文档库 最新最全的文档下载
当前位置:文档库 › 数学实验答案

数学实验答案

数学实验答案
数学实验答案

注意:在下面的题目中m 为你的学号的后4位

第一次练习题

1. 求0

32=-x e

x

的所有根。(先画图后求解)

fplot('[exp(x)-3*x^2,0]',[-1,4])

fsolve('exp(x)-3*x.^2',[-0.5,1,4])

ans =

-0.4590 0.9100 3.7331 2. 求下列方程的根。 1)

0155=++x x

fplot('[x^5+5*x+1,0]',[-5,5])

fsolve('x.^5+5*x+1',-0.2) ans = -0.1999

2)

至少三个根)(02

1s i n =-

x x

fplot('[x*sin(x)-1/2,0]',[-4,4])

fsolve('x.*sin(x)-1/2',[-3,-1,1,3])

ans =

-2.9726 -0.7408 0.7408 2.9726

3. 求解下列各题:

1)30sin lim x mx mx

x

->- >> syms x;

>> limit((407*x-sin(407*x))/x^3,x,0) ans =

67419143/6 2)

2

1/2

(17mx e dx

?

精确到位有效数字)

>> syms x;

>> f=int(exp(407*x^2),x,0,1/2);vpa(f,17) ans =

.38197076670642666e42

3)4

2

4x dx m x

+? >> syms x;

>> int(x^4/(407+4*x^2),x) ans =

1/12*x^3-407/16*x+407/32*407^(1/2)*atan(2/407*x*407^(1/2))

4)

08

x=

将在展开(最高次幂为)

>> taylor(sqrt(407/1000+x),9,x,0)

ans =

(1464843750000000*407^(1/2)*1000^(1/2)*x^7)/168177611185614613 - (1190185546875000000*407^(1/2)*1000^(1/2)*x^8)/68448287752545147491 - (20507812500000*407^(1/2)*1000^(1/2)*x^6)/4545340842854449 + (27343750000*407^(1/2)*1000^(1/2)*x^5)/11167913618807 - (39062500*407^(1/2)*1000^(1/2)*x^4)/27439591201 + (62500*407^(1/2)*1000^(1/2)*x^3)/67419143 - (125*407^(1/2)*1000^(1/2)*x^2)/165649 + (407^(1/2)*1000^(1/2)*x)/814 + (407^(1/2)*1000^(1/2))/1000

5)

1

s i n(3)

()

x

y e y m

=求( 精确到17位有效数字)

>> syms x;

>> f=diff(exp(sin(1/x),3); >> y=subs(f,x,407);vpa(y,17) ans =

-.21973664849151321e-9

4.求矩阵

211

020

41

100

A

m

??

?

-

?

= ?

?

?

-

??

的逆矩阵

1

-

A及特征值和特征向量。

>> A=[-2,1,1;0,2,0;-4,1,4.07],inv(A) A =

-2.0000 1.0000 1.0000

0 2.0000 0

-4.0000 1.0000 4.0700 ans =

-0.9831 0.3708 0.2415

0 0.5000 0

-0.9662 0.2415 0.4831 >> eig(A)

ans =

-1.2478

3.3178

2.0000

>> [P,D]=eig(A)

P =

-0.7992 -0.1848 0.2425

0 0 0.9701 -0.6011 -0.9828 -0.0000 D =

-1.2478 0 0 0 3.3178 0 0 0 2.0000 5. 已知

,21)(2

22)(σμσ

π--

=

x e

x f 分别在下列条件下画出)(x f 的图形:

);

(在同一坐标系上作图,,=时=、);(在同一坐标系上作图,-,=时、421,0)2(110,1)1(σμμσ=

(1)>> syms x;

>> f=inline('(1/((2*pi)^(1/2)*p))*exp(-(x-u)^2/(2*p^2))'); >> y1=f(1,0,x); >> y2=f(1,-1,x); >> y3=f(1,1,x); >> y1 y1 =

7186705221432913/18014398509481984*exp(-1/2*x^2) >> y2 y2 =

7186705221432913/18014398509481984*exp(-1/2*(x+1)^2) >> y3 y3 =

7186705221432913/18014398509481984*exp(-1/2*(x-1)^2)

>>fplot('[7186705221432913/18014398509481984*exp(-1/2*x^2),7186705221432913/18014398509481984*exp(-1/2*(x+1)^2),7186705221432913/18014398509481984*exp(-1/2*(x-1)^2)]',[-6,6])

(2)>> syms x;

>> f=inline('(1/((2*pi)^(1/2)*p))*exp(-(x-u)^2/(2*p^2))');

>> y1=f(1,0,x);

>> y2=f(2,0,x);

>> y3=f(4,0,x);

>> y1

y1 =

7186705221432913/18014398509481984*exp(-1/2*x^2)

>> y2

y2 =

7186705221432913/36028797018963968*exp(-1/8*x^2)

>> y3

y3 =

7186705221432913/72057594037927936*exp(-1/32*x^2)

>>fplot('[7186705221432913/18014398509481984*exp(-1/2*x^2),7186705221432913/3602 8797018963968*exp(-1/8*x^2),7186705221432913/72057594037927936*exp(-1/32*x^2 )]',[-8,8])

二解:(1)>>fplot('[(1/sqrt(2*pi))*exp(-x^2/2),1/sqrt(2*pi)*exp(-(x+1)^2/2),1/sqrt(2*pi)*exp(-(x-1)^ 2/2)]',[-10,10])

(2)>>fplot('[(1/sqrt(2*pi))*exp(-x^2/2),1/(sqrt(2*pi)*2)*exp(-x^2/8),1/(sqrt(2*pi)*4)*exp( -x^2/32)]',[-10,10])

6. 画 下列函数的图形:(1)2

02004

cos sin ≤≤≤≤????

???

===u t t z t

u y t u x

>> ezmesh('u*sin(t)','u*cos(t)','t/4',[0,20,0,2])

(2)sin (3cos )02cos (3cos )

02sin x t u t y t u u z u π

π=+?≤≤?

=+?≤≤?=?

(第6题只要写出程序).

ezmesh('sin(t)*(3+cos(u))','cos(t)*(3+cos(u))','sin(u)',[0,2*pi,0,2*pi])

第二次练习题

1、 设11

()/23n n

n m x x x x +?

=+???=?,数列}{n x 是否收敛?若收敛,其值为多少?精确到6位有

效数字。

>> f=inline('(x+407/x)/2'); syms x; x0=3; for i=1:1:20 x0=f(x0);

fprintf('%g,%g\n',i,x0); end 1,69.3333 2,37.6018 3,24.2129 4,20.5111

5,20.177 6,20.1742 7,20.1742 8,20.1742 9,20.1742 10,20.1742 11,20.1742 12,20.1742 13,20.1742 14,20.1742 15,20.1742 16,20.1742 17,20.1742 18,20.1742 19,20.1742 20,20.1742

本次计算运行到第六次结果稳定,可得: 数列}{n x 收敛,收敛到20.1742

2、设 ,131211p p p n n

x ++++

= }{n x 是否收敛?若收敛,其值为多少?精确到17位有效数字(提示:当n x 与1n x +的前17位有效数字一致时终止计算)

注:学号为单号的取7=p ,学号为双号的取.8=p >> s=0; for i=1:1:200 s=s+1/i^7;

fprintf('%g,%20.17f\n',i,s); end

1, 1.00000000000000000 2, 1.00781250000000000 3, 1.00826974737082750

4, 1.00833078252707750 5, 1.00834358252707750 6, 1.00834715477216210 7, 1.00834836903784100 8, 1.00834884587499920 9, 1.00834905495015730 10, 1.00834915495015730 …………………………… 181, 1.00834927738191870 182, 1.00834927738191890 183, 1.00834927738191920 184, 1.00834927738191940 185, 1.00834927738191960 186, 1.00834927738191980 187, 1.00834927738192000 188, 1.00834927738192030 189, 1.00834927738192050 190, 1.00834927738192070 191, 1.00834927738192070 192, 1.00834927738192070 193, 1.00834927738192070 194, 1.00834927738192070 195, 1.00834927738192070 196, 1.00834927738192070 197, 1.00834927738192070 198, 1.00834927738192070 199, 1.00834927738192070 200, 1.00834927738192070

运行至第190次后稳定,值为1.00834927738192070

练习12 对例2,对例2,取 120,55,25,5.4 a 观察图形有什么变化.试着提高迭代次数至26 000、28 000、100 000、500 000等观察图形有什么变化. >> Martin(45,2,-300,5000);

>> Martin(45,2,-300,26000);

>> Martin(45,2,-300,28000);

>> Martin(45,2,-300,100000);

>> Martin(45,2,-300,500000);

练习13 取参数c b a ,,为其他的值会得到什么图形?参考表4.4.

表4.4 Martin 迭代参数参考表

练习13 取参数c b a ,,为其他的值会得到什么图形?参考表4.4.

表4.4 Martin 迭代参数参考表

>> Martin(-1000,0.1,-10,5000);

>> Martin(-0.4,1,0,5000);

>> Martin(90,30,10,5000);

>> Martin(10,-10,100,5000);

>> Martin(-200,-4,-80,5000);

>> Martin(-137,17,4,5000);

>> Martin(10,100,-10,5000);

练习14设A,B,C为某三角形的顶点,现作这样的迭代:计算两个点的中点,这两个点分别是A,B,C中随机取得的一点,与前一步求得的中点(初始点任取).当迭代次数大于10000时,试观察所得的散点图.

输入:

>> f=@(x,y)(x+y)/2;

x1=0;y1=0;x2=4;y2=0;x3=0;y3=4;

xn=x1;yn=y1;

for n=1:10000

m=ceil(3*rand);

if m==1;

X=x1;Y=y1;

elseif m==2;

X=x2;Y=y2;

else m==3;

X=x3;Y=y3;

end;

xN=xn;yN=yn;

xn=f(xN,X);yn=f(yN,Y);

plot(xn,yn,'k*');

hold on;

end;

hold off

>>

输出:

书上习题:(实验四) 1,2,4,7(1),8,12(改为:对例2,取 120,55,25,5.4=a 观察图形有什么变化.),13,14 。

练习1 编程判断函数)(x f 1

1

+-=x x 的迭代序列是否收敛. >> f=inline('(x-1)/(x+1)'); x0=4; for i=1:20 x0=f(x0);

fprintf('%g,%g\n',i,x0); end 1,0.6 2,-0.25 3,-1.66667 4,4 5,0.6 6,-0.25 7,-1.66667 8,4 9,0.6 10,-0.25 11,-1.66667 12,4 13,0.6 14,-0.25 15,-1.66667 16,4 17,0.6 18,-0.25 19,-1.66667 20,4

由此可以发现迭代数列不一定收敛,迭代中出现循环。

练习2 先分别求出分式线性函数31)(1+-=

x x x f 、1

15

)(2++-=x x x f 的不动点,再编程判断它们的迭代序列是否收敛.

运用上节的收敛定理可以证明:如果迭代函数在某不动点处具有连续导数且导数值介于-1与1之间,那末取该不动点附近的点为初值所得到的迭代序列一定收敛到该不动点. (1)解方程3

1

+-=x x x ,得到x =-1,是函数f1(x )的不动点。 x=(x-1)/(x+3) x =-1

f1=inline('(x-1)/(x+3)'); x0=-0.5; for i=1:2000 x0=f1(x0);

fprintf('%g,%g\n',i,x0); end

1982,-0.999001 1983,-0.999001 1984,-0.999002 1985,-0.999002 1986,-0.999003 1987,-0.999003 1988,-0.999004 1989,-0.999004 1990,-0.999005 1991,-0.999005 1992,-0.999006 1993,-0.999006 1994,-0.999007 1995,-0.999007 1996,-0.999008 1997,-0.999008 1998,-0.999009 1999,-0.999009 2000,-0.99901

(2)解方程1

15

++-=x x x ,得到x =-5和3,是函数f2(x )的不动点。

x=(-x+15)/(x+1) x=-5,3; format long;

f2=inline('(x-15)/(x+1)'); x0=6; for i=1:2000 x0=f2(x0);

fprintf('%g,%g\n',i,x0); end

1980,-17.2814 1981,1.98272 1982,-4.36424 1983,5.75591 1984,-1.3683 1985,44.4431 1986,0.647912 1987,-8.70926 1988,3.07543 1989,-2.92597 1990,9.3075 1991,-0.552267 1992,-34.7356 1993,1.47428 1994,-5.46654 1995,4.58219 1996,-1.86626 1997,19.4703 1998,0.218379 1999,-12.1322 2000,2.43727

由此可见由于迭代序列虽有不动点x=-1,但在此处导数不在-1与1之间,所以迭代数序列不收敛。

数学实验练习题2012

第一次练习题 1. 求 32 =-x e x 的所有根。(先画图后求解) 2. 求下列方程的根。 1) 0155 =++x x 2) 至少三个根)(0 2 1s i n =- x x 3) 所有根0 c o s s i n 2 =-x x x 3. 求解下列各题: 1) 3 sin lim x x x x ->- 2) ) 10(, cos y x e y x 求= 3) ?+dx x x 2 4 425 4) )(最高次幂为 展开在将801=+x x 5) )2() 3(1sin y e y x 求 = 4. 求矩阵 ???? ? ? ?--=31 4020 112 A 的逆矩阵1 -A 及特征值和特征向量。 5. 已知,21)(2 2 2)(σ μσ π-- = x e x f 分别在下列条件下画出)(x f 的图形: ); (在同一坐标系上作图 ,,=时=、);(在同一坐标系上作图,-,=时、421,0)2(110,1)1(σμμσ=、 6. 画 (1)202004 cos sin ≤≤≤≤???? ?? ? ===u t t z t u y t u x (2) 30,30)sin(≤≤≤≤=y x xy z

(3)π π2020sin ) cos 3()cos()cos 3()sin(≤≤≤≤?? ? ??=+=+=u t u z u t y u t x 的图(第6题只要写出程序). 7绘制曲线x x x sa )sin()(=,其中]10,10[ππ-∈x 。(注意:0=x 处需要特别处理。) 8.作出函数x e x f x cos )(-=的图形;求出方程0=)(x f 在],[020-的所有根;令 n x 为从0向左依次排列的方程的根,输出n n x x --1 ,并指出?)(lim =--∞ >-n n n x x 1 9. 把x cos 展开到2,4,6项,并作出的x cos 和各展开式的图形;并指出用展开式逼 近x cos 的情形。 10. 请分别写出用for 和while 循环语句计算63 263 2 2212+++== ∑ = i i K 的程序。此外, 还请写出一种避免循环的计算程序。 11. 对于0>x ,求1 20 11122 +∞ =∑ ? ? ? ??+-+k k x x k 。(提示:理论结果为x ln ) 第二次练习题 1、 设????? =+=+32/)7(1 1 x x x x n n n ,数列}{n x 是否收敛?若收敛,其值为多少?精确到6位 有效数字。 用两种方法 2、设 ,13 12 11p p p n n x + ++ += }{n x 是否收敛?若收敛,其值为多少?精确到17 位有效数字。 注:学号为单号的取7=p ,学号为双号的取.8=p 3、38P 问 题2 4、编程找出 5,1000+=≤b c c 的所有勾股数,并问:能否利用通项表示 },,{c b a ? 5、编程找出不定方程 )35000(122 2 <-=-y y x 的所有正整数解。(学号为单号

《数学实验》试题答案

北京交通大学海滨学院考试试题 课程名称:数学实验2010-2011第一学期出题教师:数学组适用专业: 09机械, 物流, 土木, 自动化 班级:学号:姓名: 选做题目序号: 1.一对刚出生的幼兔经过一个月可以长成成兔, 成兔再经过一个月后可以 繁殖出一对幼兔. 如果不计算兔子的死亡数, 请用Matlab程序给出在未来24个月中每个月的兔子对数。 解: 由题意每月的成兔与幼兔的数量如下表所示: 1 2 3 4 5 6 ··· 成兔0 1 1 2 3 5··· 幼兔 1 0 1 1 2 3··· 运用Matlab程序: x=zeros(1,24); x(1)=1;x(2)=1; for i=2:24 x(i+1)=x(i)+x(i-1); end x 结果为x = 1 1 2 3 5 8 13 21 3 4 5 5 89 144 233 377 610 987 1597 2584 4181 6765 1094 6 7711 2865 7 46368 2.定积分的过程可以分为分割、求和、取极限三部分, 以1 x e dx 为例, 利用

已学过的Matlab 命令, 通过作图演示计算积分的过程, 并与使用命令int() 直接积分的结果进行比较. 解:根据求积分的过程,我们先对区间[0,1]进行n 等分, 然后针对函数x e 取和,取和的形式为10 1 i n x i e e dx n ξ=≈ ∑ ? ,其中1[ ,]i i i n n ξ-?。这里取i ξ为区间的右端点,则当10n =时,1 x e dx ?可用10 101 1.805610 i i e ==∑ 来近似计算, 当10n =0时,100 100 1 01 =1.7269100 i x i e e dx =≈ ∑?,当10n =000时,10000 10000 1 1 =1.718410000 i x i e e dx =≈ ∑ ?. 示意图如下图,Matlab 命令如下: x=linspace (0,1,21); y=exp(x); y1=y(1:20); s1=sum(y1)/20 y2=y(2:21); s2=sum(y2)/20 plot(x,y); hold on for i=1:20 fill([x(i),x(i+1),x(i+1),x(i),x(i)],[0,0,y(i),y(i),0],'b') end syms k;symsum(exp(k/10)/10,k,1,10);%n=10 symsum(exp(k/100)/100,k,1,100);%n=100 symsum(exp(k/10000)/10000,k,1,10000);%n=10000

大学数学实验

大学数学实验 项目一 矩阵运算与方程组求解 实验1 行列式与矩阵 实验目的 掌握矩阵的输入方法. 掌握利用Mathematica (4.0以上版本) 对矩阵进行转置、加、减、数乘、相乘、乘方等运算, 并能求矩阵的逆矩阵和计算方阵的行列式. 基本命令 在Mathematica 中, 向量和矩阵是以表的形式给出的. 1. 表在形式上是用花括号括起来的若干表达式, 表达式之间用逗号隔开. 如输入 {2,4,8,16} {x,x+1,y,Sqrt[2]} 则输入了两个向量. 2. 表的生成函数 (1) 最简单的数值表生成函数Range, 其命令格式如下: Range[正整数n]—生成表{1,2,3,4,…,n }; Range[m, n]—生成表{m ,…,n }; Range[m, n, dx]—生成表{m ,…,n }, 步长为d x . (2) 通用表的生成函数Table. 例如,输入命令 Table[n^3,{n,1,20,2}] 则输出 {1,27,125,343,729,1331,2197,3375,4913,6859} 输入 Table[x*y,{x,3},{y,3}] 则输出 {{1,2,3},{2,4,6},{3,6,9}} 3. 表作为向量和矩阵 一层表在线性代数中表示向量, 二层表表示矩阵. 例如,矩阵 ??? ? ??5432 可以用数表{{2,3},{4,5}}表示. 输入 A={{2,3},{4,5}} 则输出 {{2,3},{4,5}} 命令MatrixForm[A]把矩阵A 显示成通常的矩阵形式. 例如, 输入命令: MatrixForm[A] 则输出 ??? ? ??5432 但要注意, 一般地, MatrixForm[A]代表的矩阵A 不能参与运算. 输入 B={1,3,5,7} 输出为 {1,3,5,7} 输入 MatrixForm[B] 输出为

大学数学数学实验(第二版)第7,8章部分习题答案

一、实验内容 P206第六题 function f=wuyan2(c) y=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.41 38.6 50.2 62.9 76.0 92.0 106.5 123.2 131.7 150.7 179.3 204.0 226.5 251.4 281.4] t=[0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210] f=y-c(1)/(1+c(1)/3.9-1)*exp^(-c(2)*t) c0=[1 1] c=lsqnonlin('wuyan2',c0) P206第七题 function f=wuyan1(c) q=[0.4518 0.4862 0.5295 0.5934 0.7171 0.8964 1.0202 1.1963 1.4928 1.6909 1.8548 2.1618 2.6638 3.4634 4.6759 5.8478 6.7885 7.4463 7.8345 8.2068 8.9468 9.7315 10.5172 11.7390 13.6876 ]; k=[0.0911 0.0961 0.1230 0.1430 0.1860 0.2543 0.3121 0.3792 0.4754 0.4410 0.4517 0.5595 0.8080 1.3072 1.7042 2.0019 2.2914 2.4941 2.8406 2.9855 3.2918 3.7214 4.3500 5.5567 7.0477]; l=[4.2361 4.3725 4.5295 4.6436 4.8179 4.9873 5.1282 5.2783 5.4334 5.5329 6.4749 6.5491 6.6152 6.6808 6.7455 6.8065 6.8950 6.9820 7.0637 7.1394 7.2085 7.3025 7.3470 7.4432 7.5200]; f=q-c(1)*k.^c(2).*l.^c(3) c0=[1 1 1] c=lsqnonlin('wuyan1',c0) c = 0.4091 0.6401 1.1446 a=0.4091 α=0.6401 β=1.1446 P239第五题 c=[-20 -30]; A=[1 2;5 4]; b=[20 70]; v1=[0 0]; [x,f,ef,out,lag]=linprog(c,A,b,[],[],v1) z=-f x = 10.0000 5.0000

清华大学数学实验报告4

清华大学数学实验报告4

————————————————————————————————作者: ————————————————————————————————日期: ?

电13 苗键强2011010645

一、实验目的 1.掌握用 MATLAB 软件求解非线性方程和方程组的基本用法, 并对结果作初步分析; 2.练习用非线性方程和方程组建立实际问题的模型并进行求解。 二、实验内容 题目1 【问题描述】 (Q1)小张夫妇以按揭方式贷款买了1套价值20万元的房子,首付了5万元,每月还款1000元,15年还清。问贷款利率是多少? (Q2)某人欲贷款50 万元购房,他咨询了两家银行,第一家银行 开出的条件是每月还4500元,15 年还清;第二家银行开出的条件是每年还45000 元,20年还清。从利率方面看,哪家银行较优惠(简单假设:年利率=月利率×12)? 【分析与解】 假设初始贷款金额为x0,贷款利率为p,每月还款金额为x,第i 个月还完当月贷款后所欠银行的金额为x i,(i=1,2,3,......,n)。由题意可知: x1=x0(1+p)?x x2=x0(1+p)2?x(1+p)?x x3=x0(1+p)3?x(1+p)2?x(1+p)?x ……

x n=x0(1+p)n?x(1+p)n?1???x(1+p)?x =x0(1+p)n?x (1+p)n?1 p =0 因而有: x0(1+p)n=x (1+p)n?1 p (1) 则可以根据上述方程描述的函数关系求解相应的变量。 (Q1) 根据公式(1),可以得到以下方程: 150p(1+p)180?(1+p)180+1=0 设 f(p)=150p(1+p)180?(1+p)180+1,通过计算机程序绘制f(p)的图像以判断解p的大致区间,在Matlab中编程如下: fori = 1:25 t = 0.0001*i; p(i) = t; f(i) =150*t*(1+t).^180-(1+t).^180+1; end; plot(p,f),hold on,grid on; 运行以上代码得到如下图像:

数学实验答案-1

1.(1) [1 2 3 4;0 2 -1 1;1 -1 2 5;]+(1/2).*([2 1 4 10;0 -1 2 0;0 2 3 -2]) 2. A=[3 0 1;-1 2 1;3 4 2],B=[1 0 2;-1 1 1;2 1 1] X=(B+2*A)/2 3. A=[-4 -2 0 2 4;-3 -1 1 3 5] abs(A)>3 % 4. A=[-2 3 2 4;1 -2 3 2;3 2 3 4;0 4 -2 5] det(A),eig(A),rank(A),inv(A) 求计算机高手用matlab解决。 >> A=[-2,3,2,4;1,-2,3,2;3,2,3,4;0,4,-2,5] 求|A| >> abs(A) ans = ( 2 3 2 4 1 2 3 2 3 2 3 4 0 4 2 5 求r(A) >> rank(A) ans =

4 求A-1 《 >> A-1 ans = -3 2 1 3 0 -3 2 1 2 1 2 3 -1 3 -3 4 求特征值、特征向量 >> [V,D]=eig(A) %返回矩阵A的特征值矩阵D 与特征向量矩阵V , V = - + + - - + - + - + - + D = { + 0 0 0 0 - 0 0 0 0 + 0 0 0 0 - 将A的第2行与第3列联成一行赋给b >> b=[A(2,:),A(:,3)'] b = 《 1 - 2 3 2 2 3 3 -2

1. a=round(unifrnd(1,100)) i=7; while i>=0 i=i-1; b=input('请输入一个介于0到100的数字:'); if b==a ¥ disp('You won!'); break; else if b>a disp('High'); else if b

清华大学2002至2003学年第二学期数学实验期末考试试题A

清华大学2002至2003学年第二学期数学实验期末考试试题A 数学实验试题 2003.6.22 上午 (A卷;90分钟) 一. 某两个地区上半年6个月的降雨量数据如下(单位:mm): 月份123456 地区A259946337054 地区B105030204530 在90%的置信水平下,给出A地区的月降雨量的置信区 间: 在90%的置信水平下,A地区的月降雨量是否不小于70(mm)? 在90%的置信水平下,A、B地区的月降雨量是否相同? A地区某条河流上半年6个月对应的径流量数据如下(单位:m3):110,184,145,122,165,143。该河流的径流量y与当地的降雨量x的线性回归方程为;若当地降雨量为55mm,该河流的径流量的预测区间为(置信水平取90%)。 答案:(程序略) (1) [32.35,76.65] (2) 是 (3) 否 (4) y=91.12+0.9857x (5) [130.9,159.7] 二.(10分) (1)(每空1分)给定矩阵,如果在可行域上考虑线性函数,其中,那么的最小值是,最小点为;最大值是,最大点为。 (每空2分)给定矩阵,,考虑二次规划问题,其最优解为,(2) 最优值为,在最优点处起作用约束 为 。 答案:(1)最小值为11/5,最大值为7/2,最小点为(0,2/5,9/5),最大点为(1/2,0,3/2)。 (2)最优解为(2.5556,1.4444),最优值为–1.0778e+001,其作用约束为。 三.(10分)对线性方程组:,其中A=,b= (3分)当时,用高斯—赛德尔迭代法求解。取初值为,写出迭代第4步的结果=____________________。 (4分)当时,用Jacobi 迭代法求解是否收敛?__________ , 理由是_________________________________________________ 。 (3分)求最大的c, 使得对任意的,用高斯—赛德尔迭代法求解一定收敛,则c应为__________。 答案:(1)x = [ -1.0566 1.0771 2.9897]

重庆大学数学实验 方程模型及其求解算法 参考答案

实验2 方程模型及其求解算法 一、实验目的及意义 [1] 复习求解方程及方程组的基本原理和方法; [2] 掌握迭代算法; [3] 熟悉MATLAB软件编程环境;掌握MATLAB编程语句(特别是循环、条件、控制等语句); [4] 通过范例展现求解实际问题的初步建模过程; 通过该实验的学习,复习和归纳方程求解或方程组求解的各种数值解法(简单迭代法、二分法、牛顿法、割线法等),初步了解数学建模过程。这对于学生深入理解数学概念,掌握数学的思维方法,熟悉处理大量的工程计算问题的方法具有十分重要的意义。 二、实验内容 1.方程求解和方程组的各种数值解法练习 2.直接使用MATLAB命令对方程和方程组进行求解练习 3.针对实际问题,试建立数学模型,并求解。 三、实验步骤 1.开启软件平台——MATLAB,开启MATLAB编辑窗口; 2.根据各种数值解法步骤编写M文件 3.保存文件并运行; 4.观察运行结果(数值或图形); 5.根据观察到的结果写出实验报告,并浅谈学习心得体会。 四、实验要求与任务 基础实验 1.用图形放大法求解方程x sin(x) = 1. 并观察该方程有多少个根。 画出图形程序: x=-10:0.01:10; y=x.*sin(x)-1; y1=zeros(size(x)); plot(x,y,x,y1) MATLAB运行结果:

-10-8-6-4-20246810 -8-6 -4 -2 2 4 6 8 扩大区间画图程序: x=-50:0.01:50; y=x.*sin(x)-1; y1=zeros(size(x)); plot(x,y,x,y1) MATLAB 运行结果: -50-40-30-20-1001020304050 由上图可知,该方程有偶数个无数的根。

matlab数学实验复习题(有标准答案)

复习题 1、写出3 2、i nv(A)表示A的逆矩阵; 3、在命令窗口健入 clc,4、在命令窗口健入clea 5、在命令窗口健入6、x=-1:0.2:17、det(A)表示计算A的行列式的值;8、三种插值方法:拉格朗日多项式插值,分段线性插值,三次样条插值。 9、若A=123456789?? ????????,则fliplr (A)=321654987?????????? A-3=210123456--??????????A .^2=149162536496481?????????? tril(A)=100450789?????????? tri u(A,-1)=123456089??????????diag(A )=100050009?????????? A(:,2),=2 58A(3,:)=369 10、nor mcd f(1,1,2)=0.5%正态分布mu=1,s igm a=2,x =1处的概率 e45(@f,[a,b ],x0),中参数的涵义是@fun 是求解方程的函数M 文 件,[a,b ]是输入向量即自变量的范围a 为初值,x0为函数的初值,t 为输出指定的[a,b],x 为函数值 15、写出下列命令的功能:te xt (1,2,‘y=s in(x)’

hold on 16fun ction 开头; 17 ,4) 3,4) 21、设x 是一向量,则)的功能是作出将X十等分的直方图 22、interp 1([1,2,3],[3,4,5],2.5) Ans=4.5 23、建立一阶微分方程组? ??+='-='y x t y y x t x 34)(3)(2 的函数M 文件。(做不出来) 二、写出运行结果: 1、>>ey e(3,4)=1000 01000010 2、>>s ize([1,2,3])=1;3 3、设b=ro und (unifrnd(-5,5,1,4)),则=3 5 2 -5 >>[x,m]=min(b);x =-5;m=4 ,[x,n ]=sort(b ) -5 2 3 5 4 3 1 2 mea n(b)=1.25,m edian(b)=2.5,range(b)=10 4、向量b如上题,则 >>an y(b),all(b<2),all(b<6) Ans =1 0 1 5、>>[5 6;7 8]>[7 8;5 6]=00 11 6、若1234B ??=???? ,则 7、>>diag(d iag (B ))=10 04 8、>>[4:-2:1].*[-1,6]=-4 12 9、>>acos(0.5),a tan(1) ans = 1.6598 ans=

东华大学MATLAB数学实验第二版答案(胡良剑)

东华大学M A T L A B数学实验第二版答案(胡良 剑) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

数学实验答案 Chapter 1 Page20,ex1 (5) 等于[exp(1),exp(2);exp(3),exp(4)] (7) 3=1*3, 8=2*4 (8) a为各列最小值,b为最小值所在的行号 (10) 1>=4,false, 2>=3,false, 3>=2, ture, 4>=1,ture (11) 答案表明:编址第2元素满足不等式(30>=20)和编址第4元素满足不等式(40>=10) (12) 答案表明:编址第2行第1列元素满足不等式(30>=20)和编址第2行第2列元素满足不等式(40>=10) Page20, ex2 (1)a, b, c的值尽管都是1,但数据类型分别为数值,字符,逻辑,注意a与c 相等,但他们不等于b (2)double(fun)输出的分别是字符a,b,s,(,x,)的ASCII码 Page20,ex3 >> r=2;p=0.5;n=12; >> T=log(r)/n/log(1+0.01*p) Page20,ex4 >> x=-2:0.05:2;f=x.^4-2.^x; >> [fmin,min_index]=min(f) 最小值最小值点编址 >> x(min_index) ans = 0.6500 最小值点 >> [f1,x1_index]=min(abs(f)) 求近似根--绝对值最小的点 f1 = 0.0328 x1_index = 24 >> x(x1_index) ans = -0.8500 >> x(x1_index)=[];f=x.^4-2.^x; 删去绝对值最小的点以求函数绝对值次小的点>> [f2,x2_index]=min(abs(f)) 求另一近似根--函数绝对值次小的点 f2 = 0.0630 x2_index = 65 >> x(x2_index) ans =

大学数学实验心得体会

大学数学实验心得体会 [模版仅供参考,切勿通篇使用] 大学数学实验心得体会(一) 数学,在整个人类生命进程中至关重要,从小学到中学,再到大学,乃至更高层次的科学研究都离不开数学,随着时代的发展,人们越来越重视数学知识的应用,对数学课程提出了更高层次的要求,于是便诞生了数学实验。 学期最初,大学数学实验对于我们来说既熟悉又陌生,在我们的记忆中,我们做过物理实验、化学实验、生物实验,故然我们以为数学实验与它们一样,当我们在网上搜索有关数学实验的信息时,我们才知道,大学数学实验作为一门新兴的数学课程在近十年来取得了迅速的发展。数学实验以计算机技术和数学软件为载体,将数学建模的思想和方法融入其中,现在已经成为一种潮流。 当我们怀着好奇的心情走进屈静国老师的数学实验课堂时,我们才渐渐懂得,数学实验是一门有关计算机软件的课程,就像c语言一样,需要编辑运行程序,从而进行数学运算,它不需要自己来运算,就像计算器一样,只要我们自己记下重要程序语句,输入运行程序,便可得到运行结果,大大降低了我们的运算量,

给我们生活带来许多便捷,在大一时,我学过c语言,由于这样的基础,让我能够更快的学会并应用此软件。 时间飞逝,转眼间,我们就要结课了,这学期我们学习了mathematics的基础,微积分实验,线性代数实验,概率论与数理统计实验,数值计算方法及实验。通过这学期的学习,我也积累了些自己的学习方法和心得。首先,我们要在平时上课牢记那些mathematics语言和公式,那些东西就想单词和公式一样,只需要背诵;然后,我们要看几遍书,并多看一下例题;最后,我们要多应用mathematics软件去练习。正所谓熟能生巧,我坚信,只要我们能够做到这三步,我们就能很好的掌握这门课程。 通过学习使用数学软件,数学实验建模,使我们能够从实际问题出发,认真分析研究,建立简单数学模型,然后借助先进的计算机技术,最终找出解决实际问题的一种或多种方案,从而提高了我们的数学思维能力,为我们参加数学竞赛和数学建模打下了坚实的基础,同时也为我们进一步深造和参加工作打下一定的实践基础! 大学数学实验心得体会(二) 在此期间我充分利用研修活动时间学习,感到既有辛苦,又有收获。既有付出,又有新所得。这次远程研修让我有幸与专家和各地的数学精英们交流,面对每次探讨的主题,大家畅所欲言,

实验二极限与连续数学实验课件习题答案

天水师范学院数学与统计学院 实验报告 实验项目名称极限与连续 所属课程名称数学实验 实验类型上机操作 实验日期 2013-3-22 班级 10数应2班 学号 291010836 姓名吴保石 成绩

【实验过程】(实验步骤、记录、数据、分析) 1.数列极限的概念 通过计算与作图,加深对极限概念的理解. 例2.1 考虑极限3321 lim 51 x n n →∞++ Print[n ," ",Ai ," ",0.4-Ai]; For[i=1,i 15,i++,Aii=N[(2i^3+1)/(5i^3+1),10]; Bii=0.4-Aii ;Print[i ," ",Aii ," ",Bii]] 输出为数表 输入 fn=Table[(2n^3+1)/(5n^3+1),{n ,15}]; ListPlot[fn ,PlotStyle {PointSize[0.02]}] 观察所得散点图,表示数列的点逐渐接近直线y=0 .4 2.递归数列 例2.2 设n n x x x +==+2,211.从初值21=x 出发,可以将数列一项项地计算出来,这样定义的数列称为 数列,输入 f[1]=N[Sqrt[2],20]; f[n_]:=N[Sqrt[2+f[n-1]],20]; f[9] 则已经定义了该数列,输入 fn=Table[f[n],{n ,20}] 得到这个数列的前20项的近似值.再输入 ListPlot[fn ,PlotStyle {PointSize[0.02]}] 得散点图,观察此图,表示数列的点越来越接近直线2y =

例2.3 考虑函数arctan y x =,输入 Plot[ArcTan[x],{x ,-50,50}] 观察函数值的变化趋势.分别输入 Limit[ArcTan[x],x Infinity ,Direction +1] Limit[ArcTan[x],x Infinity ,Direction -1] 输出分别为2 π 和2π-,分别输入 Limit[sign[x],x 0,Direction +1] Limit[Sign[x],x 0,Direction -1] 输出分别为-1和1 4.两个重要极限 例2.4 考虑第一个重要极限x x x sin lim 0→ ,输入 Plot[Sin[x]/x ,{x ,-Pi ,Pi}] 观察函数值的变化趋势.输入 Limit[Sin[x]/x ,x 0] 输出为1,结论与图形一致. 例2.5 考虑第二个重要极限1 lim(1)x x x →∞+,输入 Limit[(1+1/n)^n ,n Infinity] 输出为e .再输入 Plot[(1+1/n)^n ,{n ,1,100}] 观察函数的单调性 5.无穷大 例2.6 考虑无穷大,分别输人 Plot[(1+2x)/(1-x),{x ,-3,4}] Plot[x^3-x ,{x ,-20,20}] 观察函数值的变化趋势.输入 Limit[(1+2x)/(1-x),x 1] 输出为-∞ 例2.7 考虑单侧无穷大,分别输人 Plot[E^(1/x),{x ,-20,20},PlotRange {-1,4}] Limit[E^(1/x),x 0,Direction +1] Limit[E^(1/x),x 0,Direction -1] 输出为图2.8和左极限0,右极限∞.再输入 Limit[E^(1/x),x 0] 观察函数值的变化趋势. 例2.8 输入 Plot[x+4*Sin[x],{x ,0,20Pi}] 观察函数值的变化趋势. 输出为图2 .9.观察函数值的变化趋势,当x →∞时,这个函数是无穷大,但是,它并不是单调增加.于是,无并不要求函数单调 例2.9 输入

数学实验模拟试题

191 《数学实验》模拟试题一 一、单项选择题 1.符号计算与一般数值计算有很大区别,它得到准确的符号表达式。在MA TLAB 命令窗口中键入命令syms x ,y1=sqrt(x);y2=x^2;int(y1-y2,x,0,1),屏幕显示的结果是 (A )y1 =x^(1/2) (B )ans= 2/3; (C )y2 =x^2; (D )ans= 1/3 2.在MA TLAB 命令窗口中键入命令A=[1 4 2;3 1 2;6 1 5];det(A(1:2,2:3).*A(1:2,2:3))。结果是 (A )ans= -143 (B )ans= 60 (C )ans= -16 (D )ans= -19 3.设n 阶方阵A 的特征值为:i λ (i=1,2,…,n ),称||max )(i i A λρ=为矩阵A 的谱半径, 则下列MA TLAB 求谱半径命令是 (A )max(abs(eig(A))); (B )abs(max(eig(A))); (C )max(norm(eig(A))); (D )norm(max(eig(A))) 4.MA TLAB 系统运行时,内存中有包括X 和Y 在内的多个变量(数据),要删除所有变量(数据),应该使用的命令是 (A )clear ; (B )clc ; (C )home ; (D )clear X Y 5.用赋值语句给定x 数据,计算3ln +)2+3sin(72e x 对应的MA TLAB 表达式是 (A )sqrt(7*sin(3+2*x)+exp(2)*log(3)) (B )sqrt(7sin(3+2x)+exp(2)log(3)) (C )sqr(7*sin(3+2*x)+e^2*log(3)) (D )sqr(7sin(3+2x)+ e^2 log(3)) 6.在MA TLAB 命令窗口中输入命令data=[4 1 2 3 1 3 1 3 2 4];y=hist (data,4),结果是 (A ) y= 4 1 2 3; (B )y=3 2 3 2; (C )y= 1 3 2 4 ; (D )y= 4 2 1 1 7.在MA TLAB 命令窗口中键入A=magic(6); B=A(2:5,1:2:5) 将得到矩阵B ,B 是 (A )2行5列矩阵;(B )4行两列矩阵;(C )4行3列矩阵;(D )4行5列矩阵 8.MA TLAB 绘三维曲面需要构建网格数据,语句[x,y]=meshgrid(-2:2)返回数据中 (A )x 是行向量,y 是列向量; (B )x 是列向量,y 是行向量; (C )x 是行元素相同的矩阵; (D )x 是列元素相同矩阵 9.下面有关MA TLAB 函数的说法,哪一个是错误的 (A )函数文件的第一行必须由function 开始,并有返回参数,函数名和输入参数; (B )MA TLAB 的函数可以有多个返回参数和多个输入参数; (C )如果函数文件内有多个函数,则只有第一个函数可以供外部调用; (D )在函数中可以用nargin 检测用户调用函数时的输出参数个数 10.将带小数的实数处理为整数称为取整,常用四种取整法则是:向正无穷大方向取 整、向负无穷大方向取整、向零方向取整和四舍五入取整。MA TLAB 提供了如下四个取整函数,若a = -1.4,对a 取整的结果是 -1,则不应该选用下面哪个函数。 (A )floor ; (B )round ; (C )ceil ; (D )fix ; 二、程序阅读理解 1.如果存在一条曲线L 与曲线簇中每一条曲线相切,则称L 为曲线簇的包络。 简单直线簇的实验程序如下 N=input('input N:='); x=[0:N]/N;y=1-x;

数学实验(MATLAB版韩明版)5.1,5.3,5.5,5.6部分答案

练习 B的分布规律和分布函数的图形,通过观1、仿照本节的例子,分别画出二项分布()7.0,20 察图形,进一步理解二项分布的性质。 解:分布规律编程作图:>> x=0:1:20;y=binopdf(x,20,; >> plot(x,y,'*') 图像: y x 分布函数编程作图:>> x=0::20; >>y=binocdf(x,20, >> plot(x,y) 图像: 《

1 x 观察图像可知二项分布规律图像像一条抛物线,其分布函数图像呈阶梯状。 2、仿照本节的例子,分别画出正态分布()25,2N的概率密度函数和分布函数的图形,通过观察图形,进一步理解正态分布的性质。 解:概率密度函数编程作图:>> x=-10::10; >> y=normpdf(x,2,5); >> plot(x,y) 图像:

00.010.020.030.040.050.060.070.08x y 分布函数编程作图:>> x=-10::10; >> y=normcdf(x,2,5); ~ >> plot(x,y) 图像:

01x y 观察图像可知正态分布概率密度函数图像像抛物线,起分布函数图像呈递增趋势。 3、设()1,0~N X ,通过分布函数的调用计算{}11<<-X P ,{}22<<-X P , {}33<<-X P . 解:编程求解: >> x1=normcdf(1)-normcdf(-1),x2=normcdf(2)-normcdf(-2),x3=normcdf(3)-normcdf(-3) x1 = x2 = ) x3 = 即:{}6827.011=<<-X P ,{}9545.022=<<-X P ,{}9973.033=<<-X P . 4、设()7.0,20~B X ,通过分布函数的调用计算{}10=X P 与{}10> x1=binopdf(10,20,,x2=binocdf(10,20,-binopdf(10,20, x1 = x2 =

《大学物理实验》模拟试卷与答案

二、判断题(“对”在题号前()中打√×)(10分) (√)1、误差是指测量值与真值之差,即误差=测量值-真值,如此定义的误差反映的是测量值偏离真值的大小和方向,既有大小又有正负符号。 (×)2、残差(偏差)是指测量值与其算术平均值之差,它与误差定义一样。(√)3、精密度是指重复测量所得结果相互接近程度,反映的是随机误差大小的程度。 (√)4、测量不确定度是评价测量质量的一个重要指标,是指测量误差可能出现的范围。 (×)7、分光计设计了两个角游标是为了消除视差。 (×)9、调节气垫导轨水平时发现在滑块运动方向上不水平,应该先调节单脚螺钉再调节双脚螺钉。 (×)10、用一级千分尺测量某一长度(Δ仪=0.004mm),单次测量结果为N=8.000mm,用不确定度评定测量结果为N=(8.000±0.004)mm。 三、简答题(共15分) 1.示波器实验中,(1)CH1(x)输入信号频率为50Hz,CH2(y)输入信号频率为100Hz;(2)CH1(x)输入信号频率为150Hz,CH2(y)输入信号频率为50Hz;画出这两种情况下,示波器上显示的李萨如图形。(8分)

差法处理数据的优点是什么?(7分) 答:自变量应满足等间距变化的要求,且满足分组要求。(4分) 优点:充分利用数据;消除部分定值系统误差 四、计算题(20分,每题10分) 1、用1/50游标卡尺,测得某金属板的长和宽数据如下表所示,求金属板的面 解:(1)金属块长度平均值:)(02.10mm L = 长度不确定度: )(01.03/02.0mm u L == 金属块长度为:mm L 01.002.10±= %10.0=B (2分) (2)金属块宽度平均值:)(05.4mm d = 宽度不确定度: )(01.03/02.0mm u d == 金属块宽度是:mm d 01.005.4±= %20.0=B (2分) (3)面积最佳估计值:258.40mm d L S =?= 不确定度:2222222 221.0mm L d d s L s d L d L S =+=??? ????+??? ????=σσσσσ 相对百分误差:B =%100?S s σ=0.25% (4分) (4)结果表达:21.06.40mm S ±= B =0.25% (2分) 注:注意有效数字位数,有误者酌情扣 5、测量中的千分尺的零点误差属于已定系统误差;米尺刻度不均匀的误差属于未

东南大学高等数学数学实验报告上

高等数学数学实验报告实验人员:院(系) ___________学号_________姓名____________ 实验地点:计算机中心机房 实验一 一、实验题目: 根据上面的题目,通过作图,观察重要极限:lim(1+1/n)n=e 二、实验目的和意义 方法的理论意义和实用价值。 利用数形结合的方法观察数列的极限,可以从点图上看出数列的收敛性,以及近似地观察出数列的收敛值;通过编程可以输出数列的任意多项值,以此来得到数列的收敛性。通过此实验对数列极限概念的理解形象化、具体化。 三、计算公式(1+1/n)n 四、程序设计 五、程序运行结果 六、结果的讨论和分析 当n足够大时,所画出的点逐渐接近于直线,即点数越大,精确度越高。对于不同解题方法最后均能获得相同结果,因此需要择优,从众多方法中尽可能选择简单的一种。程序编写需要有扎实的理论基础,因此在上机调试前要仔细审查细节,对程序进行尽可能的简化、改进与完善。 实验二 一、实验题目 制作函数y=sin cx的图形动画,并观察参数c对函数图形的影响。 二、实验目的和意义 本实验的目的是让同学熟悉数学软件Mathematica所具有的良好的作图功能,并通过函数图形来认识函数,运用函数的图形来观察和分析函数的有关性态,建立数形结合的思想。 三、计算公式:y=sin cx 四、程序设计 五、程序运行结果

六、结果的讨论和分析 c 的不同导致函数的区间大小不同。 实验三 一、实验题目 观察函数f(x)=cos x 的各阶泰勒展开式的图形。 二、实验目的和意义 利用Mathematica 计算函数)(x f 的各阶泰勒多项式,并通过绘制曲线图形,来进一步掌握泰勒展开与函数逼近的思想。 三、计算公式 四、程序设计 五、程序运行结果 六、结果的讨论和分析 函数的泰勒多项式对于函数的近似程度随着阶数的提高而提高,但是对于任一确定次数的多项式,它只在展开点附近的一个局部范围内才有较好的近似精确度。 实验四 一、实验题目 计算定积分的黎曼和 二、实验目的和意义 在现实生活中许多实际问题遇到的定积分,被积函数往往不能用算是给出,而通过图像或表格给出;或虽然给出,但是要计算他的原函数却很困难,甚至原函数非初等函数。本实验目的,就是为了解决这些问题,进行定积分近似计算。 三、计算公式 四、程序设计 五、程序运行结果 六、结果的讨论和分析 本实验求的近似值由给出的n 的值的不同而不同。给出的n 值越大,得到的结果越接近准确的

2007年《数学实验》试卷

电子科技大学二零零六至二零零七学年第二学期期末考试 《数学实验》课程考试题A 卷(120分钟) 考试形式:闭卷 考试日期:2007年7月11日 课程成绩构成:平时10分,期中0分,实验30分,期末60分 (本卷面成绩100) 一、单项选择题(共30分,每小题3分) 1.符号计算与一般数值计算有很大区别,它将得到准确的符号表达式。在MATLAB 命令窗口中键入命令syms x, y1=sqrt(x); y2=x^2; int(y1-y2,x,0,1),屏幕显示的结果是( D ) (A) y1=x^(1/2) (B)ans=2/3; (C) y2=x^2 (D) ans=1/3 2.在MA TLAB 命令窗口中键入命令A=[1 4 2;3 1 2;6 1 5];det(A(1:2,2:3).*A(1:2,2:3))。结果是( B ) (A) ans= -143 (B) ans=60 (C)ans= -16 (D)ans= -19 3.设n 阶方阵A 的特征值为:),,2,1(n i i =λ,称||max )(i i A λρ=为矩阵A 的谱半径, 则下列MA TLAB 求谱半径 命令是( A ) (A) max(abs(eig(A))); (B) abs(max(eig(A))); (C)max(norm(eig(A))) (D) norm(max(eig(A))) 4.MA TLAB 系统运行时,内存中有包括X 和Y 在内的多个变量(数据),要删除所有变量(数据),该使用的命令是( A ) (A) clear (B) clc (C) home (D) clear X Y 5.用赋值语句给定x 数据,计算3ln )23sin(72 e x ++对应的MATLAB 表达式是( A ) (A) sqrt(7*sin(3+2*x)+exp(2)*log(3)) (B) sqrt(7sin(3+2x)+exp(2)log(3)) (C) sqr(7*sin(3+2*x)+exp(2)*log(3)) (D) sqr(7sin(3+2x)+exp(2)log(3)) 6.在MA TLAB 窗口中输入命令data=[4 1 2 3 1 3 1 3 2 4];y=hist(data,4),结果是( B ) (A) y=4 1 2 3 (B) y=3 2 3 2 (C) y=1 3 2 4 (D) y=4 2 1 1 7.在MA TLAB 命令窗口中键入A=magic(6); B=A(2:5,1:2:5)将得到矩阵B ,B 是( C ) (A) 2行5列矩阵 (B)4行两列矩阵 (C) 4行3列矩阵 (D)4行5列矩阵 8.MA TLAB 绘三维曲面需要构建网格数据,语句[x,y]=meshgrid(-2:2)返回数据中( D ) (A) x 是行向量,y 是列向量 (B) x 是列向量,y 是行向量 (C) x 是行元素相同的矩阵 (D) x 是列元素相同矩阵 9.下面有关MATLAB 函数的说法,哪一个是错误的( D ) (A) 函数文件的第一行必须由function 开始,并有返回参数,函数名和输入参数 (B) MA TLAB 的函数可以有多个返回参数和多个输入参数 (C) 如果函数文件内有多个函数,则只有第一个函数可以供外部调用 (D) 在函数中可以用nargin 检测用户调用函数时的输出参数个数 10.将带小数的实数处理为整数称为取整,常用四种取整法则是:向正无穷大方向取整、向负无穷大方向取整、向零方向取整和四舍五入取整。MA TLAB 提供了如下四个取整函数,若a=-1.4,对a 取整的结果是-1,则不应该选用下面哪个函数。( A ) (A) floor (B) round (C) ceil (D) fix 二、程序阅读理解(共24分,每小题3分) 1.如果存在一条曲线L 与曲线簇中每一条曲线相切,则称L 为曲线簇的包络。简单直线簇的实验程序如下: N=input('input N:='); x=[0:N]/N;y=1-x;

相关文档