Table 4: Bend-Test Cracking Threshold: Mandrel Diameter vs. TSC Thickness.............. 7 Table D1: Flame- and Arc-Spray Standoff Distances and Spray Widths, Nominal......... 28 ________________________________________________________________________
ii
--`,,,,,-`-`,,`,,`,`,,`---
NACE International
Copyright NACE International Provided by IHS under license with NACE No reproduction or networking permitted without license from IHS
Not for Resale
//^:^^#^~^^"^~:""::$:@@:"#:$@"@@"**^::~^*^~:~^#"~^"@@\\

NACE No. 12/AWS C2.23M/SSPC-CS 23.00 ________________________________________________________________________ Section 1: General
1.1 General This standard is a procedure for the application of metallic thermal spray coating (TSC) of aluminum, zinc, and their alloys and composites for the corrosion protection of steel. Required equipment, application procedures, and in-process quality control (QC) checkpoints are specified. This standard may be used as a procurement document. Appendix A presents a fill-in-the-blanks model procurement specification. The flow diagram in Figure 1 provides an overview of the thermal spray coating process presented in this standard.
Sealer or Sealer and Topcoat Application
Figure 1: Thermal Spray Coating Process
Not included in this standard are requirements for design and fabrication, thermal spray equipment qualification, coating selection, and operator and inspector certification. For successful thermal spray application, the steel structure and components should be designed and fabricated according (5) Additional consideration to NACE Standard RP0178. should be given to weldments whose oxyfuel cut edges may affect hardness which may preclude adequate profile depth. 1.2 Safety The basic precautions for thermal spraying are essentially the same as for welding and cutting. Information on safety can be found in the Safety Chapter in AWS Thermal Spraying: Practice, Theory, and Application; ANSI Z49.1, Safety (6) in Welding, Cutting; and Allied Processes; and NFPA 58, Standard for the Storage and Handling of Liquefied Petroleum Gases. Safety precautions can also be found in the manufacturer’s equipment technical instructions and manuals and the feedstock Material Safety Data Sheet. This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
(5)
--`,,,,,-`-`,,`,,`,`,,`---
Potential thermal spraying hazards include exposure to vapors, dust, fumes, gases, noise (from the spray gun), and arc ultraviolet (UV) radiation. Additionally, improperly used thermal spray equipment can create potential fire and explosion hazards from the fuel and carrier gases and a potential electrical shock hazard from the electrical and electronic equipment and charged wire spools. To minimize hazards, proper safety precautions shall be followed. Operators shall comply with the procedures in the safety references, the manufacturer’s technical manuals, and the material safety data sheets. Thermal spraying can be a completely safe process when performed by an operator who follows the recommended precautionary measures, has a proper understanding of thermal spraying practices, and has knowledge, skill, and exercises care in using thermal spray equipment. 1.3 Units of Measure This specification makes use of both the International System (SI) and U.S. Customary units. The measurements are not exact equivalents; therefore each system must be used independently of the other without combining in any way.
//^:^^#^~^^"^~:""::$:@@:"#:$@"@@"**^::~^*^~:~^#"~^"@@\\
_______________________________ NACE standards can be obtained from NACE International, 1440 South Creek Drive, Houston, TX 77084-4906. (6) Available from the National Fire Protection Association (NFPA), 1 Batterymarch Park, P.O. Box 9101, Quincy, MA 02269-9101.
NACE International
Copyright NACE International Provided by IHS under license with NACE No reproduction or networking permitted without license from IHS
1
Not for Resale

NACE No. 12/AWS C2.23M/SSPC-CS 23.00
The specification ANSI/AWS C2.23M/NACE No. 12/SSPCCS 23.00 uses SI units. U.S. Customary units are shown in appropriate columns in tables or within parentheses when used in the text. Suitable conversions encompassing standard sizes of both can be made, however, if appropriate tolerances are applied in each case.
________________________________________________________________________ Section 2: Referenced Documents
The following standards contain provisions which, through reference in this text, constitute provisions of this AWS/ NACE/SSPC standard. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this AWS/NACE/SSPC standard are encouraged to investigate the possibility of applying the most recent editions of the documents shown below. For undated references, the latest edition of the standard referred to applies ASTM B 833, Standard Specification for Zinc and Zinc Alloy (7) Wire for Thermal Spraying (Metallizing) ASTM C 633, Standard Test Method for Adhesion or Cohesive Strength of Flame-Sprayed Coatings ASTM D 4285, Method for Indicating Oil or Water in Compressed Air ASTM D 4417, Standard Test Methods for Field Measurement of Surface Profile of Blast Cleaned Steel ASTM D 4541, Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers ASTM D 4940, Standard Test Method for Conductimetric Analysis of Water Soluble Ionic Contamination of Blasting Abrasives. ASTM E 3, Standard Practice for Preparation of Metallographic Examination ANSI/AWS C2.18, Guide for the Protection of Steel with Thermal Sprayed Coatings of Aluminum and Zinc and Their Alloys and Composites ANSI/AWS C2.25/C2.25M, Specification for Solid and Composite Wires, and Ceramic Rods for Thermal Spraying ISO 8502-3, Preparation of steel substrates before application of paints and related products—Tests for the assessment of surface cleanliness—Part 3: Assessment of dust on steel surfaces prepared for painting (pressure-sensitive tape (8) method) NACE No. 1/SSPC-SP 5, White Metal Blast Cleaning NACE No. 2/SSPC-SP 10, Near-White Metal Blast Cleaning NACE Standard RP0178, Fabrication Details, Surface Finish Requirements, and Proper Design Considerations for Tanks and Vessels to Be Lined for Immersion Service NACE Standard RP0287, Field Measurement of Surface Profile of Abrasive Blast Cleaned Steel Surfaces Using a Replica Tape SSPC-AB 1, Mineral and Slag Abrasive
(9)
SSPC-AB 2, Specification for Cleanliness of Recycled Ferrous Metallic Abrasives SSPC-AB 3, Newly Manufactured or Remanufactured Steel Abrasives SSPC-PA 1, Shop, Field, and Maintenance Painting of Steel SSPC-PA 2, Measurement of Dry Coating Thickness with Magnetic Gages SSPC-SP 1, Solvent Cleaning SSPC-VIS 1, Guide and Visual Reference Photographs for Steel Surfaces prepared by Dry Abrasive Blast Cleaning
________________________________________________________________________ Section 3: Definitions
3.1 Aluminum MMC TSC: Aluminum metal matrix composite (MMC) TSC is a coating that contains a composite material in an aluminum matrix. It is produced by flame or arc spraying a solid or cored wire that contains the composite material. ___________________________
(7)
3.2 Bend Test: The bend test (180° bend on a mandrel diameter based on the TSC thickness) is a qualitative test of the ductility and tensile bond of the TSC. The bend test is a macro-system test of surface preparation, equipment setup, spray parameters, and application procedures.
ASTM standards can be obtained from ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. ISO standards can be obtained from American National Standards Institute (ANSI), 11 W. 42nd Street, New York, NY 10036-9002. (9) SSPC standards can be obtained from SSPC: The Society for Protective Coatings, 40 24th Street, 6th Floor, Pittsburgh, PA 15222-4656.
(8)
2
--`,,,,,-`-`,,`,,`,`,,`---
NACE International
Copyright NACE International Provided by IHS under license with NACE No reproduction or networking permitted without license from IHS
Not for Resale
//^:^^#^~^^"^~:""::$:@@:"#:$@"@@"**^::~^*^~:~^#"~^"@@\\

NACE No. 12/AWS C2.23M/SSPC-CS 23.00
3.3 Bond Test: A test to determine the tensile strength of a thermal spray coating. 3.4 Companion Coupon: A small rectangular metal sample surface prepared and coated concurrently with the workpiece, used for inspection. 3.5 Contract Pre-Award Validation: The purchaser’s contract pre-award evaluation of the thermal spray coating applicator includes (a) written procedures for and (b) demonstration of surface-preparation and thermal spray materials, equipment capabilities, and application process proposed for the contract work. 3.6 Cut Test: The TSC cut test shall consist of a single cut 40 mm (1.5 in.) long through the TSC to the substrate without severely cutting into the substrate. All cuts shall be made with sharp-edge tools. The chisel cut shall be made at a shallow angle. The cutting tool shall be specified in the contract. 3.7 Holding Period: Holding period is the time between the completion of the final anchor-tooth blasting, or final brush blasting, and the completion of the thermal spraying. The holding period, by definition, ends with the onset of rust bloom. 3.8 Job Control Record (JCR): The JCR is a record form that enumerates the essential job information and the inprocess QC checkpoints required by this standard. The JCR includes information on safety precautions, and the equipment, parameters, and procedures for surface preparation, thermal spraying, and sealing or sealing and topcoating. Appendix B is a model JCR. 3.9 Job Reference Standard (JRS): The JRS is a job site pass/fail reference standard representative of the whole job or major sections of the job. See Paragraph 13.2 and Figure 2.
--`,,,,,-`-`,,`,,`,`,,`---
Figure 2: Job Reference Standard Illustration
3.10 Overspray: The portion of the thermal spray deposit that is not deposited on the desired area of the workpiece. 3.11 Rust Bloom: Discoloration indicating the beginning of rusting. For the purpose of this standard, rust bloom is rusting that occurs after specified surface preparation. 3.12 Sealer: The sealer is a thin paint coat about 38 μm (1.5 mils) thick that is absorbed into the pores of the TSC. Aluminum and zinc TSCs have porosities ranging up to 15%. Interconnected porosities may extend from the surface to the substrate. Sealing extends the service life. Sealing is accomplished (a) naturally by the oxidation of the sprayed aluminum or zinc filling the pores with a tightly adherent oxide layer or (b) by applying thin paint sealer coatings that penetrate and are absorbed into the pores of the TSC. 3.13 Soluble-Salt Contaminants: These water-soluble salts are inorganic compounds (such as chlorides and sulfates) that contaminate a product. If soluble salts are present on a prepared steel surface, they may cause rust bloom and premature coating failure. 3.14 Topcoat: The topcoat is a paint coat over the seal coat. Note: Paint topcoats should never be applied over an unsealed TSC.
//^:^^#^~^^"^~:""::$:@@:"#:$@"@@"**^::~^*^~:~^#"~^"@@\\
NACE International
Copyright NACE International Provided by IHS under license with NACE No reproduction or networking permitted without license from IHS
3
Not for Resale

NACE No. 12/AWS C2.23M/SSPC-CS 23.00 ________________________________________________________________________ Section 4: Summary of Practice
4.1 The procedure for application of TSCs for the corrosion protection of steel includes (a) proper surface preparation of the substrate steel, (b) proper application of the TSC, and (c) proper application of the sealer or sealer and topcoat. The procedure includes the use of suitable abrasive blasting, thermal spraying, sealing/topcoating equipment, and inprocess QC checkpoints. Table 1 summarizes the TSC system requirements and the inspection and acceptance tests for shop and field applications. The TSC system material, thickness, adhesion strength, and sealer or sealer and topcoat should be related to the required service.
6.1.1 The TSC feedstock material and thickness should be selected according to intended service environment and service life. (See ANSI/AWS C2.18) 6.1.2 The TSC feedstock material shall be specified according to ANSI/AWS C2.25/C2.25M or ASTM B 833.
4
Copyright NACE International Provided by IHS under license with NACE No reproduction or networking permitted without license from IHS
NACE International
Not for Resale
--`,,,,,-`-`,,`,,`,`,,`---
//^:^^#^~^^"^~:""::$:@@:"#:$@"@@"**^::~^*^~:~^#"~^"@@\\
________________________________________________________________________ Section 5: Surface Finish Requirements
5.1 Surface Finish 5.1.1 The steel substrate shall be prepared to: (1) White metal finish, NACE No. 1/SSPC-SP 5, for marine and immersion service, or (2) The minimum of near-white metal finish, NACE No, 2/SSPC-SP 10, for other service applications. (3) The level of soluble-salt contamination on the surface shall conform to the contract specifications. 5.1.2 Surface finish and cleanliness shall be confirmed according to SSPC-VIS 1. 5.2 Angular Profile Depth 5.2.1 The steel substrate shall have, at a minimum, an angular profile depth ≥65 μm (2.5 mils) with a sharp angular shape. 5.3 Angular Profile Depth Measurement Schedule 5.3.1 The profile depth shall be measured according to NACE Standard RP0287 or ASTM D 4417, Method C (1) Manual Blasting. At a minimum, take one profile 2 2 depth measurement every 1 to 2 m (10 to 20 ft ) of blasted surface. (2) Automated Blasting. At a minimum, take one 2 profile depth measurement every 100 to 200 m (1,000 2 to 2,000 ft ) of blasted surface. (3) Angular Blast Media. Use clean dry angular blasting media. Mineral and slag abrasives shall be selected and evaluated per SSPC-AB 1, recycled ferrous metallic abrasives per SSPC-AB 2, and steel grit per SSPC-AB 3. The absence of oil contamination shall be confirmed using the test for oil in the appropriate abrasive specification (no oil film or slick). The soluble salt contamination shall be measured by ASTM D 4940. The suitability of the angular blast media, blasting equipment, and blasting procedures shall be validated according to Section 14, Contract Pre-Award Evaluation, Demonstration, and Validation. Table 2 indicates blasting media and mesh size found suitable for TSCs on steel substrates. (replica tape, x-coarse, 38 to 113 μm [1.5 to 4.5 mils]), or Method B (profile depth gauge), or both.
________________________________________________________________________ Section 6: TSC Requirements
6.1 Feedstock and TSC Thickness 6.1.3 The minimum and maximum TSC thickness shall be measured with an SSPC-PA 2, Type 2 fixed probe gauge or equivalent. The thickness scheduled is specified in Paragraph 6.3.

NACE No. 12/AWS C2.23M/SSPC-CS 23.00 Table 1: TSC System Requirements and Acceptance Tests
TSC System Requirements Surface Preparation NACE No. 2/SSPC(A) SP 10 minimum Angular-profile depth ≥65 μm (2.5 mils) Specify blasting media
//^:^^#^~^^"^~:""::$:@@:"#:$@"@@"**^::~^*^~:~^#"~^"@@\\
Acceptance Tests
TSC
Sealer or Sealer and Topcoat
Smooth and uniform. No blisters, cracks, loose particles, or exposed steel.
Smooth and uniform. No runs, sags, lifting, pinholes, or overspray.
Per the contract surface preparation standard. Profile tape according to NACE Standard RP0287 or micrometer depth gauge according to ASTM D 4417 Manufacturer’s certificate and MSDS
(B)
---
---
Specify feedstock
Specify paint(s)
---
Coating Thickness Minimum: ____μm (____mils) Maximum: ____μm (____mils) Portable tensile bond (≥ Table 3 values) Minimum: ____MPa (____psi)
(E)
(C)
Coating thickness Minimum: ____μm (____mils) Maximum: ____μm (____mils) ---
SSPC-PA 2 Type 2 Fixed Probe Gauge
---
ASTM D 4541
(D)
Companion coupon bend/tensile-bond test : Condition of substrate surface preparation and TSC (F) interface and morphology (structure) --No peeling or delimitation Other as specified by the Contract ___________________________
-----
Bend/tensile-bond test Metallographic examination of companion coupon --TSC Cut Test
(G)
Other as specified by the Contract
NACE International
Copyright NACE International Provided by IHS under license with NACE No reproduction or networking permitted without license from IHS
5
Not for Resale
--`,,,,,-`-`,,`,,`,`,,`---
For critical surfaces and marine and underwater service, clean to a white metal finish (NACE No. 1/SSPC-SP 5) with ≥65 μm (2.5 mils) angular profile. The owner should specify the minimum required blast quality and its validation according to Section 5, Job Reference Standard. The angularity of the blast profile can be determined by a metallographic analysis of a companion coupon according to ASTM E 3 using a specimen cut from a successful bend coupon prepared and thermal sprayed per the contract specifications and tested according to Paragraph 6.5. (B) Verification that the manufacturers or suppliers provide a certificate or affidavit that (1) the blasting media conforms to SSPC-AB 1 for mineral and slag abrasive, SSPC-AB 2 for recycled ferrous metallic abrasives, or SSPC-AB 3 for newly manufactured or remanufactured steel abrasive; (2) the TSC-feedstock chemical composition, obtained from a representative sample of each heat during the pouring or subsequent processing, conforms to ANSI/AWS C2.25; and (3) the sealer and topcoat paints are formulated for the contract-specified thermal spray coating. The Material Safety Data Sheets (MSDS) provide supporting physical and chemical information. (C) Measure the TSC thickness according to SSPC-PA 2. Calibrate the instrument using a calibration wedge near the contract-specified thickness placed over a representative sample of the contract-specified abrasive blasted steel, a prepared bend coupon, or both. (D) Specify the ASTM D 4541 self-adjusting portable tensile instrument to be used and its minimum acceptable value for the Job Reference Standard and the job work surfaces. (E) As an alternative to the portable tensile-bond test, which may be considered potentially destructive on a finished part, a companion coupon may be bend tested, or a companion tensile test specimen may be tested in accordance with ASTM C 633 to validate the coating adhesion strength. The bend test is a macro system test for proper surface preparation, equipment set-up, and spraying parameters. (F) Metallographic analysis of a companion coupon may be specified to establish the suitability of the surface preparation, TSC application, and/or porosity of the TSC. (G) TSC cut test should be made by a tool cutting through the TSC to the steel surface. The TSC is defective if any part of the coating lifts off the surface.
(A)

NACE No. 12/AWS C2.23M/SSPC-CS 23.00 Table 2: Blasting Media and Mesh Size Found Suitable for TSCs on Steel Substrates
Thermal Spray Material Process Blasting Media Aluminum oxide Angular steel grit Al, Zn, 85/15 Zn/Al, 90/10 AlAl2 O3 MMC Flame wire and arc wire Copper and nickel slag Almandite garnet Chilled iron grit Aluminum oxide Al, Zn
(A)
Size
(A)
10-30 mesh G-16 to G-40 G-16 to G-24 G-16 to 30/40 G-16 to G-40 10-30 mesh G-16 to G-40 G-16 to G-40
Flame powder
Angular steel grit Chilled iron grit
Mesh size shall be selected as appropriate to the anchor-tooth depth requirement and the blasting equipment used.
6.2 TSC Thickness 6.2.1 Thickness Less Than Contract Specification 6.2.1.1 If upon later inspection, and prior to sealer application, the TSC thickness is less than the contract requirement, the applicator shall apply additional TSC to meet the thickness requirement. 6.2.2 Thickness Greater Than Contract Specification 6.2.2.1 If the TSC thickness is greater than the contract specification, information shall be recorded in the JCR and the inspector shall be notified immediately. The inspector should then notify the purchaser for resolution of this discrepancy. The TSC applicator and the purchaser should record all areas in excess of 150% of the acceptable coating thickness. If these areas are damaged during shipping, loading/unloading, or erection, they should be repaired in accordance with maintenance repair procedures as outlined in ANSI/ AWS C2.18.
6.3 TSC Thickness Measurement Schedule 6.3.1 For flat surfaces a measurement line shall be used. The average value of five readings taken in line at 2.5-cm (1.0-in.) intervals shall be determined. The line measurement measures the peaks and valleys of the TSC. 6.3.2 For complex geometries and geometry transitions a measurement spot shall be used. The measurement spot should have an area of approximately 2 2 10 cm (1.6 in. ). The spot measurement may not measure the peaks and valleys of the TSC. 6.3.3 Figure 3 illustrates the line and spot measurements. 6.3.4 Measurement Schedule: One line or spot mea2 surement shall be taken every 10 to 20 m (100 to 200 2 ft ) of applied TSC.
Five in line at about 2.5-cm (1.0-in.) intervals
Five in a spot of about 10 cm (1.6 in. )
2
2
Figure 3: Line and Spot Measurements
6
Copyright NACE International Provided by IHS under license with NACE No reproduction or networking permitted without license from IHS
NACE International
Not for Resale
//^:^^#^~^^"^~:""::$:@@:"#:$@"@@"**^::~^*^~:~^#"~^"@@\\
--`,,,,,-`-`,,`,,`,`,,`---

NACE No. 12/AWS C2.23M/SSPC-CS 23.00
6.4 TSC Tensile Bond and Measurement Schedule 6.4.1 The TSC tensile bond shall be measured according to ASTM D 4541 using a self-aligning adhesion tester or approved equivalent. 6.4.1.1 The minimum TSC tensile bond value shall be specified according to Table 3. Higher values may be specified.
Table 3: Minimum Tensile Bond Requirements (According to ASTM D 4541 using self-aligning adhesion tester)
Feedstock Zn Al 85/15 Zn/Al 90/10 Al2O3 MMC 6.4.1.2 One portable tensile-bond measurement 2 2 shall be made every 50 m (500 ft ). If the tensile bond is less than the contract specification, the degraded TSC shall be removed and reapplied. 6.4.1.3 For nondestructive measurement: Tensile force shall be measured to the contract-specified tensile. The tensile force shall then be reduced and the tensile fixture removed without damaging the TSC. 6.4.2 Note: The tensile-bond measurement of the portable test instrument may be calibrated according to the ASTM C 633 test method as described in Appendix C. MPa (psi) 3.45 (500) 6.89 (1,000) 6.89 (1,000) 6.5 Bend Test 6.5.1 The bend test (180° bend on a mandrel) is used as a qualitative test for proper surface preparation, equipment setup, and spray parameters. The bend test puts the TSC in tension. The mandrel diameter for the threshold of cracking depends on substrate thickness and coating thickness. 6.5.2 Table 4 summarizes a very limited bend-test cracking threshold for arc-sprayed zinc TSC thickness on steel coupons 1.3 mm (0.05 in.) thick versus mandrel diameter.
//^:^^#^~^^"^~:""::$:@@:"#:$@"@@"**^::~^*^~:~^#"~^"@@\\
4.83 (700)
Copyright NACE International Provided by IHS under license with NACE No reproduction or networking permitted without license from IHS
--`,,,,,-`-`,,`,,`,`,,`---
Table 4: Bend-Test Cracking Threshold: Mandrel Diameter vs. TSC Thickness For steel coupons 1.3 mm (0.05 in.) thick
TSC Thickness, μm (mils) Mandrel Diameter, mm (in.)
__________________________ (A)
≥250 (10) 13 (0.50)
≥380 (15) 16 (0.63)
≥640 (25) <25 (1.0)
(A)
Confirm diameter with JRS.
6.5.3 Bend-Test Procedure for TSC Thickness Range 175 to 300 μm (7 to 12 mils) (1) Five corrosion-control bend coupons shall be sprayed and shall pass the following bend test: (a) Carbon steel coupons of approximate dimensions 50 x 100 to 200 x 1.3 mm (2 x 4 to 8 x 0.050 in.) shall be used. (b) Surface shall be prepared according to contract specification. (c) The TSC shall be sprayed 175 to 300 μm (7 to 12 mils) thick. The TSC should be sprayed in crossing passes laying down approximately 75 to 100 μm (3 to 4 mils) in each pass.
(d) Coupons shall be bent 180° around a 13-mm (0.50-in.) diameter mandrel. (2) Bend test passes if, on the bend radius (see Figure 4), there is (a) no cracking or spalling, or (b) only minor cracking that cannot be lifted from the substrate with a knife blade. (3) Bend test fails if the coating cracks with lifting from the substrate.
NACE International
7
Not for Resale

NACE No. 12/AWS C2.23M/SSPC-CS 23.00
Figure 4: TSC Bend Test: Pass and Fail Samples
6.6 TSC Finish 6.6.1 The deposited TSC shall be uniform without blisters, cracks, loose particles, or exposed steel as examined with 10x magnification. 6.7 TSC Porosity 6.8.1 If required by the purchaser, the maximum allowable porosity and the metallographic measurement method to be used for the evaluation shall be specified. Note: Porosity measurements are not used for in-pro6.8.1 The suitability of the TSC thickness, portable tensile bond, bend test, and cut-test measurement procedures and instruments shall be validated during the Contract Pre-Award Validation according to Section 14.
--`,,,,,-`-`,,`,,`,`,,`---
cess quality control in metallizing for corrosion protecttion of steel. However, porosity measurements may be used to qualify thermal spray application processes and spray parameters. 6.8 TSC QC Measurement Procedures and Instruments
________________________________________________________________________ Section 7: TSC Application Procedure
7.1 General 7.1.1 Appendix D details the key production and quality control checkpoints for applying TSCs. 7.2 Thermal Spray Equipment Setup 7.2.1 Thermal spray equipment shall be set up, calibrated, and operated (1) according to the manufacturer’s instructions and technical manuals or the TSC applicator’s refinement thereto, and (2) as validated by the JRS (See Paragraph 13.2). 7.2.2 Spray parameters and thickness of each crossing pass shall be set for spraying the specified thermal spray material and, at a minimum, be validated with the bend test. 7.2.3 The thermal spray equipment spray-parameter set-up shall be validated with a bend test at the beginning of each shift or crew change. 7.2.4 A copy of the spray parameters used shall be attached to the JCR.
8
Copyright NACE International Provided by IHS under license with NACE No reproduction or networking permitted without license from IHS
NACE International
Not for Resale
//^:^^#^~^^"^~:""::$:@@:"#:$@"@@"**^::~^*^~:~^#"~^"@@\\

NACE No. 12/AWS C2.23M/SSPC-CS 23.00
7.3 Post-Blasting Substrate Condition and Thermal Spraying Period 7.3.1 Steel Surface Temperature 7.3.1.1 The steel surface temperature shall be at least 3°C (5°F) above the dewpoint of the ambient air temperature. 7.3.2 Holding Period 7.3.2.1 Time between the completion of the final anchor-tooth blasting (or final brush blasting) and the completion of the thermal spraying should be no greater than six hours for steel substrates with the following exceptions: (1) In high-humidity and damp environments, shorter holding periods shall be used. If rust bloom or a degraded coating appears at any time while spraying, spraying shall be stopped. (See Paragraph 8.2.4.) (2) In low-humidity environments or in controlled environments with enclosed structures using industrial dehumidification equipment, it may be possible to retard the oxidation of the steel and hold the surface finish for more than six hours. The TSC applicator, with the concurrence of the purchaser, can establish a holding period greater than six hours by determining the acceptable temperature-humidity envelope for the work enclosure by spraying and analyzing bend coupons, tensilebond specimens, or both. The following method shall be used for bend-test coupons: (a) establish, measure, and record the low-humidity environment; (b) prepare four bend-test coupons according to contract specifications; (c) place bend-test coupons in the low-humidity environment; (d) after target holding period duration, apply the contractspecified thermal spray coating; (e) perform the bend test according to Paragraph 6.5; (f) the lowhumidity environment and holding period are satisfactory if the four bend coupons meet the requirement of Paragraph 6.6.3 (2). Alternately, tensilebond specimens can be similarly tested. (3) For small and movable parts, if more than 15 minutes is expected to elapse between the completion of surface preparation and the start of thermal spraying, or if the part is moved to another location, the prepared surface should be protected from moisture, contamination, and finger/hand marks. Wrapping with clean ink-free paper is normally adequate. 7.4 TSC Flash Coat 7.4.1 Application Time 7.4.1.1 A 25- to 50-μm (1- to 2-mil) flash coat of the TSC may be applied within six hours of completing surface preparation to extend the holding period for up to four more hours beyond the complete application of the flash coat. The final TSC thickness, however, shall be applied within four hours of the completion of the application of the flash coat provided the TSC can be maintained free of contamination. 7.4.2 Validation Procedure 7.4.2.1 The use of a flash TSC to extend the holding period shall be validated with a tensile-bond measurement, bend test, or both. The use of a flash TSC shall be validated by: (1) Cleaning and abrasive blasting a representative job area for a portable tensile-bond measurement, a bend-test coupon, or both. (2) Applying a flash TSC. (3) Waiting the delay period and applying the final TSC thickness. (4) Measuring the tensile bond, performing the bend test, or both. 7.4.2.2 The flash TSC and holding period are acceptable if the tensile bond, bend tests, or both, are satisfactory.
--`,,,,,-`-`,,`,,`,`,,`---
________________________________________________________________________ Section 8: TSC Application
8.1 Preheat 8.1.1 Preheating the starting area has been common practice for flame spraying and should be continued until proven not to be a benefit or inconsequential. The 2 2 initial 0.1- to 0.2-m (1- to 2-ft ) starting-spray area shall be preheated to prevent water in the flame from condensing on the substrate. 8.1.1.1 For flame spraying, the initial starting area shall be preheated to approximately 120°C (250°F). 8.1.1.2 Preheating requirements shall be validated with the JRS and the bend test, tensile test, or both.
NACE International
Copyright NACE International Provided by IHS under license with NACE No reproduction or networking permitted without license from IHS
9
Not for Resale
//^:^^#^~^^"^~:""::$:@@:"#:$@"@@"**^::~^*^~:~^#"~^"@@\\

NACE No. 12/AWS C2.23M/SSPC-CS 23.00
8.2 Thermal Spraying 8.2.1 Crossing Passes 8.2.1.1 The specified coating thickness shall be applied in several crossing passes. The coating tensile-bond strength is greater if the spray passes are kept thin. Laying down an excessively thick spray pass increases the internal stresses in the TSC and decreases the ultimate tensile-bond strength of the total TSC. The suitability of the crossing-pass thickness shall be confirmed with a bend test, tensile-bond measurement, or both. 8.2.2 Manual Spraying 8.2.5 TSC Thickness 8.2.2.1 For manual spraying, right-angle crossing passes shall be used to minimize the thin areas in the coating. 8.2.3 Mechanized Spraying 8.2.3.1 For mechanized spraying (mechanized movement of the gun, workpiece, or both), overlapping and crossing passes shall be programmed to eliminate thin spots and stay within the coating thickness specification. 8.2.4 Rust Bloom 8.2.4.1 If rust bloom, blistering, or a degraded coating appears at any time during the application of the TSC or flash TSC, the following procedure applies: (1) Stop spraying. 8.2.5.1 The TSC thickness shall be that specified in Table 1 and Paragraph 6.1.3.
--`,,,,,-`-`,,`,,`,`,,`---
(2) Mark off the acceptable sprayed area. (3) Re-prepare the unsatisfactory areas to the required degree of surface cleanliness and surface profile, including any areas where the TSC was applied to unsatisfactory surfaces. (a) Blast the edges of the TSC to provide for a 5.0- to 7.5-cm (2.0- to 3.0-in.) featheredarea overlap of the new work into the existing TSC. (b) Apply TSC to the newly prepared surfaces, and overlap the existing TSC to the extent of the feathered edge so that the overlap is a consistent thickness.
8.2.6 Low-Temperature Spraying 8.2.6.1 Thermal spraying in low-temperature environments (below freezing) must: (1) Meet the substrate surface temperature and holding period specified in Paragraphs 7.3.1 and 7.3.2. No moisture condensation on the surface is permissible during thermal spraying. (2) Be qualified with a bend test, portable tensilebond test, or both. Note: TSCs are mechanically bonded to the substrate. Preheating may be required to improve the TSC tensile bond to the substrate and reduce internal stresses.
________________________________________________________________________ Section 9: Application of Sealers and Topcoats
9.1 General 9.1.1 Thermal sprayed steel should be sealed and/or topcoated under any of the following conditions: (1) The environment is very acidic or very alkaline (normal pH range for pure zinc is 6 to 12 and for pure aluminum, 4 to 11). (2) The metallic coating is subject to direct attack by specific chemicals. (3) A particular decorative finish is required. (4) Additional abrasion resistance is required. (5) Frequent saltwater spray, splash, or immersion service. (6) Frequent freshwater spray, splash, or immersion service, excluding potable water. 9.1.2 Sealers and topcoats shall meet the local restrictions on volatile organic compound (VOC) content. Sealer and topcoats shall be applied according to the paint manufacturer’s instructions for use with a TSC, or as specified by the purchaser. 9.2 Sealer 9.2.1 The seal coat, if applied, shall be thin enough to penetrate into the body of the TSC and seal the interconnected surface porosity. Typically the seal coat is applied at a spreading rate resulting in a theoretical 38μm (1.5-mil) dry-film thickness (DFT).
10
Copyright NACE International Provided by IHS under license with NACE No reproduction or networking permitted without license from IHS
NACE International
Not for Resale
//^:^^#^~^^"^~:""::$:@@:"#:$@"@@"**^::~^*^~:~^#"~^"@@\\

NACE No. 12/AWS C2.23M/SSPC-CS 23.00
9.2.2 For shop and field work, sealers should be applied as soon as possible after thermal spraying and preferably within eight hours. 9.2.3 If a sealer cannot be applied within eight hours, it shall be verified that the TSC (a) has not been contaminated by visual inspection, and (b) is dust-free using the clear cellophane tape test per ISO 8502-3 before applying the sealer. 9.3 Topcoat 9.3.1 A topcoat is essentially a full coat of paint. Topcoats shall be chemically compatible with the sealer and shall be applied according to the paint manufac9.4.1 All paint coatings shall be applied according to SSPC-PA 1 and the paint manufacturer’s recommendations for use of the product with a TSC system. turer’s instructions for a topcoat on a sealed TSC, or as specified by the purchaser. Full topcoats greatly reduce or entirely diminish the cathodic protection effects of the TSC in immersion or underground service. 9.3.2 A paint topcoat shall only be applied to an unsealed TSC if the compatibility of this (sealer-topcoat) painting system has been demonstrated. 9.4 Applying Paints
________________________________________________________________________ Section 10: Records
10.1 The TSC applicator shall use a JCR to record the production and QC information and other information required by the purchasing contract. Additionally, the TSC applicator shall have its own Quality Assurance Program. The TSC applicator shall keep records for a time period consistent with the TSC applicator’s quality assurance and records program and as required for regulatory compliance and the purchasing contract. Records should be kept a minimum of one year.
//^:^^#^~^^"^~:""::$:@@:"#:$@"@@"**^::~^*^~:~^#"~^"@@\\
________________________________________________________________________ Section 11: Debris Containment and Control
11.1 The TSC applicator and the purchaser shall coordinate the specific requirements, responsibilities, and actions for the containment, collection, and removal of the debris produced by the TSC applicator and its subcontractors.
________________________________________________________________________ Section 12: Work Procedures and Safety
priate procedures and meet all appropriate regulatory requirements.
--`,,,,,-`-`,,`,,`,`,,`---
12.1 The purchaser shall provide its standard operating and safety procedures and compliance requirements to the TSC applicator. The TSC applicator shall follow all appro-
________________________________________________________________________ Section 13: Documentation
13.1 TSC Applicator’s Application Procedure 13.1.1 The TSC applicator shall submit its application procedure proposed for the contract work. The application process shall include information on the equipment capabilities, materials, and process or application procedures, and in-process quality control checkpoints for (a) surface preparation, (b) thermal spraying, and (c) paint work (sealer or sealer and topcoat). 13.2 Job Reference Standard (JRS) 13.2.1 A job site pass/fail JRS representative of the whole job or major sections of the job shall be prepared by the TSC applicator. The JRS shall be used as a “comparator” to evaluate the suitability of the application process. (1) The JRS shall be made on a steel plate approximately 46 x 46 x 0.60 cm (18 x 18 x 0.25 in.) (see Figure 2). For structural steel, the reference standard does not need to be more than 0.60 cm (0.25 in.) thick because steel does not thermally distort when TSC is applied. If the actual work is less than 0.60 cm (0.25 in.) thick, the JRS should be made from material of a representative thickness. (2) The JRS shall be made with the actual field equipment and the process parameters and procedures (surface preparation, thermal spraying, sealing or sealing
NACE International
Copyright NACE International Provided by IHS under license with NACE No reproduction or networking permitted without license from IHS
11
Not for Resale

NACE No. 12/AWS C2.23M/SSPC-CS 23.00
and topcoating in-process QC checkpoints) that shall be used for the contracted work. (3) The JRS shall be made in representative environmental conditions spraying with or without enclosure as appropriate. (4) Thickness and tensile-bond measurements shall be made according to Figure 5. (a) Four “five in-line” thickness measurements. (b) Four portable tensile-bond measurements according to Paragraph 6.4. (c) The JRS is unsatisfactory if any measurements are less than the contract-specified value. (5) The JRS is used as a pass/fail reference for the applicator’s in-process QC and the purchaser’s inspector.
1 – Divide the area into four quadrants. 1- Divide the area into four quadrants.
2 Measure thickness, 5 in-line line at about 2- – Measure thickness, 5 in at about 1-in, 2.5-cm intervals near the center of a 45o [2.5 cm] (1.0-in.) intervals near the center diagonal line. of a 45° diagonal line.
ASTM D 4541 Type III
ASTM D 4541 Type IV
ASTM D 4541 Type V
X
3 Measure tensile bond at center of the the quadrant self-aligning 3- –Measure tensile bond at the the center ofquadrant with a with a selfaligning instrument. instrument. 4 – Repeat and record measurements in each of the four quadrants. 4- Repeat & record measurements in each of the four quadrants.
Figure 5: Thickness and Tensile-Bond Measurements for JRS Qualifications ________________________________________________________________________ Section 14: Contract Pre-Award Evaluation, Demonstration, and Validation
14.1 The purchaser shall evaluate the suitability of the TSC applicator’s application process submitted according to Paragraph 13.1. 14.2 The purchaser, as an option for physically validating the TSC applicator’s application process, may schedule, witness, and evaluate a contract pre-award demonstration of the TSC applicator’s application process for the surface preparation, thermal spraying, sealing, and topcoating, using the equipment, materials, and process procedures proposed for the contract work. The JRS should be made during this demonstration and witnessed by the purchaser or his designated representative.
________________________________________________________________________ Section 15: TSC Applicator Warranty
//^:^^#^~^^"^~:""::$:@@:"#:$@"@@"**^::~^*^~:~^#"~^"@@\\
15.1 TSC Applicator Warranty 15.1.1 The TSC applicator shall warrant the quality of its workmanship as mutually agreed to by the purchaser and the TSC applicator. 15.2 Materials Used 15.2.1 The TSC applicator shall provide the purchaser with a Certificate of Materials Used to include:
(1) For angular blasting media: Media type, grit size range, chemical composition, and MSDS. (2) For TSC spray feedstock: Alloy type/designation, lot number, wire diameter, chemical composition of the wire lot, and MSDS. (3) Sealer and topcoat: Manufacturer’s product and application data sheets for application on the TSC system and MSDS.
12
--`,,,,,-`-`,,`,,`,`,,`---
NACE International
Copyright NACE International Provided by IHS under license with NACE No reproduction or networking permitted without license from IHS
Not for Resale

--`,,,,,-`-`,,`,,`,`,,`---
NACE No. 12/AWS C2.23M/SSPC-CS 23.00 ________________________________________________________________________ Further Reading
ANSI Z49.1. “Safety in Welding, Cutting, and Allied Pro(10) cesses.” Washington, DC: ANSI. AWS C2.14. “Corrosion Tests of Flame-Sprayed Coated (11) Steel, 19-Year Report.” 1974. BS 5493. “Code of Practice for Protective Coatings of Iron and Steel Structures Against Corrosion.” London, UK: (12) BSI. Kain, R.M., and E.A. Baker. “Marine Atmospheric Corrosion Museum Report on the Performance of Thermal Spray Coatings on Steel.” ASTM STP 947. 1987. NFPA 58. “Standard for the Storage and Handling of Lique(13) fied Petroleum Gases.” Quincy, MA: NFPA. Pikul, S.J. “Appearance of Thermal Sprayed Coatings after 44 Years Marine Atmospheric Exposure at Kure Beach, North Carolina.” LaQue Center for Corrosion (14) Technology Report. SSPC Publication. Inspection of Coatings and Linings: A Handbook of Basic Practice for Inspectors, Owners, and Specifiers. B.R. Appleman, R. Drisko, J. Neugebauer, eds. SSPC-TU 4. “Field Methods for Retrieval and Analysis of Soluble Salts on Substrates.” Pittsburgh, PA: SSPC. Thermal Spraying: Practice, Theory, and Application. (15) Miami, FL: AWS, 1985.
//^:^^#^~^^"^~:""::$:@@:"#:$@"@@"**^::~^*^~:~^#"~^"@@\\
___________________________
Available from the American National Standards Institute, 1819 L Street NW, 6th floor, Washington, DC 20036. AWS publications can be obtained from Global Engineering, 15 Inverness Way East, Engelwood, CO 80112-5776, Telephone (800)-8547179, Fax (303) 307-2740, Internet www https://www.wendangku.net/doc/fe15357110.html,. (12) BSI standards can be obtained from the British Standards Institution (BSI), British Standards House, 389 Chiswick High Rd., London W4 4AL, UK. (13) Available from the National Fire Protection Association, 1 Batterymarch Park, P.O. Box 9101, Quincy, MA 02269-9101. (14) Available from the LaQue Center for Corrosion Technology, Inc., 702 Causeway Drive, Wrightsville Beach, NC 28480. (15) AWS publications can be obtained from Global Engineering, 15 Inverness Way East, Engelwood, CO 80112-5776, Telephone (800)-8547179, Fax (303) 307-2740, Internet www https://www.wendangku.net/doc/fe15357110.html,
(11) (10)
NACE International
Copyright NACE International Provided by IHS under license with NACE No reproduction or networking permitted without license from IHS
13
Not for Resale

NACE No. 12/AWS C2.23M/SSPC-CS 23.00 ________________________________________________________________________ Appendix A: Model Procurement Specification
This Appendix is not a part of NACE No. 12/AWS C2.23M/SSPC-CS 23.00, but is included for informational purposes only. Appendix A is included to illustrate how this standard may be used to specify a thermal spray job. The Model Specification (Bolded text is the model specification. Scripted text is optional and if used, should match the format and style used in the final specification.) 1. Scope of Work 1.1 Application Procedure Instructions/Rationale
The TSC system (surface preparation, thermal spraying, and sealing or sealing and topcoating) shall be applied in accordance with Sections 4, 5, and 6 of this specification. 1.2 Items/Areas to Be Thermal Sprayed.
The major production and quality control (QC) steps for applying a TSC coating system are summarized in Appendix D. Appendix D should be appended to the procurement specification to inform the TSC applicator of the application requirements. Specify the item(s) and surface(s) to be (and not to be) thermal sprayed. Reference and append engineering drawings or other technical documents that quantitatively describe the job.
--`,,,,,-`-`,,`,,`,`,,`---
Apply TSC systems to: _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ 2. Codes and Standards
This specification takes precedence in event of conflict with cited Codes and Standards. The following codes and standards (latest issue) apply: ASTM B 833, Standard Specification for Zinc Wire for Thermal Spraying (Metallizing). ASTM C 633, Test Method for Adhesive/Cohesive Strength of Flame Sprayed Coatings. ASTM D 4285, Method for Indicating Oil or Water in Compressed Air. ASTM D 4417, Test Method for Field Measurement of Surface Profile of Blasted Steel. NACE Standard RP0287, Field Measurement of Surface Profile of Abrasive Blast Cleaned Steel Surfaces Using a Replica Tape. ASTM D 4541, Test Method for Pull-Off Strength of Coating Using Portable Adhesion Testers. ANSI/AWS C2.18, Guide for the Protection of Steel with Thermal Spray Coatings of Aluminum, Zinc, and Their Alloys and Composites. NACE No. 12/AWS C2.23M/SSPC-CS 23.00, Specification for the Application of Thermal Spray Coatings (Metallizing) of Aluminum, Zinc, and Their Alloys and Composites for the Corrosion Protection of Steel. SSPC Publication, The Inspection of Coatings and Linings: A Handbook of Basic Practice for Inspectors, Owners, and Specifiers. SSPC-AB 1, Mineral and Slag Abrasives. SSPC-AB 3, Ferrous Metallic Abrasives. SSPC-PA 1, Shop, Field, and Maintenance Painting of Steel. SSPC-PA 2, Measurement of Dry Coating Thickness with Magnetic Gages. NACE No. 1/SSPC-SP 5, White Metal Blast Cleaning. NACE No. 2/SSPC-SP 10, Near-White Metal Blast Cleaning. SSPC-VIS 1, Guide and Reference Photographs for Steel Surfaces Prepared by Dry Abrasive Blast Cleaning.
//^:^^#^~^^"^~:""::$:@@:"#:$@"@@"**^::~^*^~:~^#"~^"@@\\
List the Codes and Standards cited in this procurement specification. Add other standards as required.
14
Copyright NACE International Provided by IHS under license with NACE No reproduction or networking permitted without license from IHS
NACE International
Not for Resale

NACE No. 12/AWS C2.23M/SSPC-CS 23.00
The Model Specification (Bolded text is the model specification. Scripted text is optional and if used, should match the format and style used in the final specification.) 3. TSC System Requirements 3.1 Surface Preparation Requirement. (a) Specify either white metal finish, NACE No. 1/SSPC-SP 5, for marine and immersion service; or near-white metal finish, NACE No. 2/SSPC-SP 10, for other service applications. (a) Specify abrasive basting media type and size. See Table 2 of this NACE No. 12/AWS C2.23M/SSPC-CS 23.00 standard. Instructions/Rationale
3.1.1 Surface Finish. Degrease according to SSPC-SP 1 if oil/grease contaminated. The steel substrate shall be abrasive blasted to ______(a)______. Using SSPC VIS 1, confirm that the blast cleaned finish meets NACE No. 1/SSPC-SP 5 or NACE No. 2/SSPC-SP 10. 3.1.2 Blasting Media Requirement. Use ____(a)___ angular blasting media to produce the angular profile depth specified by Paragraph 3.1.3. Mineral and slag abrasives shall be selected and evaluated per SSPC-AB 1; recycled ferrous metallic abrasives per SSPC-AB 2; and steel grit per SSPC-AB 3. 3.1.3 Blast Angular Profile Depth. The steel substrate shall have an angular profile depth ≥65 μm (2.5 mils) with a sharp angular shape per NACE Standard RP0287 or ASTM D 4417, Method B or C. 3.1.4 Blast Profile Measurement Schedule. Measure the angular profile depth in a measurement spot approximately every ____(a)____ blasted surface. Take three measurements for each spot in an area approximately 2 2 10 cm (1.5 in. ). Average the measurements and record in the JCR. 3.2 3.2.1 Use 3.2.2 (a) TSC Requirement. Thermal Spray Feedstock Requirement. (a) thermal spray wire.
(a) Specify the minimum area, e.g., 10 2 2 to 20 m (100 to 200 ft )
(a) Specify wire according to ANSI/ AWS C2.25 or ASTM B 833.
TSC Thickness Requirement and Measurement Schedule Thickness (1) The minimum TSC thickness shall be ______(a)______. (2) The maximum TSC thickness shall be ______(b)______. (3) Measure TSC thickness using a SSPC-PA 2 Type 2 fixed probe gauge or equivalent. Measurement Schedule 2 One portable tensile-bond measurement shall be made every 50 m 2 (500 ft ). If the tensile bond is less than the contract specification, the degraded TSC shall be removed and reapplied. TSC Tensile-Bond Requirement.
(a) Specify the minimum thickness. (b) Specify the maximum thickness.
(b)
3.2.3
(a) The TSC shall have a minimum tensile bond of __(a)__ MPa (____ psi) according to ASTM D 4541 using the Type _(b)__ self-aligning portable test instrument for coating thickness specified in Paragraph 3.2.2. (b) Use adhesive recommended by the instrument manufacturer, or equivalent. Attach adhesive manufacturer’s instructions to the JCR.
(a) Specify the minimum tensile bond. (b) Specify either the Type III or IV portable self-aligning test instruments.
NACE International
--`,,,,,-`-`,,`,,`,`,,`---
15
Copyright NACE International Provided by IHS under license with NACE No reproduction or networking permitted without license from IHS
Not for Resale
//^:^^#^~^^"^~:""::$:@@:"#:$@"@@"**^::~^*^~:~^#"~^"@@\\

NACE No. 12/AWS C2.23M/SSPC-CS 23.00
The Model Specification (Bolded text is the model specification. Scripted text is optional and if used, should match the format and style used in the final specification.) 3.2.4 Bend Test. Conduct a bend test at the beginning of each work shift or crew change: (1) Use carbon steel coupons of approximate dimensions 50 x 100 to 200 x 1.3 mm (2 x 4 to 8 x 0.050 in.). (2) Surface preparation according to contract specification. (3) Spray 200- to 250-μm (8- to 10-mil) thick TSC in crossing passes laying μ down approximately 75 to 100 μm (3 to 4 mils) for each pass. (4) Bend coupons 180° around a 13-mm (0.5-in.) diameter mandrel. ° (a) Bend test passes if there is no cracking or only minor cracks with no spalling or lifting (by a knife blade) from the substrate. (b) Bend test fails if the coating cracks with lifting (by a knife blade) from the substrate. 3.2.5 TSC Porosity Requirement. Flame and arc spraying aluminum and zinc for the corrosion protection of steel generally have porosity ≤15%. The TSC thickness should be selected so there is no interconnected porosity to the substrate. A lower-porosity TSC requires less thickness. Porosity measurements are not used for in-process quality control in metallizing for corrosion protection of steel. However, a metallographic sample must be used to evaluate TSC porosity and confirm the TSC nonporous thickness for the contract-specified thickness. If required, the porosity metallographic sample should be taken from the bend coupon made during the purchaser’s witnessing of the preparation of the JRS. Specify use of sealer if (a) the service environment precludes effectiveness of the natural oxidation to “fill and seal” the pores or (b) a paint topcoat (cosmetic and/or functional purpose) is specified. Long delay times will preclude adequate penetration of the sealer into the pores of the TSC. The sealer must be chemically compatible with the TSC material and the topcoat. Instructions/Rationale
The bend test (180° bend on a mandrel) is used as a qualitative test for proper surface preparation, equipment setup, and spray parameters. The bend test puts the TSC in tension. The mandrel diameter for the threshold of cracking depends on substrate thickness, coating thickness, and mandrel diameter.
The TSC shall have a porosity ≤ __(a)__ % for each metallographic analysis of a bend coupon made during the Contract Pre-Award Evaluation, Demonstration, and Validation.
16
Copyright NACE International Provided by IHS under license with NACE No reproduction or networking permitted without license from IHS
--`,,,,,-`-`,,`,,`,`,,`---
3.3
Sealers and Topcoats
All paint coatings shall be applied according to SSPC-PA 1 and the paint manufacturer’s instructions for use of the product with a thermal sprayed coating system. Use a heat-resistant silicone alkyd aluminum paint or equivalent sealer on components whose operating temperatures are greater than 80°C (175°F).
NACE International
Not for Resale
//^:^^#^~^^"^~:""::$:@@:"#:$@"@@"**^::~^*^~:~^#"~^"@@\\

NACE No. 12/AWS C2.23M/SSPC-CS 23.00
The Model Specification (Bolded text is the model specification. Scripted text is optional and if used, should match the format and style used in the final specification.) 3.3.1 Sealer (1) Use the sealer ______(a)______ manufactured by______(b)______. (2) Follow paint manufacturer’s application instructions for applying the sealer on TSCs. The seal coat shall be thin enough to penetrate into the body of the TSC and seal the porosity. Typically the seal coat is applied at a spreading rate resulting in a theoretical 38-μm (1.5-mil) DFT. (3) Sealer Application For shop work, apply the sealer immediately after thermal spraying. For field work, apply the sealer as soon after thermal spraying as possible but preferably within eight hours. If sealer cannot be applied within eight hours, verify that the TSC (a) has not been contaminated by visual (10x) inspection and (b) is dust-free using the clear cellophane tape test (ISO 8502-3). 3.3.2 Topcoat. (a) Specify formula or other unique identification. (b) Specify manufacturer. (2) Apply the topcoat to a dry-film thickness (DFT) of ____(c)___ according to manufacturer’s instructions. (3) Measure DFT using an SSPC-PA 2 Type 2 fixed probe gauge. 4. Surface Preparation. (c) Specify thickness from similar successful applications or manufacturer’s recommendations for topcoating sealers on TSCs. Blasting media is specified in Paragraph 3.1.2. Instructions/Rationale
(a) Specify formula or other unique identification. (b) Specify manufacturer.
(1) Use the topcoat ______(a)______ manufactured by______(b)_____.
Use blasting equipment, materials, and procedures that will produce the Paragraph 3.1 metal finish and an angular profile ≥65 μm (2.5 mils). The suitability of the blasting, media, procedures, and equipment shall be validated in the contract pre-award evaluation, demonstration, and validation. 5. 5.1 TSC Application. Thermal Spray Equipment Setup.
5.1.2 Spray parameters shall be set for spraying the specified thermal spray material and, at a minimum, be validated with the bend test. A bend test shall be satisfactorily performed at the beginning of crew and shift change. 5.1.3 A copy of the spray parameters used shall be attached to the JCR.
NACE International
Copyright NACE International Provided by IHS under license with NACE No reproduction or networking permitted without license from IHS
17
Not for Resale
//^:^^#^~^^"^~:""::$:@@:"#:$@"@@"**^::~^*^~:~^#"~^"@@\\
--`,,,,,-`-`,,`,,`,`,,`---
5.1.1 Thermal spray equipment shall be set up, calibrated, and operated according to the manufacturer’s instructions and technical manuals or the TSC applicator’s refinement thereto and as validated by the JRS.

防腐施工方案_范文

防腐施工方案 本文是关于范文的防腐施工方案,感谢您的阅读! 防腐施工方案(一) 1、钢结构防腐蚀措施 (1)耐候钢:耐腐蚀性能优于一般结构用钢的钢材称为耐候钢,一般含有磷、铜、镍、铬、钛等金属,使金属表面形成保护层,以提高耐腐蚀性。其低温冲击韧性也比一般的结构用钢好。标准为《焊接结构用耐候钢》(GB4172-84)。 (2)热浸锌:热浸锌是将除锈后的钢构件浸入600℃左右高温融化的锌液中,使钢构件表面附着锌层,锌层厚度对5mm以下薄板不得小于65μm,对厚板不小于86μm。从而起到防腐蚀的目的。这种方法的优点是耐久年限长,生产工业化程度高,质量稳定。因而被大量用于受大气腐蚀较严重且不易维修的室外钢结构中。如大量输电塔、通讯塔等。近年来大量出现的轻钢结构体系中的压型钢板等。也较多采用热浸锌防腐蚀。热浸锌的首道工序是酸洗除锈,然后是清洗。这两道工序不彻底均会给防腐蚀留下隐患。所以必须处理彻底。对于钢结构设计者,应该避免设计出具有相贴合面的构件,以免贴合面的缝隙中酸洗不彻底或酸液洗不净。造成镀锌表面流黄水的现象。热浸锌是在高温下进行的。对于管形构件应该让其两端开敞。若两端封闭会造成管内空气膨胀而使封头板爆裂,从而造成安全事故。若一端封闭则锌液流通不畅,易在管内积存。 (3)热喷涂铝(锌)复合涂层:这是一种与热浸锌防腐蚀效果相当的长效防腐蚀方法。具体做法是先对钢构件表面作喷砂除锈,使其表面露出金属光泽并打毛。再用热喷涂设备的热源(乙炔—氧燃烧火焰、电弧、等离子弧等)将不断送出的铝(锌)丝融化,并用压缩空气吹附到钢构件表面,以形成蜂窝状的铝(锌)喷涂层(厚度约80μm~100μm)。最后用环氧树脂或氯丁橡胶漆等涂料填充毛细孔,以形成复合涂层。此法无法在管状构件的内壁施工,因而管状构件两端必须做气密性封闭,以使内壁不会腐蚀。这种工艺的优点是对构件尺寸适应性强,构件形状尺寸几乎不受限制。大到如葛洲坝的船闸也是用这种方法施工的。另一个优点则是这种工艺的热影响是局部的,受约束的,因而不会产生热变形。与热浸锌相比,这种方法的工业化程度较低,喷砂喷铝(锌)的劳动强度大。 (4)涂层法:涂层法防腐蚀性一般不如长效防腐蚀方法(但目前氟碳涂料

脱硫塔防腐喷铝施工设计方案

脱硫塔壁防腐施工 技术案 施工技术案制定:省中盛防腐科技有限公司 施工技术案确认: 2013年1月7日

一. 编制依据 1、GB50726-2011《工业设备及管道防腐工程施工规》。 2、GB50727-2011《工业设备及管道防腐蚀工程施工质量验收规》 3、《热喷涂铝及铝合金涂层》GB9795--88 二. 施工技术案 1.施工前准备: 施工准备工作是防腐工程的一个重要组成部分,它直接影响到防腐质量、进度、安全,所以要高度重视。 1.1人员组织:由公司选派3名有组织能力、施工管理经验,懂技术的人员组成领导小组,并组织身体健康,熟练掌握喷砂、喷铝的技术人员、参加本次工程施工。 1.2材料准备: 施工前应备齐所用的各种材料 1.2.1喷铝用的铝丝: 铝丝直径3mm,材质应达到GB/T12608《热喷涂火焰和电弧喷涂用线材、棒材和芯材分类和供货技术条件》中的要求,即含铝量为99.5%以上,且无油污。 1.2.2封闭涂层用的环氧树脂: 选择专业生产环氧树脂厂家生产的合格产品,产品质量合格证及检验报告应齐全。 1.2.3喷砂用的英砂:

应干燥洁净、无油污、杂物,含水量应小于1%,英砂粒度应达到20-40目要求。 1.3、施工设备及器具准备: 开工前,要把所用的设备(空气压缩机、砂罐、火焰喷铝枪及氧气瓶、乙炔瓶等)准备到位,并进行调试。 1.4、施工安全防护准备: 要对所有参与工程施工的人员进行安全教育,并配备安全帽、安全带、安全鞋等安全防护用具及沙子、铁锹、灭火器等消防器材。 2.施工工艺 脱硫塔壁喷砂除锈------->检查合格后------->喷铝------->检查合格后------->涂刷环氧树脂封闭涂层+涂刷高性能环氧树脂加强型防腐涂层------->检查合格后------->交货 2.1理喷砂除锈 2.1.1施工前检查: 脱硫塔设备制作完工并试压合格后可转到防腐工序,喷砂除锈前要对塔焊道打磨及塔件情况进行检查,塔表面焊道要平整光滑,角焊缝焊道要过渡圆滑,塔件阴阳角要圆滑过渡,不得有毛边毛刺,否则要进行打磨处理。 2.1.2喷砂除锈: 喷砂除锈应达到GB50727-2011标准Sa3级要求,即除净金属表面的油脂、氧化皮、锈蚀等,并露出金属灰白本色。 2.1.2.1喷砂除锈要在空气相对湿度小于80%且金属表面温度高于露

设备防腐施工方案

设备防腐蚀施工 施 工 方 案 单位:四川正升环保科技有限公司日期:2014年07月24日

施工方案 一设备防腐蚀施工 1、施工工艺程序 施工准备—→喷砂处理—→隐蔽工程验收—→防腐蚀处理—→施工验收 2、分部、分项工程施工工艺要求 2.1检修前准备 1)备齐必要的图纸,技术资料,并编制施工方案。 2)备好工机具,材料和劳动保护用品。 3)就设备的内部构造、现场环境与用户深度沟通,做到心中有数。 2.2喷砂处理 依据设计要求,本工程外表面处理主要采用抛丸除锈且级别应达到Sa2.5级,内表面除锈处理采用喷砂除锈且级别达到Sa2.5级,在施工现场作业时局部焊缝无法实施喷砂作业,可采用机械除锈(手工电动除锈)方式,除锈级别应达到St2.5以上级。 1)喷砂主要技术指标 a 砂子的选择:精制干燥石英砂 b 空气湿度:不大于80% c 空气压力:5—6Kg/cm2 d 喷射角度:30—750 e 喷射距离:100—200mm 2)磨料的选用 喷砂除锈,应选用石英砂硬质磨料,其粒度组成及标准筛号:全面通过3.2筛孔,不通过0.63筛孔、0.8筛孔筛余量不小于40%,使用前应筛选和检验所用石英砂,要求质地坚硬且有棱角,其中Si02含量大于60%,含水量小于5%,不得含盐、油污和泥土等杂质。 砂子的使用:必须使砂子保证干燥,合理的利用甲方提供的喷砂场地及时晾砂,晒砂,并且经过滤后使用。 储罐金属板表面采用干式喷砂方法进行处理,被喷基体表面应达到完全除去金属表面上的油污,氧化皮,锈蚀等杂物。并用干燥的压缩空气将其表面的粉尘及残留物吹扫干净,使金属表面呈现金属本色,并有一定的粗糙度。 3)喷嘴 施工时要求喷嘴入口处最小空气压力为0.55MPa,喷嘴最小直径为8mm,喷射角度为30~75°,喷距80~200mm。 4)空气压缩机 应选择每分钟供气量不得低于6m3,气压为0.5~0.6MPa的空压机,空压机应配备齐全的附属装置(启动开关、缓冲罐、过滤器、油水分离器、水分吸附器等)。产生的压缩空气应干燥洁净,不得含有水分和油污,并经以下方法检查合格后方可使用;将白布或白漆靶板置于压缩空气气流中1min,表面用肉眼观察无油、水等污迹。 5)压缩空气应经冷却器、油水分离器及储气包后方可进入砂罐和喷枪(嘴),压力不得低于0.55MPa。 6)操作时先关闭砂罐下面的阀门,再关闭进入贮砂罐和喷枪(嘴)的进气阀,然后打开砂

设备喷铝防腐施工方案通用范本

内部编号:AN-QP-HT844 版本/ 修改状态:01 / 00 The Production Process Includes Determining The Object Of The Problem And The Scope Of Influence, Analyzing The Problem, Proposing Solutions And Suggestions, Cost Planning And Feasibility Analysis, Implementation, Follow-Up And Interactive Correction, Summary, Etc. 编辑:__________________ 审核:__________________ 单位:__________________ 设备喷铝防腐施工方案通用范本

设备喷铝防腐施工方案通用范本 使用指引:本解决方案文件可用于对工作想法的进一步提升,对工作的正常进行起指导性作用,产生流程包括确定问题对象和影响范围,分析问题提出解决问题的办法和建议,成本规划和可行性分析,执行,后期跟进和交互修正,总结等。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 上海比扬防腐科技工程有限公司经上海市工商行政管理局、上海市技术监督局、上海市地方税务局批准,由宋太勇先生组建的股份制企业,组建后的企业是集科研、设计、施工、生产、销售于一身的多功能大型企业。拥有资产1369万元,固定资产869万,流动资金500万,现有员工250人,其中工程师32人,下设南京分公司,杭州分公司,3个工程处,七个项目部。公司致力于防腐、保温工程的技术研究与施工,施工设备齐全,技术工艺先进。 公司坚持以科技为先导,积极引进与推广国内外先进的防腐施工新工艺、新材料、新经

球罐喷砂除锈防腐施工方案

球罐喷砂除锈防腐施工方 案 Final revision on November 26, 2020

球罐防腐施工方案 编制:代荣赞 电话: 微信: **********************有限公司 2015年09 月16日 说明:本设计以36人的施工团队为设计依据,依据个人在工业防腐届8年的工作经验,带领的36个兄弟的共同总结,设计出此方案,可能会有很多没有考虑到的地方,另外还有(玻璃钢防腐、喷铝喷锌

1、工程概况 、工程简介 球罐防腐。 、主要工作量及防腐技术要求 2、编制说明及依据 、编制说明 本施工组织设计是依据球罐施工图及防腐技术说明,并结合我公司近年来在球罐防腐施工经验的基础上编制而成。力求做到方案内容全面,技术合理先进,措施得力。工期、质量、安全、文明施工等目标明确。 、编制依据 本施工组织设计依据下列技术文件编制: ——球罐施工图及防腐技术说明 ——GB8923《涂装前钢材表面锈蚀等级和除锈等级》 ——SH3022《石油化工设备与管道涂料防腐蚀技术规范》 ——SH3043《石油化工设备管道钢结构表面色和标志规定》 ——GB/T13288《涂装前钢材表面粗糙度等级的评定》 ——GB/T3181-95《涂膜颜色标准》 、施工部署 、施工部署 按照项目法组织施工,选派精良的施工设备及优秀技术人员、管理人员和有经验、技术熟练的作业人员,组建项目部。 在施工中按照ISO9002质量管理模式的要求,建立球罐安装现场质量保证体系,对施工进行全过程全方位的质量控制。运用现代化的管理方法,创建优良精品工程。

、施工组织机构 成立工程项目部,实行项目经理负责制,采用动态管理目标体制、节点考核的管理方法组织施工,实施重点工序、特殊工序停点检查制,争创优良工程。 项目部下属设立脚手架搭设组、喷砂除锈组、起重组、涂漆组等共四个施工班组。 3、施工准备 、技术准备 熟悉施工图纸和设计文件,结合工程具体情况提出技术交底和施工方案等资料,准备齐全与本工程有关的施工标准验收规范及各种记录表格,对工程重要部位、重点环节制定针对性措施,组织编制各分项的具体施工工艺,设置工艺管理卡。 、原材料准备 用于本工程的原材料必须保证出厂合格证、性能检测报告齐全,外包装检查合格,产品在在有效使用期内。 、施工人员准备 所有施工人员施工前必须接受安全培训、技术交底,架子工持证上岗。 施工队长 1 名 技术员 1 名 安全员 1 名 质检员 1 名 起重工 1 名 电工 1 名 喷砂施工人员 4名 防腐施工人员 4名 脚手架工 4 名 辅助工 6 名 驾驶员 1 名 、施工用机械设备准备 空压设备、吊车、砂轮磨光机、检测仪器等拟投入本工程的机械、设备、工具、仪器进行维修保养、调试,检验其运行情况,确保能在施工过程中正常使用。检测仪器在有效使用期内,并具有检定合格证。 4、防腐施工技术方案 、防腐作业流程

设备喷铝防腐施工方案正式样本

文件编号:TP-AR-L9567 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 设备喷铝防腐施工方案 正式样本

设备喷铝防腐施工方案正式样本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 上海比扬防腐科技工程有限公司经上海市工商行政管理局、上海市技术监督局、上海市地方税务局批准,由宋太勇先生组建的股份制企业,组建后的企业是集科研、设计、施工、生产、销售于一身的多功能大型企业。拥有资产1369万元,固定资产869万,流动资金500万,现有员工250人,其中工程师32人,下设南京分公司,杭州分公司,3个工程处,七个项目部。公司致力于防腐、保温工程的技术研究与施工,施工设备齐全,技术工艺先进。 公司坚持以科技为先导,积极引进与推广国内外先进的防腐施工新工艺、新材料、新经验,广泛与上

海电力学院、上海交通大学、山东理工大学等各大院校、科研机构进行合作,对推进防腐技术的进步,减少腐蚀造成的损失做出了贡献。 公司恪守“精心施工,质量为本,信守合同,顾客至上,科技兴业,展望未来”的原则和“守约、保质、薄利、重义”的方针,完成了遍及全国各地300多项施工项目。工程项目覆盖电力、石油、化工、燃气、市政、冶金、船舶、航空、食品、交通、国防等行业。20xx年被中国腐蚀与防护学会评定为“中国防腐二十强”。 “质量第一,信誉第一,安全第一,用户至上”是公司一贯坚持的准则。在今后的工程施工中,“比扬”愿以丰富的施工经验、先进的技术措施、科学的管理手段、优良的工程质量、合理的工程造价、安全文明的专业化施工队伍,为国内外建设单位提供一流

喷铝施工方案

设备喷铝防腐施工方案 一、编制依据 本方案依据HGJ229—91《工业设备管道防腐蚀工程施工及验收规范》,为满足钢壳体设备、管道、管件的喷铝防腐工程施工而编制。 二、施工工艺 设备移交搭设脚手架壳体修整喷砂除锈中间检查 喷铝中间检查涂料密封检查验收 三、施工及操作要求 1、基体接收 1.1、设备基体表面应平整光滑,局部凸凹不得超过2mm。 1.2、设备内部焊缝饱满,阴角R≧8mm,阳角R≧5mm,转角圆弧过渡。焊缝平整光滑,无气孔、焊瘤和夹渣。 1.3、焊缝不得有裂缝或连续咬肉,咬肉深度不得超过0.5mm。 1.4、所有的管口、法兰、预留平台、爬梯等全部施工焊完成,并打磨完毕,符合工程设计技术要求,施工后不允许动火。 2、搭设脚手架 2.1、设备内搭设脚手架,每层高度为1.7m要求脚手架与罐壁、顶盖保持200~300mm的间距,以便于施工作业。 2.2、设备入口处外边搭设防雨、防风棚。 2.3、拱设喷砂设备区域棚。 3、喷砂除锈 3.1、设备除锈采用加压式干喷射处理,喷嘴入口处,最小压力为0.55MPa。喷嘴最小直径8mm,喷射角度30~75度,喷距为80~200mm,除锈等级达到Sa3级。 3.2、磨料采用石英砂,含水量不大于1%,拉度为全部通过7筛号,不通过45筛号,20筛号余量不小于40%。 3.3、喷砂使用6m3空气机,气压0.8Mpa,采用砂料1~3mm干燥的硬质石英砂。 3.4、在湿度<80%、环境温度达到露点温度3℃以上方能施工。 3.5、用机械压缩空气和人工毛刷结合吹灰清尘,设备内壁和内部脚手架上的砂粒粉灰必须清扫干净。 4、喷铝 4.1、材料、机具准备 a、铝材含铝量为99.5%以上。 b、氧气的纯度应为99.2%。 c、乙炔的纯度应为99.6%。 d、使用的压缩空气应保证无油无水(含油量应小于0.03ppm)。 e、喷枪使用火焰线材喷枪。 f、喷铝采用线材火焰喷涂工艺。工作条件:环境温度应高于5度,雨天潮湿或盐雾的环境中,喷涂作业必须在室内作业或工棚中进度。 g、铝丝表面光洁、无油、无污染;喷砂后的基体表面应尽快喷涂,间隔时间不得超过12h,雨天潮湿环境、间隔时间不超过2h。 4.2、喷涂 a、预处理与喷涂工序之间,工作停留时间应尽可能缩短。

喷砂除锈设备及施工工艺

喷砂除锈设备及施工工艺 [摘要]研究了钢桥面防腐蚀涂装前的喷砂除锈设备与工艺问题,针对钢桥面大面积防腐蚀涂装施工要求工期短、质量高和无尘生产的特点,对比了二类喷砂除锈设备,提出了采用高效无尘喷砂除锈设备的建议,并介绍了该设备的工作原理和在钢桥面施工实例中的工艺。 [关键词]钢桥面;无尘;喷砂;除锈 引言 近年来,我国加大了对交通建设的投资,桥梁建设技术也在突飞猛进,新修建的大跨径钢桥大多是采用正交异形钢桥面板的钢箱梁桥,如厦门海沧大桥、江阴长江大桥、南京长江二桥、武汉军山长江大桥、舟山桃天门大桥等。为了保护桥面板,提高钢桥梁的使用寿命和行车舒适性,减少振动和噪音,桥面板必须进行防腐蚀处理并铺装高性能沥青混凝土层。 由于沥青混凝土铺装层存在大量孔隙,空气中的氧气和路面积水会穿过这些孔隙到达桥面板,与桥面钢铁直接接触,从而引起桥面钢铁的腐蚀。腐蚀结果是腐蚀产物体积膨胀,使桥面板与沥青混凝土铺装层相分离;再加上路面汽车重载的碾压,急刹车、车辆启动等造成桥面不均匀受力,使得桥面沥青混凝土层产生局部变形、开裂、脱落、破损等路面损坏。因此对桥面板进行有效的腐蚀保护,才能同时保证路面沥青混凝土层的经久耐 用。 目前,各国钢桥桥面铺装完全成功的实例不多,主要是因为桥面板和铺装层受力十分复杂,可能导致桥面铺装层破坏的因素很多。桥面铺装仍是世界性的难题。各国桥梁专家多注重对桥面铺装层的性能和破坏机理进行研究,而常常忽略了桥面防腐层前处理喷砂除锈施工质量对桥面铺装体系的影响因素。桥面防腐涂层体系现在世界上有两大类:一类是富锌漆的油漆涂装体系,另一类是电弧喷涂锌或锌铝合金的金属涂层体系。这两大体系在我国和国外的许多钢桥面上都有应用实例,文中姑且不对其进行评论。无论采用何种涂层体系,涂装前钢材表面预处理的优劣程度都会影响涂装工程质量(涂层与钢基体的结合强度)及涂层的使用寿命,从而影响整个桥面铺装层的施工质量和使用寿命。 1 钢桥面喷砂除锈设备的选择 国内外目前对钢桥面喷砂除锈的设备主要有二大类:一类是气动压力式喷砂设备;另一类是机械离心式抛砂/丸设备。二类设备的比较如表1所示。

脱硫塔内壁喷铝施工方案

脱硫塔内壁喷铝施工方案 一、工程概况:脱硫塔内壁喷铝防腐 二、工程内容:脱硫塔内壁喷砂除锈达到Sa2.5级,喷铝层0.3mm。 三、编制依据: 1、SHJ4007-86《涂装前钢材表面处理规范》 2、GB765-886《涂料涂覆技术条件》 3、GBT126-89 《工业设备及管道防腐蚀工程施工及验收规范》 5、GB2923 《涂装前钢材表面锈蚀等级和防锈等级》 6、我公司多年来同类工程的施工经验。 四、施工前准备: 因为施工和准备工作是防腐工程的一个重要组成部分,它直接影响到防腐质量、进度、安全,所以要高度重视。 1、人员组织:由公司选派3-5名有组织能力、施工管理经验,懂技术的人员组成领导小组,并组织身体健康,熟练掌握喷砂、喷镀的技术人员、参加本次工程施工。施工人员将在指定开工时间前3天到达施工现场,搭设临时设施,接受管理、技术人员对施工现场、技术要求、安全文明施工的交底。做好材料、施工对象的各项防护措施。 2、技术资料准备:在工程开工前应做好相应有关资料的准备工作,如:填报开工报告、编制周施工计划、材料抽检、隐蔽记录、施工记录等工作。 3、材料准备:施工前应备齐所用的材料,并检验材料的规格,性能是否符合施工操作要求。 4、机械准备:开工前,把所用的机械设备(空气压缩机、砂罐、气

罐)就位,并进行调试。 5、备齐磅称、容器、搅拌棒、漆刷、料桶等操作工具,并保持干净清洁。 6、备齐安全帽、安全带、防毒口罩、安全鞋等劳动保护安全措施和砂子、铁锹、灭火器等消防器材。 五、施工程序 被喷镀脱硫塔检查→喷砂除锈Sa2.5级→试喷→喷镀→检查→涂封孔剂→养生→成品。 ̄ 六、施工方法: 对被喷镀脱硫塔检查:对被喷镀脱硫塔的要求:被喷镀的脱硫塔制作应符合管道制作的有关规定或设计要求,经有关部门检查合格后。经检查验收合格方可进行喷镀。 1、表面处理: 在施工过程中必须认真科学、工艺性的作好每一层次每一环节的工作,首先必须做好基材表面的预处理,因为表面处理的好坏,直接影响镀层的质量和保护年限。 表面处理,本公司结合并参照国内喷镀防腐技术规范,根据我公司多年防腐技术施工经验,对基材表面采用喷砂除锈,除锈标准按照中华人民共和国标准GB8923-88Sa2.5级标准,本标准具体质量要求是:彻底的喷砂除锈、氧化皮、油脂、锈及污物和油漆等附着物,该表面应显示均匀的金属色泽,最后表面用清洁干燥的压缩空气或干净的刷子清理,同时也可参照中华人民共和国国家GB8923-88除锈等级图片对比。

热喷铝施工技术

储罐内壁热喷铝工艺及问题分析 沈芝银吴建中 (南化集团建设公司,南京 210044) 摘要详细论述了线材火焰喷涂法进行储罐内壁喷铝的工艺,以及在施工中如何控制施工的质量,避免缺陷的发生。 关键词喷砂热喷铝喷涂角度喷涂距离雾化 1 概述 热喷铝是制备涂层的一种工艺方法,已成为金属表面防护的新技术之一。热喷铝技术现在已广泛应用于产品制造和设备维修,以降低产品成本,提高产品质量和延长使用寿命。在我公司承建的张家港扬子港务有限公司06罐区工程中,有3台3000M3乙二醇碳钢罐,罐内壁需喷铝,喷铝层厚度≥0.15mm。由于乙二醇原料为无色透明液体,即使储罐内表面有一点微锈,乙二醇原料都会受到污染,严重一些就会造成整罐的原料报废,给企业带来很大的经济损失和名誉损失。因此罐内表面喷铝质量至关重要,必须对喷铝工作的每一步进行严格管理和控制,保证最终的施工质量满足要求。 2 热喷铝工艺流程 3 热喷铝前表面处理: 3.1 喷砂除锈 (1)储罐内表面喷铝前,必须采用铜矿砂对金属表面进行喷砂除锈,除锈结果应达到国家规范Sa3级的要求:钢材表面无可见的油脂、污垢、氧化皮和油漆涂层等附着物,该表面应显示均匀的金属光泽。表面粗糙度达到75μm以上。

(2)压缩空气必须经过性能良好的油水分离器、缓冲罐以后才能进入喷枪,压力不低于0.5MPa。 (3)为了保证金属表面的粗糙度和洁净度,铜矿砂必须清洁干燥且粒度为3~5mm。 3.2 除尘处理 喷砂除锈后应采用吸尘器对金属面进行除尘处理。 经喷砂除锈合格的金属表面,不得用手触摸,并尽快进行喷涂,晴天时间间隔不得超过12h,雨天或潮湿的天气不得超过2h。否则应重新进行表面处理。 如喷砂达不到预定要求,容易形成以下缺陷:喷砂层与金属层结合力差,容易脱落;喷铝层起皮、起壳。 4 热喷铝施工的方法和技巧 4.1 热喷铝方法选择、 目前热喷铝应用较多的是线材火焰喷涂和电弧喷涂两种方法,该工程储罐喷铝的现场条件较差,所以采用线材火焰喷涂。线材火焰喷涂是研制早、应用早、技术成熟的热喷涂方法,其特点是轻便、灵活、机动性好,因此在该项目中应用尤为合适。该方法采用氧-乙炔焰作为热源,喷涂材料为铝线材。 4.2 设备、材料选用及要求 线材火焰喷涂设备是由氧气及乙炔供给系统、压缩空气系统、气喷枪及丝盘等组成,见下图:

喷铝施工方案

江苏中显集团有限公司 脱硫塔热喷铝防腐工程 施 工 方 案 河南省八达防腐安装有限公司 2008年11月14日

喷铝主要施工方法 一、表面处理 表面处理,本公司结合并参照国际与国内喷镀防腐技术规范,根据我公司多年防腐技术施工经验,对基材表面采用喷砂除锈,除锈标准按照中华人民共和国标准GB8923-88Sa3级标准,本标准具体质量要求是:非常彻底的喷砂除锈、氧化皮、油脂、锈及污物和油漆等附着物,该表面应显示均匀的金属色泽,最后表面用清洁干燥的压缩空气或干净的刷子清理。 在施工过程中,我公司采用以下设备和措施 1)根据不同的工程规范范围,喷砂设备有6m3/8Kg和9m3/8Kg 空气压缩机、储气罐、油水分离器、空气滤清器、喷砂罐、胶带、喷砂枪、耐磨瓷嘴,一切机具齐备。 2)磨料选用硬度高,有棱角的0.5-1mm石英砂。砂粒干燥,含水量小于1%(含水量<1%),清洁无杂质,喷嘴选用扩张L型瓷嘴。空气经扩张-压缩-扩张等阶段,流出砂嘴的空气流量能达到超音速状态,使喷射的磨料大大增加,使基体表面更加活化和电化,而导致镀层结合强度的增加。 3)工艺流程:压缩空气进入储气罐,经油水分离器、空气滤清器,使其清洁干燥,不含油质,然后进入砂罐,经胶带将砂粒压至喷砂枪,喷射金属基体。 4)操作工艺:操作前首先检查砂罐压力表、胶带、喷砂枪、喷嘴等机具正常时,将喷砂底气阀打开,穿好喷砂衣,系好安全带,做

好喷射前的一切准备,当砂罐压力达到8Kg/cm2时,方可将送气门打开,喷射金属基体。 5)影响喷镀层的主要原因 由实践经验和理论研究证明,不但金属基体所在的环境腐蚀介质是影响喷镀层的原因,更主要的是影响喷镀层的保护年限和保护效率,是表面处理的好坏,而影响表面处理好坏的根本原因是:压缩空气压力、喷射角度、喷射后停放时间、喷射距离。 5.1压缩空气压力应在6-7Kg/cm2,常用7Kg/cm2。因在不同的压力下,表面的电极电位值不同,所以,镀层的结合强度就不同,随着空气压力的增加,表面平均粗糙度增加,其表面晶畸变更为剧烈,基体表面更加活化。因此镀层在基体上的投描效应更为显著。镀层金属与基体之间的健结合力将会上升,当压缩空气增加到7Kg/cm2,其镀层结合力达到最高点,若压力7Kg/cm2时,镀层结合强度处于饱和状态。 5.2喷射时间:喷射时间的长短,是对基体表面电极电位粗糙度和涂层的结合强度有直接影响。由实践经验证明,在实际操作过程中,对基体略喷即可,使基体表面没有什么大的变化,保持粗糙度在40-60um之间,此时为最佳粗糙度,有操作经验可知,喷射应在20秒以内,随着喷砂时间的延长,电极电位减少,表面活化增加趋于停止。镀层强度有明显的增加,由此可知,喷射时间达到20秒时,基体表面各项指标达到饱和值,此时基体表面能和镀层很好的结合和随着镀层有高的结合强度值。

设备外防腐施工方案

设备外防腐施工方案 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

淮安华尔润20万吨/年联碱工程非标设备外防腐施工方案 编制:吴庆举 审核:闫振江 批准:叶丛林 中国化学工程第十三建设公司淮安华尔润项目经理部 二OO三年十月七日 目录 一、编制说明 (1) 二、编制依据 (1) 三、施工顺序 (2) 四、施工准备 (3) 五、施工技术措施及质量标准 (3) 六、质量保证措施 (6) 七、工程进度 (7) 八、安全施工技术措施 (7) 九、施工人员、机具计划 (7) 1、编制说明 本方案适用于淮安华尔润20万吨/年联碱工程非标设备的除锈与外防腐施工。 实物工作量及涂漆规定:

2、编制依据 《涂装前钢材表面锈蚀等级和除锈等级》GB8923-88 《工业设备、管道防腐蚀工程施工及验收规范》HGJ229-91 2 3.设计院关于《设备外防腐施工技术要求》及涂色规定.《炼油化工施工安全规范》HGJ223-87 环氧氯磺化聚乙烯交联型防腐涂料产品说明书 .环氧煤沥青防腐涂料产品说明书 3、施工程序 施工顺序:

喷砂除锈达级--材料配置--刷底漆一遍――刷底漆二遍——刷中间漆一遍――刷中间漆二遍――刷面漆一遍――刷面漆二遍――表面检查――交工; .施工程序图1。 施工程序图2。 4、施工准备 由技术员向施工人员进行详细的技术安全交底并作好交底记录; 材料的采购:所有的到货材料均应有材质合格证、检验报告,并应符合质量标准及图纸要求,到货后进行检验,检验合格后方可使用,材料应在保质期内使用。 5、施工技术措施及质量标准 施工环境:相对湿度不大于85%,被涂覆表面的温度至少比露点温度高3度。涂漆的施工不应在风沙、雨、雪天进行。 非标设备(现场制作)经各项试验合格后方可进行涂漆施工,防腐施工前设备上所有的焊件应焊完。 喷砂处理的技术要求: 5.4.1喷砂除锈必须达级除锈标准,喷砂处理后的金属应呈均匀的粗糙度,粗糙度的值为40-75UM;三方‘共检’合格,方可进行涂漆施工。

钢结构喷铝施工方案

施工组织设计 一、编制说明 根据管道的防腐要求和国家相关标准以及我公司多年施工经验,对管道喷铝施工工艺、质量保证、安全措施等方面作具体的阐述与说明。 此方案将是我公司对此工程施工的依据,亦是接受业主审查监督,并在施工中与其紧密配合的基础资料。我公司施工人员一定严格按照业主要求,国家有关施工规范及此施工方案精心施工、保证质量、优质服务,按期圆满完成施工任务。 二、施工前准备: 1、施工人员组织计划: 设立工程项目部,配备高素质的管理人员、技术人员和技术工人——具有多年的施工实践经验,并由公司组织岗前培训,达到持证上岗;质检员、操作工均应持有水利部颁发的证件,安全员为专职。 项目经理作为工程总负责人,负责统一指挥,协调调度工作,并以各技术骨干组建进度控制组织系统,对各工序确定目标,确定进度控制工作进度,并及时对影响进度的因素,进行分析、预测,以便提出改进措施和方案。 作好配合及前期准备工作,拟定施工准备计划,专人逐项落实,确保后勤保障工作的优质、高效。 制定合理的奖惩制度,促进施工人员按质按期完成工作计划。 项目部管理组织结构图(见附图) 2、设备仪器配备: 对拟定用于本工程的各类设备、仪器,项目部设专人落实到位,并在使用期间根据各工序施工要求和周期要求合理互动调配,以满足重点工序的施

工。同时制定专项设备管理措施,包括使用、维护、维修计划,实施动态分管方式,保障设备正常运转。 (1)主要涂装设备清单及主要技术参数 (2)主要检测仪器清单

3、生产保证计划: (1)合理布置施工作业区,根据各工序施工的周期,形成各工序时间、空间上的充分利用与紧凑搭接,合理安排作业,从而缩短工程的施工周期。 (2)合理安排施工进度计划,紧紧抓住关键工序,平衡调动施工人员。根据总工期安排,编制合理的月进度计划,对月进度计划分解,制定周计划,以月计划保总工期,以周计划保月计划。关键线路,每天落实,每周两次生产调度会,解决施工中出现的各种问题,协调各工种之间的关系,布置下周的生产计划,使各施工组有条不紊地按总体计划进行。 (3)制定项目部岗位职责,明确各岗位工作内容。 4、技术措施: 工程技术人员编制合理的各工序施工细则,并对工艺进行评定试验并交监理工程师评审。积极指导工人施工,及时解决生产中发生的问题。 技术人员充分熟悉设计图纸、技术文件及相关规范,并编制空白施工记录、质检记录表格,编写施工要点及各工艺操作规程,并向施工人员进行详细的技术交底。 5、材料准备: 涂装材料应性能可靠,防蚀性强,耐候性好,其防护年限满足设计的年限。涂装材料选用厂家应是国内知名度较高、质量可靠的大型制造厂。 所有材料应密封包装,贮存在干燥通风处,根据生产要求,编制进货计划,分批进货。过期、失效、包装不严的涂料不用。 每个包装容器应清楚地标明生产厂名、材料名称、代号、颜色、批号、生产日期。 所用主材应取样复检合格后,报监理工程师审批。

设备喷铝防腐施工方案

编号:AQ-BH-04407 ( 管理资料) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 设备喷铝防腐施工方案Anti corrosion construction scheme of equipment spraying aluminum

设备喷铝防腐施工方案 说明:施工方案是根据一个施工项目制定的实施方案;是根据项目确定的,有些项目简单、工期短就不需要 制订复杂的方案。 上海比扬防腐科技工程有限公司经上海市工商行政管理局、上海市技术监督局、上海市地方税务局批准,由宋太勇先生组建的股份制企业,组建后的企业是集科研、设计、施工、生产、销售于一身的多功能大型企业。拥有资产1369万元,固定资产869万,流动资金500万,现有员工250人,其中工程师32人,下设南京分公司,杭州分公司,3个工程处,七个项目部。公司致力于防腐、保温工程的技术研究与施工,施工设备齐全,技术工艺先进。 公司坚持以科技为先导,积极引进与推广国内外先进的防腐施工新工艺、新材料、新经验,广泛与上海电力学院、上海交通大学、山东理工大学等各大院校、科研机构进行合作,对推进防腐技术的进步,减少腐蚀造成的损失做出了贡献。 公司恪守“精心施工,质量为本,信守合同,顾客至上,科技兴业,展望未来”的原则和“守约、保质、薄利、重义”的方针,

完成了遍及全国各地300多项施工项目。工程项目覆盖电力、石油、化工、燃气、市政、冶金、船舶、航空、食品、交通、国防等行业。2002年被中国腐蚀与防护学会评定为“中国防腐二十强”。 “质量第一,信誉第一,安全第一,用户至上”是公司一贯坚持的准则。在今后的工程施工中,“比扬”愿以丰富的施工经验、先进的技术措施、科学的管理手段、优良的工程质量、合理的工程造价、安全文明的专业化施工队伍,为国内外建设单位提供一流的服务! 一、编制依据 本方案依据HGJ229-91《工业设备管道防腐蚀工程施工及验收规范》,为满足钢壳体设备、管道、管件的喷铝防腐工程施工而编制。 二、施工工艺 设备移交搭设脚手架壳体修整喷砂除锈中间检查 喷铝中间检查涂料密封检查验收 三、施工及操作要求

电弧喷铝方案

设备内壁电弧喷铝工程施工方案 中国化学建设工程第三建设有限公司 2013年12月8日 目录 (请完善) -、工程概况 (1) 二、编制依据 (1) 三、施工准备 (1) 四、施工程序、工艺及要求 五、质量保证措施和质量保证体系 六、进度计划控制措施 七、安全保证体系及措施 八、文明施工措施 九、工程验收方案 十、售后服务措施 一、工程概况 本工程位于。。。。。。等等。这些请贵方填写。 喷铝一般有氧乙炔喷涂、普通电弧喷涂以及超音速电弧喷涂三种。电弧喷涂 对施工环境的要求较高,比如被处理基体表面要求达到Sa3级,粗糙度更是要求在70?100卩m且基体表面温度至少比露点高3C以上才能进行喷涂施工。但因其优良的防腐性能,因此还是被广泛地采用。根据公司内部研究,

(二)施工组织 施工组织机构图 (三)施工人员组织本施工技主要为喷 施 「工 -施工 曰 丁 —— L 厂 公 共 关 系 与主管部门协商相关 决疋在本工程中米用超音速电弧喷涂技术。 二、编制依据 1、甲方招标文件中关于喷铝的技术要求。 2、GB979—88《热喷涂铝及铝合金涂层》 3、GB9796-88《热喷涂铝及铝合金涂层试验方法》 4、GB892—88《涂装前钢材表面锈蚀等级和除锈的等级》 5、GB9793-1997《金属及非金属覆盖层一热喷涂锌、铝及其合金》 三、施工准备 (一)生产准备 1、组织施工人员学习有关标准,规范,文件。 2、对施工人员进行有关质量方面的教育,树立以“质量求生存,以质量求发展”的思想,争取全优工程。 3、针对本工程施工特点,教育职工树立安全第一的思想和环保意识。全面贯彻执行HSE 管理规定,作到文明、安全施工,搞好本项施工任务。 4、生产准备计划 根据工程特点认真抓好施工准备,使各项工作落到实处。做好用料计划,如各种材料的牌号、规格、数量及技术指标由技术部在合同签定后三天内提出,以便采购人员早作准备,保证现场施工需要。 施工现场布置由工程管理部提出,并经甲方批准后实施。公共关系由项目经理负责牵头,组织专人负责,提前做好。全部施工准备于合同签定后十五天内做好。 生产准备框图 立 I T I开工报 经f n

罐喷铝施工方案讲解

施工方案

目录 一、概述 二、编制依据 三、施工前准备 四、涂料品种的选择 五、施工工艺 六、工程质量控制措施 七、施工中的安全与防护措施: 八、文明施工措施: 九、工期进度保证:

一、概述: 甲醇罐在自然环境中使用,由于雨水、大气、紫外线作用及冷热变化罐内壁介质腐蚀,原有防腐保护层遭到破坏而老化,甚至局部脱落,至使局部锈成麻点状,使罐壁防腐层变脆失去原有的柔性,不但大大的减少了使用寿命,而且危及安全,为此定期防腐维护尤为重要。 二、编制依据: 1、《建筑防腐蚀工程施工及验收规范》GB50212-91 2、《建筑防腐蚀工程质量检验评定标准》GB50224-95 3、《金属涂层--钢铁的抗腐蚀防护--喷涂金属锌和铝》ISO2063 4、《热喷涂铝及铝合金涂层》GB9795--88 5、《铝及铝合金加工产品的化学成分》GB3190 6、《热喷涂铝及铝合金涂层试验方法》GB9796 7、我公司在同类工程的施工经验 三、施工前准备: 因为施工和准备工作是防腐工程的一个重要组成部分,它直接影响到防腐质量、进度、安全,所以要高度重视。 1、人员组织: 由公司选派3-5名有组织能力、施工管理经验,懂技术的人员组成领导小组,并组织身体健康,熟练掌握喷砂、喷涂的技术人员、参加本次

工程施工。施工人员将在指定开工时间前三天到达施工现场,搭设临时设施,接受管理、技术人员对施工现场、技术要求、安全文明施工的交底。做好材料、施工对象的各项防护措施。 2、技术资料准备: 在工程开工前应做好相应有关资料的准备工作,如:填报开工报告、编制周施工计划、材料抽检、隐蔽记录、施工记录等工作。 3、材料准备: 施工前应备齐所用的材料,并检验材料的规格、性能合格证等。 4、机械准备: 开工前,把所用的机械设备(空气压缩机、砂罐)就位,并进行调试。 5、SQP-1型火焰喷涂枪及氧气、乙炔、空气、铝丝 6、备齐安全帽、安全带、安全鞋等劳动保护安全措施和砂子、铁锹、灭火器等消防器材。 四、涂料品种的选择: 1、甲醇罐壁喷砂、喷铝0.3mm厚,刷环氧树脂三遍封闭。 五、施工工艺 要达到好的防腐蚀效果,除了合理地选用材料及施工组织准备工以外,还要严格掌握材料性能,施工工艺及操作规程,以确保工程质量.

钢结构件电弧喷铝工艺

钢结构件电弧喷铝工艺 11.1概述 位于沿海地区,海洋性大气对钢结构的腐蚀性强,外部环境非常恶劣,同时养护条件较差,为减少养护工作量,延长涂装体系的使用寿命,采用金属热喷涂防护体系。具体涂装方案如下: 注:1.表中漆膜厚度均指干膜厚度。 2.电弧喷铝的铝丝化学成份按GB/T3190-1996标准中L2要求,Al≥99.6%。 3.结构出厂前涂面漆一道,现场施工完后先对现场焊接区域进行手工除锈,依次补充涂装,然后全桥整体作清洗后涂第二道面漆。 11.2施工方案和场地平面布置

㈠总体施工方案 ⑴工件由平板运输车运进涂装车间并支撑在1米高的支撑架上进行防腐施工(机械除锈、喷砂、电弧喷涂和第一道油漆),施工完毕工件运出涂装车间放置在工件存放周转场地,在工件存放地完成剩余油漆涂装,直至达到出厂要求。 ⑵首先在存件区对待涂装工件进行净化处理,清理焊渣,清洗油污。然后运输一节工件进涂装厂房进行防腐。先对工件外表面喷砂除锈,喷砂完毕,清理钢砂后进行电弧喷铝,喷铝完毕后移支撑架对支撑架下处理不到的部位进行喷砂除锈和电弧喷铝,然后对内表面进行机械除锈。机械除锈完毕后对铝涂层封闭一道,同时对内表面喷涂第一道油漆。一节工件完成后继续运进另一工件至涂装车间进行下一轮工件防腐施工。油漆干燥后工件运出涂装车间到存放区完成后几道油漆涂装,剩最后一道面漆待整桥施工完毕后在桥址现场整体涂装以保证大桥外观美观。 ⑶为了提高防腐涂层质量,使电弧喷铝涂层性能良好,涂层细致、致密,使用二次雾化喷枪进行电弧喷涂。 ⑷运到现场的工件经安装加工单位拼焊完毕后进行焊缝和破损处防腐涂装,不同部位均采用与原涂装方案相同的工艺进行防腐蚀施工,以保证钢结构防腐蚀涂层的完整性。 焊缝防腐施工与拼装进度同步,并利用拼装单位的拼装焊接作业平台、临时设施和起吊运输工具。 ⑸整拱安装完毕,焊缝防腐处理结束后对整桥涂装最后一道面漆,面漆涂装利用现场的起吊设备。 11.3防腐蚀涂装施工工艺要求 ㈠外表面涂装工艺要求 ⑴表面净化

喷铝工艺

1工程喷铝施工方案 1.1编制依据 公路桥梁钢结构防腐涂装技术验收规范JT722-2008 涂装前钢材表面锈蚀等级和除锈的等级GB8923-88 金属及非金属覆盖层热喷铝、锌及其合金GB9793-1997 1.2施工准备 1)班组熟悉图纸 2)技术员进行技术交底 3)搭设工棚及现场清理 4)机具就位、试运、试喷。 1.3施工程序 1)与设备进行工序交接 2)喷砂→试喷→喷涂第一遍→(喷涂第二遍)→检查处理 3)根据设计要求在镀层上涂刷防腐层 1.4技术准备 1)技术员根据施工图提出材料计划,交供应部门备料。 2)技术员进行技术交底,并下达工程质量单。 1.5施工准备和要求 1)需喷涂的工件应具备出厂合格证。 2)需喷涂的工件需按施工图及设计文件要求进行全面检查验收,进行工序交接。 3)工件上的焊件必须在喷涂施工前完成,并核实无误,在喷涂过程中严禁施焊、气 割、敲罐等作业。 4)喷涂结束后,在吊装、运输中,不得碰撞和损伤,使用前妥善保管。 5)材料、机具、检测仪器、施工设施及场地已齐备。 6)防护设施安全可靠,施工用水、电、气能满足连续施工需要。 1.6施工要求 1)喷涂施工条件:环境湿度应高于5C,或基体金属表面湿度应比露点湿度高3C。 2)雨天、潮湿或盐雾的环境中,喷涂施工应在室内或工棚中进行。 3)经喷砂处理的表面不得污染或用沾有油脂的手触摸。 4)喷涂厚度应符合设计要求。 1.7喷涂原材料质量要求 1)铝丝的含铝量不应底于%,使用时金属丝必须保持表面光洁、无油、无折痕,金属 丝直径应和喷枪匹配(如果用射吸式气喷枪HRQ—1型时,采用Ф2mm或Ф3mm金属丝)。 2) 压缩空气应干燥洁净,不得有水分和油污。

设备外防腐施工方案

淮安华尔润20万吨/年联碱工程非标设备 外防腐施工方案 编制:吴庆举 审核:闫振江 批准:叶丛林 中国化学工程第十三建设公司淮安华尔润项目经理部 二OO三年十月七日

目录 一、编制说明 (1) 二、编制依据 (1) 三、施工顺序 (2) 四、施工准备 (3) 五、施工技术措施及质量标准 (3) 六、质量保证措施 (6) 七、工程进度 (7) 八、安全施工技术措施 (7) 九、施工人员、机具计划 (7) 1、编制说明 1.1 本方案适用于淮安华尔润20万吨/年联碱工程非标设备的除锈与外防腐施工。 1.2 实物工作量及涂漆规定: 1.2.1非标设备防腐24台,防腐面积为6998平方米。 1.2.2非标设备防腐均按照设备外防腐涂漆一览表进行施工

2.1 《涂装前钢材表面锈蚀等级和除锈等级》 GB8923-88 2.2 《工业设备、管道防腐蚀工程施工及验收规范》HGJ229-91 2 3.设计院关于《设备外防腐施工技术要求》及涂色规定 2.4.《炼油化工施工安全规范》HGJ223-87 2.5 环氧氯磺化聚乙烯交联型防腐涂料产品说明书 2.6.环氧煤沥青防腐涂料产品说明书 3、施工程序 3.1 施工顺序: 喷砂除锈达Sa2.5级--材料配置--刷底漆一遍――刷底漆二遍——刷中间漆一遍――刷中间漆二遍――刷面漆一遍――刷面漆二遍――表面检查――交工; 3.2. 施工程序图1。 施工程序图2。

4、施工准备 4.1 施工前认真学习、熟悉施工图及有关的技术资料,由技术人员编制施工方案; 4.2 由技术员向施工人员进行详细的技术安全交底并作好交底记录; 4.3材料的采购:所有的到货材料均应有材质合格证、检验报告,并应符合质量标准及图纸要求,到货后进行检验,检验合格后方可使用,材料应在保质期内使用。 5、施工技术措施及质量标准 5.1 施工环境:相对湿度不大于85%,被涂覆表面的温度至少比露点温度高3度。 5.2涂漆的施工不应在风沙、雨、雪天进行。 5.3非标设备(现场制作)经各项试验合格后方可进行涂漆施工,防腐施工前设备上所有的焊件应焊完。 5.4 喷砂处理的技术要求: 5.4.1喷砂除锈必须达Sa2.5级除锈标准,喷砂处理后的金属应呈均匀的粗糙度,粗糙度的值为40-75UM;三方‘共检’合格,方可进行涂漆施工。 5.4.2喷砂采用的压缩空气应干燥洁净,不得含有油污和水份。 5.4.3喷砂的砂粒采用河砂,应干燥洁净、无油污、杂物;含水率应小于1%。河砂粗度组成:全部通过7号筛,不通过45号筛,20号筛余量不得小于40%。 5.4.4喷砂施工工艺指标: 喷嘴入口处空气压力≥0.55MPa 喷嘴直径≥8mm 喷射角度30°-75° 喷射距离80-200mm。 5.4.5喷砂除锈应在八小时内完成质量检查及涂刷完第一道底漆。

相关文档