文档库 最新最全的文档下载
当前位置:文档库 › 霍尔传感器位移特性实验

霍尔传感器位移特性实验

霍尔传感器位移特性实验
霍尔传感器位移特性实验

实验14 直流激励时霍尔传感器位移特性实验

141270046 自动化杨蕾生

一、实验目的:

了解直流激励时霍尔式传感器的特性。

二、基本原理:

根据霍尔效应,霍尔电势U H=K H IB,当霍尔元件处在梯度磁场中运动时,它的电势会发生变化,利用这一性质可以进行位移测量。

三、需用器件与单元:

主机箱、霍尔传感器实验模板、霍尔传感器、测微头、数显单元。

四、实验步骤:

1、霍尔传感器和测微头的安装、使用参阅实验九。按图14示意图接线(实验模板的输出Vo1接主机箱电压表Vin),将主机箱上的电压表量程(显示选择)开关打到2V档。

2、检查接线无误后,开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。

3、以某个方向调节测微头2mm位移,记录电压表读数作为实验起始点;

再反方向调节测微头每增加0.2mm记下一个读数,将读数填入表14。

作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。

五、实验注意事项:

1、对传感器要轻拿轻放,绝不可掉到地上。

2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。

六、思考题:

本实验中霍尔元件位移的线性度实际上反映的是什么量的变化?

答:本人认为应该是实际的输入、输出与拟合的理想的直线的偏离程度的变化,当X不同的时候,实际的输出值与根据拟合直线得到的数值的偏离值是不相同的。

七、实验报告要求:

1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。

实验数据如下:

V-X曲线如下:

(1)由上图可知灵敏度为S=ΔV/ΔX=-0.9354V/mm (2)由上图可得非线性误差:

当x=1mm时,

Y=-0.9354×1+1.849=0.9136

Δm =Y-0.89=0.0236V

yFS=1.88V

δf =Δm /yFS×100%=1.256%

当x=3mm时:

Y=-0.9354×3+1.849=-0.9572V

Δm =Y-(-0.94)=-0.0172V

yFS=1.88V

δf =Δm /yFS×100%=0.915%

2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。

答:(1)零位误差。零位误差由不等位电势所造成,产生不等位电势的主要原因是:两个霍尔电极没有安装在同一等位面上;材料不均匀造成电阻分布不均匀;控制电极接触不良,造成电流分布不均匀。补偿方法是加一不等位电势补偿电路。

(2)温度误差。因为半导体对温度很敏感,因而其霍尔系数、电阻率、霍尔电势的输入、输出电阻等均随温度有明显的变化,导致了霍尔元件产生温度误差。补偿方法是采用恒流源供电和输入回路并联电阻。

实验15 交流激励时霍尔传感器位移特性实验

一、实验目的:

了解交流激励时霍尔式传感器的特性。

二、基本原理:

交流激励时霍尔式传感器与直流激励一样,基本工作原理相同,不同之处是测量电路。

三、需用器件与单元:

主机箱、霍尔传感器实验模板、霍尔传感器、测微头、数显单元、移相器/相敏检波器/低通滤波器模板、双线示波器。

四、实验步骤:

1、传感器、测微头安装使用同实验九。实验模板接线见下图

2、首先检查接线无误后,合上主机箱总电源开关,调节主机箱音频振动器的频率和幅度旋钮,用示波器、频率表监测Lv输出频率为1KHz,幅值为4V的峰

--峰值;关闭主机箱电源,再将Lv输出电压(1KHz、4V)作为传感器的激励电压接入图15的实验模板中。

3、合上主机箱电源,调节测微头使霍尔传感器的霍尔片处于两磁钢中点,先用示波器观察使霍尔元件不等位电势为最小,然后从数显表上观察,调节电位器Rw1、Rw2使显示为零。

4、调节测微头使霍尔传感器产生一个较大位移,利用示波器观察相敏检波器输出,旋转移相单元电位器Rw和相敏检波电位器Rw,使示波器显示全波整流波形,且数显表显示相对值。

5、使数显表显示为零,然后转动测微头记下每转动0.2mm时表头读数,填入下表。

表15交流激励时输出电压和位移数据

6、根据表15作出V-X曲线,计算不同量程时的非线性误差。

(1)由上图可知灵敏度为S=ΔV/ΔX=0.173V/mm

(2)由上图可得非线性误差:

当x=1mm时,

Y=0.173×1-0.0179=0.151

Δm =Y-0.15=0.001V

yFS=0.36V

δf =Δm /yFS×100%=0.278%

当x=3mm时:

Y=0.173×3-0.0179=0.5011V

Δm =Y-0.52=-0.0189V

yFS=0.36V

δf =Δm /yFS×100%=5.25%

实验16 霍尔测速实验

一、实验目的:

了解霍尔转速传感器的应用。

二、基本原理:

利用霍尔效应表达式,U H=K H IB,当被测圆盘上装上N只磁性体时,圆盘每转一周磁场就变化N次。每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。

三、需用器件与单元:

主机箱、霍尔转速传感器、转动源。

四、实验步骤:

1、根据图16将霍尔转速传感器安装于霍尔架上,传感器的端面对准转盘上的磁钢并调节升降杆使传感器端面与磁钢之间的间隙大约2~3mm

2、首先在接线以前,合上主机箱电源开关,将主机箱中的转速调节电源2—24V旋钮调到最小(逆时针方向转到底)后接入电压表(显示选择打到20V 档)监测大约为1.25V;然后关闭主机箱电源,将霍尔转速传感器、转动电源按图16所示分别接到主机箱的相应电源和频率/转速表(转速档)的Fin上。

3、合上主机箱电源开关,在小于12V范围内(电压表监测)调节主机箱的转速调节电源(调节电压改变电机电枢电压),观察电机转动及转速表的显示情况。

4、从2V开始记录每增加1V相应电机转速的数据(待电机转速比较稳定读取数据);画出电机的V—N(电机电枢电压与电机转速转速的关系)特性曲线。实验完毕,关闭电源。

V(V) 2 3 4 5 6 7 8 9 10 11 12

N(rad/s ) 33

54

77

101

123

145

168

191

213

236

258

画出电机的V—N特性曲线:

五、思考题:

1、利用霍尔元件测转速,在测量上有否限制?

答:利用霍尔元件测转速时,每当磁感应强度发生变化时霍尔元件就输出一个脉冲,如果转速过慢,磁感应强度发生变化的周期过长,大于读取脉冲信号的电路的工作周期,就会导致计数错误。

2、本实验装置上用了6只磁钢,能否用一只磁钢?

答:可以用一只磁钢, 只是用一只磁钢测量的灵敏度会降低。

实验17 磁电式转速传感器测速实验

一、实验目的:

了解磁电式测量转速的原理。

二、基本原理:

基于磁电感应原理,N匝线圈所在磁场的磁通变化时,线圈中感应电势:

发生变化,因此当转盘上嵌入N个磁棒时,每转一周线圈感应电势产生N次变化。通过放大、整形和计数电路就可以测量被测旋转物的转速。

三、需用器件与单元:

主机箱、磁电式转速传感器、转动源。

四、实验步骤:

磁电式转速传感器测速实验除了传感器不用接电源外,其余完全与实验16相同;请按图17和实验16中的实验步骤做实验。实验完毕,关闭电源

表17数据记录 V(V) 2 3 4 5 6 7 8 9 10 11 12 N(rad/s ) 400

620

830

1050

1280

1480

1680

1910

2150

2380

2600

磁电式

y = 219.27x - 45.818

R 2

= 0.9997

050010001500200025003000

2

4

6

8

10

12

14

霍尔传感器位移特性实验

实验14 直流激励时霍尔传感器位移特性实验 141270046 自动化杨蕾生 一、实验目的: 了解直流激励时霍尔式传感器的特性。 二、基本原理: 根据霍尔效应,霍尔电势U H=K H IB,当霍尔元件处在梯度磁场中运动时,它的电势会发生变化,利用这一性质可以进行位移测量。 三、需用器件与单元: 主机箱、霍尔传感器实验模板、霍尔传感器、测微头、数显单元。 四、实验步骤: 1、霍尔传感器和测微头的安装、使用参阅实验九。按图14示意图接线(实验模板的输出V o1接主机箱电压表Vin),将主机箱上的电压表量程(显示选择)开关打到2V档。 2、检查接线无误后,开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。 3、以某个方向调节测微头2mm位移,记录电压表读数作为实验起始点;再反方向调节测微头每增加0.2mm记下一个读数,将读数填入表14。

作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的是什么量的变化? 答:本人认为应该是实际的输入、输出与拟合的理想的直线的偏离程度的变化,当X不同的时候,实际的输出值与根据拟合直线得到的数值的偏离值是不相同的。 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 实验数据如下: 表9-2

(1)由上图可知灵敏度为S=ΔV/ΔX=-0.9354V/mm (2)由上图可得非线性误差: 当x=1mm时, Y=-0.9354×1+1.849=0.9136 Δm =Y-0.89=0.0236V yFS=1.88V δf =Δm /yFS×100%=1.256% 当x=3mm时: Y=-0.9354×3+1.849=-0.9572V Δm =Y-(-0.94)=-0.0172V yFS=1.88V δf =Δm /yFS×100%=0.915% 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进 行补偿。 答:(1)零位误差。零位误差由不等位电势所造成,产生不等位电势的主要原因是:两个霍尔电极没有安装在同一等位面上;材料不均匀造成电阻分布不均匀;控制电极接触不良,造成电流分布不均匀。补偿方法是加一不等位电势补偿电路。 (2)温度误差。因为半导体对温度很敏感,因而其霍尔系数、电阻率、霍尔电势的输入、输出电阻等均随温度有明显的变化,导致了霍尔元件产生温度误差。补偿方法是采用恒流源供电和输入回路并联电阻。

传感器测试实验报告

实验一 直流激励时霍尔传感器位移特性实验 一、 实验目的: 了解霍尔式传感器原理与应用。 二、基本原理: 金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生电动势,这种物理现象称为霍尔效应。具有这种效应的元件成为霍尔元件,根据霍尔效应,霍尔电势U H =K H IB ,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中沿水平方向移动,则输出的霍尔电动势为kx U H ,式中k —位移传感器的灵敏度。这样它就可以用来测量位移。霍尔电动势的极性表示了元件的方向。磁场梯度越大,灵敏度越高;磁场梯度越均匀,输出线性度就越好。 三、需用器件与单元: 霍尔传感器实验模板、霍尔传感器、±15V 直流电源、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座中,实验板的连接线按图9-1进行。1、3为电源±5V , 2、4为输出。 2、开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。 图9-1 直流激励时霍尔传感器位移实验接线图 3、测微头往轴向方向推进,每转动0.2mm 记下一个读数,直到读数近似不变,将读数填入表9-1。 表9-1 X (mm ) V(mv)

作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的时什么量的变化? 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。

实验十九 开关式霍尔传感器测转速实验

实验十九开关式霍尔传感器测转速实验 一、实验目的:了解开关式霍尔传感器测转速的应用。 二、基本原理:开关式霍尔传感器是线性霍尔元件的输出信号经放大器放大,再经施密特电路整形成矩形波(开关信号)输出的传感器。开关式霍尔传感器测转速的原理框图19—1所示。当被测圆盘上装上6只磁性体时,圆盘每转一周磁场就变化6次,开关式霍尔传感器就同频率f相应变化输出,再经转速表显示转速n。 图19—1开关式霍尔传感器测转速原理框图 三、需用器件与单元:主机箱中的转速调节0~24V直流稳压电源、+5V直流稳压电源、电压表、频率\转速表;霍尔转速传感器、转动源。 四、实验步骤: 1、根据图19—2将霍尔转速传感器安装于霍尔架上,传感器的端面对准转盘上的磁钢并调节升降杆使传感器端面与磁钢之间的间隙大约为2~3mm。 2、将主机箱中的转速调节电源0~24V旋钮调到最小(逆时针方向转到底)后接入电压表(电压表量程切换开关打到20V档);其它接线按图19—2所示连接(注意霍尔转速传感器的三根引线的序号);将频频\转速表的开关按到转速档。 3、检查接线无误后合上主机箱电源开关,在小于12V范围内(电压表监测)调节主机箱的转速调节电源(调节电压改变直流电机电枢电压),观察电机转动及转速表的显示情况。

图19—2 霍尔转速传感器实验安装、接线示意图 4、从2V开始记录每增加1V相应电机转速的数据(待电机转速比较稳定后读取数据);画出电机的V-n(电机电枢电压与电机转速的关系)特性曲线。实验完毕,关闭电源。 n(转/ 406286108132157179203225250分) V(mv)2003004635006017037999019991104 电机的V-n(电机电枢电压与电机转速的关系)特性曲线 五、思考题: 利用开关式霍尔传感器测转速时被测对象要满足什么条件? 被测物能够阻挡或透过或反射霍尔信号,般都是一个发射头一个接收头若发射接收安装在同侧,则被测物必须能反射该信号,发射接收安装在对侧,则被测物必须能阻挡透过该信

霍尔传感器制作实训报告

佛山职业技术学院 实训报告 课程名称传感器及应用 报告内容霍尔传感器制作与调试 专业电气自动化技术 班级08152 姓名陈红杰‘’‘’‘’‘’‘’‘’‘’‘ 学号31 二0一0年六月 佛山职业技术学院

《传感器及应用》 霍尔传感器制作实训报告 班级08152学号31 姓名陈红杰时间2009-2010第二学期项目名称霍尔传感器电路制作与 指导老师张教雄谢应然调试 一、实验目的与要求: 1.对霍尔传感器的实物(电路部分)进行一个基本的了解。 2.了解双层PCB板以及一定(霍尔传感器)的焊接排版的技术和工艺。 二、实验仪器、设备与材料: 1.认识霍尔传感器(电路部分)的元件(附图如下): 2.焊接电路PCB板(双层)和对电路设计的排版工艺的了解。 3.对霍尔传感器的电路原理图进行基本的分析(附图如下):

实验开始,每组会得到分发的元件,我先由霍尔传感器的电路原理图开始分析,将每个元件插放好位置,这点很重要,如果出了问题那么会使电路不能正常工作,严重的还有可能导致电路元件受损而无法恢复。所以我先由霍尔传感器的电路原理图开始着手,分析清楚每个元件的指定位置,插放好了之后再由焊接,最后要把多余的脚剪掉。 整个电路的元件除了THS119是长脚直插式元件之外,其余的元件均为低位直插或者贴板直插。 焊接的过程中,所需要注意的事情就是不能出现虚焊脱焊或者更严重的烙铁烫坏元件的表壳封装损坏印制电路板等。这些都是在焊接的整个过程中要注意的事情。 比如,焊接三端稳压管7812时,要考虑到电路板的外壳封装和三端稳压管7812的散热问题,如果直插焊接的话那么就会放不进塑料外壳里,还有直插没有折引脚的话对三端稳压管7812的散热影响很大。综合这些因素再去插放焊接元件,效果会好很多。 又比如,焊接THS119的时,原本PCB板在设计的时已经排好版了,就是在TL082的背面插放THS119。这样的设计很巧妙,能够保证每一个THS119插进去焊接完了之后都能很好地与塑料外壳严密配合安放进去。因为这是利用了IC引脚与PCB板的间距来实现定距离的,绝不会给焊接带来任何麻烦。 最后,顺便提及一下,在保证能将每一个元件正确地焊接在印制电路板上的前提条件下要尽量将元件插放焊接得美观。 五、实验心得体会 (1)首先,从整个霍尔传感器来看,设计的电路的合理性,元件的选用,还有焊接的制作工艺是保证整个电路能正常工作前提。 (2)在学习电子电路的过程中,急需有一个过度期,焊接霍尔传感器电路的过程当中就会得到一个这样的练习。 (3)简单的说就是,拿到一张电路原理图未必做得出一个比较好的产品,这里需要对整个电路设计的元件参数的考虑和排版,元件插放等等。只有将这些问题逐一解决了,才能做好一个电路,也只有这样才能做好一个产品。 (4)霍尔电压随磁场强度的变化而变化,磁场越强,电压越高,磁场越弱,电压越低。霍尔电压值很小,通常只有几个毫伏,但经集成电路中的放大器放大,就能使该电压放大到足以输出较强的信号。若使霍尔集成电路起传感作用,需要用机械的方法来改变磁场强度。 六、实验收获 从拿到第一个元件开始,我仍然没有太多的收获,直到开始分析整个电路原理图的时候才慢慢开始了解到一些确实精巧的设计,可以说是独具匠心,到整个霍尔传感器电路完成之后才算是明白了一二。 在此,我具体地说说。首先,为什么不用一个普通的稳压管替代Z2这个精密稳压集成电路TL431呢?我查阅相关资料知道它的温度范围宽能在 区间工作。将其的R、C脚并焊再串上一个电阻来等效代替电

基于线性霍尔元件的位移传感器设计

郑州轻工业学院 传感器及应用系统课程设计说明书基于线性霍尔元件的位移传感器 姓名:吴富昌 专业班级:电子信息工程13-01 学号:9 指导老师:陆立平 时间:2016.6.27 -2016.7.1

郑州轻工业学院 课程设计任务书 题目基于线性霍尔元件的位移传感器设计 专业、班级电子信息工程13-01 学号39 姓名吴富昌 主要内容、基本要求、主要参考资料等: 一、主要内容: 利用线性霍尔元件设计一个位移传感器。 二、基本要求: (1)设计一个位移传感器,并设计相关的信号处理电路。 (2)为达到误差控制要求,需要对霍尔元件的误差进行补偿校正,主要包含霍尔元件的零位误差及补偿和温度误差及补偿。 (3)完成系统框图和电路原理图的设计和绘制,系统理论分析和设计详细明确,有理有据。 (4)信号处理电路应包含激励信号电路、消除不等位电势补偿电路、放大电路、相敏检波电路和低通滤波电路等。 (5)利用软件仿真,得出主要信号输入输出点的波形,根据仿真结果验证设计功能的可行性、参数设计的合理性。 (6)根据模拟结果计算位移传感器的迟滞误差、线性度和灵敏度等参数。 (7)写出3000~5000字的设计报告,主体文本字号为小四号,标题章节字号依照美观合理原则选择,并合理加黑,字体均为宋体。 三、主要参考资料: (1)何金田,张斌主编,传感器原理与应用课程设计指南。哈尔滨:哈尔

滨工业大学出版社,2009.01. (2)周继明,刘先任、江世明等,传感器技术与应用实验指导及实验报告。长沙:中南大学出版社,2006.08. (3)陈育中,霍尔传感器测速系统的设计,科学技术与工程,2010,10:7529-7532. 完成期限:2016年6月27 日-2016年7月1日 指导教师签章: 专业负责人签章: 2016年 6 月27 日 基于线性霍尔元件的位移传感器设计 摘要 霍尔传感器是基于霍效应而将被测量转化成电动势输出的一种传感器。霍尔元件已发展成一个品种多样的磁传感器产品簇,并且得到广泛的应用。霍尔器件是一种磁传感器,用它可以检测磁场及其变化,可以在各种与磁有关的场合中使用。霍尔期间以霍尔效应为其工作原理。当被测物体分别与恒定电流I和恒定磁场B垂直二当被测物体相对于原来位置有微小位移变化时,会产生变化的磁通量,会在导体垂直于磁场和电流的两个端面之间产生电势差,即UH(霍尔电压)。本文主要研究微小位移与霍尔电压的关系来设计霍尔位移传感器。 关键词霍尔传感器位移霍尔电压

霍尔传感器制作实训报告

佛山职业技术学院实训报告 课程名称传感器及应用 报告内容霍尔传感器制作与调试专业电气自动化技术 班级08152 姓名陈红杰 学号31 二0一0年六月 佛山职业技术学院

《传感器及应用》 霍尔传感器制作实训报告 班级 08152 学号 31 姓名陈红杰时间2009-2010第二学期 指导老师张教雄谢应然 项目名称霍尔传感器电路制作与 调试 一、实验目的与要求: 1.对霍尔传感器的实物(电路部分)进行一个基本的了解。 2.了解双层PCB板以及一定(霍尔传感器)的焊接排版的技术和工艺。 二、实验仪器、设备与材料: 1.认识霍尔传感器(电路部分)的元件(附图如下): 2.焊接电路PCB板(双层)和对电路设计的排版工艺的了解。 3.对霍尔传感器的电路原理图进行基本的分析(附图如下):

霍尔传感器原理图: 霍尔开关电路(霍尔数字电路),由三 端7812稳压器,霍尔片差分放大器THS119, 三端可调分流稳压器TL431及双路JFET的输 入运放TL082和输出级组成。在外磁场的作 用下,当感应强度超过导通阀值时,霍尔电路 输出管导通,输出低电平 TL082是一通用的J-FET双运用算放大 器,其特点有,较低输入偏置电压和偏移电 流,输出没有短路保护,输入级具有较高的 输入阻抗,内建频率被子偿电路,较高的压 摆率。最大工作电压为18V。TL082是霍尔传 感器的核心处理部位。(CON2接口对应霍尔 元件THS119) 霍尔元件THS119封装图

印刷板: 3211 2 2 12 121 2121 21 21212 1 21 2 1 4321 1234 8 7653213 211 2321 121 2 1212 直流电源输入24V ,由IN4148、三端稳压管7812和TL431(串接一个电阻)构成的稳压支路,得到不同的电压。霍尔元件THS119是采样核心元件,值得一提的是Z2这个稳压元件。在实际运用当中精密稳压集成电路TL431并不一定要用实物,可以用一个NPN 型三极管来串接一个电阻来等效代替。 整个电路的设计运用了闭环温度反馈来实现自我保护。主要的设计是RT1热敏电阻,对电路在工作时的表面温度进行控制。这样的设计能很好的起到一个自我保护。 因为我们知道,霍尔传感器的PCB 板是封装在塑料外壳里,由于电路的工作环境的问题,导致电路几乎没有更好的散热(外壳有些导热)。至此,用到RT1热敏电阻来进行温度控制保护显得非常合理。 三、实验操作(焊接): 1.霍尔传感器PCB 双层印制电路板的焊接。 2.了解电路的元件的安排和电路设计线路的排版。

传感器实验报告 (2)

传感器实验报告(二) 自动化1204班蔡华轩 U201113712 吴昊 U201214545 实验七: 一、实验目的:了解电容式传感器结构及其特点。 二、基本原理:利用平板电容C=εA/d 和其它结构的关系式通过相应的结 构和测量电路可以选择ε、A、d 中三个参数中,保持二个参数不变,而 只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。 三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏 检波、滤波模板、数显单元、直流稳压源。 四、实验步骤: 1、按图6-4 安装示意图将电容传感器装于电容传感器实验模板上。 2、将电容传感器连线插入电容传感器实验模板,实验线路见图7-1。图 7-1 电容传感器位移实验接线图 3、将电容传感器实验模板的输出端V01 与数显表单元Vi 相接(插入主控 箱Vi 孔),Rw 调节到中间位置。 4、接入±15V 电源,旋动测微头推进电容传感器动极板位置,每间隔0.2mm 图(7-1) 五、思考题: 试设计利用ε的变化测谷物湿度的传感器原理及结构,并叙述一 下在此设计中应考虑哪些因素? 答:原理:通过湿度对介电常数的影响从而影响电容的大小通过电压表现出来,建立起电压变化与湿度的关系从而起到湿度传感器的作用;结构:与电容传感器的结构答大体相同不同之处在于电容面板的面积应适当增大使测量灵敏度更好;设计时应考虑的因素还应包括测量误差,温度对测量的影响等

六:实验数据处理 由excle处理后得图线可知:系统灵敏度S=58.179 非线性误差δf=21.053/353=6.1% 实验八直流激励时霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。 它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。 根据霍尔效应,霍尔电势UH=KHIB,当霍尔元件处在梯度磁场中 运动时,它就可以进行位移测量。图8-1 霍尔效应原理 三、需用器件与单元:霍尔传感器实验模板、霍尔传感器、直流源±4V、± 15V、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器按图8-2 安装。霍尔传感器与实验模板的连接 按图8-3 进行。1、3 为电源±4V,2、4 为输出。图8-2 霍尔 传感器安装示意图 2、开启电源,调节测微头使霍尔片在磁钢中间位置再调节RW2 使数显表指示为零。

霍尔传感器的直流激励特性实验

霍尔传感器的直流激励特性实验 一、实验目的:了解霍尔传感器的直流激励特性。 二、实验内容: 给霍尔传感器通以直流电源,经差动放大器放大,当测微头随振动台上、下移动时,就有霍尔电势输出,从而可以测出霍尔传感器在直流激励下的输出特性。 三、实验原理: 由两个半圆形永久磁钢组成梯度磁场,位于梯度磁场中的霍尔元件(霍尔片)通过底座连接在振动台上。当霍尔片通以恒定电流时,将输出霍尔电势。改变振动台的位置,霍尔片就在梯度磁场中上下移动,霍尔电势V值大小与其在磁场中的位移量X有关。 四、实验要求 1、按图1接线,插接线插接要牢靠。 2、直流激励电压为±2V,不能任意加大,否则将损坏霍尔片。 五、实验装置: 1.传感器系统实验仪CSY型1台 2.通用示波器COS5020B 1台 3.系统微机1台 4.消耗材料: 霍尔片(专用) 1个 插接线(专用) 10根 图1 霍尔传感器实验接线图 六、实验步骤: 1.按图1接线,使霍尔片位于梯度磁场中间位置,差放调零。 2.上、下移动振动台并调节差放增益与电桥WD电位器,使得电压表双向指示基本对称且趋近最大。 3.将测微头与振动台吸合,并调节霍尔片使之处于梯度磁场的中间位置。 4.用测微头驱动霍尔片输入位移量X, 每次变化0.5mm,量程为:-3mm +3mm,读取相应的输出电压值,填入表中。 七、实验数据及处理: 1.整理实验数据,作出V-X曲线,求出灵敏度及线性区 2.给出位移测量系统的适宜量程

1.计算灵敏度:S=0.587V/mm 则拟合直线方程为:V=0.857X+0.334 由图像得,当X在(-1.00,3.00)之间时,图像具有线性。当X〉3.00时,图像失去线性。 其线性区间为(-1.00,3.00)单位:mm 2.系统的适宜量程: 霍尔传感器在线性区内测量有效,适宜量成为:(-1.00,3.00)单位:mm

实验 线性霍尔式传感器位移特性实验

实验 线性霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。霍尔效应是具有载流子的半导体同时处在电场和磁场中而产生电势的一种现象。如图28—1(带正电的载流子)所示,把一块宽为b ,厚为d 的导电板放在磁感应强度为B 的磁场中,并在导电板中通以纵向电流I ,此时在板 图28—1霍尔效应原理 的横向两侧面A ,A 之间就呈现出一定的电势差,这一现象称为霍尔效应(霍尔效应可以用洛伦兹力来解释),所产生的电势差U H 称霍尔电压。霍尔效应的数学表达式为: U H =R H d IB =K H IB 式中:R H =-1/(ne)是由半导体本身载流子迁移率决定的物理常数,称为霍尔系数; K H = R H /d 灵敏度系数,与材料的物理性质和几何尺寸有关。 具有上述霍尔效应的元件称为霍尔元件,霍尔元件大多采用N 型半导体材料(金属材料中自由电子浓度n很高,因此R H 很小,使输出U H 极小,不宜作霍尔元件),厚度d 只有1μm 左右。 霍尔传感器有霍尔元件和集成霍尔传感器两种类型。集成霍尔传感器是把霍尔元件、放大器等做在一个芯片上的集成电路型结构,与霍尔元件相比,它具有微型化、灵敏度高、可靠性高、寿命长、功耗低、负载能力强以及使用方便等等优点。 本实验采用的霍尔式位移(小位移1mm~2mm)传感器是由线性霍尔元件、永久磁钢组成,其它很多物理量如:力、压力、机械振动等本质上都可转变成位移的变化来测量。霍尔式位移传感器的工作原理和实验电路原理如图28—2 (a)、(b)所示。将磁场强度相同的两块永久磁钢同极性相对放置着,线性霍尔元件置于两块磁钢间的中点,其磁感应强度为0,

实验名称用霍尔传感器测定螺线管磁场

实验名称:用霍尔传感器测定螺线管磁场 姓 名 学 号 班 级 桌 号 教 室 基教1108 实验日期 20 年 月 日 时段 同组同学 指导教师 一、实验目的(请先参阅实验教材上《磁场测量》的内容,然后充分阅读实验报告!) 1、验证霍尔传感器输出电势差与螺线管内磁感应强度成正比。 2、测量集成线性霍尔传感器的灵敏度。 3、测量螺线管内磁感应强度与位置之间的关系,求得螺线管均匀磁场范围及边缘的磁感应强度。 4、学习补偿原理在磁场测量中的应用。 二、实验仪器 FD-ICH-II 新型螺线管磁场测定仪,包括:实验主机、螺线管、集成霍尔传感器探测棒、单刀双掷开关、双刀双掷换向开关、、连接导线(4红,4黑)若干组成。其仪器装置如图1所示。 图1 新型螺线管磁场测定仪仪器装置 三、实验原理 把一块半导体薄片(锗片或硅片)放在垂直于它的磁场B 中,如图2所示,当沿AA ′方向(Y 轴方向)通过电流I 时,薄片内定向移动的载流子受到洛伦兹力f B 的作用而发生偏转。从而在DD ′间产生电位差U H ,这一现象称为 ,这个电位差称为 。

由电磁理论可得: U H = (1) 式中,K H = ned 1 称为霍尔元件的灵敏度,n 为载流子浓度,e 为载流子电荷电量,d 为半导体薄片厚度。 虽然从理论上讲霍尔元件在无磁场作用(即B=0)时,U H =0,但实际中,在产生霍尔效应的同时,还伴随着几个副效应,它们分别是 ; ; ; 。所以用数字电压表测时U H 并不为零,这是由于半导体材料结晶不均匀及各电极不对称等引起附加电势差,该电势差U 0称为剩余电压。 随着科技的发展,新的集成化(IC)元件不断被研制成功。本实验采用SS95A 型集成霍尔传感器(结构示意图如图3所示)是一种高灵敏度集成霍尔传感器,它由霍尔元件、放大器和薄膜电阻剩余电压补偿器组成。测量时输出信号大,并且剩余电压的影响已被消除。对SS95A 型集成霍尔传感器,它有三根引线,分别是:“V +”、“V -”、“V out ”。其中“V +”和“V -”构成“电流输入端”,“V out ”和“V -”构成“电压输出端”。由于SS95A 型集成霍尔传感器,它的工作电流已设定,被称为标准工作电流,使用传感器时,必须使工作电流处在该标准状态。在实验时,只要在磁感应强度为零(零磁场)条件下,调节“V +”、“V -”所接的“霍尔片工作电压”调节旋钮,使霍尔片传感器输出电压为2.500V(在数字电压表上显示),则传感器就可处在标准工作状态之下。 图3 95A 型集成霍尔元件内部结构图 图2 霍耳效应原理图

传感器测速实验报告(第一组)

传感器测速实验报告 院系: 班级: 、 小组: 组员: 日期:2013年4月20日

实验二十霍尔转速传感器测速实验 一、实验目的 了解霍尔转速传感器的应用。 二、基本原理 利用霍尔效应表达式:U H=K H IB,当被测圆盘上装有N只磁性体时,圆盘每转一周磁场就变化N次。每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。 本实验采用3144E开关型霍尔传感器,当转盘上的磁钢转到传感器正下方时,传感器输出低电平,反之输出高电平 三、需用器件与单元 霍尔转速传感器、直流电源+5V,转动源2~24V、转动源电源、转速测量部分。 四、实验步骤 1、根据下图所示,将霍尔转速传感器装于转动源的传感器调节支架上,调节探头对准转盘内的磁钢。 图 9-1 霍尔转速传感器安装示意图 2、将+15V直流电源加于霍尔转速器的电源输入端,红(+)、黑( ),不能接错。 3、将霍尔传感器的输出端插入数显单元F,用来测它的转速。 4、将转速调解中的转速电源引到转动源的电源插孔。 5、将数显表上的转速/频率表波段开关拨到转速档,此时数显表指示电机的转速。 6、调节电压使转速变化,观察数显表转速显示的变化,并记录此刻的转速值。

五、实验结果分析与处理 1、记录频率计输出频率数值如下表所示: 电压(V) 4 5 8 10 15 20 转速(转/分)0 544 930 1245 1810 2264 由以上数据可得:电压的值越大,电机的转速就越快。 六、思考题 1、利用霍尔元件测转速,在测量上是否有所限制? 答:有,测量速度不能过慢,因为磁感应强度发生变化的周期过长,大于读取脉冲信号的电路的工作周期,就会导致计数错误。 2、本实验装置上用了十二只磁钢,能否只用一只磁钢? 答:如果霍尔是单极的,可以只用一只磁钢,但可靠性和精度会差一些;如果霍尔是双极的,那么必须要有一组分别为n/s极的磁钢去开启关断它,那么至少要两只磁钢。

霍尔传感器位移特性实验

实验14直流激励时霍尔传感器位移特性实验 一、实验目的: 了解直流激励时霍尔式传感器的特性。 二、基本原理: 根据霍尔效应,霍尔电势U H =K H IB,当霍尔元件处在梯度磁场中运动时,它的电势 会发生变化,利用这一性质可以进行位移测量。 三、需用器件与单元: 主机箱、霍尔传感器实验模板、霍尔传感器、测微头、数显单元。 四、实验步骤: 1、霍尔传感器和测微头的安装、使用参阅实验九。按图14示意图接线(实验模板的输出Vo1接主机箱电压表Vin),将主机箱上的电压表量程(显示选择)开关打到2V 档。 2、检查接线无误后,开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。 3、以某个方向调节测微头2mm位移,记录电压表读数作为实验起始点;再反方向调节测微头每增加记下一个读数,将读数填入表14。 表14 作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的是什么量的变化 答:本人认为应该是实际的输入、输出与拟合的理想的直线的偏离程度的变化,当X不同的时候,实际的输出值与根据拟合直线得到的数值的偏离值是不相同的。

七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 实验数据如下: 表9-2 (1)由上图可知灵敏度为S=ΔV/ΔX=mm (2)由上图可得非线性误差: 当x=1mm时, Y=×1+= Δm== yFS= δf=Δm/yFS×100%=% 当x=3mm时: Y=×3+= Δm=Y-()= yFS= δf=Δm/yFS×100%=% 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。答:(1)零位误差。零位误差由不等位电势所造成,产生不等位电势的主要原因是:两个霍尔电极没有安装在同一等位面上;材料不均匀造成电阻分布不均匀;控制电极接触不良,造成电流分布不均匀。补偿方法是加一不等位电势补偿电路。 (2)温度误差。因为半导体对温度很敏感,因而其霍尔系数、电阻率、霍尔电势的输入、输出电阻等均随温度有明显的变化,导致了霍尔元件产生温度误差。补偿方法是采用恒流源供电和输入回路并联电阻。 实验15 交流激励时霍尔传感器位移特性实验 一、实验目的: 了解交流激励时霍尔式传感器的特性。

霍尔传感器测位移课程设计

传感器课程设计说明书线性霍尔元件位移传感器 学号: 学院名称: 专业班级: 学生姓名: 教师姓名: 教师职称: 2015 年 1 月

线性霍尔元件位移传感器设计任务书 一、设计题目 线性霍尔元件位移传感器 二、设计目的 课程设计是工科各专业的主要实践性教学环节之一,是围绕一门主要基础课或专业课,运用所学课程的知识,结合实际应用设计而进行的一次综合分析设计能力的训练。《传感器技术》是测控技术与仪器专业的一门专业技能课,能够运用基本测控电路知识解决日常生活中的问题是本专业学生的基本素质。本次课程设计旨在培养学生运用所学过的理论知识,初步掌握解决实际应用问题时所应具有的查阅资料、综合运用所学知识的能力,为课程设计及今后从事专业学习工作打下坚实的基础。 三、设计内容及要求 1.掌握传感器工作原理 2.掌握信号处理电路的作用与原理 3.画出各电路处理后的信号波形 4.对位移进行测量(正负位移均三次以上) 5.算出传感器的迟滞误差、线性度 6.写出说明书。 四、设计方法和基本原理 1.问题描述 设计一个既能测量位移的大小,也能判别方向的线性霍尔元件位移传感器。 2.解决方案 ①搜集资料,确定电路原理图(包括激励信号电路、消除不等位电势补偿电路、放大电路、移相电路、相敏检波电路和低通滤波电路等信号处理电路) ②搭建实物测量系统,调试各部分电路。 ③测试得出相应的实验数据,给出相应的波形,计算出传感器的量程、线性度和灵敏度、迟滞误差。写出说明书,答辩。

目录 第一章引言 (2) 第二章霍尔传感器工作原理 (2) 2.1霍尔效应 (2) 2.2霍尔元件的主要特性 (4) 2.3霍尔传感器的应用 (4) 第三章测量系统组成 (7) 3.1霍尔元件的误差及补偿 (7) 3.1.1霍尔元件的零位误差与补偿 (7) 3.1.2霍尔元件的温度误差及补偿 (7) 3.2 直流激励的霍尔传感器电路 (8) 3.3交流激励的霍尔传感器电路 (8) 3.3.1传感器补偿放大电路 (8) 3.3.2移相电路 (9) 3.3.2相敏检波电路 (10) 3.3.4低通滤波电路 (10) 第四章电路测试与结果 (11) 4.1进行各部分电路线路元件的连接组装 (11) 4.2移相电路的测试 (12) 4.3相敏检波电路的测试 (13) 4.4低通滤波电路测试 (15) 第五章传感器测试与数据处理 (16) 5.1传感器的回程差 (16) 5.2传感器的灵敏度 (17) 5.3传感器的线性度 (18)

霍尔效应测磁场实验报告(完整资料).doc

【最新整理,下载后即可编辑】 实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间: 一、实验室名称:霍尔效应实验室 二、 实验项目名称:霍尔效应法测磁场 三、实验学时: 四、实验原理: (一)霍耳效应现象 将一块半导体(或金属)薄片放在磁感应强度为B 的磁 场中,并让薄片平面与磁场方向(如Y 方向)垂直。如在薄片的横向(X 方向)加一电流强度为H I 的电流,那么在与磁场方向和电流方向垂直的Z 方向将产生一电动势H U 。 如图1所示,这种现象称为霍耳效应,H U 称为霍耳电压。霍耳发现,霍耳电压H U 与电流强度H I 和磁感应强度B 成正比,与磁场方向薄片的厚度d 反比,即 d B I R U H H = (1) 式中,比例系数R 称为霍耳系数,对同一材料R 为一常数。因成品霍耳元件(根据霍耳效应制成的器件)的d 也是一常数,故d R /常用另一常数K 来表示,有 B KI U H H = (2) 式中,K 称为霍耳元件的灵敏度,它是一个重要参数,表示该元件在单位磁感应强度和单位电流作用下霍耳电压的大小。如果霍

耳元件的灵敏度K 知道(一般由实验室给出),再测出电流H I 和霍耳电压H U ,就可根据式 H H KI U B = (3) 算出磁感应强度B 。 图 1 霍 耳 效 应 示 意 图 图2 霍耳效应解释 (二)霍耳效应的解释 现研究一个长度为l 、宽度为b 、厚度为d 的N 型半导体制成的霍耳元件。当沿X 方向通以电流H I 后,载流子(对N 型半导体是电子)e 将以平均速度v 沿与电流方向相反的方向运动,在磁感应强度为B 的磁场中,电子将受到洛仑兹力的作用,其大小为 evB f B = 方向沿Z 方向。在B f 的作用下,电荷将在元件沿Z 方向的两端面堆积形成电场H E (见图2),它会对载流子产生一静电力E f ,其大小为 H E eE f = 方向与洛仑兹力B f 相反,即它是阻止电荷继续堆积的。当B f 和E f 达到静态平衡后,有E B f f =,即b eU eE evB H H /==,于是电荷堆积的两端面(Z 方向)的电势差为 vbB U H = (4)

实验十四--直流激励时霍尔式传感器位移特性实验

实验十四直流激励时霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:根据霍尔效应,霍尔电势U H=K H IB,当霍尔元件处在梯度磁场中运动时,它就可以进行位移测量。 三、需用器件与单元:霍尔传感器实验模板、霍尔传感器、直流源±4V、±15V、测微头、数显单元、相敏检波、移相、滤波模板、双线示波器。 四、实验步骤: (一)直流激励时霍尔式传感器 1、将霍尔传感器按图5-1安装。霍尔传感器与实验模板的连接按图5-2进行。1、3为电源±4V, 2、4为输出。 图5-1 霍尔传感器安装示意图 2、开启电源,调节测微头使霍尔片在磁钢中间位置再调节R W1使数显表指示为零。

图5-2 霍尔传感器位移直流激励实验接线图 3、旋转测微头向轴向方向推进,每转动0.2mm记下一个读数,直到读数 近似不变,将读数填入表5-1。 X(mm) 9.700 9.500 9.300 9.100 8.900 8.700 8.500 8.300 8.100 7.900 V(v) 0 0.01 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 X(mm) 7.700 7.500 7.300 7.100 6.900 6.700 6.500 6.300 6.100 5.900 V(v) 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.18 0.19 X(mm) 5.700 5.500 5.300 5.100 4.900 4.700 V(v) 0.20 0.21 0.22 0.23 0.24 0.24 作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。

霍尔传感器工作原理及其应用

霍尔传感器工作原理及其应用 | [<<][>>]一、霍尔齿轮传感器 差动霍尔电路制成的霍尔齿轮传感器,如图1所示,新一代的霍尔齿轮转速传感器,广泛用于新一代的汽车智能发动机,作为点火定时用的速度传感器,用于ABS(汽车防抱死制动系统)作为车速传感器等。 在ABS中,速度传感器是十分重要的部件。ABS的工作原理示意图如图2所示。图中,1是车速齿轮传感器;2是压力调节器;3是控制器。在制动过程中,控制器3不断接收来自车速齿轮传感器1和车轮转速相对应的脉冲信号并进行处理,得到车辆的滑移率和减速信号,按其控制逻辑及时准确地向制动压力调节器2发出指令,调节器及时准确地作出响应,使制动气室执行充气、保持或放气指令,调节制动器的制动压力,以防止车轮抱死,达到抗侧滑、甩尾,提高制动安全及制动过程中的可驾驭性。在这个系统中,霍尔传感器作为车轮转速传感器,是制动过程中的实时速度采集器,是ABS中的关键部件之一。 在汽车的新一代智能发动机中,用霍尔齿轮传感器来检测曲轴位置和活塞在汽缸中的运动速度,以提供更准确的点火时间,其作用是别的速度传感器难以代替的,它具有如下许多新的优点。 (1)相位精度高,可满足0.4°曲轴角的要求,不需采用相位补偿。 (2)可满足0.05度曲轴角的熄火检测要求。 (3)输出为矩形波,幅度与车辆转速无关。在电子控制单元中作进一步的传感器信号调整时,会降低成本。 用齿轮传感器,除可检测转速外,还可测出角度、角速度、流量、流速、旋转方向等等。

图1霍尔速度传感器的内部结构 1.车轮速度传感器 2.压力调节器 3.电子控制器 图2 ABS气制动系统的工作原理示意图 二、旋转传感器 按图3所示的各种方法设置磁体,将它们和霍尔开关电路组合起来可以构成各种旋转传感器。霍尔电路通电后,磁体每经过霍尔电路一次,便输出一个电压脉冲。

霍尔传感器实验步骤

【实验步骤】 (一)清点主要仪器(二)测量1.调节仪器①将仪器按照如图4所示安装:将弹簧固定在焦利秤上部的横梁上,在一 个刻有水平线的小平面镜杆下端挂上砝码盘,小平面镜杆穿过固定在立柱上的玻璃管,其上端与弹簧的下端相连, ②调节焦利秤的底脚螺旋,使焦利秤立柱竖直;调节螺旋E 使小平面镜上水平线与玻璃管壁上的水平线重合作为平衡位置,并调节支架让小镜面及其它参于振动的物体竖直。 2.测量弹簧的倔强系数K 2.1利用新型焦利秤(静态法)测定弹簧倔强系数K ①调节实验装置底脚螺丝,使焦利秤立柱垂直(目测);②将弹簧固定在焦利秤上部悬臂上,旋转悬臂,使挂于弹簧下放的砝码 盘的尖针(1)靠拢游标尺上的小镜; (2)在砝码盘放入10个1g 的砝码,然后依次取出。在三线重合(小钩中的平面镜中有一水平刻线G ,玻璃管上有一水平刻线D ,D 在平面镜中有一像D’,通过转动标尺调节旋钮可将弹簧上下移动,则平面镜同时上下移动。当G 、D 、D’三者重合时称“三线重合”。)时,记录各次标尺读数y1,y2,……y10。(3)作Mi ~Yi 图,验证Mi ~Yi 满足线性关系,并求出斜率,'K 即为弹簧的倔强系数。'/K g K 2.2测量弹簧振子振动周期求弹簧倔强系数(动态法)K (1)用电子秒表测弹簧振子振动50次的时间,然后求得弹簧振子的周期。T (2)用集成开关型霍尔传感器测量弹簧振动周期,求弹簧倔强系数。(3)将集成霍尔开关的三个引脚分别与电源和周期测试仪相接。OUT 接周期测试仪正级,V-接电源负极,并和周期测试仪负级连接,V+接电源正级,见图3;、管路敷设技术通过管线敷设技术不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

传感器实验报告

实验一 箔式应变片性能 一、实验目地: 1、观察了解箔式应变片的结构及粘贴方式。 2、测试应变梁变形的应变输出。 3、了解实际使用的应变电桥的性能和原理。 二、实验原理: 本实验说明箔式应变片在单臂直流电桥、半桥、全桥里的性能和工作情况。 应变片是最常用的测力传感元件。当用应变片测试时,应变片要牢固地粘贴在测试体表面,当被测件受力发生形变,应变片的敏感栅随同变形,其电阻值也随之发生相应的变化。通过测量电路,转换成电信号输出显示。 电桥电路是最常用的非电量电测电路中的一种,当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R 1、R 2、R 3、R 4中,电阻的相对变化率分别为△R 1/R 1、△R 2/R 2、△R 3/R 3、△R 4/R 4,当使用一个应变片时,R ΔR R = ∑;当二个应变片组成差动状态工作,则有R R R Δ2=∑;用四个应变片组成二个差动对工作,且R 1=R 2=R 3=R 4=R ,R R R Δ4=∑。 由此可知,单臂,半桥,全桥电路的灵敏度依次增大。根据戴维南定理可以得出测试电桥的输出电压近似等于1/4·E ·∑R ,电桥灵敏度Ku =V /△R /R ,于是对应于单臂、半桥和全桥的电压灵敏度度分别为1/4E 、1/2E 和E.。由此可知,当E 和电阻相对变化一定时,电桥及电压灵敏度与各桥臂阻值的大小无

关。 三、实验所需部件: 直流稳压电源(±4V 档)、电桥、差动放大器、箔式应变片、砝码(20g )、电压表(±4v )。 四、实验步骤: 1、调零 开启仪器电源,差动放大器增益至100倍(顺时针方向旋到底),“+、-”输入端用实验线对地短路。输出端接数字电压表,用“调零”电位器调整差动放大器输出电压为零,然后拔掉实验线。调零后电位器位置不要变化。 2、按图(1)将实验部件用实验线连接成测试桥路。桥路中R 1、R 2、R 3、和W D 为电桥中的固定电阻和直流调平衡电位器,R 为应变片(可任选上、下梁中的一片工作片)。直流激励电源为±4V 。 图 (1) 3、确认接线无误后开启仪器电源,并预热数分钟。 +-

相关文档
相关文档 最新文档