文档库 最新最全的文档下载
当前位置:文档库 › 三大守恒——

三大守恒——

三大守恒——
三大守恒——

易思教育个性化辅导授课案

电荷守恒,物料守恒,质子守恒同为溶液中的三大守恒关系。这三个守恒的最大应用是判断溶液中粒子浓度的大小,或它们之间的关系等式。

电荷守恒:是指溶液中所有阳离子所带的正电荷总数与所有阴离子所带的负电荷总数相等。即溶液永远是电中性的,所以阳离子带的正电荷总量=阴离子带的负电荷总量

1.溶液必须保持电中性,即溶液中所有阳离子所带的电荷数等于所有阴离子所带的的电荷数

2.除六大强酸,四大强碱外都水解,多元弱酸部分水解。产物中有分步水解产物。

3.这个离子所带的电荷数是多少,离子前就写几。

例如:Na2CO3:c(Na+)+c(H+)=c(OH-)+c(HCO3-)+2c(CO3 2-)

因为碳酸根为带两个单位负电荷,所以碳酸根前有一个2。

在下列物质的溶液中

CH3COONa:c(Na+)+c(H+)=c(CH3COO-)+c(OH-)

Na2CO3:c(Na+)+c(H+)=c(OH-)+c(HCO3-)+2c(CO32-)

NaHCO3:c(Na+)+c(H+)=c(HCO3-)+2(CO32-)+c(OH-)

Na3PO4:c(Na+)+c(H+)=3c(PO43-)+2c(HPO42-)+c(H2PO4-)+c(OH-)

电荷守恒定律:物理学的基本定律之一。它指出,对于一个孤立系统,不论发生什么变化,其中所有电荷的代数和永远保持不变。电荷守恒定律表明,如果某一区域中的电荷增加或减少了,那么必定有等量的电荷进入或离开该区域;如果在一个物理过程中产生或消失了某种符号的电荷,那么必定有等量的异号电荷同时产生或消失。

注意:

1.正确分析溶液中存在的阴、阳离子是书写电荷守恒式的关键,需要结合电解质电离及盐类的水解知识,尤其是对多级电离或多级水解,不能有所遗漏。如Na2CO3溶液中存在如下电离和水解平衡:Na2CO3 2 Na+ +CO32-;CO32-+ H2O

HCO3-+OH-;HCO3- +H2O H2CO3 +OH-;H2O H++OH-。

所以溶液中阳离子有:Na+、H+,阴离子有:CO32-、HCO3-、OH-。

2.结合阴阳离子的数目及其所带的电荷可以写出:

N(Na+) +N(H+) = 2N(CO32-) + N( HCO3-) + N(OH-)

3.将上式两边同时除以NA得:n(Na+)+n(H+)=2n(CO32-)+ n(HCO3-) + n(OH-);再同时除以溶液体积V得:C(Na+) +C(H+) = 2C(CO32-) + C( HCO3-) + C(OH-),

这就是Na2CO3溶液的电荷守恒式。

电荷守恒式即溶液中所有阳离子的物质的量浓度与其所带电荷乘积之和等于所有阴离子的物质的量浓度与其所带电荷的绝对值乘积之和。

注意2点:

1、要判断准确溶液中存在的所有离子,不能漏掉。

2、注意离子自身带的电荷数目。如:

Na2CO3溶液:C(Na+)+ C(H+)= 2 C(CO32-)+ C(HCO3-)+ C(OH-)

NaHCO3溶液:C(Na+)+ C(H+)= 2 C(CO32-)+ C(HCO3-)+ C(OH-)

Na3PO4溶液:C(Na+)+ C(H+)= 3 C(PO43-)+ 2 C(HPO42-)+ C(H2PO4-)+ C(OH-)

NH4Cl溶液:C(NH4+)+ C(H+)=C( Cl-)+ C(OH-)

NaOH溶液:C(Na+)+C( H+)= C(OH-)

物料守恒:溶液中某一组分的原始浓度应该等于它在溶液中各种存在形式的浓度之和。

也就是元素守恒,即变化前后某种元素的原子个数守恒。物料守恒实际属于原子个数守恒和质量守恒。即加入的溶质组成中存在的某些元素之间的特定比例关系,由于水溶液中一定存在水的H、O元素,所以常用的物料守恒中的等式一定是非H、O元素的关系。

物料守恒可以理解为原子守恒的另一种说法。“任一化学反应前后原子种类和数量分别保持不变”,可以微观地应用到具体反应方程式,就是左边带电代数和等于右边。也就是左边(反应物)元素原子(核)个数种类与总数对应相等于右边(生成物)。

⒈含特定元素的微粒(离子或分子)守恒

⒉不同元素间形成的特定微粒比守恒

⒊特定微粒的来源关系守恒

例1 :NaHCO3溶液

n Na:nC=1:1,如果HCO3- 没有电离和水解,那么Na+和HCO3- 浓度相等。

HCO3- 会水解成为H2CO3,电离为CO32-(都是1:1反应,也就是消耗一个HCO3-,就产生一个H2CO3或者CO32-),那么守恒式中把Na+浓度和HCO3- 及其产物的浓度和画等号(或直接看作钠与碳的守恒):

即c(Na+) = c(HCO3-) + c(CO32-) + c(H2CO3) 这个式子叫物料守恒

例2 :Na2CO3溶液

电荷守恒c(Na+)+c(H+)=2c(CO32-)+c(HCO3-)+c(OH-)

上式中,阴阳离子总电荷量要相等,由于1mol碳酸根电荷量是2mol负电荷,所以碳酸根所

带电荷量是其物质的量的2倍。

物料守恒n Na:nC=2:1,c(Na+)是碳酸根离子物质的量的2倍,电离.水解后,碳酸根以三种形式存在,所以:c(Na+)=2[c(CO32-)+c(HCO3-)+c(H2CO3)]

例3:在0.1mol/L的H2S溶液中存在如下电离过程:

H2S H+ +HS-HS-H++S2-H2O H++OH-

H2S物料守恒式c(S2-)+c(HS-)+c(H2S)=0.1mol/L,

在这里物料守恒就是S元素守恒, 描述出有S元素的离子和分子即可

例4:在0.1mol/L Na3PO4溶液中:

根据P元素形成微粒总量守恒有:

c[PO43-]+c[HPO42-]+c[H2PO4-]+c[H3PO4]=0.1mol/L

根据Na与P形成微粒的关系有:

c[Na+]=3c[PO43-]+3c[HPO42-]+3c[H2PO4-]+3c[H3PO4]

根据H2O电离出的H+与OH- 守恒有(质子守恒):

c[OH-]=c[HPO42-]+2c[H2PO4-]+3c[H3PO4]+c[H+]

例5:NH4Cl溶液,化学式中nN:nCl=1:1,得到c[NH4+]+ c[NH3.H2O ]= c[ Cl-]

写等式要注意,把所有含这种元素的粒子都要考虑在内,可以是离子,也可以是分子。

质子守恒:质子守恒就是失去的质子和得到的质子数目相同。

例1 :Na2CO3溶液

水电离出的c(H+)=c(OH-). 在碳酸钠水溶液中水电离出的氢离子以(H+,HCO3-,H2CO3)三种形式存在,其中1mol碳酸分子中有2mol水电离出的氢离子.所以

c(OH-)=c(H+)+c(HCO3-)+2c(H2CO3)

例2 :NaHCO3溶液

方法一:可以由电荷守恒和物料守恒关系联立得到NaHCO3溶液中存在下列等式

C(H+)+C(Na+)=C(HCO3-)+2C(CO32-)+C(OH-) {电荷守恒}

C(Na+)=C(HCO3-)+ C(CO32-)+C(H2CO3) {物料守恒}

两式相减得C(H+)+C(H2CO3)=C(CO32-)+C(OH-) 这个式子叫质子守恒。

方法二:由酸碱质子理论

例1 :NaHCO3溶液

原始物种:HCO3-,H2O

消耗质子产物H2CO3,产生质子产物CO32-,OH-

C(H+)=C(CO32-)+C(OH-) -C(H2CO3)

即C(H+)+C(H2CO3)=C(CO32-)+C(OH-)

关系:剩余的质子数目等于产生质子的产物数目-消耗质子的产物数目

直接用酸碱质子理论求质子平衡关系比较简单,但要细心;如果用电荷守恒和物料守恒关系联立得到则比较麻烦,但比较保险

例2 :NaH2PO4溶液

原始物种:H2PO4-,H2O

消耗质子产物:H3PO4,

产生质子产物:HPO42-(产生一个质子),PO43-(产生二个质子),OH-

所以:c(H+)=c(HPO42-)+2c(PO43-)+c(OH-) —c(H3PO4)

快速书写质子守恒的方法:

第一步:确定溶液的酸碱性,溶液显酸性,把氢离子浓度写在左边,反之则把氢氧根离子浓度写在左边。

第二步:根据溶液能电离出的离子和溶液中存在的离子,来补全等式右边。具体方法是,判断溶液能直接电离出的离子是什么。然后选择能电离产生氢离子或者水解结合氢离子的离子为基准,用它和它电离或者水解之后的离子(这里称为对比离子)做比较,是多氢还是少氢,多N个氢,就减去N倍的该离子(对比离子)浓度。少N个氢离子,就减去N倍的该离子(对比离子)。

如碳酸氢钠溶液(NaHCO3):溶液显碱性,所以把氢氧根离子浓度写在左边,其次。判断出该溶液直接电离出的离子是钠离子和碳酸氢根,而能结合氢离子或电离氢离子的是碳酸氢根。其次以碳酸氢根为基准离子(因为碳酸氢钠直接电离产生碳酸根和钠离子,而钠离子不电离也不水解。)减去它电离之后的离

子浓度,加上它水解生成的离子浓度。便是:

C(OH-)=C(H2CO3)-C(CO32-)+C(H+)

例1:NH4Cl溶液,

电荷守恒,NH4+ + H+ = Cl- + OH-

物料守恒,C(NH4+)+ C(NH3.H2O) = C(Cl-)

质子守恒,处理一下,约去无关的Cl-,得到,C(H+)= C(OH- )+ C(NH3.H2O),分析, 水电离H+ = OH-,但是部分OH-被NH4+结合成NH3.H2O,而且是1:1结合,而H+不变,所以得到,H+ = 原来的总OH- = 剩余OH- + NH3.H2O

例2:Na2CO3溶液,

电荷守恒,Na+ + H+ = 2CO32- + HCO3- + OH-物料守恒,Na+ = 2(CO32- + HCO3- + H2CO3)

质子守恒,处理一下,约去无关的Na+,得到,HCO3- + 2H2CO3 + H+ = OH-,

分析,水电离H+= OH-,但是部分H+被CO32-结合成HCO3-,而且是1:1结合,还有部分继续被HCO3-结合成H2CO3,相当于被CO32-以1:2结合,而OH-不变,所以得到,

OH- = 原来总H+ = HCO3- + 2H2CO3 + 剩余H+

若能清楚三个守恒,解题会更快,若质子守恒不能熟悉,只要掌握前两个也足够了。

归纳:

1. Na2CO3溶液.

电荷守恒,c(Na+)+c(H+)=c(OH-)+c(HCO3-)+2c(CO32-)

物料守恒,c(Na+)=2[c(CO32-)+c(HCO3-)+c(H2CO3)]

质子守恒,c(OH-)=c(H+)+c(HCO3-)+2c(H2CO3)

2.NaHCO3溶液

电荷守恒:c(Na+)+c(H+)=c(HCO3-)+2(CO32-)+c(OH-)

物料守恒,c(Na+) = c(HCO3-) + c(CO32-) + c(H2CO3)

质子守恒,C(H+)=C(CO32-)+C(OH-) -C(H2CO3)

即C(H+)+C(H2CO3)=C(CO32-)+C(OH-)

3.NH4Cl溶液,

电荷守恒,C(NH4+)+ C(H+)=C( Cl-)+ C(OH-)

物料守恒,C(NH4+)+ C(NH3.H2O) = C(Cl-)

质子守恒,C(H+)= C(OH- )+ C(NH3.H2O)

4.Na3PO4溶液

电荷守恒:c(Na+)+c(H+)=3c(PO43-)+2c(HPO42-)+c(H2PO4-)+c(OH-)

物料守恒,c[Na+]=3c[PO43-]+3c[HPO42-]+3c[H2PO4-]+3c[H3PO4]

在0.1mol/L Na3PO4溶液中,根据P元素形成微粒总量守恒有:

c[PO43-]+c[HPO42-]+c[H2PO4-]+c[H3PO4]=0.1mol/L

质子守恒,c[OH-]=c[HPO42-]+2c[H2PO4-]+3c[H3PO4]+c[H+]

5.Na2S溶液

电荷守恒,c(Na+)+c(H+)=2c(S2-)+c(HS-)+c(OH-)

物料守恒,c(Na+)=2[c(S2-)+c(HS-)+c(H2S)]

质子守恒,c(OH-)=c(H+)+c(HS-)+2c(H2S)

6.

电荷守恒,NaOH溶液,C(Na+)+C( H+)= C(OH-)

CH3COONa溶液:c(Na+)+c(H+)=c(CH3COO-)+c(OH-)

物理学的发展

十九世纪末二十世纪初,经典物物学的各个分支学科均发展到了完善、成熟的阶段,随着热力学和统计力学的建立以及麦克斯韦电磁场理论的建立,经典物理学达到了它的顶峰,当时人们以系统的形式描绘出一幅物理世界的清晰、完整的图画,几乎能完美地解释所有已经观察到的物理现象。因为经典物理学的巨大成就,当时很多物理学家产生了这样一种思想:认为物理学的大厦已经建成,物理学的发展基本上已经完成,人们对物理世界的解释已经达到了终点。物理学的一些基本的、原则的问题都已经解决,剩下来的仅仅进一步精确化的问题,即在一些细节上作一些补充和修正,使已知公式中的各个常数测得更精确一些。不过,在十九世纪末二十世纪初,正当物理学家在庆贺物理学大厦落成之际,科学实验却发现了很多经典物理学无法解释的事实。首先是世纪之交物理学的三大发现:电子、X射线和放射性现象的发现。其次是经典物理学的万里晴空中出现了两朵“乌云”:“以太漂移”的“零结果”和黑体辐射的“紫外灾难”。 [1]这些实验结果与经典物理学的基本概念及基本理论有尖锐的矛盾,经典物理学的传统观点受到巨大的冲击,经典物理发生了“严重的危机”。由此引起了物理学的一场伟大的革命。爱因斯坦创立了相对论;海林堡、薛定谔等一群科学家创立了量子力学。现代物理学诞生了! 把物理学发展的现状与上一个世纪之交的情况作比较,能够看到两者之间有相似之外,也有不同之处。在相对论和量子力学建立起来以后,现代物理学经过七十多年的发展,已经达到了成熟的阶段。人类对物质世界规律的理解达到了空前的高度,用现有的理论几乎能够很好地解释现在已知的一切物理现象。能够说,现代物理学的大厦已经建成。在这个点上,当前有情况与上一个世纪之交的情况很相似。所以,有少数物理学家认为今后物理学不会有革命性的进展了,物理学的根本性的问题、原则问题都已经解决了,今后能做到的仅仅在现有理论的基础上在深度和广度两方面发体现代物理学,对现有的理论作一些补充和修正。不过,因为有了一百年前的历史经验,多数物理学家并不赞成这种观点,他们相信物理学迟早会有突破性的发展。另一方面,虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的水准。在这方面,当前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。所以,我认为当前发生现代物理学革命的条件似乎尚不成熟。 虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的水准。在这方面,当前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。所以,我认为当前发生现代物理学革命的条件似乎尚不成熟。客观物质世界是分层次的。一般说来,每个层次中的体系都由大量的小体系(属于下一个层次)构成。从一定意义上说,宏观与微观是相对的,宏观体系由大量的微观系统构成。物质世界从微观到宏观分成很多层次。物理学研究的目的包括:探索各层次的运动规律和探索各层次间的联系。

三大守恒

1.在0.1mol/L的H2S溶液中,下列关系错误的是() A.c(H+)=c(HS-)+c(S2-)+c(OH-) B.c(H+)=c(HS-)+2c(S2-)+c(OH-) C.c(H+)>[c(HS-)+c(S2-)+c(OH-)] D.c(H2S)+c(HS-)+c(S2-)=0.1mol/L 2.室温下,0.1mol/L的氨水溶液中,下列关系式中不正确的是() A. c(OH-)>c(H+) B.c(NH3·H2O)+c(NH4+)=0.1mol/L C.c(NH4+)>c(NH3·H2O)>c(OH-)>c(H+) D.c(OH-)=c(NH4+)+c(H+) 3.在氯化铵溶液中,下列关系正确的是() A.c(Cl-)>c(NH4+)>c(H+)>c(OH-) B.c(NH4+)>c(Cl-)>c(H+)>c(OH-) C.c(NH4+)=c(Cl-)>c(H+)=c(OH-) D.c(Cl-)=c(NH4+)>c(H+)>c(OH-) 4.在Na2S溶液中下列关系不正确的是 A. c(Na+) =2c(HS-) +2c(S2-) +c(H2S) B.c(Na+) +c(H+)=c(OH-)+c(HS-)+2c(S2-) C.c(Na+)>c(S2-)>c(OH-)>c(HS-) D.c(OH-)=c(HS-)+c(H+)+c(H2S) 5.草酸是二元弱酸,草酸氢钾溶液呈酸性,在0.1mol/LKHC2O4溶液中,下列关系正确的是()A.c(K+)+c(H+)=c(HC2O4-)+c(OH-)+ c(C2O42-) B.c(HC2O4-)+ c(C2O42-)=0.1mol/L C.c(C2O42-)>c(H2C2O4) D.c(K+)= c(H2C2O4)+ c(HC2O4-)+ c(C2O42-) 6.在0.1mol·L-1 Na2CO3溶液中,下列关系正确的是 A.c(Na+)=2c(CO32- ) B.c(OH-)=2c(H+) C.c(HCO3-)>c(H2CO3) D.c(Na+)<c(CO32-)+c(HCO3-) 7.在0.1mol/L的NaHCO3溶液中,下列关系式正确的是 A.c(Na+)>c(HCO3-)>c(H+)>c(OH-) B.c(Na+)=c(HCO3-)>c(OH-)>c(H+) C.c(Na+)+c(H+)=c(HCO3-)+c(OH-)+2c(CO32-) 1

化学三大守恒定律

化学三大守恒定律 This manuscript was revised on November 28, 2020

对于溶液中微粒浓度(或数目)的比较,要遵循两条: 一是电荷守恒,即溶液中阳离子所带正电荷总数等于阴离子所带总数; 二是物料守恒,即溶液中某一组分的原始浓度应该等于它在溶液中各种存在形式的浓度之和。(物料守恒实际属于个数守恒和。) ★电荷守恒 1.化合物中元素正负代数和为零 2.溶液呈电中性:所有阳离子所带正电荷总数等于阴离子所带负电荷总数 3.除六大,四大外都,部分水解。产物中有部分水解时产物 4.这个离子所带的电荷数是多少,离子前写几。 例如:NaHCO 3:c(Na + )+c(H + )=c(OH -)+c(HCO 3-)+2c(CO 32- ) ★物料守恒 物料守恒可以理解为原子守恒的另一种说法,即“任一化学反应前后原子种类(指原子核中相等的原子,就是)和数量分别保持不变”。 ⒈含特定元素的微粒(离子或分子)守恒 ⒉不同元素间形成的特定微粒比守恒 ⒊特定微粒的来源关系守恒 【例1】在0.1mol/LNa3PO4溶液中: 根据P 元素形成微粒总量守恒有: c[PO 4 3-]+c[HPO 42-]+c[H 2PO 4-]+c[H 3PO 4]=0.1mol/L 根据Na 与P 形成微粒的关系有: c[Na + ]=3c[PO 43-]+3c[HPO 42-]+3c[H 2PO 4- ]+3c[H 3PO 4] 根据H2O 电离出的H+与OH-守恒有:c[OH -]=c[HPO 42-]+2c[H 2PO 4-]+3c[H 3PO 4]+c[H + ] 【例2】以NaHCO 3溶液为例 若HCO 3-没有和水解,则c (Na +)=c (HCO 3- ) 现在HCO 3-会水解成为H 2CO 3,电离为CO 32-(都是1:1反应,也就是消耗一个HCO 3- ,就产生一个H 2CO 3或者CO 32-),那么守恒式中把Na + 浓度和HCO 3- 及其产物的浓度和画 等号(或直接看作钠与碳的守恒): 即c(Na + )==c(HCO 3-)+c(CO 32- )+c(H 2CO 3) 【例3】在0.1mol/L 的H 2S 溶液中存在如下过程:(均为) H 2S=(H + )+(HS -) (HS -)=(H + )+(S 2-) H 2O=(H + )+(OH -) 可得物料守恒式c(S 2-)+c(HS - )+c(H 2S)==0.1mol/L,(在这里物料守恒就是S--描述出有S 元素的和分子即可) 【例4】Na 2CO 3溶液的电荷守恒、物料守恒、质子守恒 ·电荷守恒 c(Na+)+c(H+)=2c(CO 32-)+c(HCO 3-)+c(OH-) 上式中,阴阳总要相等,由于1mol 电荷量是2mol 负电荷,所以碳酸根所带电荷量是其的2倍。 ·物料守恒 c(Na+)是离子物质的量的2倍,电离水解后,碳酸根以三种形式存在所以 c(Na+)=2[c(CO 32-)+c(HCO 3-)+c(H 2CO 3)] ·质子守恒 水电离出的c(H+)=c(OH-)

19世纪自然科学的三大发现及其发明者

19世纪自然科学的三大发现及其发明者 1.细胞学说19世纪30年代,由德国的植物学家施莱登和动物学家施旺提出 2.能量守恒和转化定律可以说是多人研究的结果。1842年,德国的青年医生迈尔(J.R.Mayer,1814-1878),写成了他的第一篇关于能量守恒和转化定律论文:《论无机自然界的力》;1847年,英国酿酒商焦耳、德国物理学家赫尔姆霍茨分别发表各自有关能量守恒和转化定律的讲演或论文;不过,焦耳被认为是最先用科学实验确立能量守恒和转化定律的人,但焦耳和赫尔姆霍茨也承认迈尔发现能量守恒和转化定律的优先权。1953年,威廉·汤姆生帮助焦耳终于完成了关于能量守恒和转化定律的精确表述。至此,自然科学中的三大发现之一的能量转化和能量守恒定律宣告得到公认。 3.生物进化论1859年,英国生物学家达尔文出版了《物种起源》,阐述了以自然选择学说为主要内容的生物进化理论,给神创论和物种不变论以沉重的打击。这也是19世纪自然科学的三大发现之一。 我国著名科学家及其成就: 1、钱学森(著名科学家、物理学家。我国近代力学事业的奠基人之一。在空气动力学、航空工程、喷气推进、工程控制论、物理力学等技术科学领域做出许多开创性贡献。) 2、钱三强(核物理学家,中国科学院院士,在“核裂变”方面成绩突出,是许多交叉学科和横断性学科的倡导者。为中国原子能科学事业的创立和“两弹”研究作出了重要贡献) 3、竺可桢(地理学家、气象学家、中国现代气象学和地理学的一代宗师,是我国物候学研究的创始者、推动者) 4、李四光(古生物学家、地层学家、大地构造学家、第四纪冰川学家。是中国地质力学的创始人。“ ”化石新分类标准的提出、中国南方震旦纪与北方石炭纪地层系统的建立、中国东部第四纪冰川的发现与研究是他对地质科学的重大贡献。) 5、袁隆平(农学家、杂交水稻育种专家,中国研究杂交水稻的创始人,世界上成功利用水稻杂交优势的第一人。他于1981年荣获我国第一个国家特等发明奖,被国际上誉为“杂交水稻之父”。) 6、侯德榜(著名科学家,杰出的化工专家,我国重化学工业的开拓者) 7、周培源(著名力学家、理论物理学家、教育家和社会活动家,我国近代力学事业的奠基人之一) 8、茅以升(著名桥梁专家、土木工程学家、桥梁专家、工程教育家) 9、邓稼先(物理学家,在核物理、理论物理、中子物理、等离子体物理、统计物理和流体力学等方面取得突出成就) 10、童第周(生物学家、中国实验胚胎学的创始人) 11、钱伟长(著名力学家、应用数学家、教育家和社会活动家。是我国近代力学的奠基人之一。兼长应用数学、物理学、中文信息学,著述甚丰。特别在弹性力学、变分原理、摄动方法等领域有重要成就。) 12、严济慈(物理学家、教育家,中国现代物理研究奠基者之一。) 13、吴有训(物理学家,中国近代物理学奠基人,教育家) 14、张钰哲(中国现代天文学家,“中华”小行星的发现者。) 15、汤飞凡(微生物学家,世界上第一个分离出沙眼病毒的人,沙眼病毒被称为“汤氏病毒”) 16、丁颖(著名的农业科学家、教育家、水稻专家,中国现代稻作科学主要奠基人。)

物理学三大发现

著名物理学家开尔文说: “19世纪已经将物理大厦全部建成,今后物理学家只是修饰和完美这所大厦。” 但这种固步自封的思想很快被打破。19世纪末物理学的三大发现(X射线1895年、放射线1896年、电子1897年),揭开了物理学革命的序幕,它标志着物理学的研究由宏观进入到微观,标志着现代物理学的产生。列宁曾谈到,现代物理学的临产诞生了辩证唯物主义。 一、1895年,妙手偶得之的“X”光 1895年11月8日晚, 德国的维尔芝堡大学的伦琴用黑的厚纸板把阴极射线管子包起来,意外的发现1米以外的荧光屏在闪光,而这绝不是阴极射线,因阴极射线穿不透玻璃,只能行进几厘米远。 伦琴断定这是一种新射线,用它拍出了一张手掌照片,一时引起轰动。 由于X射线与原子中内层电子的跃迁有关,这说明了物理学还存在亟待搜索的未知领域。X射线本身在医疗、研究物质结构等方面都有很多的实用价值。 很多人都曾观察到过X射线的现象,但未深究而错过机会。伦琴善于观察,精心分析,因此他发现了“X”光。1901年,伦琴获首届诺贝尔物理奖,当之无愧。

二、1896年,天然放射性现象的发现 法国巴黎的贝克勒尔在一次阴雨绵绵的日子,将用黑纸包的感光底片与铀盐一起锁进了抽屉,结果底片仍旧被铀盐感光了,这是人类第一次发现某些元素自身也具有自发辐射现象,引起了人们对原子核问题的关注。贝克勒尔因此获1903 年诺贝尔奖。原子核物理学起源于放射性的研究,1933年中子的发现,核物理学诞生。核能的开发利用,大大促进了核物理和高能物理的发展,这其中居里夫妇功不可没。 居里夫人(1867-1934) 波兰中学毕业,获金质奖章,由于波兰当时女子不能上大学,做了8年家庭教师,筹了费用,于1891年到巴黎大学学习。1893年获物理硕士学位。1894年与法国物理学家皮埃尔·居里相恋。1903年获诺贝尔物理奖,1911年获诺贝尔化学奖。 居里夫妇进行了艰苦的提炼工作,从铀矿渣中提炼出了钋,它比纯铀放射性强400 倍!1898年7月,为纪念自己的祖国波兰,居里夫人宣布这种元素为“钋”。1898年12月,居里夫人又宣布发现了镭(radium)! 居里夫人自传中写到:“为达到这样的目的,设备是极其简陋的,——我们没有资金,没有适宜的实验室,没有任何帮助。” 镭矿渣非常贵,奥地利送了一吨,在低矮的棚屋里,居里夫妇工作了四年,在1902年,终于从8吨矿渣中提炼出0.1克的镭盐,并宣布镭的原子量为225!镭可以治狼疮和癌肿,0.1克镭就值75万金法郎!一个美国公司想收买专利,都被生活并不富裕的居里夫妇谢绝了。

2017-2018版高中化学溶液离子水解与电离中三大守恒知识点例题习题解析

高中化学溶液离子水解与电离中三大守恒详解 电解质溶液中有关离子浓度的判断是近年高考的重要题型之一。解此类型题的关键是掌握“两平衡、两原理”,即弱电解质的电离平衡、盐的水解平衡和电解质溶液中的电荷守恒、物料守恒原理。首先,我们先来研究一下解决这类问题的理论基础。 一、电离平衡理论和水解平衡理论 1.电离理论: ⑴弱电解质的电离是微弱的,电离消耗的电解质及产生的微粒都是少量的,同时注意考虑水的电离的存在;⑵多元弱酸的电离是分步的,主要以第一步电离为主; 2.水解理论: 从盐类的水解的特征分析:水解程度是微弱的(一般不超过2‰)。例如:NaHCO3溶液中,c(HCO3―)>>c(H2CO3)或c(OH― ) 理清溶液中的平衡关系并分清主次: ⑴弱酸的阴离子和弱碱的阳离子因水解而损耗;如NaHCO3溶液中有:c(Na+)>c(HCO3-)。 ⑵弱酸的阴离子和弱碱的阳离子的水解是微量的(双水解除外),因此水解生成的弱电解质及产生H+的(或OH-)也是微量,但由于水的电离平衡和盐类水解平衡的存在,所以水解后的酸性溶液中c(H+)(或碱性溶液中的c(OH-))总是大于水解产生的弱电解质的浓度;⑶一般来说“谁弱谁水解,谁强显谁性”,如水解呈酸性的溶液中c(H+)>c(OH-),水解呈碱性的溶液中c(OH-)>c(H+);⑷多元弱酸的酸根离子的水解是分步进行的,主要以第一步水解为主。 二、电解质溶液中的守恒关系 1、电荷守恒:电解质溶液中的阴离子的负电荷总数等于阳离子的正电荷总数, 电荷守恒的重要应用是依据电荷守恒列出等式,比较或计算离子的物质的量或物质的量浓度。如(1)在只含有A+、M-、H+、OH―四种离子的溶液中c(A+)+c(H+)==c(M-)+c(OH―),若c(H+)>c(OH―),则必然有c(A+)<c(M-)。盐溶液中阴、阳离子所带的电荷总数相等。 例如,在NaHCO3溶液中,有如下关系: C(Na+)+c(H+)==c(HCO3―)+c(OH―)+2c(CO32―) 如NH4Cl溶液中:c(NH4+)+c(H+)=c(Cl-)+c(OH-) 如Na2CO3溶液中:c(Na+)+c(H+)=2c(CO32-)+c(HCO3-)+c(OH-) 书写电荷守恒式必须①准确的判断溶液中离子的种类;②弄清离子浓度和电荷浓度的关系。 2、物料守恒:就电解质溶液而言,物料守恒是指电解质发生变化(反应或电离)前某元素

物理学发展简史

物理学发展简史 摘要:物理学的发展大致经历了三个时期:古代物理学时期、近代物理学时期(又称经典物理学时期)和现代物理学时期。物理学实质性的大发展,绝大部分是在欧洲完成,因此物理学的发展史,也可以看作是欧洲物理学的发展史。 关键词:物理学;发展简史;经典力学;电磁学;相对论;量子力学;人类未来发展 0 引言 物理学的发展经历了漫长的历史时期,本文将其划分为三个阶段:古代、近代和现代,并逐一进行简要介绍其主要成就及特点,使物理学的发展历程显得清晰而明了。 1 古代物理学时期 古代物理学时期大约是从公元前8世纪至公元15世纪,是物理学的萌芽时期。 物理学的发展是人类发展的必然结果,也是任何文明从低级走向高级的必经之路。人类自从具有意识与思维以来,便从未停止过对于外部世界的思考,即这个世界为什么这样存在,它的本质是什么,这大概是古代物理学启蒙的根本原因。因此,最初的物理学是融合在哲学之中的,人们所思考的,更多的是关于哲学方面的问题,而并非具体物质的定量研究。这一时期的物理学有如下特征:在研究方法上主要是表面的观察、直觉的猜测和形式逻辑的演绎;在知识水平上基本上是现象的描述、经验的肤浅的总结和思辨性的猜测;在内容上主要有物质本原的探索、天体的运动、静力学和光学等有关知识,其中静力学发展较为完善;在发展速度上比较缓慢。在长达近八个世纪的时间里,物理学没有什么大的进展。 古代物理学发展缓慢的另一个原因,是欧洲黑暗的教皇统治,教会控制着人们的行为,禁锢人们的思想,不允许极端思想的出现,从而威胁其统治权。因此,在欧洲最黑暗的教皇统治时期,物理学几乎处于停滞不前的状态。 直到文艺复兴时期,这种状态才得以改变。文艺复兴时期人文主义思想广泛传播,与当时的科学革命一起冲破了经院哲学的束缚。使唯物主义和辩证法思想重新活跃起来。科学复兴导致科学逐渐从哲学中分裂出来,这一时期,力学、数学、天文学、化学得到了迅速发展。 2 近代物理学时期 近代物理学时期又称经典物理学时期,这一时期是从16世纪至19世纪,是经典物理学的诞生、发展和完善时期。 近代物理学是从天文学的突破开始的。早在公元前4世纪,古希腊哲学家亚里士多德就已提出了“地心说”,即认为地球位于宇宙的中心。公元140年,古希腊天文学家托勒密发表了他的13卷巨著《天文学大成》,在总结前人工作的基础上系统地确立了地心说。根据这一学说,地为球形,且居于宇宙中心,静止不动,其他天体都绕着地球转动。这一学说从表观上解释了日月星辰每天东升西落、周而复始的现象,又符合上帝创造人类、地球必然在宇宙中居有至高无上地位的宗教教义,因而流传时间长达1300余年。

高中化学三大守恒

溶液中离子浓度大小比较归类解析 一、电离平衡理论和水解平衡理论 1.电离理论: ⑴弱电解质的电离是微弱的,电离消耗的电解质及产生的微粒都是少量的,同时注意考虑水的电离的存在;例如NH3·H2O溶液中微粒浓度大小关系。 【分析】由于在NH3·H2O溶液中存在下列电离平衡:NH3·H2O NH4++OH-,H2O H++OH-,所以溶液中微粒浓度关系为:c(NH3·H2O)>c(OH-)>c(NH4+)>c(H+)。 ⑵多元弱酸的电离是分步的,主要以第一步电离为主;例如H2S溶液中微粒浓度大小关系。【分析】由于H2S溶液中存在下列平衡:H2S HS-+H+,HS-S2-+H+,H2O H++OH-,所以溶液中微粒浓度关系为:c(H2S)>c(H+)>c(HS-)>c(OH-)。 2.水解理论: ⑴弱酸的阴离子和弱碱的阳离子因水解而损耗;如NaHCO3溶液中有: c(Na+)>c(HCO3-)。 ⑵弱酸的阴离子和弱碱的阳离子的水解是微量的(双水解除外),因此水解生成的弱电解质及产生H+的(或OH-)也是微量,但由于水的电离平衡和盐类水解平衡的存在,所以水解后的酸性溶液中c(H+)(或碱性溶液中的c(OH-))总是大于水解产生的弱电解质的浓度;例如(NH4)2SO4溶液中微粒浓度关系: c(NH4+)>c(SO42-)>c(H+)>c(NH3·H2O)>c(OH-)。 (3)多元弱酸的酸根离子的水解是分步进行的,主要以第一步水解为主。 例如: Na2CO3溶液中水解平衡为:CO32-+H2O HCO3-+OH-,H2O+HCO3-H2CO3+OH-,所以溶液中部分微粒浓度的关系为:c(CO32-)>c(HCO3-)。 二、电荷守恒和物料守恒 1.电荷守恒:电解质溶液中所有阳离子所带有的正电荷数与所有的阴离子所带的负电荷数相等。如NaHCO3溶液中:n(Na+)+n(H+)=n(HCO3-)+2n(CO32-)+n(OH-)推出:c(Na+)+c(H+)=c(HCO3-)+2c(CO32-)+c(OH-) 2.物料守恒:电解质溶液中由于电离或水解因素,离子会发生变化变成其它离子或分子等,但离子或分子中某种特定元素的原子的总数是不会改变的。如NaHCO3溶液中n(Na+):n(c)=1:1,推出:c(Na+)=c(HCO3-)+c(CO32-)+c(H2CO3)

19世纪末期物理学的三大发现及其意义复习过程

19世纪末期物理学的三大发现及其意义

精品资料 19世纪末期物理学的三大发现及其意义19世纪末,以牛顿力学、热力学、麦克维斯电磁学理论和原子论为基础的经典物理学理论体系已相当完善。正当物理学界陶醉于成功的喜悦中时,一些有远见的科学家却与意识到,在物理学晴朗的天空中出现了乌云。 1900年4月27日,一向以保守著称的英国皇家学会主席、著名物理学家达尔文发表长篇演说,指出:经典物理学本来十分晴朗的天空上出现了两朵“乌云”。一是“紫外灾难”——热辐射在位于短波的紫外线部分的实验结果与经典统计力学、电磁学理论相背;二是“以太危机”——当时的实验结果表明:麦克维斯电磁学理论中光、电、磁传播所需要的介质——“以太”可能根本就不存在。经典物理学正在发生危机,这预示着即将发生一场革命。 其实从1895年开始,连续三年的三大发现,x射线,放射性和电子的发现已经成为揭开物理学革命序幕的三声春雷。1895年伦琴发现了X射线,1896年法国的贝克勒尔发现了铀盐的放射性,1897年英国的J·J汤姆逊发现了电子。这些新发现猛烈的冲击着经典物理学理论,打破了物理学界沉闷的空气,被誉为“世纪之交的三大发现”,是现代物理学发轫的标志。 早在19世纪三四十年代,人们就发现,真空管内的金属电极在通电时其阴极会发出某种射线,这种射线受磁场影响,具有能量,被称为阴极射线。而对阴极射线性质的深入研究导致了X射线的发现。1895年德国物理学家伦琴在赫兹和勒纳德发表了论阴极射线的穿透力的论文后,准备对这一问题做进一步研究。他重复了勒纳德的实验,发现阴极射线确实能穿透铝箔在空气中行进几厘米,使涂有铂氰化钡的荧光屏上产生荧光。在多次实验后,他意外地发现了一 仅供学习与交流,如有侵权请联系网站删除谢谢2

盐溶液中的三大守恒关系

《盐溶液中的三大守恒关系》教学设计 【教学目标】 知识与技能:1、了解盐类水解中的电荷守恒、物料守恒以及质子守恒的原理; 2、能运用“三大守恒”解决实际问题。 过程与方法:1、能从盐溶液中各个微粒的存在形式中对比分析可以建立怎样的守恒; 2、通过比较三大守恒的关系,进一步深入认识“守恒思想”在化 学学科中的应用。 情感态度与价值观:1、体验科学探究的艰辛与愉悦; 2、建立个性与共性、对立与统一的科学辩证观。 【教学重难点】重点:盐溶液中三大守恒的原理 难点:三大守恒的应用 【教学方法】采取分析讨论、对比研究、归纳总结等 【教学过程】 一、知识回顾 1、电解质电离方程式的书写规则; 2、盐类水解方程式的书写规则。 二、知识讲解 以CH3COONa溶液和Na2CO3溶液为例,讲解三大守恒关系式的书写。 1、电荷守恒 溶液中所有阳离子的电荷总浓度等于所有阴离子的电荷总浓度。 例如:在CH3COONa溶液中,有如下关系: c(Na+)+ c(H+)=c(CH3COO-)+ c(OH-) 在Na2CO3溶液中,有如下关系: c(Na+) + c(H+)= c(HCO3-) +2 c(CO32-) + c(OH-) 【强调】书写电荷守恒式需注意: (1)准确判断溶液中的离子种类; (2)弄清离子浓度和电荷浓度的关系,即离子所带电荷量做系数。

2、物料守恒 溶液中某一组分的原始浓度应该等于它在溶液中各种存在形式的浓度之和例如:在CH3COONa溶液中,有如下关系: c(Na+)=c(CH3COO-)+c(CH3COOH) 在Na2CO3溶液中,有如下关系: c(Na+) =2 c(CO32-) +2c(HCO3-) +2c(H2CO3) 【强调】书写物料守恒式需注意: (1)准确的判断溶液中中心元素存在的微粒形式; (2)弄清中心元素之间的对应关系。 3、质子守恒 溶液中,由水电离产生的氢离子总浓度与由水电离产生的氢氧离子总浓度一定相等,无论微粒以自由离子形式存在或以弱电解质微粒形式存在。 例如:在CH3COONa溶液中,有如下关系: c(OH-)=c(H+)+c(CH3COOH) 在Na2CO3溶液中,有如下关系: c(OH-)= c(H+)+ c(HCO3-)+2c(H2CO3) 【强调】书写质子守恒式需注意: (1)弄清由水电离产生的H+和OH-的存在形式; (2)弄清被结合的H+或OH-离子浓度和弱电解质分子浓度的关系。 三、练习巩固与提升 1、写出下列溶液中的“三大守恒”关系式 ①NH4Cl溶液②Na2S溶液 2、试写出Na3PO4溶液中的“三大守恒”关系式 四、走向高考 1.硫酸铵溶液中离子浓度关系不正确的是( ) A.c(NH 4+)>c(SO 4 2-)>c(H+)>c(OH-) B.c(NH 4+)=2c(SO 4 2-) C.c(NH 4+)+c(NH 3 ·H 2 O)=2c(SO 4 2-) D.c(NH 4+)+c(H+)=c(OH-)+2c(SO 4 2-)

水溶液中三大守恒定理

溶液中三大守恒 一、电荷守恒 电解质溶液中所有阳离子所带的正电荷数与所有的阴离子所带的负电荷数相等。 例:写出碳酸钠(Na2CO3)溶液中的电荷守恒关系式 (1)找出溶液中的离子:Na+ H+ CO32- HCO3- OH- (2)根据电荷的物质的量: n(Na+)+n(H+)=2n(CO32-)+n(HCO3-)+n(OH-) (3)根据电荷离子浓度关系: c(Na+)+c(H+)=2c(CO32-)+c(HCO3-)+c(OH-) 注意: A、准确判断溶液中的离子种类。 B、弄清离子浓度与电荷的关系。即R n+的电荷浓度nC(R n+) 练:1、NH4HCO3溶液的电荷守恒试 2、Na2S溶液的电荷守恒试 二、物料守恒 电解质溶液中由于电离或水解因素,离子会发生变化,变成其它离子或分子等,但离子或分子中某种特定元素的原子总数是不会改变的。 某些特征性的原子是守恒的 例:NaHCO3溶液中C(Na+)的物料守恒关系式

C(Na+)=C(HCO3-)+C(CO32-)+C(H2CO3) 练:1、Na2CO3溶液中的物料守恒关系式、 2、H2S溶液中的电荷守恒关系式 三、质子守恒 电解质溶液中分子或离子得到质子的物质的量应相等失去质子的物质的量 (由水电离出来的c(H+)、 c(OH-)相等) 例:NaHCO3溶液中的质子守恒关系式 1、先找出溶液电离出的阴离子HCO3- 2、列下列式子 练:1、Na2 CO3溶液中的质子守恒关系式 2、Na HS溶液中的质子守恒关系式

综合练习: 1、CH3COONa溶液中三大守恒关系式 电荷守恒: 物料守恒: 质子守恒: 2、Na2 CO3溶液中三大守恒关系式 电荷守恒: 物料守恒: 质子守恒: [规律总结]正确的思路: 一、溶质单一型※※关注三个守恒 1.弱酸溶液: 【例1】在0.1mol/L的H2S溶液中,下列关系错误的是() A.c(H+)=c(HS-)+c(S2-)+c(OH-) B.c(H+)=c(HS-)+2c(S2-)+c(OH-) C.c(H+)>[c(HS-)+c(S2-)+c(OH-)] D.c(H2S)+c(HS-)+c(S2-)=0.1mol/L

19世纪末期物理学的三大发现及其意义

19世纪末期物理学的三大发现及其意义 19世纪末,以牛顿力学、热力学、麦克维斯电磁学理论和原子论为基础的经典物理学理论体系已相当完善。正当物理学界陶醉于成功的喜悦中时,一些有远见的科学家却与意识到,在物理学晴朗的天空中出现了乌云。 1900年4月27日,一向以保守著称的英国皇家学会主席、著名物理学家达尔文发表长篇演说,指出:经典物理学本来十分晴朗的天空上出现了两朵“乌云”。一是“紫外灾难”——热辐射在位于短波的紫外线部分的实验结果与经典统计力学、电磁学理论相背;二是“以太危机”——当时的实验结果表明:麦克维斯电磁学理论中光、电、磁传播所需要的介质——“以太”可能根本就不存在。经典物理学正在发生危机,这预示着即将发生一场革命。 其实从1895年开始,连续三年的三大发现,x射线,放射性和电子的发现已经成为揭开物理学革命序幕的三声春雷。1895年伦琴发现了X射线,1896年法国的贝克勒尔发现了铀盐的放射性,1897年英国的J·J汤姆逊发现了电子。这些新发现猛烈的冲击着经典物理学理论,打破了物理学界沉闷的空气,被誉为“世纪之交的三大发现”,是现代物理学发轫的标志。 早在19世纪三四十年代,人们就发现,真空管内的金属电极在通电时其阴极会发出某种射线,这种射线受磁场影响,具有能量,被称为阴极射线。而对阴极射线性质的深入研究导致了X射线的发现。1895年德国物理学家伦琴在赫兹和勒纳德发表了论阴极射线的穿透力的论文后,准备对这一问题做进一步研究。他重复了勒纳德的实验,发现阴极射线确实能穿透铝箔在空气中行进几厘米,使涂有铂氰化钡的荧光屏上产生荧光。在多次实验后,他意外地发现了一种新的射线,但因为不了解其本性,伦琴且称它为X射线,又被人们称之为“伦琴射线”。 由于X射线可以穿透皮肉透视骨骼,所以在医疗上作用很大,如今我们到医院拍张X光片已是很平常的事情,然而在19世纪末X射线刚发现时,却被视为世界科技革命的一声号角。其后,随着研究的深入,X射线被广泛应用于晶体结构的分析以及医学和工业等领域。对于促进20世纪的物理学以至整个科学技术的发展产生了巨大而深远的影响。 而1896年法国物理学家贝克勒尔,受到伦琴发现X射线启发,着手研究X

溶液中的三大守恒式练习题-(1)

溶液中的三大守恒式 1、在0.1 mol·L-1NaHCO3溶液中有关粒子浓度关系正确的是 A.c(Na+)>c(HCO3-)>c(CO32-)>c(H+)>c(OH-) B.c(Na+)+c(H+)=c(HCO3-)+c(CO32-)+c(OH-) C.c(Na+)+c(H+)=c(HCO3-)+2c(CO32-)+c(OH-) D.c(Na+)=c(HCO3-)+c(CO32-)+c(H2CO3) 2、关于Na2CO3溶液,下列关系不正确的是 A、c(Na+)>2c(CO32-) B、c(Na+)>c(CO32-)>c(H CO3-)>c(OH—) C、c(Na+)>c(CO32-)>c(OH—)>c(H CO3-)>c(H2CO3) D、c(Na+)+c(H+)=c(OH—)+c(H CO3-) +2c(CO32-) 3、标准状况下,向3mol·L-1的NaOH溶液100mL中缓缓通入4.48LCO2气体,充分反应后溶液中离子浓度大小排列顺序正确的是 A.c(Na+)>c(CO32-)>c(HCO3-)>c(OH-)>c(H+) B.c(Na+)>c(CO32-)=c(HCO3-)>c(OH-)>c(H+) C.c(Na+)>c(HCO3-)>c(CO-)>c(CO32-)>c(H+) D.c(Na+)>c(HCO3-)>c(CO32-)>c(OH-)>c(H+) 4、等体积的下列溶液,阴离子的总浓度最大的是 A 0.2mol/L K2S B 0.1mol/L Ba(OH)2 C 0.2mol/L NaCl D 0.2mol/L (NH4)2SO4 5、把0.02mol/LHAc溶液和0.01mol/LNaOH溶液等体积混合,则混合溶液中微粒浓度关系正确的是 A.c(Ac-)>c(Na+) B.c(HAc)>c(Ac-) C.2c(H+)=c(Ac-)-c(HAc) D.c(HAc)+ c(Ac-)=0.01mol·L-1 6、(2006四川理综)25℃时,将稀氨水逐滴加入到稀硫酸中,当溶液的pH=7时,下列关系正确的是 A、c(NH4+)=c(SO42-) B、c(NH4+)>c(SO42-) C、c(NH4+)<c(SO42-) D、c(OH-)+c(SO42-)=c(H+)+(NH4+) 7、已知某温度下,在100 mL浓度为0.01 mol/L的NaHS强电解质溶液中,c(H+)>(OH-),则下列关系式一定正确的是 A.溶液的pH=2 B.C(Na+)=0.01 mol/L≥c(B2-) C.C(H+)·c(OH-)=10-14 D.C(Na+)+c(H+)=c(HB-)+c(B2-)+c(OH-) 8、(2006苏州二测)已知某温度下0.1 mol·L-1的NaHB溶液中c(H+)>c(OH-),则下列关系中一定正确的是 A.c(Na+)=c(HB-)+2c(B2-)+c(OH-) B.c(Na+)=0.1 mol·L-1≥c(B2-) C.c(H+)·c(OH-)=10-14D.溶液的pH=1

(完整版)人教版物理学史归纳

一、力学: 1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验; 3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。 牛顿第一定律—惯性定律:一切物体中保持匀速直线运动或静止状态,除非作用在它上面的力迫使它改变这种状态。(力是改变物体运动状态的原因) 牛顿第二定律:物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比,加速度的方向与作用力的方向相同。(作用力即合外力;F=ma) 牛顿第三定律:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。 4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。 同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 5、英国物理学家胡克对物理学的贡献:胡克定律(F=kx);经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对) 6、17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。 8、17世纪,德国天文学家开普勒提出开普勒三大定律; 开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆的,太阳处在椭圆的一个焦点上。 开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等。 开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它轨道周期的二次方的比值都相等。 9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量; 11、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。 二、电磁学:(选修3-1、3-2) 1、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。 2、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。 3、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。 4、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。 5、1911年,荷兰科学家昂尼斯(或昂纳斯)发现大多数金属在温度降到某一值时,都会出

三大实验发现诱发了经典物理学危机

三大实验发现诱发了经典物理学危机 三大实验发现打开了经典物理学的缺口 原来认为原子是不可分割的最小质点,现在从原子里发现了电子、X射线和γ射线; 原来认为元素是固定不变的,但放射现象表明一种元素可蜕变为另一种元素; 原来认为物质的质量与运动无关,现今电子的质量随运动速度变化而变化,质量似乎不守恒了; 原来认为能量守恒只存在于机械能、热能和电能相互转化之中,现在一块静止的放射物质本身就是热源,即便没有外力作用,能量也源源不断地向外界释放,能量好像也不守恒了; 原来认为质量和能量不搭界,现在放射性物质因能量不断释放,质量也不断减小。 三大实验发现猛烈地冲击着牛顿力学的物质质量、能量、动量等基本概念,经典物理学中质量守恒、能量守恒、运动定律等基本定律也面临严峻考验。 面对物理学危机,一些抱残守缺的物理学家悲观失望,唯心主义趁虚而入。 相对论:演绎法的典范 ?从一般到特殊的逻辑过程。 ?从一般的原理推知某个从属于该类事物的特殊事物的新知。 ?相对论的基本原理是从更高层次的基本理念出发的假设,是在极少量的实验事实的启发下,依据其对世界、宇宙的认识理念(如世界的可认识性、客观规律的简单性、对称性或美学原则等)得出的 物理学是所有自然科学的基础 应用物理学 ?已发现的规律->应用物理->开发->工程 ?力学->机械学、结构学(建筑,桥梁设计) ?电学->电工学->电气化 ?光学->应用光学->光学工程 ?电子学->电子工程->信息科学 ?量子论,相对论->核物理->原子弹、核能的利用交叉作用、发展 原子核物理学的新发现与核工程技术 ◆对核结构和质量的研究,使人们认识到原子核结合能随原子量变化的规律: 一个重核分裂成两个中等质量的核时,会释放能量; 某些轻核聚合成一个较重的核时,会释放能量; ●E= ΔMC2 ΔM----质量亏损, ●一次核聚变时放出的能量要比核裂变时大四倍以上。 ◆原子核物理的发现,奠定了裂变核能与聚变核能应用的基础。 ◆核能应用的实现还必须进一步解决一系列应用物理学和工程技术上的问题。 激光技术与工程的迅速发展及其深刻影响 激光器的输出水平不断提高 \四十多年来,激光器的品种迅速增加: ?输出激光的频率覆盖着越来越广的范围: 输出激光的光束质量,好的可达近衍射极限 激光应用的开创性表现在: ①激光光谱技术比传统的分辨率提高了百万倍,灵敏度提高了百亿倍; ②激光为信息技术开拓了丰富的频率资源; ③激光可在很小的区域上聚焦很高的功率密度:

三大守恒关系和离子浓度大小比较

三大守恒关系和离子浓度大小比较(1)、多元弱酸溶液 H2S溶液中所存在的离子浓度由大到小的排列顺序是__________. (2)、一元弱酸的正盐溶液 CH3COONa溶液 电荷守恒: 物料守恒: 质子守恒: 离子浓度大小的比较: (3)、一元弱碱的正盐溶液 NH4Cl溶液 电荷守恒: 物料守恒: 质子守恒: 离子浓度大小的比较: (4)、二元弱酸的正盐溶液 Na2CO3溶液 NH4Cl溶液 电荷守恒: 物料守恒: 质子守恒: 离子浓度大小的比较: (5)、二元弱酸的酸式盐溶液 NaHCO3溶液(水解程度>电离程度) 电荷守恒: 物料守恒: 质子守恒: 离子浓度大小的比较: NaHSO3溶液(电离程度>水解程度) 电荷守恒: 物料守恒: 质子守恒: 离子浓度大小的比较: 1、答案:C、D 2、答案:D 3、答案:(1)9.9×10-7;1×10-8 (2)①NaA或NaA和NaOH ②NaA和HA ③NaA和NaOH。

(6)、不同溶液中同一离子浓度的比较 在相同物质的量浓度的下列各溶液中:①NH4Cl、②CH3COONH4、③NH4HSO4。c(NH4+)由大到小的顺序是___________. (7)、混合溶液中各离子浓度大小的比较 ①、0.1mol/L的NH4Cl溶液和0.1mol/L的氨水混合溶液中所存在的离子的浓度由大到小的排列顺序是_________________. 解析:在该溶液中,NH3·H2O的电离与NH4+的水解相互抑制,NH3·H2O的电离程度大于NH4+的水解程度,溶液显碱性:c(OH-)>c(H+),同时c(NH4+)>c( Cl-)。要进行综合分析,电离因素、水解因素等都是影响离子浓度大小的要素。 答案:c (NH4+)>c ( Cl-) >c (OH-) >c (H+)。 ②、0.1mol/L的CH3COOH溶液和0.1mol/L的CH3COONa混合溶液中所存在的离子的浓度由大到小的排列顺 序是_________________. 点拨:常见的醋酸和醋酸钠溶液等浓度共存时,其电离程度大于水解程度,混合液显酸性。 习题 1、(双选)下列关于电解质溶液中离子浓度关系的说法正确的是 A. 0.1mol/L的NaHCO3溶液中离子浓度的关系:c(Na+)=c(HCO3-) + c(H2CO3) + 2c(CO32-) B. 0.1mol/L的NH4Cl溶液和0.1mol/L的NH3·H2O等体积混合后离子浓度的关系:c( Cl-)>c(NH4+)>c(H+)>c (OH -) C. 常温下,向醋酸钠溶液中滴加少量醋酸使溶液的pH=7,则混合溶液中:c(Na+)=c(CH3COO-) D. KHS溶液中存在等式关系:c(S2-) + c(OH-) =c(H+) + c(H2S) 2、常温下,下列溶液中的微粒浓度关系正确的是() A.新制氯水中加入固体NaOH:c(Na+)=c(Cl-)+c(ClO-)+c(OH-) B.pH=8.3的NaHCO3溶液:c(Na+)>c(HCO-3)>c(CO2-3)>c(H2CO3) C.pH=11的氨水与pH=3的盐酸等体积混合:c(Cl-)=c(NH+4)>c(OH-)=c(H+) D.0.2 mol·L-1 CH3COOH溶液与0.1 mol·L-1 NaOH溶液等体积混合:2c(H+)-2c(OH-)=c(CH3COO-)- c(CH3COOH) 3、常温下,如果取0.1mol/L的HA溶液与0.1mol/L的NaOH溶液等体积混合(忽略混合后体积变化),测得混合后溶液的pH=8,试回答下列问题 (1)求出混合溶液中下列算式的精确计算结果: c(Na+)-c(A-) =_________ mol/L;c(OH-)-c(HA) =_________ mol/L。 (2)在含有A-、Na+、H+、OH-的水溶液中,如果出现下列关系,请将它们在溶液中可能对应的溶质分子填在横线上: ①c(Na+)>c(A-)>c(OH-)>c(H+):_________________________; ②c(A-)>c(Na+)>c(H+)>c(OH-):_________________________; ③c(Na+)>c(OH-)>c(A-)>c(H+):_________________________。

相关文档