文档库 最新最全的文档下载
当前位置:文档库 › 西南交通大学数值分析上机实验报告

西南交通大学数值分析上机实验报告

西南交通大学数值分析上机实验报告
西南交通大学数值分析上机实验报告

数值分析

上机实习报告

学号:

姓名:

专业:

联系电话:

任课教师:

序 (1)

一、必做题 (2)

1、问题一 (2)

1.1 问题重述 (2)

1.2 实验方法介绍 (2)

1.3 实验结果 (3)

2、问题二 (5)

2.1 问题重述 (5)

2.2 实验原理 (5)

雅各比算法:将系数矩阵A分解为:A=L+U+D,则推到的最后迭代公式为: (6)

2.3 实验结果 (6)

二、选做题 (8)

3、问题三 (8)

3.1 问题重述 (8)

3.2 实验原理 (9)

3.3 实验结果 (9)

总结 (10)

伴随着计算机技术的飞速发展,所有的学科都走向定量化和准确化,从而产生了一系列的计算性的学科分支,而数值计算方法就是解决计算问题的桥梁和工具。数值计算方法,是一种研究并解决数学问题的数值近似解方法,是在计算机上使用的解数学问题的方法。为了提高计算能力,需要结合计算能力与计算效率,因此,用来解决数值计算的软件因为高效率的计算凸显的十分重要。

数值方法是用来解决数值问题的计算公式,而数值方法的有效性需要根据其方法本身的好坏以及数值本身的好坏来综合判断。数值计算方法计算的结果大多数都是近似值,但是理论的严密性又要求我们不仅要掌握将基本的算法,还要了解必要的误差分析,以验证计算结果的可靠性。数值计算一般涉及的计算对象是微积分,线性代数,常微分方程中的数学问题,从而对应解决实际中的工程技术问题。

在借助MA TLAB、JA V A、C++ 和VB软件解决数学模型求解过程中,可以极大的提高计算效率。本实验采用的是MATLAB软件来解决数值计算问题。MATLAB是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,其对解决矩阵运算、绘制函数/数据图像等有非常高的效率。

本文采用MATLAB对多项式拟合、雅雅格比法与高斯-赛德尔迭代法求解方程组迭代求解,对Runge-Kutta 4阶算法进行编程,并通过实例求解验证了其可行性,使用不同方法对计算进行比较,得出不同方法的收敛性与迭代次数的多少,比较各种方法的精确度和解的收敛速度。

2014数值分析作业

一、必做题

1、问题一

1.1 问题重述

1.1.1 实验数据

某过程涉及两变量x 和y, 拟分别用插值多项式和多项式拟合给出其对应规律的近似多项式,已知xi与yi之间的对应数据如下,xi=1,2,…,10

yi = 34.6588 40.3719 14.6448 -14.2721 -13.3570 24.8234 75.2795 103.5743 97.4847 78.2392

下列数据为另外的对照记录,它们可以作为近似函数的评价参考数据。

xi =

Columns 1 through 7

1.5000 1.9000

2.3000 2.7000

3.1000 3.5000 3.9000

Columns 8 through 14

4.3000 4.7000

5.1000 5.5000 5.9000

6.3000 6.7000

Columns 15 through 17

7.1000 7.5000 7.9000

yi =

Columns 1 through 7

42.1498 41.4620 35.1182 24.3852 11.2732 -1.7813 -12.3006

Columns 8 through 14

-18.1566 -17.9069 -11.0226 2.0284 19.8549 40.3626 61.0840

Columns 15 through 17

79.5688 93.7700 102.3677

1.1.2 实验内容

(1)用次数分别为3,4,5,6的多项式拟合并给出最好近似结果f(x)。

(2)用插值多项式给出最好近似结果

1.2 实验方法介绍

1.2.1 多项式拟合

在MA TLAB中,提供了polyfit函数来计算多项式拟合系数,其设定曲线拟合的目标是最小二乘法(或被称为最小方差),polyfit的函数调用格式是:

[p,s,mu]=ployfit(x,y,n)

其中,x 和y 表示的是已知的数据,n 是多项式拟合阶数。通过最小二乘法原理得到的

拟合曲线多项式是:

1121--++++=n n n n p x p x p x p y

1.2.2 拉格朗日插值法

拉格朗日插值法是利用拉格朗日基函数来进行拟合: 拉格朗日基函数

利用拉格朗日基函数,构造多项式

为拉格朗日差值多项式。

1.3 实验结果

1.3.1 最小二乘多项式拟合结果 (1)各次拟合结果系数

3次多项式系数:-1.0326 19.3339 -94.4787 131.7944

4次多项式系数:-0.3818 7.3680 -42.1433 73.5334 0.7450

5次多项式系数: 0.0981 -3.0789 34.5020 -163.5107 304.7282 -139.5019

6次多项式系数:0.0194 -0.5408 5.1137 -16.8973 -0.8670 66.3750 -18.6991 (2)绘制拟合曲线

利用MATLAB 调用函数ployfit 来进行绘图,程序代码(见附录1),绘制的 3、4、5、6阶拟合图像如下图1所示:

1

2345678910

-200

20

40

60

80

100

120

原始折线曲线

三次拟合曲线4次拟合曲线5次拟合曲线6次拟合曲线

1.3.2 拉格朗日插值拟合结果 (1)拟合的系数

根据拉格朗日的计算原理,编写程序见附录。运行得到的结果如下表1所示:

表1 拉格朗日插值运算结果

(2)拟合的图像

运行程序可以得到:拉格朗日插值拟合的图像如下图2所示:

x 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 y 34.659 42.384 40.372 30.148 14.645 -1.768 -14.272 -18.858 -13.3570 x 5.5. 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 y

2.0333

24.823

50.849

75.280

93.779

103.57

104.167

97.484

87.3462

12345678910

-20

20

40

60

80

100

120

图2 拉格朗日插值拟合图像

2、问题二

2.1 问题重述

2.1.1 实验数据

(1)A 行分别为A 1=[6,2,-1],A 2=[1,4,-2],A 3=[-3,1,4]; b 1=[-3,2,4]T ;b 2=[100,-200,345]T 。

(2) A 行分别为A 1=[1,0,8,0.8],A 2=[0.8,1,0.8],A 3=[0.8,0.8,1];b 1=[3,2,1] T ; b 2=[5,0,-10]T 。 (3)A 行分别为A 1=[1,3],A 2=[-7,1];b1=[4,6]T 。

2.1.2 实验内容

用雅格比法与高斯-赛德尔迭代法解下列方程组Ax =b1或Ax =b2,研究其收敛性。上机验证理论分析是否正确,比较它们的收敛速度,观察右端项对迭代收敛有无影响。

2.2 实验原理

根据题目要求,分别用雅克比迭代和高斯—赛德尔迭代的方法解方程组Ax =b1和Ax =b2,

迭代法是将方程组Ax=b 转化为x=Bx+f ,构成了迭代格式:

x (k +1) = Bx k + f k = 0,1,2....n

反复适用该式子,产生了{x k }的向量序列,如果这个向量序列收敛于x *,则有x *是方程组的解。因此,根据精度的要求选择一个合适的x k 作为近似解。这就

是线性方程组的迭代法。

雅各比算法:将系数矩阵A 分解为:A=L+U+D ,则推到的最后迭代公式为:

x= -D -1( L+ U)x (k)+D -1 b

其中,迭代矩阵为B J = -D -1 (L+ U )

高斯-塞德尔方法:是从雅各比演变而来的,其矩阵形式为

x (k+1)=-D -1( Lx (k+1)+ Ux (k))+D -1b

其中,高斯-塞德尔迭代矩阵B G =-(D+L)-1U

2.3 实验结果

(1)在问题1中,有:

126213100142,2,2003144345A b b --??????

? ? ?=-==- ? ? ? ? ? ?-??????

对矩阵A 进行操作可计算得

0110

3

602100060011002,100,040,B 04

20003100043104

2

L U D ?

?- ?-?????? ? ? ? ? ?=--=-==-

? ? ? ? ? ? ?- ??????? ?- ??

?

计算矩阵

o

B 的谱半径可知

()00.54211

B ρ=<,所以迭代收敛。之后利用

MATLAB 编程得到的计算结果如下表2所示:

表 2 雅格比法的迭代结果

方程 是否收敛 迭代解

迭代次数

1 是 1 [-0.7273 0.8081 0.2525]x =

116k =

2 是

2[36.3636 -2.0707 114.0404]x =

223k =

表 3 高斯-赛德尔迭代法的迭代结果

方程 是否收敛 迭代解

迭代次数

1 是 1[ -0.727

2 0.8081 0.2525]x = 110k =

2

2[36.3637 -2.0707 114.0404]x =

215k =

从表 和3可知,理论分析结果与程序结果一致,利用雅格比法,方程1在

迭代16次后收敛;方程2在迭代了23次收敛。利用高斯-赛德尔法,方程1在迭代10次后收敛;方程2在迭代了15次收敛。从中可以看出高斯赛德尔法的迭代速度比雅格比法的迭代次数快。 (2)对于问题2有:

1210.80.8350.810.8,2,00.80.81110A b b ?????? ? ? ?=== ? ? ? ? ? ?-??????

对矩阵A 进行操作可计算得

000.80.800010000.80.8000.8,0.800,010,B 00.640.160000.80.8000100.1280.768L U D --????????

? ? ? ?=-=-==- ? ? ? ? ? ? ? ?????????

计算矩阵o B 的谱半径可知()00.71551B ρ=<,所以迭代也收敛。调用编写函数对问题2进行求解,其中最大迭代次数设为2000,精度要求设为0.0001,初始迭代值设为(0,0,0)

表4 问题2雅格比法的迭代结果

方程 是否收敛 迭代解

迭代次数

1 是 1 [NaN NaN NaN]x =

11513k = 2 是

2 [NaN NaN NaN]x =

21513k =

表5 问题2高斯赛德尔的迭代结果

方程 是否收敛 迭代解

迭代次数

1 是 1 [5.7691 0.7693 -4.2307]x =

131k =

2 是

2[32.6922 7.6922 -42.3076]x =

238k =

从错误!未找到引用源。和5可知,高斯赛德尔法只用了很少的参数就得到了迭代结果,但是雅格比法却得到不收敛的结果,从这两个方程的迭代次数来说,b 值不同,其迭代的次数不一样,但是迭代是否收敛于b 值大小无关。

(3)在问题3中,有:

1134,716A b ????== ? ?-????

对矩阵A 进行操作可计算得

003001003,,,B 007001021L U D -????????

=-=-== ? ? ? ?--????????

计算矩阵o B 的谱半径可知()0211B ρ=>,所以迭代不收敛。调用MATLAB 程序中函数对问题3进行求解,其中最大迭代次数设为2000,精度要求设为

0.0001,初始迭代值设为(0,0,0)可得下错误!未找到引用源。。

表6 问题3雅格比的迭代结果

方程 是否收敛 迭代解 迭代次数 1

[Inf NaN]x =-

467k =

表7 问题3高斯赛德尔的迭代结果

方程 是否收敛 迭代解

迭代次数

1 否

[NaN NaN]x =

235k =

从错误!未找到引用源。可知,理论分析结果与程序结果一致,方程迭代到

最大次数时均没有收敛。

实验结果分析:从问题1,2,3的实验结果,我们可以总结出,雅格比法只在问题1的求解过程中有作用,而高斯-赛德尔法不仅能解决问题1,而且还能解决问题2,所以高斯-赛德尔法的使用范围比雅格比法更广泛。方程组的右端系数对两种方法有一定得影响,在初始条件,精度要求相同的条件下可以看出,右端系数越大,得到所需解的迭代次数越多;在同等条件下,高斯赛德迭代法较雅格比迭代法,其收敛速度更快;在某些情况下,雅格比法不能找到方程组的解,而高斯—赛德迭代法能够找到方程组的解。

二、选做题

3、问题三

3.1 问题重述

给定函数2

1

()5,15f x x

x -+≤≤=

,及节点50,1,10,i i x i ==-+,求其三次样条插值多项式(可取I 型或II 型边界条件),并画图及与()f x 的图形进行比较分析。

3.2 实验原理

利用样条函数进行插值,即取插值函数为样条函数,称为样条插值。已知函

数y = f (x)在区间[a, b]上的n +1个节点a = x0

(2)在每小区间[xj,xj+1](j=0,1,…,n-1)上S (x)是三次多项式,记为Sj (x); (3)S (x)在[a, b]上二阶连续可微。

则S (x)称为f (x)的三次样条插值函数,它通过上述给定点,为二阶连续可导的分段三次多项式函数。

3.3 实验结果

采用三弯矩法来进行三次样条插值,取II 型边界条件,令插值函数在两个端点处

的二阶导数:M 0和M n 值为0。由于得到的线性方程组系数矩阵为三对角阵,因此在求解线性方程组时采用追赶法,得到结果如下图3所示。

-5

-4

-3

-2

-1

1

2

3

4

5

00.10.20.30.40.50.60.70.80.91

原始节点原始曲线

三次样条插值函数

图3 三次样条插值函数图

从图中可以看出,使用三弯矩法对此函数进行拟合,精确度很高,结果准确。

总结

通过本次实验,我意识到了编程在数值分析实验中的重要性,理论知识不仅能有了很大的理解提升,而且自身的编程能力也有了很大的进步。

在本次实验中,我接触了MATLAB软件,并学习了基础的一些编程语言,我也深深的意识到,想学习好专业课,想发表高端论文,学习MATLAB软件的数值分析应用是十分重要的。而在MA TLAB编程过程中,我对函数的定义、调用等有了更深一步地了解。

这三个实验,我了解到了多次拟合的实现方法、雅格比和高斯-赛德尔迭代法以及三次样条插值的MA TLAB实现方法。本来在学习数值分析的过程中,我在理解方面存在一些偏差,但是通过本次实验,我深切的认识到了,对问题的根本理解是十分重要的,看问题要看到本质,从根本上推断从而理解问题的本质。

最后,感谢谢灵红老师一学期的谆谆教导,感谢学校给我们学习这门数学课的机会。在用数值分析分析问题的过程中,我有了很多的收获,我也认识到了这门课的重要性,相信,这门课的学习将会对我研究生生活的学习有很大的提升,对我日后写论文以及解决工作问题有很大帮助。

感谢这一学期以来,帮助我学习MA TLAB软件的师兄师姐,因为第一次做这种编程问题,所以难免会有一些不完善和错误,希望老师给予理解,谢谢!

西南交大 数值分析题库

考试目标及考试大纲 本题库的编纂目的旨在给出多套试题,每套试题的考查范围及难度配置均基于“水平测试”原则,按照教学大纲和教学内容的要求,通过对每套试题的解答,可以客观公正的评定出学生对本课程理论体系和应用方法等主要内容的掌握水平。通过它可以有效鉴别和分离不同层次的学习水平,从而可以对学生的学习成绩给出客观的综合评定结果。 本题库力求作到能够较为全面的覆盖教学内容,同时突显对重点概念、重点内容和重要方法的考查。考试内容包括以下部分: 绪论与误差:绝对误差与相对误差、有效数字、误差传播分析的全微分法、相对误差估计的条件数方法、数值运算的若干原则、数值稳定的算法、常用数值稳定技术。 非线性方程求解:方程的近似解之二分法、迭代法全局收敛性和局部收敛定理、迭代法误差的事前估计法和事后估计法、迭代过程的收敛速度、r 阶收敛定理、Aitken加速法、Ne w to n法与弦截法、牛顿局部收敛性、Ne w to n收敛的充分条件、单双点割线法(弦截法)、重根加速收敛法。 解线性方程组的直接法:高斯消元法极其充分条件、全主元消去法、列主元消去法、高斯-若当消元法、求逆阵、各种消元运算的数量级估计与比较、矩阵三角分解法、Doolittle 和Crout三角分解的充分条件、分解法的手工操作、平方根法、Cholesky分解、改进的平方根法(免去开方)、可追赶的充分条件及适用范围、计算复杂性比较、严格对角占优阵。 解线性方程组迭代法:向量和矩阵的范数、常用向量范数的计算、范数的等价性、矩阵的相容范数、诱导范数、常用范数的计算;方程组的性态和条件数、基于条件数误差估计与迭代精度改善方法;雅可比(Jacobi)迭代法、Gauss-Seidel迭代法、迭代收敛与谱半径的关系、谱判别法、基于范数的迭代判敛法和误差估计、迭代法误差的事前估计法和事后估计法;严格对角占优阵迭代收敛的有关结论;松弛法及其迭代判敛法。 插值法:插值问题和插值法概念、插值多项式的存在性和唯一性、插值余项定理;Lagrange插值多项式;差商的概念和性质、差商与导数之间的关系、差商表的计算、牛顿(Newton)插值多项式;差分、差分表、等距节点插值公式;Hermite插值及其插值基函数、误差估计、插值龙格(Runge)现象;分段线性插值、分段抛物插值、分段插值的余项及收敛性和稳定性;样条曲线与样条函数、三次样条插值函数的三转角法和三弯矩法。 曲线拟合和函数逼近:最小二乘法原理和多项式拟合、函数线性无关概念、法方程有唯一解的条件、一般最小二乘法问题、最小二乘拟合函数定理、可化为线性拟合问题的常见函数类;正交多项式曲线拟合、离散正交多项式的三项递推法。最佳一致逼近问题、最佳一致逼近多项式、切比雪夫多项式、切比雪夫最小偏差定理、切比雪夫多项式的应用(插值余项近似极小化、多项式降幂)。本段加黑斜体内容理论推导可以淡化,但概念需要理解。 数值积分与微分:求积公式代数精度、代数精度的简单判法、插值型求积公式、插值型求积公式的代数精度;牛顿一柯特斯(Newton-Cotes)公式、辛卜生(Simpson)公式、几种低价牛顿一柯特斯求积公式的余项;牛顿一柯特斯公式的和收敛性、复化梯形公式及其截断误差、复化Simpson公式及其截断误差、龙贝格(Romberg)求积法、外推加速法、高斯型求积公式、插值型求积公式的最高代数精度、高斯点的充分必要条件。正交多项式的构造方法、高斯公式权系数的建立、Gauss-Legendre公式的节点和系数。本段加黑斜体内容理论推导可以淡化,但概念需要理解。 常微分方程数值解:常微分方程初值问题数值解法之欧拉及其改进法、龙格—库塔法、阿当姆斯方法。

数值分析实验报告1

实验一误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 其中ε(1.1)和(1.221,,,a a 的输出b ”和“poly ε。 (1(2 (3)写成展 关于α solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。 实验过程: 程序: a=poly(1:20); rr=roots(a); forn=2:21 n form=1:9 ess=10^(-6-m);

ve=zeros(1,21); ve(n)=ess; r=roots(a+ve); -6-m s=max(abs(r-rr)) end end 利用符号函数:(思考题一)a=poly(1:20); y=poly2sym(a); rr=solve(y) n

很容易的得出对一个多次的代数多项式的其中某一项进行很小的扰动,对其多项式的根会有一定的扰动的,所以对于这类病态问题可以借助于MATLAB来进行问题的分析。 学号:06450210 姓名:万轩 实验二插值法

数值分析实验报告176453

实验报告 插值法 数学实验室 数值逼近 算法设计 级 ____________________________ 号 ____________________________ 名 _____________________________ 实验项目名称 实验室 所属课程名称 实验类型 实验日期

实验概述: 【实验目的及要求】 本次实验的目的是熟练《数值分析》第二章“插值法”的相关内容,掌握三种插 多项式插值,三次样条插值,拉格朗日插值,并比较三种插值方法的 优劣。 本次试验要求编写牛顿多项式插值,三次样条插值,拉格朗日插值的程序编码,并 去实现。 【实验原理】 《数值分析》第二章“插值法”的相关内容,包括:牛顿多项式插值,三次样条插值, 拉格朗日 插值的相应算法和相关性质。 【实验环境】(使用的软硬件) 软件: MATLAB 2012a 硬件: 电脑型号:联想 Lenovo 昭阳E46A 笔记本电脑 操作系统: Win dows 8专业版 处理器:In tel ( R Core ( TM i3 CPU M 350 @2.27GHz 2.27GHz 实验内容: 【实验方案设计】 第一步,将书上关于三种插值方法的内容转化成程序语言,用 MATLA B 现; 第二步,分别用牛顿多项式插值,三次样条插值,拉格朗日插值求解不同的问题。 【实验过程】(实验步骤、记录、数据、分析) 实验的主要步骤是:首先分析问题,根据分析设计 MATLA 程序,利用程序算出 问题答案,分析所得答案结果,再得出最后结论。 实验一: 已知函数在下列各点的值为 试用4次牛顿插值多项式 P 4( x )及三次样条函数 S ( x )(自然边界条件)对数据进行插值。 用图给出{( X i , y i ), X i =0.2+0.08i , i=0 , 1, 11, 10 } , P 4 ( x )及 S ( x )。 值方法:牛顿 在MATLAB 件中

数值分析实验报告

数值分析实验报告 姓名:周茹 学号: 912113850115 专业:数学与应用数学 指导老师:李建良

线性方程组的数值实验 一、课题名字:求解双对角线性方程组 二、问题描述 考虑一种特殊的对角线元素不为零的双对角线性方程组(以n=7为例) ?????????? ?????? ? ???? ?d a d a d a d a d a d a d 766 55 44 3 32 211??????????????????????x x x x x x x 7654321=?????????? ? ???????????b b b b b b b 7654321 写出一般的n (奇数)阶方程组程序(不要用消元法,因为不用它可以十分方便的解出这个方程组) 。 三、摘要 本文提出解三对角矩阵的一种十分简便的方法——追赶法,该算法适用于任意三对角方程组的求解。 四、引言 对于一般给定的d Ax =,我们可以用高斯消去法求解。但是高斯消去法过程复杂繁琐。对于特殊的三对角矩阵,如果A 是不可约的弱对角占优矩阵,可以将A 分解为UL ,再运用追赶法求解。

五、计算公式(数学模型) 对于形如????? ?? ????? ??? ?---b a c b a c b a c b n n n n n 111 2 2 2 11... ... ...的三对角矩阵UL A =,容易验证U 、L 具有如下形式: ??????? ????? ??? ?=u a u a u a u n n U ...... 3 3 22 1 , ?? ????? ? ?? ??????=1 (1) 1132 1l l l L 比较UL A =两边元素,可以得到 ? ?? ??-== = l a b u u c l b u i i i i i i 111 i=2, 3, ... ,n 考虑三对角线系数矩阵的线性方程组 f Ax = 这里()T n x x x x ... 2 1 = ,()T n f f f f ... 2 1 = 令y Lx =,则有 f Uy = 于是有 ()?????-== --u y a f y u f y i i i i i 1 1 11 1 * i=2, 3, ... ,n 再根据y Lx =可得到

西南交大数值分析题库填空

一. 填空 2.Gauss型求积公式不是插值型求积公式。(限填“是”或“不是”) 3. 设l k(x)是关于互异节点x0, x1,…, x n, 的Lagrange 插值基函数,则 0 m=1,2,…,n 5.用个不同节点作不超过次的多项式插值,分别采用Lagrange插值方法与Newton插值方法所得多项式相等(相等, 不相等)。 。 7. n个不同节点的插值型求积公式的代数精度一定会超过n-1次 8.f(x)=ax7+x4+3x+1,f[20, 21,…,27]= a,f [20, 21,…,28]= 0 10设 (i=0,1,…,n),则= _x_ , 这里(x i x j,ij, n2)11.设称为柯特斯系数 则=______1____ 12采用正交多项式拟合可避免最小二乘或最佳平方逼近中常见的_法方程组病态___问题。 13辛卜生(Simpson)公式具有___3____次代数精度。 14 牛顿插商与导数之间的关系式为: 15试确定[0,1]区间上2x3的不超过二次的最佳一致逼近多项式p(x), 该多项式唯一否?答:p(x)=(3/2)x, ; 唯一。 17.给定方程组记此方程组的Jacobi迭代矩阵为B J=(a ij)33,则a23= -1; ,且相应的Jacobi迭代序列是__发散_____的。 18.欧拉预报--校正公式求解初值问题的迭代格式(步长为h) ,此方法是阶方法。 ,此方法是 2阶方法。 19. 2n阶Newton-Cotes公式至少具有2n+1次代数精度。 20.设,则关于的 ||f|| =1 21矩阵的LU分解中L是一个 _为单位下三角阵,而U是一个上三角阵____。 22.设y=f (x1,x2) 若x1,x2,的近似值分别为x1*, x2*,令y*=f(x1*,x2*)作为y的近似值,其绝对误差限的估计式为: ||f(x1*,x2*)|x1-x*1|+ |f(x1*,x2*)|x2- x*2| 23设迭代函数(x)在x*邻近有r(1)阶连续导数,且x* = (x*),并且有(k) (x*)=0 (k=1,…,r-1),但(r) (x*)0,则x n+1=(x n)产生的序列{ x n }的收敛阶数为___r___ 24设公式为插值型求积公式,则, 且=b-a 25称微分方程的某种数值解法为p阶方法指的是其局部截断误差 为O(h p+1)。 26.设x0, x1,x2是区间[a, b]上的互异节点,f(x)在[a, b]上具有各阶导数,过

数值计算实验报告

(此文档为word格式,下载后您可任意编辑修改!) 2012级6班###(学号)计算机数值方法 实验报告成绩册 姓名:宋元台 学号: 成绩:

数值计算方法与算法实验报告 学期: 2014 至 2015 第 1 学期 2014年 12月1日课程名称: 数值计算方法与算法专业:信息与计算科学班级 12级5班 实验编号: 1实验项目Neton插值多项式指导教师:孙峪怀 姓名:宋元台学号:实验成绩: 一、实验目的及要求 实验目的: 掌握Newton插值多项式的算法,理解Newton插值多项式构造过程中基函数的继承特点,掌握差商表的计算特点。 实验要求: 1. 给出Newton插值算法 2. 用C语言实现算法 二、实验内容 三、实验步骤(该部分不够填写.请填写附页)

1.算法分析: 下面用伪码描述Newton插值多项式的算法: Step1 输入插值节点数n,插值点序列{x(i),f(i)},i=1,2,……,n,要计算的插值点x. Step2 形成差商表 for i=0 to n for j=n to i f(j)=((f(j)-f(j-1)(x(j)-x(j-1-i)); Step3 置初始值temp=1,newton=f(0) Step4 for i=1 to n temp=(x-x(i-1))*temp*由temp(k)=(x-x(k-1))*temp(k-1)形成 (x-x(0).....(x-x(i-1)* Newton=newton+temp*f(i); Step5 输出f(x)的近似数值newton(x)=newton. 2.用C语言实现算法的程序代码 #includeMAX_N) { printf("the input n is larger than MAX_N,please redefine the MAX_N.\n"); return 1; } if(n<=0) { printf("please input a number between 1 and %d.\n",MAX_N); return 1; } printf("now input the (x_i,y_i)i=0,...%d\n",n); for(i=0;i<=n;i++) { printf("please input x(%d) y(%d)\n",i,i);

数值分析实验报告模板

数值分析实验报告模板 篇一:数值分析实验报告(一)(完整) 数值分析实验报告 1 2 3 4 5 篇二:数值分析实验报告 实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。利用二分法求解给定非线性方程的根,在给定的范围内,假设f(x,y)在[a,b]上连续,f(a)xf(b) 直接影响迭代的次数甚至迭代的收敛与发散。即若x0 偏离所求根较远,Newton法可能发散的结论。并且本实验中还利用利用改进的Newton法求解同样的方程,且将结果与Newton法的结果比较分析。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。掌握二分法的原理,验证二分法,在选对有根区间的前提下,必是收

敛,但精度不够。熟悉Matlab语言编程,学习编程要点。体会Newton使用时的优点,和局部收敛性,而在初值选取不当时,会发散。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b) Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式xk?1?xk?f(xk) f'(xk) 产生逼近解x*的迭代数列{xk},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 xk?1?xk?rf(xk) 'f(xk) 其中r为要求的方程的根的重数,这就是改进的Newton 法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x);

西南交大数值分析题库积分微分方程

用复化梯形公式计算积分 1 ()f x dx ?,要把区间[0,1]一般要等分 41 份才能保 证满足误差小于0.00005的要求(这里(2) () 1f x ∞ ≤) ;如果知道(2) ()0f x >,则 用复化梯形公式计算积分1 ()f x dx ? 此实际值 大 (大,小)。 在以1 0((),())()(),(),()[0,1]g x f x xf x g x dx f x g x C = ∈?为内积的空间C[0,1] 中,与非零常数正交的最高项系数为1的一次多项式是 2 3 x - 3. (15分)导出用Euler 法求解 (0)1y y y λ'=??=? 的公式, 并证明它收敛于初值问题的精确解 解 Euler 公式 11,1,,,k k k x y y h y k n h n λ--=+== L -----------(5分) ()()1011k k k y h y h y λλ-=+==+L ------------------- (10分) 若用复化梯形求积公式计算积分1 x I e dx = ? 区间[0,1]应分 2129 等分,即要 计算个 2130 点的函数值才能使截断误差不超过 71 102 -?;若改用复化Simpson 公式,要达到同样精度区间[0,1]应分12 等分,即要计算个 25 点的函数值 1.用Romberg 法计算积分 2 3 2 x e dx -? 解 []02()()2b a T f a f b -= += 9.6410430E-003 10221()222 b a a b T T f -+=+= 5.1319070E-003 10 022243 T T S -= = 4.6288616E-003 22T = 4.4998E-003 21 122243 T T S -= = 4.E-003 10 02221615 S S C -= = 4.6588636E-003 32T = 4.7817699E-003 32 222243 T T S -= = 4.1067038E-003

数值分析实验报告1

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b =

的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots + 上述简单的Matlab 程序便得到()的全部根,程序中的“ess ”即是()中的ε。 实验要求: (1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。 如果扰动项的系数ε很小,我们自然感觉()和()的解应当相差很小。计算中你有什么出乎意料的发现表明有些解关于如此的扰动敏感性如何 (2)将方程()中的扰动项改成18x ε或其它形式,实验中又有怎样的现象 出现 (3)(选作部分)请从理论上分析产生这一问题的根源。注意我们可以将 方程()写成展开的形式, ) 3.1(0 ),(1920=+-= x x x p αα 同时将方程的解x 看成是系数α的函数,考察方程的某个解关于α的扰动是否敏感,与研究它关于α的导数的大小有何关系为什么你发现了什么现象,哪些根关于α的变化更敏感 思考题一:(上述实验的改进) 在上述实验中我们会发现用roots 函数求解多项式方程的精度不高,为此你可以考虑用符号函数solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。

(完整版)哈工大-数值分析上机实验报告

实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b)<0,且f(x)在[a,b]内仅有一个实根x*,取区间中点c,若,则c恰为其根,否则根据f(a)f(c)<0是否成立判断根在区间[a,c]和[c,b]中的哪一个,从而得出新区间,仍称为[a,b]。重复运行计算,直至满足精度为止。这就是二分法的计算思想。

Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式 产生逼近解x*的迭代数列{x k},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 其中r为要求的方程的根的重数,这就是改进的Newton法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x); y=-x*x-sin(x); 写成如上形式即可,下面给出主程序。 二分法源程序: clear %%%给定求解区间 b=1.5; a=0;

%%%误差 R=1; k=0;%迭代次数初值 while (R>5e-6) ; c=(a+b)/2; if f12(a)*f12(c)>0; a=c; else b=c; end R=b-a;%求出误差 k=k+1; end x=c%给出解 Newton法及改进的Newton法源程序:clear %%%% 输入函数 f=input('请输入需要求解函数>>','s') %%%求解f(x)的导数 df=diff(f);

数值分析实验报告

实验一、误差分析 一、实验目的 1.通过上机编程,复习巩固以前所学程序设计语言及上机操作指令; 2.通过上机计算,了解误差、绝对误差、误差界、相对误差界的有关概念; 3.通过上机计算,了解舍入误差所引起的数值不稳定性。 二.实验原理 误差问题是数值分析的基础,又是数值分析中一个困难的课题。在实际计算中,如果选用了不同的算法,由于舍入误差的影响,将会得到截然不同的结果。因此,选取算法时注重分析舍入误差的影响,在实际计算中是十分重要的。同时,由于在数值求解过程中用有限的过程代替无限的过程会产生截断误差,因此算法的好坏会影响到数值结果的精度。 三.实验内容 对20,,2,1,0 =n ,计算定积分 ?+=10 5dx x x y n n . 算法1:利用递推公式 151--=n n y n y , 20,,2,1 =n , 取 ?≈-=+=1 00182322.05ln 6ln 51dx x y . 算法2:利用递推公式 n n y n y 51511-= - 1,,19,20 =n . 注意到 ???=≤+≤=10 10202010201051515611261dx x dx x x dx x , 取 008730.0)12611051(20120≈+≈y .: 四.实验程序及运行结果 程序一: t=log(6)-log(5);

n=1; y(1)=t; for k=2:1:20 y(k)=1/k-5*y(k-1); n=n+1; end y y =0.0884 y =0.0581 y =0.0431 y =0.0346 y =0.0271 y =0.0313 y =-0.0134 y =0.1920 y =-0.8487 y =4.3436 y =-21.6268 y =108.2176 y =-541.0110 y =2.7051e+003 y =-1.3526e+004 y =6.7628e+004 y =-3.3814e+005 y =1.6907e+006 y =-8.4535e+006 y =4.2267e+007 程序2: y=zeros(20,1); n=1; y1=(1/105+1/126)/2;y(20)=y1; for k=20:-1:2 y(k-1)=1/(5*k)-(1/5)*y(k); n=n+1; end 运行结果:y = 0.0884 0.0580 0.0431 0.0343 0.0285 0.0212 0.0188 0.0169

西南交通大学2018-2019数值分析Matlab上机实习题

数值分析2018-2019第1学期上机实习题 f x,隔根第1题.给出牛顿法求函数零点的程序。调用条件:输入函数表达式() a b,输出结果:零点的值x和精度e,试取函数 区间[,] ,用牛顿法计算附近的根,判断相应的收敛速度,并给出数学解释。 1.1程序代码: f=input('输入函数表达式:y=','s'); a=input('输入迭代初始值:a='); delta=input('输入截止误差:delta='); f=sym(f); f_=diff(f); %求导 f=inline(f); f_=inline(f_); c0=a; c=c0-f(c0)/f_(c0); n=1; while abs(c-c0)>delta c0=c; c=c0-f(c0)/f_(c0); n=n+1; end err=abs(c-c0); yc=f(c); disp(strcat('用牛顿法求得零点为',num2str(c))); disp(strcat('迭代次数为',num2str(n))); disp(strcat('精度为',num2str(err))); 1.2运行结果: run('H:\Adocument\matlab\1牛顿迭代法求零点\newtondiedai.m') 输入函数表达式:y=x^4-1.4*x^3-0.48*x^2+1.408*x-0.512 输入迭代初始值:a=1 输入截止误差:delta=0.0005 用牛顿法求得零点为0.80072 迭代次数为14 精度为0.00036062 牛顿迭代法通过一系列的迭代操作使得到的结果不断逼近方程的实根,给定一个初值,每经过一次牛顿迭代,曲线上一点的切线与x轴交点就会在区间[a,b]上逐步逼近于根。上述例子中,通过给定初值x=1,经过14次迭代后,得到根为0.80072,精度为0.00036062。

数值分析2016上机实验报告

序言 数值分析是计算数学的范畴,有时也称它为计算数学、计算方法、数值方法等,其研究对象是各种数学问题的数值方法的设计、分析及其有关的数学理论和具体实现的一门学科,它是一个数学分支。是科学与工程计算(科学计算)的理论支持。许多科学与工程实际问题(核武器的研制、导弹的发射、气象预报)的解决都离不开科学计算。目前,试验、理论、计算已成为人类进行科学活动的三大方法。 数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。现在面向数值分析问题的计算机软件有:C,C++,MATLAB,Python,Fortran等。 MATLAB是matrix laboratory的英文缩写,它是由美国Mathwork公司于1967年推出的适合用于不同规格计算机和各种操纵系统的数学软件包,现已发展成为一种功能强大的计算机语言,特别适合用于科学和工程计算。目前,MATLAB应用非常广泛,主要用于算法开发、数据可视化、数值计算和数据分析等,除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。 本实验报告使用了MATLAB软件。对不动点迭代,函数逼近(lagrange插值,三次样条插值,最小二乘拟合),追赶法求解矩阵的解,4RungeKutta方法求解,欧拉法及改进欧拉法等算法做了简单的计算模拟实践。并比较了各种算法的优劣性,得到了对数值分析这们学科良好的理解,对以后的科研数值分析能力有了极大的提高。

目录 序言 (1) 问题一非线性方程数值解法 (3) 1.1 计算题目 (3) 1.2 迭代法分析 (3) 1.3计算结果分析及结论 (4) 问题二追赶法解三对角矩阵 (5) 2.1 问题 (5) 2.2 问题分析(追赶法) (6) 2.3 计算结果 (7) 问题三函数拟合 (7) 3.1 计算题目 (7) 3.2 题目分析 (7) 3.3 结果比较 (12) 问题四欧拉法解微分方程 (14) 4.1 计算题目 (14) 4.2.1 方程的准确解 (14) 4.2.2 Euler方法求解 (14) 4.2.3改进欧拉方法 (16) 问题五四阶龙格-库塔计算常微分方程初值问题 (17) 5.1 计算题目 (17) 5.2 四阶龙格-库塔方法分析 (18) 5.3 程序流程图 (18) 5.4 标准四阶Runge-Kutta法Matlab实现 (19) 5.5 计算结果及比较 (20) 问题六舍入误差观察 (22) 6.1 计算题目 (22) 6.2 计算结果 (22) 6.3 结论 (23) 7 总结 (24) 附录

数值分析实验报告

学生实验报告实验课程名称 开课实验室 学院年级专业班 学生姓名学号 开课时间至学年学期

if(A(m,k)~=0) if(m~=k) A([k m],:)=A([m k],:); %换行 end A(k+1:n, k:c)=A(k+1:n, k:c)-(A(k+1:n,k)/ A(k,k))*A(k, k:c); %消去end end x=zeros(length(b),1); %回代求解 x(n)=A(n,c)/A(n,n); for k=n-1:-1:1 x(k)=(A(k,c)-A(k,k+1:n)*x(k+1:n))/A(k,k); end y=x; format short;%设置为默认格式显示,显示5位 (2)建立MATLAB界面 利用MA TLAB的GUI建立如下界面求解线性方程组: 详见程序。 五、计算实例、数据、结果、分析 下面我们对以上的结果进行测试,求解:

? ? ? ? ? ? ? ? ? ? ? ? - = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - - - - 7 2 5 10 13 9 14 4 4 3 2 1 13 12 4 3 3 10 2 4 3 2 1 x x x x 输入数据后点击和,得到如下结果: 更改以上数据进行测试,求解如下方程组: 1 2 3 4 43211 34321 23431 12341 x x x x ?? ???? ?? ???? ?? ???? = ?? ???? - ?? ???? - ???? ?? 得到如下结果:

数值分析上机实验

目录 1 绪论 (1) 2 实验题目(一) (2) 2.1 题目要求 (2) 2.2 NEWTON插值多项式 (3) 2.3 数据分析 (4) 2.3.1 NEWTON插值多项式数据分析 (4) 2.3.2 NEWTON插值多项式数据分析 (6) 2.4 问答题 (6) 2.5 总结 (7) 3 实验题目(二) (8) 3.1 题目要求 (8) 3.2 高斯-塞德尔迭代法 (8) 3.3 高斯-塞德尔改进法—松弛法 (9) 3.4 松弛法的程序设计与分析 (9) 3.4.1 算法实现 (9) 3.4.2 运算结果 (9) 3.4.3 数据分析 (11) 4 实验题目(三) (13) 4.1 题目要求 (13) 4.2 RUNGE-KUTTA 4阶算法 (13) 4.3 RUNGE-KUTTA 4阶算法运算结果及数值分析 (14) 总结 (16) 附录A (17)

1绪论 数值分析是计算数学的一个主要部分,它主要研究各类数学问题的数值解法,以及分析所用数值解法在理论上的合理性。实际工程中的数学问题非常复杂,所以往往需要借助计算机进行计算。运用数值分析解决问题的过程:分析实际问题,构建数学模型,运用数值计算方法,进行程序设计,最后上机计算求出结果。 数值分析这门学科具有面向计算机、可靠的理论分析、好的计算复杂性、数值实验、对算法进行误差分析等特点。 本学期开设了数值分析课程,该课程讲授了数值分析绪论、非线性方程的求解、线性方程组的直接接法、线性方程组的迭代法、插值法、函数逼近与曲线拟合、数值积分和数值微分、常微分方程初值问题的数值解法等内容。其为我们解决实际数学问题提供了理论基础,同时我们也发现课程中很多问题的求解必须借助计算机运算,人工计算量太大甚至无法操作。所以学好数值分析的关键是要加强上机操作,即利用计算机程序语言实现数值分析的算法。本报告就是基于此目的完成的。 本上机实验是通过用计算机来解答数值分析问题的过程,所用的计算工具是比较成熟的数学软件MATLAB。MATLAB是Matrix Laboratory的缩写,是以矩阵为基础的交互式程序计算语言。MATLAB是一款具有强大的矩阵运算、数据处理和图形显示功能的软件,其输出结果可视化,编程效率极高,用极少的代码即可实现复杂的运行,因此它使工程技术人员摆脱了繁琐的程序代码,以便快速地验证自己的模型和算法。其主要特点包括:强大的数值运算功能;先进的资料视觉化功能高阶但简单的程序环境;开方及可延展的构架;丰富的程式工具箱。 在科学研究和工程计算领域经常会遇到一些非常复杂的计算问题,利用计算器或手工计算是相当困难或无法实现的,只能借助计算机编程来实现。MATLAB将高性能的数值计算和可视化的图形工具集成在一起,提供了大量的内置函数,使其在科学计算领域具有独特的优势。 最后感谢数值分析课程任课教师赵海良老师的悉心指导!

数值分析实验报告1

实验一 误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对(1.1)中19x 的系数作一个小的扰动。我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b = 的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve =

西南交通大学研究生数值分析作业

数值分析上机报告 指导教师:赵海良 班级: 姓名: 学号: 电话: 2011年12月

序 随着计算机技术的迅速发展,数值分析在工程技术领域中的应用越来越广泛,并且成为数学与计算机之间的桥梁。要解决工程问题,往往需要处理很多数学模型,不仅要研究各种数学问题的数值解法,同时也要分析所用的数值解法在理论上的合理性,如解法所产生的误差能否满足精度要求:解法是否稳定、是否收敛及熟练的速度等。 由于工程实际中所遇到的数学模型求解过程迭代次数很多,计算量很大,所以需要借助如MATLAB,C++,VB,JA V A的辅助软件来解决,得到一个满足误差限的解。本文所计算题目,均采用C++编程。C++是一种静态数据类型检查的、支持多重编程范式的通用程序设计语言。它支持过程化程序设计、数据抽象、面向对象程序设计、制作图标等等泛型程序设计等多种程序设计风格,在实际工程中得到了广泛应用,对解决一些小型数学迭代问题,C++软件精度已满足相应的精度。 本文使用C++对牛顿法、牛顿-Steffensen法对方程求解,对雅格比法、高斯-赛德尔迭代法求解方程组迭代求解,对Ru n ge-Kutt a 4阶算法进行编程,并通过实例求解验证了其可行性,并使用不同方法对计算进行比较,得出不同方法的收敛性与迭代次数的多少,比较不同方法之间的优缺性,比较各种方法的精确度和解的收敛速度。

目录 第一章牛顿法和牛顿-Steffensen法迭代求解的比较 (1) 1.1 计算题目 (1) 1.2 计算过程和结果 (1) 1.3 结果分析 (2) 第二章 Jacobi迭代法与Causs-Seidel迭代法迭代求解的比较 (2) 2.1 计算题目 (2) 2.2 计算过程与结果 (2) 2.3 结果分析 (3) 第三章 Ru n ge-Kutt a 4阶算法中不同步长对稳定区间的作用 (4) 3.1 计算题目 (4) 3.2 计算过程与结果 (4) 3.3 结果分析 (4) 总结 (5) 附件 (6) 附件 1(1.1第一问牛顿法) (6) 附件 2(1.1第一问牛顿-Steffensen法) (6) 附件 3(1.1第二问牛顿法) (6) 附件 4(1.1第二问牛顿-Steffensen法) (7) 附件 5(2.1 Jacobi迭代法) (7) 附件 6(2.1Causs-Seidel迭代法) (8) 附件 7(3.1 Ru n ge-Kutt a 4阶算法) (9)

数值分析实验报告77712

《数值分析》 实验报告 学院:计算机科学与软件学院姓名:XXX 班级:计算机XX班 学号:XXXXXX 实验一:舍入误差与数值稳定性

实验目的: 1、 通过上机编程,复习巩固以前所学程序设计语言; 2、 通过上机计算,了解舍入误差所引起的数值不稳定性。 3、 通过上机计算,了解运算次序对计算结果的影响,从而尽量避免大数吃小数的现象。 实验内容:用两种不同的顺序计算644834.1100001 2≈∑=-n n ,分析其误差 的变化。 实验流程图: 实验源程序:

#include #include void main() { int i; float s1=0,s2=0,d1,d2; for (i=1;i<=10000;i++) s1=s1+1.0f/(i*i); for (i=10000;i>=1;i--) s2=s2+1.0f/(i*i); d1=(float)(fabs(1.644834-s1)); d2=(float)(fabs(1.644834-s2)); printf("正向求和结果为%f\n 误差为%f\n\n",s1,d1); printf("反向求和结果为%f\n 误差为%f\n\n",s2,d2); if(d1

实验分析:第一次做数值实验,又一次使用C语言编程,没有了刚学习C语言的艰难,能够将实验步骤转换成流程图并编写出完整的实验代码,在经过多次调试、改正后得到正确的程序和结果。这个实验较简单,计算误差时如果输入数据有误差,而在计算过程中舍入误差不增长,则称此算法是稳定的,否则称此算法是数值不稳定的,减少运算次数可以减小舍入误差。在运算中,如果参加运算的数的数量级相差很大,而计算机位数有限,如不注意运算次序就可能出现大数“吃掉”小数的现象,进而影响计算结果的可靠性,所以计算过程中要注意运算次序,避免出现这种现象。 实验二:拉格朗日插值法和牛顿插值法 实验目的:分别用拉格朗日差值和牛顿插值解决数学问题,并比较各方法的优略。 1、拉格朗日插值 实验内容: x i -3.0-1.0 1.0 2.0 3.0 y i 1.0 1.5 2.0 2.0 1.0 作二次插值,并求x 1=-2,x 2 =0,x 3 =2.75时的函数近似值。

数值分析实验报告

实验五 解线性方程组的直接方法 实验5.1 (主元的选取与算法的稳定性) 问题提出:Gauss 消去法是我们在线性代数中已经熟悉的。但由于计算机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保Gauss 消去法作为数值算法的稳定性呢?Gauss 消去法从理论算法到数值算法,其关键是主元的选择。主元的选择从数学理论上看起来平凡,它却是数值分析中十分典型的问题。 实验内容:考虑线性方程组 编制一个能自动选取主元,又能手动选取主元的求解线性方程组的Gauss 消去过程。 实验要求: (1)取矩阵?? ? ?? ?? ?????????=????????????????=1415157,6816816816 b A ,则方程有解T x )1,,1,1(* =。取n=10计算矩阵的 条件数。让程序自动选取主元,结果如何? (2)现选择程序中手动选取主元的功能。每步消去过程总选取按模最小或按模尽可能小的元素作为主元,观察并记录计算结果。若每步消去过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。 (3)取矩阵阶数n=20或者更大,重复上述实验过程,观察记录并分析不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元素的选取在消去过程中的作用。 (4)选取其他你感兴趣的问题或者随机生成矩阵,计算其条件数。重复上述实验,观察记录并分析实验结果。 思考题一:(Vadermonde 矩阵)设 ?? ??????????????????????=? ? ? ?????????????=∑∑∑∑====n i i n n i i n i i n i i n n n n n n n x x x x b x x x x x x x x x x x x A 0020 10022222121102001111 ,, 其中,n k k x k ,,1,0,1.01 =+=, (1)对n=2,5,8,计算A 的条件数;随n 增大,矩阵性态如何变化? (2)对n=5,解方程组Ax=b ;设A 的最后一个元素有扰动10-4,再求解Ax=b (3)计算(2)扰动相对误差与解的相对偏差,分析它们与条件数的关系。 (4)你能由此解释为什么不用插值函数存在定理直接求插值函数而要用拉格朗日或牛顿插值法的原因吗? 相关MATLAB 函数提示: zeros(m,n) 生成m 行,n 列的零矩阵 ones(m,n) 生成m 行,n 列的元素全为1的矩阵 eye(n) 生成n 阶单位矩阵 rand(m,n) 生成m 行,n 列(0,1)上均匀分布的随机矩阵 diag(x) 返回由向量x 的元素构成的对角矩阵 tril(A) 提取矩阵A 的下三角部分生成下三角矩阵

相关文档
相关文档 最新文档