文档库 最新最全的文档下载
当前位置:文档库 › 材料科学基础基础知识点总结

材料科学基础基础知识点总结

材料科学基础基础知识点总结
材料科学基础基础知识点总结

第一章材料中的原子排列

第一节原子的结合方式

2 原子结合键

(1)离子键与离子晶体

原子结合:电子转移,结合力大,无方向性和饱和性;

离子晶体;硬度高,脆性大,熔点高、导电性差。如氧化物陶瓷。

(2)共价键与原子晶体

原子结合:电子共用,结合力大,有方向性和饱和性;

原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。如高分子材料。

(3)金属键与金属晶体

原子结合:电子逸出共有,结合力较大,无方向性和饱和性;

金属晶体:导电性、导热性、延展性好,熔点较高。如金属。

金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。

(3)分子键与分子晶体

原子结合:电子云偏移,结合力很小,无方向性和饱和性。

分子晶体:熔点低,硬度低。如高分子材料。

氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O

(4)混合键。如复合材料。

3 结合键分类

(1)一次键(化学键):金属键、共价键、离子键。

(2)二次键(物理键):分子键和氢键。

4 原子的排列方式

(1)晶体:原子在三维空间内的周期性规则排列。长程有序,各向异性。

(2)非晶体:――――――――――不规则排列。长程无序,各向同性。

第二节原子的规则排列

一晶体学基础

1 空间点阵与晶体结构

(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。图1-5

特征:a 原子的理想排列;b 有14种。

其中:

空间点阵中的点-阵点。它是纯粹的几何点,各点周围环境相同。

描述晶体中原子排列规律的空间格架称之为晶格。

空间点阵中最小的几何单元称之为晶胞。

(2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。

特征:a 可能存在局部缺陷;b 可有无限多种。

2 晶胞图1-6

(1)――-:构成空间点阵的最基本单元。

(2)选取原则:

a 能够充分反映空间点阵的对称性;

b 相等的棱和角的数目最多;

c 具有尽可能多的直角;

d 体积最小。

(3)形状和大小

有三个棱边的长度a,b,c及其夹角α,β,γ表示。

(4)晶胞中点的位置表示(坐标法)。

3 布拉菲点阵图1-7

14种点阵分属7个晶系。

4 晶向指数与晶面指数

晶向:空间点阵中各阵点列的方向。

晶面:通过空间点阵中任意一组阵点的平面。

国际上通用米勒指数标定晶向和晶面。

(1)晶向指数的标定

a 建立坐标系。确定原点(阵点)、坐标轴和度量单位(棱边)。

b 求坐标。u’,v’,w’。

c 化整数。u,v,w.

d 加[ ]。[uvw]。

说明:

a 指数意义:代表相互平行、方向一致的所有晶向。

b 负值:标于数字上方,表示同一晶向的相反方向。

c 晶向族:晶体中原子排列情况相同但空间位向不同的一组晶向。用表示,

数字相同,但排列顺序不同或正负号不同的晶向属于同一晶向族。

(2)晶面指数的标定

a 建立坐标系:确定原点(非阵点)、坐标轴和度量单位。

b 量截距:x,y,z。

c 取倒数:h’,k’,l’。

d 化整数:h,k,k。

e 加圆括号:(hkl)。

说明:

a 指数意义:代表一组平行的晶面;

b 0的意义:面与对应的轴平行;

c 平行晶面:指数相同,或数字相同但正负号相反;

d 晶面族:晶体中具有相同条件(原子排列和晶面间距完全相同),空间位向不同的各组晶面。用{hkl}表示。

e 若晶面与晶向同面,则hu+kv+lw=0;

f 若晶面与晶向垂直,则u=h, k=v, w=l。

(3)六方系晶向指数和晶面指数

a 六方系指数标定的特殊性:四轴坐标系(等价晶面不具有等价指数)。

b 晶面指数的标定

标法与立方系相同(四个截距);用四个数字(hkil)表示;i=-(h+k)。

c 晶向指数的标定

标法与立方系相同(四个坐标);用四个数字(uvtw)表示;t=-(u+w)。

依次平移法:适合于已知指数画晶向(末点)。

坐标换算法:[UVW]~[uvtw]

u=(2U-V)/3, v=(2V-U)/3, t=-(U+V)/3, w=W。

(4)晶带

a ――:平行于某一晶向直线所有晶面的组合。

晶带轴晶带面

b 性质:晶带用晶带轴的晶向指数表示;晶带面//晶带轴;

hu+kv+lw=0

c 晶带定律

凡满足上式的晶面都属于以[uvw]为晶带轴的晶带。推论:

(a)由两晶面(h1k1l1) (h2k2l2)求其晶带轴[uvw]:

u=k1l2-k2l1; v=l1h2-l2h1; w=h1k2-h2k1。

(b)由两晶向[u1v1w1][u2v2w2]求其决定的晶面(hkl)。

H=v1w1-v2w2; k=w1u2-w2u1; l=u1v2-u2v1。

(5)晶面间距

a ――:一组平行晶面中,相邻两个平行晶面之间的距离。

b 计算公式(简单立方):

d=a/(h2+k2+l2)1/2

注意:只适用于简单晶胞;对于面心立方hkl不全为偶、奇数、体心立方h+k+l=

奇数时,d(hkl)=d/2。

2 离子晶体的结构

(1)鲍林第一规则(负离子配位多面体规则):在离子晶体中,正离子周围形成一个负离子配位多面体,正负离子间的平衡距离取决于正负离子半径之和,正离子的配位数取决于正负离子的半径比。

(2)鲍林第二规则(电价规则含义):一个负离子必定同时被一定数量的负离子配位多面体所共有。

(3)鲍林第三规则(棱与面规则):在配位结构中,共用棱特别是共用面的存在,会降低这个结构的稳定性。

3 共价键晶体的结构

(1)饱和性:一个原子的共价键数为8-N。

(2)方向性:各键之间有确定的方位

(配位数小,结构稳定)

三多晶型性

元素的晶体结构随外界条件的变化而发生转变的性质。

四影响原子半径的因素

(1)温度与应力

(2)结合键的影响

(3)配位数的影响(高配位结构向低配位结构转变时,体积膨胀,原子半径减小减缓体积变化。

(4)核外电子分布的影响(一周期内,随核外电子数增加至填满,原子半径减小至一最小值。

第三节原子的不规则排列

原子的不规则排列产生晶体缺陷。晶体缺陷在材料组织控制(如扩散、相变)和性能控制(如材料强化)中具有重要作用。

晶体缺陷:实际晶体中与理想点阵结构发生偏差的区域。

(晶体缺陷可分为以下三类。)

点缺陷:在三维空间各方向上尺寸都很小的缺陷。如空位、间隙原子、异类原子等。

线缺陷:在两个方向上尺寸很小,而另一个方向上尺寸较大的缺陷。主要是位错。

面缺陷:在一个方向上尺寸很小,在另外两个方向上尺寸较大的缺陷。如晶界、相界、表面等。

一点缺陷

1 点缺陷的类型图1-31

(1)空位:

肖脱基空位-离位原子进入其它空位或迁移至晶界或表面。

弗兰克尔空位-离位原子进入晶体间隙。

(2)间隙原子:位于晶体点阵间隙的原子。

(3)置换原子:位于晶体点阵位置的异类原子。

2 点缺陷的平衡浓度

(1)点缺陷是热力学平衡的缺陷-在一定温度下,晶体中总是存在着一定数量的点缺陷(空位),这时体系的能量最低-具有平衡点缺陷的晶体比理想晶体在热力学上更为稳定。(原因:晶体中形成点缺陷时,体系内能的增加将使自由能升高,但体系熵值也增加了,这一因素又使自由能降低。其结果是在G-n曲线上出现了最低值,对应的n值即为平衡空位数。)

(2)点缺陷的平衡浓度

C=Aexp(-?Ev/kT)

3 点缺陷的产生及其运动

(1)点缺陷的产生

平衡点缺陷:热振动中的能力起伏。

过饱和点缺陷:外来作用,如高温淬火、辐照、冷加工等。

(2)点缺陷的运动

(迁移、复合-浓度降低;聚集-浓度升高-塌陷)

4 点缺陷与材料行为

(1)结构变化:晶格畸变(如空位引起晶格收缩,间隙原子引起晶格膨胀,置换原子可引起收缩或膨胀。)

(2)性能变化:物理性能(如电阻率增大,密度减小。)

力学性能(屈服强度提高。)

二线缺陷(位错)

位错:晶体中某处一列或若干列原子有规律的错排。

意义:(对材料的力学行为如塑性变形、强度、断裂等起着决定性的作用,对材料的扩散、相变过程有较大影响。)

位错的提出:1926年,弗兰克尔发现理论晶体模型刚性切变强度与与实测临界切应力的巨大差异(2~4个数量级)。

1934年,泰勒、波朗依、奥罗万几乎同时提出位错的概念。

1939年,柏格斯提出用柏氏矢量表征位错。

1947年,柯垂耳提出溶质原子与位错的交互作用。

1950年,弗兰克和瑞德同时提出位错增殖机制。

之后,用TEM直接观察到了晶体中的位错。

1 位错的基本类型

(1)刃型位错

模型:滑移面/半原子面/位错线(位错线┻晶体滑移方向,位错线┻位错运动

方向,晶体滑移方向//位错运动方向。)

分类:正刃型位错(┻);负刃型位错(┳)。

(2)螺型位错

模型:滑移面/位错线。(位错线//晶体滑移方向,位错线┻位错运动方向,晶

体滑移方向┻位错运动方向。)

分类:左螺型位错;右螺型位错。

(3)混合位错

模型:滑移面/位错线。

2 位错的性质

(1)形状:不一定是直线,位错及其畸变区是一条管道。

(2)是已滑移区和未滑移区的边界。

(3)不能中断于晶体内部。可在表面露头,或终止于晶界和相界,或与其它位错相交,或自行封闭成环。

3 柏氏矢量

(1)确定方法 (避开严重畸变区)

a 在位错周围沿着点阵结点形成封闭回路。

b 在理想晶体中按同样顺序作同样大小的回路。

c 在理想晶体中从终点到起点的矢量即为――。

(2)柏氏矢量的物理意义

a 代表位错,并表示其特征(强度、畸变量)。

b 表示晶体滑移的方向和大小。

c 柏氏矢量的守恒性(唯一性):一条位错线具有唯一的柏氏矢量。

d 判断位错的类型。

(3)柏氏矢量的表示方法

a 表示: b=a/n[uvw] (可以用矢量加法进行运算)。

b 求模:/b/=a/n[u2+v2+w2]1/2。

4 位错密度

(1)表示方法:ρ=K/V

ρ=n/A

(2)晶体强度与位错密度的关系(τ-ρ图)。

(3)位错观察:浸蚀法、电境法。

5 位错的运动

(1)位错的易动性。

(2)位错运动的方式

a 滑移:位错沿着滑移面的移动。

刃型位错的滑移:具有唯一的滑移面

螺型位错的滑移:具有多个滑移面。

位错环的滑移:注重柏氏矢量的应用。

b 攀移:刃型位错在垂直于滑移面方向上的运动。

机制:原子面下端原子的扩散――位错随半原子面的上下移动而上下运动。

分类:正攀移(原子面上移、空位加入)/负攀移(原子面下移、原子加入)。

应力的作用:(半原子面侧)压应力有利于正攀移,拉应力有利于负攀移。

(3)作用在位错上的力(单位距离上)

滑移:f=τb;

攀移:f=σb。

6 位错的应变能与线张力

(1)单位长度位错的应变能:W=αGb2。

(α=0.5~1.0, 螺位错取下限,刃位错取上限。)

(2)位错是不平衡的缺陷。

(商增不能抵销应变能的增加。)

(3)位错的线张力:T=αGb2。

(4)保持位错弯曲所需的切应力:τ=Gb/2r。

7 位错的应力场及其与其它缺陷的作用

(1)应力场

螺位错:τ=Gb/2πr。(只有切应力分量。)

刃位错:表达式(式1-9)

晶体中:滑移面以上受压应力,滑移面以下受拉应力。

滑移面:只有切应力。

(2)位错与位错的交互作用

f=τb ,f=-σb (刃位错)。

同号相互排斥,异号相互吸引。(达到能量最低状态。)

(3)位错与溶质原子的相互作用

间隙原子聚集于位错中心,使体系处于低能态。

柯氏气团:溶质原子在位错线附近偏聚的现象。

(4)位错与空位的交互作用

导致位错攀移。

8 位错的增殖、塞积与交割

(1)位错的增殖:F-R源。

(2)位错的塞积

分布:逐步分散。

位错受力:切应力作用在位错上的力、位错间的排斥力、障碍物的阻力。

(3)位错的交割

位错交割后结果:按照对方位错柏氏矢量(变化方向和大小)。

割阶:位错交割后的台阶不位于它原来的滑移面上。

扭折:――――――――位于―――――――――。

对性能影响:增加位错长度,产生固定割阶。

9 位错反应

(1)位错反应:位错的分解与合并。

(2)反应条件

几何条件:∑b前=∑b后;反应前后位错的柏氏矢量之和相等。

能量条件:∑b2前>∑b2后; 反应后位错的总能量小于反应前位错的总能量。

10 实际晶体中的位错

(1)全位错:通常把柏氏矢量等于点阵矢量的位错称为全位错或单位位错。

(实际晶体中的典型全位错如表1-7所示)

(2)不全位错:柏氏矢量小于点阵矢量的位错。

(实际晶体中的典型不全位错如表1-7所示)

(3)肖克莱和弗兰克不全位错。

肖克莱不全位错的形成:原子运动导致局部错排,错排区与完整晶格区的边界线即为肖克莱不全位错。(结合位错反应理解。可为刃型、螺型或混合型位错。)弗兰克不全位错的形成:在完整晶体中局部抽出或插入一层原子所形成。(只能攀移,不能滑移。)

(4)堆垛层错与扩展位错

堆垛层错:晶体中原子堆垛次序中出现的层状错排。

扩展位错:一对不全位错及中间夹的层错称之。

三面缺陷

面缺陷主要包括晶界、相界和表面,它们对材料的力学和物理化学性能具有重要影响。

1 晶界

(1)晶界:两个空间位向不同的相邻晶粒之间的界面。

(2)分类

大角度晶界:晶粒位向差大于10度的晶界。其结构为几个原子范围

内的原子的混乱排列,可视为一个过渡区。

小角度晶界:晶粒位向差小于10度的晶界。其结构为位错列,又分

为对称倾侧晶界和扭转晶界。

亚晶界:位向差小于1度的亚晶粒之间的边界。为位错结构。

孪晶界:两块相邻孪晶的共晶面。分为共格孪晶界和非共格孪晶界。

2 相界

(1)相界:相邻两个相之间的界面。

(2)分类:共格、半共格和非共格相界。

3 表面

(1)表面吸附:外来原子或气体分子在表面上富集的现象。

(2)分类

物理吸附:由分子键力引起,无选择性,吸附热小,结合力小。

化学吸附:由化学键力引起,有选择性,吸附热大,结合力大。

4 界面特性

(1)界面能会引起界面吸附。

(2)界面上原子扩散速度较快。

(3)对位错运动有阻碍作用。

(4)易被氧化和腐蚀。

(5)原子的混乱排列利于固态相变的形核。

第二章固体中的相结构

合金与相

1 合金

(1)合金:两种或两种以上的金属,或金属与非金属经一定方法合成的具有金属特性的物质。

(2)组元:组成合金最基本的物质。(如一元、二元、三元合金〕

(3)合金系:给定合金以不同的比例而合成的一系列不同成分合金的总称。

2 相

(1)相:材料中结构相同、成分和性能均一的组成部分。(如单相、两相、多相合金。)(2)相的分类

固溶体:晶体结构与其某一组元相同的相。含溶剂和溶质。

中间相(金属化合物):组成原子有固定比例,其结构与组成组元均不相同的相。

第一节固溶体

按溶质原子位置不同,可分为置换固溶体和间隙固溶体。

按固溶度不同,可分为有限固溶体和无限固溶体。

按溶质原子分布不同,可分为无序固溶体和有序固溶体。

1 置换固溶体

(1)置换固溶体:溶质原子位于晶格点阵位置的固溶体。

(2)影响置换固溶体溶解度的因素

a 原子尺寸因素

原子尺寸差越小,越易形成置换固溶体,且溶解度越大。

△r=(r A-r B)/r A

当△r<15%时,有利于大量互溶。

b 晶体结构因素

结构相同,溶解度大,有可能形成无限固溶体。

c 电负性因素

电负性差越小,越易形成固溶体,溶解度越大。

d 电子浓度因素

电子浓度e/a越大,溶解度越小。e/a有一极限值,与溶剂晶体结构有关。一价面心立方金属为1.36,一价体心立方金属为1.48。

(上述四个因素并非相互独立,其统一的理论的是金属与合金的电子理论。)

2 间隙固溶体

(1)影响因素:原子半径和溶剂结构。

(2)溶解度:一般都很小,只能形成有限固溶体。

3 固溶体的结构

(1)晶格畸变。

(2)偏聚与有序:完全无序、偏聚、部分有序、完全有序。

4 固溶体的性能

固溶体的强度和硬度高于纯组元,塑性则较低。

(1)固溶强化:由于溶质原子的溶入而引起的强化效应。

(2)柯氏气团

(3)有序强化

第二节金属间化合物

中间相是由金属与金属,或金属与类金属元素之间形成的化合物,也称为金属间化合物。

1 正常价化合物

(1)形成:电负性差起主要作用,符合原子价规则。

(2)键型:随电负性差的减小,分别形成离子键、共价键、金属键。

(3)组成:AB或AB2。

2 电子化合物(电子相)

(1)形成:电子浓度起主要作用,不符合原子价规则。

(2)键型:金属键(金属-金属)。

(3)组成:电子浓度对应晶体结构,可用化学式表示,可形成以化合物为基的固溶体。

3 间隙化合物

(1)形成:尺寸因素起主要作用。

(2)结构

简单间隙化合物(间隙相):金属原子呈现新结构,非金属原子位于其间隙,结

构简单。

复杂间隙化合物:主要是铁、钴、铬、锰的化合物,结构复杂。

(3)组成:可用化学式表示,可形成固溶体,复杂间隙化合物的金属元素可被置换。

4 拓扑密堆相

(1)形成:由大小原子的适当配合而形成的高密排结构。

(2)组成:AB2。

5 金属化合物的特性

(1)力学性能:高硬度、高硬度、低塑性。

(2)物化性能:具有电学、磁学、声学性质等,可用于半导体材料、形状记忆材料、储氢材料等。

第三节陶瓷晶体相

1 陶瓷材料简介

(1)分类:结构陶瓷(利用其力学性能):强度(叶片、活塞)、韧性(切削刀具)、硬度(研磨材料)。

功能陶瓷(利用其物理性能)

精细功能陶瓷:导电、气敏、湿敏、生物、超导陶瓷等。

功能转换陶瓷:压电、光电、热电、磁光、声光陶瓷等。

结合键:离子键、共价键。

硅酸盐陶瓷:主要是离子键结合,含一定比例的共价键。可用分子式表示

其组成。

2 硅酸盐陶瓷的结构特点与分类

(1)结构特点

a 结合键与结构:主要是离子键结合,含一定比例的共价键。硅位于氧四面体

的间隙。

b 每个氧最多被两个多面体共有。氧在两个四面体之间充当桥梁作用,称为氧

桥。

(2)结构分类

a 含有限Si-O团的硅酸盐,包括含孤立Si-O团和含成对或环状Si-O团两类。

b 链状硅酸盐:Si-O团共顶连接成一维结构,又含单链和双链两类。

c 层状硅酸盐:Si-O团底面共顶连接成二维结构。

d 骨架状硅酸盐:Si-O团共顶连接成三维结构。

第四节分子相

1 基本概念

(1)高分子化合物:由一种或多种化合物聚合而成的相对分子质量很大的化合物。又称聚合物或高聚物。

(2)分类

按相对分子质量:分为低分子聚合物(<5000)和高分子聚合物(>5000)。

按组成物质:分为有机聚合物和无机聚合物。

2 化学组成

(以氯乙烯聚合成聚氯乙烯为例)

(1)单体:组成高分子化合物的低分子化合物。

(2)链节:组成大分子的结构单元。

(3)聚合度n:大分子链中链节的重复次数。

3 高分子化合物的合成

(1)加聚反应

a 概念:由一种或多种单体相互加成而连接成聚合物的反应。(其产物为聚合物)

b 组成:与单体相同。反应过程中没有副产物。

c 分类

均聚反应:由一种单体参与的加聚反应。

共聚反应:由两种或两种以上单体参与的加聚反应。

(2)缩聚反应

a 概念:由一种或多种单体相互混合而连接成聚合物,同时析出某种低分子化

合物的反应。

b 分类

均缩聚反应:由一种单体参加的缩聚反应。

共缩聚反应:由两种或两种以上单体参加的缩聚反应。

4 高分子化合物的分类

(1)按性能与用途:塑料、橡胶、纤维、胶黏剂、涂料等。

(2)按生成反应类型:加聚物、缩聚物。

(3)按物质的热行为:热塑性塑料和热固性塑料。

5 高分子化合物的结构

(1)高分子链结构(链内结构,分子内结构)

a 化学组成

b 单体的连接方式

均聚物中单体的连接方式:头-尾连接、头-头或尾-尾相连、无轨连接。

共聚物中单体的连接方式:

无轨共聚:ABBABBABA

交替共聚:ABABABAB

嵌段共聚:AAAABBAAAABB

接枝共聚:AAAAAAAAAAA

B B

B B

B B

c 高分子链的构型(按取代基的位置与排列规律)

全同立构:取代基R全部处于主链一侧。

间同立构:取代基R相间分布在主链两侧。

无轨立构;取代基R在主链两侧不规则分布。

d 高分子链的几何形状:线型、支化型、体型。

(2)高分子的聚集态结构(链间结构、分子间结构)

无定形结构、部分结晶结构、结晶型结构(示意图)

6高分子材料的结构与性能特点

(1)易呈非晶态。

(2)弹性模量和强度低。

(3)容易老化。

(4)密度小。

(5)化学稳定性好。

第五节玻璃相

1 结构:长程无序、短程有序

(1)连续无轨网络模型。

(2)无规密堆模型。

(3)无轨则线团模型。

2 性能

(1)各向同性。

(2)无固定熔点。

(3)高强度、高耐蚀性、高导磁率(金属)。

第三章凝固与结晶

凝固:物质从液态到固态的转变过程。若凝固后的物质为晶体,则称之为结晶。

凝固过程影响后续工艺性能、使用性能和寿命。

凝固是相变过程,可为其它相变的研究提供基础。

第一节材料结晶的基本规律

1 液态材料的结构

结构:长程有序而短程有序。

特点(与固态相比):原子间距较大、原子配位数较小、原子排列较混乱。

2 过冷现象

(1)过冷:液态材料在理论结晶温度以下仍保持液态的现象。(见热分析实验图)(2)过冷度:液体材料的理论结晶温度(Tm) 与其实际温度之差。

△T=Tm-T (见冷却曲线)

注:过冷是凝固的必要条件(凝固过程总是在一定的过冷度下进行)。

3 结晶过程

(1)结晶的基本过程:形核-长大。(见示意图)

(2)描述结晶进程的两个参数

形核率:单位时间、单位体积液体中形成的晶核数量。用N表示。

长大速度:晶核生长过程中,液固界面在垂直界面方向上单位时间内迁移的距

离。用G表示。

第二节材料结晶的基本条件

1 热力学条件

(1)G-T曲线(图3-4)

a 是下降曲线:由G-T函数的一次导数(负)确定。

dG/dT=-S

b 是上凸曲线:由二次导数(负)确定。

d2G/d2T=-C p/T

c 液相曲线斜率大于固相:由一次导数大小确定。

二曲线相交于一点,即材料的熔点。

(2)热力学条件

△Gv=-L m△T/T m

a △T>0, △Gv<0-过冷是结晶的必要条件(之一)。

b △T越大, △Gv越小-过冷度越大,越有利于结晶。

c △Gv的绝对值为凝固过程的驱动力。

2 结构条件

结构起伏(相起伏):液态材料中出现的短程有序原子集团的时隐时现现象。是结晶的必要条件(之二)。

第三节晶核的形成

均匀形核:新相晶核在遍及母相的整个体积内无轨则均匀形成。

非均匀形核:新相晶核依附于其它物质择优形成。

1 均匀形核

(1)晶胚形成时的能量变化

△G=V△Gv+σS

=(4/3)πr3△Gv+4πr2σ (图3-8)

〔2〕临界晶核

d△G/dr=0

r k=-2σ/△Gv

临界晶核:半径为r k的晶胚。

(3〕临界过冷度

r k=-2σTm/Lm△T

临界过冷度:形成临界晶核时的过冷度。△T k.

△T≥△T k是结晶的必要条件。

(4)形核功与能量起伏

△G k=S kσ/3

临界形核功:形成临界晶核时需额外对形核所做的功。

能量起伏:系统中微小区域的能量偏离平均能量水平而高低不一的现象。(是结晶的必要条件之三)。

(5)形核率与过冷度的关系

N=N1.N2(图3-11,12)

由于N受N1.N2两个因素控制,形核率与过冷度之间是呈抛物线的关系。

2 非均匀形核

(1)模型:外来物质为一平面,固相晶胚为一球冠。

(2)自由能变化:表达式与均匀形核相同。

(3)临界形核功

计算时利用球冠体积、表面积表达式,结合平衡关系σlw=σsw+σsl cosθ计算

能量变化和临界形核功。

△G k非/△G k=(2-3cosθ+cos3θ)/4

a θ=0时,△G k非=0,杂质本身即为晶核;

b 180>θ>0时, △G k非<△G k, 杂质促进形核;

cθ=180时,△G k非=△G k,杂质不起作用。

(4)影响非均匀形核的因素

a 过冷度:(N-△T曲线有一下降过程)。(图3-16)

b 外来物质表面结构:θ越小越有利。点阵匹配原理:结构相似,点阵常数相

近。

c 外来物质表面形貌:表面下凹有利。(图3-17)

第四节晶核的长大

1 晶核长大的条件

(1)动态过冷

动态过冷度:晶核长大所需的界面过冷度。(是材料凝固的必要条件)(2)足够的温度

(3)合适的晶核表面结构。

2 液固界面微结构与晶体长大机制

粗糙界面(微观粗糙、宏观平整-金属或合金从来可的界面):垂直长大。

光滑界面(微观光滑、宏观粗糙-无机化合物或亚金属材料的界面):二维晶核长大、依靠缺陷长大。

3 液体中温度梯度与晶体的长大形态

(1)正温度梯度(液体中距液固界面越远,温度越高)

粗糙界面:平面状。

光滑界面:台阶状。

(2)负温度梯度(液体中距液固界面越远,温度越低)

粗糙界面:树枝状。

光滑界面:树枝状-台阶状。

第五节凝固理论的应用

1 材料铸态晶粒度的控制

Zv=0.9(N/G)3/4

(1)提高过冷度。降低浇铸温度,提高散热导热能力,适用于小件。

(2)化学变质处理。促进异质形核,阻碍晶粒长大。

(3)振动和搅拌。输入能力,破碎枝晶。

2 单晶体到额制备

(1)基本原理:保证一个晶核形成并长大。

(2)制备方法:尖端形核法和垂直提拉法。

3 定向凝固技术

(1)原理:单一方向散热获得柱状晶。

(2)制备方法。

4 急冷凝固技术

(1)非晶金属与合金

(2)微晶合金。

(3)准晶合金。

第四章二元相图

相:(概念回顾)

相图:描述系统的状态、温度、压力及成分之间关系的图解。

二元相图:

第一节相图的基本知识

1 相律

(1)相律:热力学平衡条件下,系统的组元数、相数和自由度数之间的关系。

(2)表达式:f=c-p+2; 压力一定时,f=c-p+1。

(3)应用

可确定系统中可能存在的最多平衡相数。如单元系2个,二元系3个。

可以解释纯金属与二元合金的结晶差别。纯金属结晶恒温进行,二元合金变温

进行。

2 相图的表示与建立

(1)状态与成分表示法

状态表示:温度-成分坐标系。坐标系中的点-表象点。

成分表示:质量分数或摩尔分数。

(2)相图的建立

方法:实验法和计算法。

过程:配制合金-测冷却曲线-确定转变温度-填入坐标-绘出曲线。

相图结构:两点、两线、三区。

3 杠杆定律

(1)平衡相成分的确定(根据相率,若温度一定,则自由度为0,平衡相成分随之确定。)

(2)数值确定:直接测量计算或投影到成分轴测量计算。

(3)注意:只适用于两相区;三点(支点和端点)要选准。

第二节二元匀晶相图

1 匀晶相同及其分析

(1)匀晶转变:由液相直接结晶出单相固溶体的转变。

(2)匀晶相图:具有匀晶转变特征的相图。

(3)相图分析(以Cu-Ni相图为例)

两点:纯组元的熔点;

两线:L, S相线;

三区:L, α, L+α。

2 固溶体合金的平衡结晶

(1)平衡结晶:每个时刻都能达到平衡的结晶过程。

(2)平衡结晶过程分析

①冷却曲线:温度-时间曲线;

②相(组织)与相变(各温区相的类型、相变反应式,杠杆定律应用。);

③组织示意图;

④成分均匀化:每时刻结晶出的固溶体的成分不同。

(3)与纯金属结晶的比较

①相同点:基本过程:形核-长大;

热力学条件:⊿T>0;

能量条件:能量起伏;

结构条件:结构起伏。

②不同点:合金在一个温度范围内结晶(可能性:相率分析,必要性:成分均

匀化。)

合金结晶是选分结晶:需成分起伏。

3 固溶体的不平衡结晶

(1)原因:冷速快(假设液相成分均匀、固相成分不均匀)。

(2)结晶过程特点:固相成分按平均成分线变化(但每一时刻符合相图);

结晶的温度范围增大;

组织多为树枝状。

(3)成分偏析:晶内偏析:一个晶粒内部化学成分不均匀现象。

枝晶偏析:树枝晶的枝干和枝间化学成分不均匀的现象。

(消除:扩散退火,在低于固相线温度长时间保温。)

4 稳态凝固时的溶质分布

(1)稳态凝固:从液固界面输出溶质速度等于溶质从边界层扩散出去速度的凝固过程。

(2)平衡分配系数:在一定温度下,固、液两平衡相中溶质浓度的比值。

k0=C s/C l

(3)溶质分布:液、固相内溶质完全混合(平衡凝固)-a;

固相不混合、液相完全混合-b;

固相不混合、液相完全不混合-c;

固相不混合、液相部分混合-d。

(4)区域熔炼(上述溶质分布规律的应用)

5 成分过冷及其对晶体生长形态的影响

(1)成分过冷:由成分变化与实际温度分布共同决定的过冷。

(2)形成:界面溶质浓度从高到低-液相线温度从低到高。

(图示:溶质分布曲线-匀晶相图-液相线温度分布曲线-实际温度分布曲线-成分过冷区。)

(3)成分过冷形成的条件和影响因素

条件:G/R

合金固有参数:m, k0;

实验可控参数:G, R。

(4)成分过冷对生长形态的影响

(正温度梯度下)G越大,成分过冷越大-生长形态:平面状-胞状-树枝状。

第三节二元共晶相图及合金凝固

共晶转变:由一定成分的液相同时结晶出两个一定成分固相的转变。

共晶相图:具有共晶转变特征的相图。

(液态无限互溶、固态有限互溶或完全不溶,且发生共晶反应。

共晶组织:共晶转变产物。(是两相混合物)

1 相图分析(相图三要素)

(1)点:纯组元熔点;最大溶解度点;共晶点(是亚共晶、过共晶成分分界点)等。

(2)线:结晶开始、结束线;溶解度曲线;共晶线等。

(3)区:3个单相区;3个两相区;1个三相区。

2 合金的平衡结晶及其组织(以Pb-Sn相图为例)

(1)Wsn<19%的合金

①凝固过程(冷却曲线、相变、组织示意图)。

②二次相(次生相)的生成:脱溶转变(二次析出或二次再结晶)。

③室温组织(α+βⅡ)及其相对量计算。

(2)共晶合金

①凝固过程(冷却曲线、相变、组织示意图)。

②共晶线上两相的相对量计算。

③室温组织(α+β+αⅡ+βⅡ)及其相对量计算。

(3)亚共晶合金

①凝固过程(冷却曲线、相变、组织示意图)。

②共晶线上两相的相对量计算。

③室温组织(α+βⅡ+(α+β))及其相对量计算。

④组织组成物与组织图

组织组成物:组成材料显微组织的各个不同本质和形态的部分。

组织图:用组织组成物填写的相图。

3 不平衡结晶及其组织

(1)伪共晶

①伪共晶:由非共晶成分的合金所得到的完全共晶组织。

②形成原因:不平衡结晶。成分位于共晶点附近。

③不平衡组织

由非共晶成分的合金得到的完全共晶组织。

共晶成分的合金得到的亚、过共晶组织。(伪共晶区偏移)

(2)不平衡共晶

①不平衡共晶:位于共晶线以外成分的合金发生共晶反应而形成的组织。

②原因:不平衡结晶。成分位于共晶线以外端点附件。

(3)离异共晶

①离异共晶:两相分离的共晶组织。

②形成原因

平衡条件下,成分位于共晶线上两端点附近。

不平衡条件下,成分位于共晶线外两端点附。

③消除:扩散退火。

4 共晶组织的形成

(1)共晶体的形成

成分互惠-交替形核片间搭桥-促进生长

两相交替分布

共晶组织

(2)共晶体的形态

粗糙-粗糙界面:层片状(一般情况)、棒状、纤维状(一相数量明显少于另一

相)

粗糙-平滑界面:具有不规则或复杂组织形态(由于两相微观结构不同)

所需动态过冷度不同,金属相任意长大,另一相在其间隙长大。可得到球状、针状、花朵状、树枝状共晶体。

非金属相与液相成分差别大。形成较大成分过冷,率先长大,形成针状、骨骼状、螺旋状、蜘蛛网状的共晶体。

(3)初生晶的形态:

金属固溶体:粗糙界面-树枝状;非金属相:平滑界面-规则多面体。

第四节二元包晶相图

包晶转变:由一个特定成分的固相和液相生成另一个特点成分固相的转变。

包晶相图:具有包晶转变特征的相图。

1 相图分析

点、线、区。

2 平衡结晶过程及其组织

(1)包晶合金的结晶

结晶过程:包晶线以下,L, α对β过饱和-界面生成β-三相间存在浓度梯度

-扩散-β长大-全部转变为β。

室温组织:β或β+αⅡ。

(2)成分在C-D之间合金的结晶

结晶过程:α剩余;

室温组织:α+β+αⅡ+βⅡ。

3 不平衡结晶及其组织

异常α相导致包晶偏析〔包晶转变要经β扩散。包晶偏析:因包晶转变不能充分进行而导致的成分不均匀现象。〕

异常β相由不平衡包晶转变引起。成分在靠近固相、包晶线以外端点附件。

4 包晶转变的应用

(1)组织设计:如轴承合金需要的软基体上分布硬质点的组织。

(2)晶粒细化。

第五节其它类型的二元相图

自学内容

第六节铁碳合金相图

一二元相图的分析和使用

(1)二元相图中的几何规律

①相邻相区的相数差1(点接触除外)-相区接触法则;

②三相区的形状是一条水平线,其上三点是平衡相的成分点。

③若两个三相区中有2个相同的相,则两水平线之间必是由这两相组成的两相区。

④单相区边界线的延长线应进入相邻的两相区。

(2)相图分析步骤

①以稳定的化合物分割相图;

②确定各点、线、区的意义;

③分析具体合金的结晶过程及其组织变化

注:虚线、点划线的意义-尚未准确确定的数据、磁学转变线、有序-无序转变线。

(3)相图与合金性能的关系

①根据相图判断材料的力学和物理性能

②根据相图判断材料的工艺性能

铸造性能:根据液固相线之间的距离X

X越大,成分偏析越严重(因为液固相成分差别大);

X越大,流动性越差(因为枝晶发达);

X越大,热裂倾向越大(因为液固两相共存的温区大)。

塑性加工性能:选择具有单相固溶体区的合金。

热处理性能:选择具有固态相变或固溶度变化的合金。

二铁-碳合金相图

1组元和相

(1)组元:铁-石墨相图:Fe,C;

铁-渗碳体相图:Fe-Fe3C。

相:L, δ, A(γ), F(α), Fe3C(K)。(其定义)

2相图分析

点:16个。

线:两条磁性转变线;三条等温转变线;其余三条线:GS,ES,PQ。

区:5个单相区,7个两相区,3个三相区。

相图标注:相组成物标注的相图。

组织组成物标注的相图。

3 合金分类:工业纯钛(C%<0.0218%)、碳钢(0.0218

(C%>2.11%)

4平衡结晶过程及其组织

(1)典型合金(7种)的平衡结晶过程、组织变化、室温组织及其相对量计算。

(2)重要问题:Fe3CⅠ, Fe3CⅡ, Fe3CⅢ的意义及其最大含量计算。

L d-L d`转变。

二次杠杆的应用。

5 含碳量对平衡组织和性能的影响

(1)对平衡组织的影响(随C%提高)

组织:α+Fe3CⅢL d`+Fe3CⅠ;

相:α减少,Fe3C增多;

Fe3C形态:Fe3CⅢ(薄网状、点状)共析Fe3C(层片状)Fe3CⅡ(网状)共

晶Fe3C(基体)Fe3CⅠ(粗大片状)。

(2)对力学性能的影响

强度、硬度升高,塑韧性下降。

(3)对工艺性能的影响

适合锻造:C%<2.11%,可得到单相组织。

适合铸造:C%~4.3%。,流动性好。

适合冷塑变:C%<0.25%,变形阻力小。

适合热处理:0.0218~2.11,有固态相变。

第七节相图的热力学解释

图示讲解

第八节铸锭组织及其控制

1 铸锭组织

(1)铸锭三区:表层细晶区、柱状晶区、中心等轴晶区。

(2)组织控制:受浇铸温度、冷却速度、化学成分、变质处理、机械振动与搅拌等因素影响。

2 铸锭缺陷

(1)微观偏析

(2)宏观偏析

正偏析

反偏析

比重偏析

(3)夹杂与气孔

夹杂:外来夹杂和内生夹杂。

气孔:析出型和反应型。

(4)缩孔和疏松

形成:凝固时体积缩小-补缩不足-形成缩孔。

分类:集中缩孔(缩孔、缩管)和分散缩孔(疏松,枝晶骨架相遇,封闭液体,

造成补缩困难形成。)

第五章三元相图

第一节总论

1 三元相图的主要特点

(1)是立体图形,主要由曲面构成;

(2)可发生四相平衡转变;

(3)一、二、三相区为一空间。

2 成分表示法-成分三角形(等边、等腰、直角三角形)

(1)已知点确定成分;

(2)已知成分确定点。

3 成分三角形中特殊的点和线

(1)三个顶点:代表三个纯组元;

(2)三个边上的点:二元系合金的成分点;

(3)平行于某条边的直线:其上合金所含由此边对应顶点所代表的组元的含量一定。

(4)通过某一顶点的直线:其上合金所含由另两个顶点所代表的两组元的比值恒定。

4 平衡转变的类型

(1)共晶转变:L0T αa+βb+γc;

(2)包晶转变:L0+αa+βb T γc;

(3)包共晶转变:L0+αa T βb+γc;

还有偏共晶、共析、包析、包共析转变等。

5 共线法则与杠杆定律

(1)共线法则:在一定温度下,三元合金两相平衡时,合金的成分点和两个平衡相的成分点必然位于成分三角形的同一条直线上。(由相率可知,此时系统有一个

自由度,表示一个相的成分可以独立改变,另一相的成分随之改变。)(2)杠杆定律:用法与二元相同。

两条推论

(1)给定合金在一定温度下处于两相平衡时,若其中一个相的成分给定,另一个相的成分点必然位于已知成分点连线的延长线上。

(2)若两个平衡相的成分点已知,合金的成分点必然位于两个已知成分点的连线上。

6 重心定律

在一定温度下,三元合金三相平衡时,合金的成分点为三个平衡相的成分点组成的三角形的质量重心。(由相率可知,此时系统有一个自由度,温度一定时,三个平衡相的成分是确定的。)

平衡相含量的计算:所计算相的成分点、合金成分点和二者连线的延长线与对边的交点组成一个杠杆。合金成分点为支点。计算方法同杠杆定律。

第二节三元匀晶相图

1 相图分析

点:Ta, Tb, Tc-三个纯组元的熔点;

面:液相面、固相面;

区:L, α, L+α。

2 三元固溶体合金的结晶规律

液相成分沿液相面、固相成分沿固相面,呈蝶形规律变化。

(立体图不实用)

3 等温界面(水平截面)

(1)做法:某一温度下的水平面与相图中各面的交线。

(2)截面图分析

3个相区:L, α, L+α;

2条相线:L1L2, S1S2(共轭曲线);

若干连接线:可作为计算相对量的杠杆(偏向低熔

点组元;可用合金成分点与顶点的连线近似代替)。

4 变温截面(垂直截面)

(1)做法:某一垂直平面与相图中各面的交线。

(2)二种常用变温截面经平行于某条边的直线做垂直面获得;

经通过某一顶点的直线做垂直面获得。

(3)结晶过程分析

成分轴的两端不一定是纯组元;

注意液、固相线不一定相交;

不能运用杠杆定律(液、固相线不是成分变化线)。

5 投影图

(1)等温线投影图:可确定合金结晶开始、结束温度。

(2)全方位投影图:匀晶相图不必要。

第三节三元共晶相图

一组元在固态互不相溶的共晶相图

(1)相图分析点:熔点;二元共晶点;三元共晶点。

两相共晶线

液相面交线

线:EnE 两相共晶面交线

液相单变量线

液相区与两相共晶面交线

液相面

固相面

面:两相共晶面

三元共晶面

两相区:3个

区:单相区:4个

三相区:4个

四相区:1个

(2)等温截面

应用:可确定平衡相及其成分;可运用杠杆定律和重心定律。

是直边三角形

三相平衡区两相区与之线接(水平截面与棱柱面交线)

单相区与之点接(水平截面与棱边的交点,表示三

个平衡相成分。)

(3)变温截面

应用:分析合金结晶过程,确定组织变化

局限性:不能分析成分变化。(成分在单变量线上,不在垂直截面上)

合金结晶过程分析;

(4)投影图相组成物相对量计算(杠杆定律、重心定律)

组织组成物相对量计算(杠杆定律、重心定律)

二组元在固态有限溶解的共晶相图

(1)相图分析

点:熔点;二元共晶点;三元共晶点。

两相共晶线

液相面交线

线:EnE 两相共晶面交线

液相单变量线

液相区与两相共晶面交线

固相单变量线

液相面

固相面:由匀晶转变结束面、两相共晶结束面、三相共晶结束面组成。

面:两相共晶面

三元共晶面

溶解度曲面:6个

两相区:6个

区:单相区:4个

三相区:4个

四相区:1个

(2)等温截面

应用:可确定平衡相及其成分;可运用杠杆定律和重心定律。

是直边三角形

三相平衡区两相区与之线接(水平截面与棱柱面交线)

单相区与之点接(水平截面与棱边的交点,表示三

个平衡相成分。)

相率相区的相数差1;

相区接触法则:单相区/两相区曲线相接;

两相区/三相区直线相接。

(3)变温截面

3个三相区

共晶相图特征:水平线

1个三相区

三相共晶区特征:曲边三角形。

应用:分析合金结晶过程,确定组织变化

局限性:不能分析成分变化。(成分在单变量线上,不在垂直截面上)

合金结晶过程分析;

(4)投影图相组成物相对量计算(杠杆定律、重心定律)

组织组成物相对量计算(杠杆定律、重心定律)

第四节三元相图总结

立体图:共轭曲面。

1 两相平衡

等温图:两条曲线。

立体图:三棱柱,棱边是三个平衡相单变量线。

2 三相平衡等温图:直边三角形,顶点是平衡相成分点。

垂直截面:曲边三角形,顶点不代表成分

根据参加反应相:后生成。

包、共晶转变判断根据居中单相区:上共下包。

3 四相平衡

(1)立体图中的四相平衡

共晶转变

类型:包共晶转变

包晶转变

与4个单相区点接触;

相区邻接(四相平衡面)与6个两相区线接触;

与4个三相区面接触。

共晶转变:上3下1(三相区);

反应类型判断(以四相平衡面为界)包共晶转变:上2下2;

包晶转变:上1下3。

(2)变温截面中的四相平衡

四相平衡区:上下都有三相区邻接。

条件:邻接三相区达4时;

判断转变类型类型:共晶、包共晶、包晶。

(3)投影图中的四相平衡

根据12根单变量判断;

根据液相单变量判断

共晶转变包共晶转变包晶转变

4 相区接触法则

相邻相区的相数差1(各种截面图适用)。

5 应用举例

第六章固体中的扩散

第一节概述

1 扩散的现象与本质

(1)扩散:热激活的原子通过自身的热振动克服束缚而迁移它处的过程。

(2)现象:柯肯达尔效应。

(3)本质:原子无序跃迁的统计结果。(不是原子的定向移动)。

2 扩散的分类

(1)根据有无浓度变化

自扩散:原子经由自己元素的晶体点阵而迁移的扩散。(如纯金属或固溶体的

晶粒长大。无浓度变化。)

互扩散:原子通过进入对方元素晶体点阵而导致的扩散。(有浓度变化)(2)根据扩散方向

下坡扩散:原子由高浓度处向低浓度处进行的扩散。

上坡扩散:原子由低浓度处向高浓度处进行的扩散。

(3)根据是否出现新相

原子扩散:扩散过程中不出现新相。

反应扩散:由之导致形成一种新相的扩散。

3 固态扩散的条件

(1)温度足够高;

(2)时间足够长;

(3)扩散原子能固溶;

(4)具有驱动力:化学位梯度。

第二节扩散定律

1 菲克第一定律

(1)第一定律描述:单位时间内通过垂直于扩散方向的某一单位面积截面的扩散物质流量(扩散通量J)与浓度梯度成正比。

(2)表达式:J=-D(dc/dx)。(C-溶质原子浓度;D-扩散系数。)

(3)适用条件:稳态扩散,dc/dt=0。浓度及浓度梯度不随时间改变。

2 菲克第二定律

一般:?C/?t=?(D?C/?x)/ ?x

二维:

(1)表达式特殊:?C/?t=D?2C/?x2

三维:?C/?t=D(?2/?x2+?2/?y2+?2/?z2)C

稳态扩散:?C/?t=0,?J/?x=0。

(2)适用条件:

非稳态扩散:?C/?t≠0,?J/?x≠0(?C/?t=-?J/?x)。

3 扩散第二定律的应用

(1)误差函数解

适用条件:无限长棒和半无限长棒。

表达式:C=C1-(C1-C2)erf(x/2√Dt) (半无限长棒)。

在渗碳条件下:C:x,t处的浓度;C1:表面含碳量;C2:钢的原始含碳量。

(2)正弦解

C x=Cp-A0sin(πx/λ)

Cp:平均成分;A0:振幅Cmax- Cp;λ:枝晶间距的一半。

对于均匀化退火,若要求枝晶中心成分偏析振幅降低到1/100,则:

[C(λ/2,t)- Cp]/( Cmax- Cp)=exp(-π2Dt/λ2)=1/100。

第三节扩散的微观机理与现象

1 扩散机制

间隙-间隙;

(1)间隙机制平衡位置-间隙-间隙:较困难;

间隙-篡位-结点位置。

方式:原子跃迁到与之相邻的空位;

(2)空位机制条件:原子近旁存在空位。

(金属和置换固溶体中原子的扩散。)

直接换位

(3)换位机制

环形换位

(所需能量较高。)

2 扩散程度的描述

(1)原子跃迁的距离

R=√Гt r

R: 扩散距离;Г:原子跃迁的频率(在一定温度下恒定);r:原子一次跃迁距离(如一个原子间距)。

(2)扩散系数

D=α2PГ

对于立方结构晶体P=1/6, 上式可写为

D=α2Г/6

P为跃迁方向几率;α是常数,对于简单立方结构α=a; 对于面向立方结构α=√2a/2; α=√3a/2。

(3)扩散激活能

扩散激活能Q:原子跃迁时所需克服周围原子对其束缚的势垒。

间隙扩散扩散激活能与扩散系数的关系

D=D0exp(-Q/RT)

D0:扩散常数。

空位扩散激活能与扩散系数的关系

D=D0exp(-△E/kT)

△E=△E f(空位形成功)+△Em(空位迁移激活能)。

3扩散的驱动力与上坡扩散

(1)扩散的驱动力

对于多元体系,设n为组元i的原子数,则在等温等压条件下,组元i原子的自由能可用化学位表示:

μi=?G/?n i

扩散的驱动力为化学位梯度,即

F=-?μi /?x

负号表示扩散驱动力指向化学位降低的方向。

(2)扩散的热力学因子

组元i的扩散系数可表示为

D i=KTB i(1+? lnγi/? lnxi)

其中,(1+? lnγi/? lnxi)称为热力学因子。当(1+? lnγi/? lnxi)<0时,D I<0,发生上坡扩散。

(3)上坡扩散

概念:原子由低浓度处向高浓度处迁移的扩散。

驱动力:化学位梯度。

其它引起上坡扩散的因素:

弹性应力的作用-大直径原子跑向点阵的受拉部分,小直径原子跑向点阵的受压部分。

晶界的内吸附:某些原子易富集在晶界上。

最新材料科学基础总结

材料科学基础复习总结填空 1.过冷奥氏体发生的马氏体转变属于(非扩散型相变)。 2.碳钢淬火要得到马氏体组织,其冷却速度要(大于)临界冷却速度(vk)。 3.珠光体型的组织是由铁素体和渗碳体组成的(机械混合物)。 4.工件淬火后需立即回火处理,随着回火温度的提高,材料的硬度(越低)。 5.共析成分的液态铁碳合金缓慢冷却得到的平衡组织是P(铁碳相图) 6.表征材料表面局部区域内抵抗变形能力的指标为(硬度)。 7.下列原子结合键既具有方向性又具有饱和性的是(共价键)。 8.下面哪个不属于大多数金属具有的晶体结构(面心立方、体心立方、密排六方)。 9.面心立方结构晶胞中原子数个数是( 4 )。 10.如图1所示的位错环中,属于刃型位错的是()。 11.A为右螺旋位错,B为左螺旋位 错,C为正刃位错,D为负刃位错, E为混合位错。 判断方法是根据柏氏矢量与位错线 所形成的角度,图中位错环所标的 方向为位错线的规定方向,柏氏矢 量垂直于位错的是刃型位错,然后 将柏氏矢量按顺时针方向旋转90°,与位错方向相同的为正,相反的为负,叫做顺正逆负。柏氏矢量与位错方向平行的是螺型位错,方向相同的为右螺,方向相反为左螺,这叫做顺右逆左。除ABCD四点之外位错环上其他任意一点均是混合位错。 12.固体材料中物质传输的方式为(扩散)。液态是对流。 13.纯铁在室温下的晶体结构为(面心立方)。 14.由一种成分的液相同时凝固生成两种不同成分固相的过程称为(共晶)。 15.共析包晶 16.碳原子溶于α-Fe中形成的固溶体为(铁素体)。 17.钢铁材料的热加工通常需要加热到(奥氏体)相区。 18.成分三角形中标出了O材料的成分点( )。三元相图 19.白铜是以(镍)为主要合金元素的铜合金。 20.45钢和40Cr钢比较,45钢的(淬透性低(合金),淬硬性高(含碳量))。 21.金属塑性变形方式的是(滑移)。孪生 22.高分子大分子链的柔顺性决定了高分子材料独特的性能。 23.在置换型固溶体中,两组元原子扩散速率的差异引起的标记面漂移现象称为柯肯达耳效应。 24.为减少铸造缺陷,铸造合金需要熔点低、流动性好,因此一般选择共晶点附近的合金。 25.根据相律,对于三元合金,最大的平衡相数为4个。 26.调质处理是淬火+高温回火的复合热处理工艺。 27.材料塑性常用断后伸长率和断后收缩率两个指标表示。

(完整版)厦大材料科学基础知识点总结

第一章原子结构和键合 原子中一个电子的空间和能量的描述 (1)主量子数ni:决定原子中电子能量和核间平均距离,即量子壳层,取正整数K、L、M、N、O、P、Q (2)轨道动量量子数li:给出电子在同一量子壳层内所处的能级(电子亚层),与电子运动的角动量有关,s,p,d,f (3)磁量子数mi:给出每个轨道角动量数或轨道数,决定原子轨道或子云在空间的伸展方向 (4)自旋角动量量子数si:表示电子自旋的方向,取值为+1/2 或-1/2 核外电子的排布规律 (1)能量最低原理:电子总是占据能量最低的壳层,使体系的能量最低。而在同一电子层,电子依次按s,p,d,f的次序排列。 (2)Pauli不相容原理:在一个原子中不可能有运动状态完全一样的两个电子。因此,主量子数为n的壳层,最多容纳2n2电子。 (3)Hund原则:在同一个亚能级中的各个能级中,电子的排布尽可能分占不同的能级,而且自旋方向相同。 原子间的键(见作业) 第二章固体结构 晶体结构的基本特征:原子(或分子、离子)在三维空间呈周期性重复排列。即存在长程有序。性能上两大特点:(1)固定的熔点;(2)各向异性 空间点阵的概念将晶体中原子或原子团抽象为纯几何点(阵点)即可得到一个由无数几何点在三维空间排列成规则的阵列—空间点阵特征:每个阵点在空间分布必须具有完全相同的周围环境 晶胞:代表性的基本单元(最小平行六面体) 选取晶胞的原则: Ⅰ)选取的平行六面体应与宏观晶体具有同样的对称性; Ⅱ)平行六面体内的棱和角相等的数目应最多; Ⅲ)当平行六面体的棱角存在直角时,直角的数目应最多; Ⅳ)在满足上条件,晶胞应具有最小的体积。 晶体结构与空间点阵的区别: 空间点阵是晶体中质点的几何学抽象,用以描述和分析晶体结构的周期性和对称性,由于各点阵的周围环境相同,只有14种。 晶体是指晶体中实际质点(原子、离子和分子)的具体排列情况,它们能组成各种类型的排列,因此,实际存在的晶体结构是无限的。 晶带 所有相交于某一晶向直线或平行于此直线的晶面构成一个“晶带”。此直线称为晶带轴,所有的这些晶面都称为共带面。晶带轴[u v w]与该晶带的晶面(h k l)之间存在以下关系 hu+kv+lw=0 ————晶带定律 凡满足此关系的晶面都属于以[u v w]为晶带轴的晶带

建筑工程施工技术知识点总结

1一顺一丁是全部顺砖与一皮全部丁砖间隔砌成。上下皮缝相互错开4分之1砖长。适合砌一砖。一砖半以及2砖墙。“三一砌砖法”,一块砖,一铲灰,一揉压。2立皮数杆指在其上划有每皮砖和灰缝厚度,以及门窗洞口,过梁,楼板等高度位置的一种标杆。设置房屋的四大角以及纵横墙的交接处,前面过长时,应每隔10到15米立一根。皮数杆需要水平仪统一竖立,使皮数杆的正负00与建筑物的正负00相吻合。 3施工缝的留置与处理。如果因为技术上的原因或设备,人力的限制,混凝土不能连续浇灌,中间的间歇时间超过混凝土初凝时间,则应留置施工缝。由于该处新旧混凝土的结合能力较差,故施工缝应留置在结构受剪力较小且便于施工的部位。柱间应留置水平缝,梁板应留垂直施工缝。4根据施工缝的处理方法,在施工缝处连续浇筑混凝土时,应除去表面的水泥薄层,松动的石子和松软的混凝层,并加以充分湿润和冲洗干净,不得积水。浇筑时,施工缝处宜先铺数水泥砂浆或与混凝土成分相同的水泥砂浆一层,厚度为10到15毫米,以保证接缝处的质量。带教主的混凝土的强度不低于1.2兆帕是,才允许浇筑。5先张法是在浇筑混凝土之前将预应力筋张拉到涉及控制力,用夹具将其临时固定在台座或钢板上,进行绑扎钢筋,安装铁件,支设模板,然后浇筑混凝土,待混凝土达到规定的的强度,保证预应力筋与混凝土有足够的粘结能力,放松预应力筋,借助于他们之间的粘结力,在预应力筋弹性回缩时,在预应力回缩的同时,使混凝土构建受拉区的混凝土获得 预应力。6后张法是先制作构 件,在构件中预先留出相应的孔 道,待混凝土的强度达到设计规 定的数值后,在孔道内穿入预应 力筋,用张拉机具进行张拉,并 利用锚具把张拉后的预应力筋 锚固在构建的端部。预应力的张 拉力,主要靠构建端部的锚具传 递到混凝土,使其产生足够的预 应力。张拉锚固后,立即在空道 内灌浆,是预应力筋不受锈蚀, 并与构件形成整体。7土方开挖 应遵循开槽支撑,先撑后挖, 分层开挖,严禁超挖的原则。 流沙现象:当基坑挖至地下水 位以下时,而土质又是细沙或 粉砂时当采用集水井降水法降 水时,有时坑底下面的土会形 成流动状态,随地下水一起涌 动入基坑,这种现象叫流沙现 象 8流沙产生的原因,当基坑挖置 地下水位一下时,基坑的土就受 到动水压力的作用。如果重水压 力大于或者等于土的浸入重度 的时候,土粒失去自重处于悬浮 状态,能随着参透的水一起流 动,带入基坑发生流沙的现象。 流沙的防治方法:1)抢挖法, 2)打板桩发3)水下挖土法4) 人工降低地下水位5)地下连续 墙9填土压实的方法,人工压 实,机械压实。碾压法:爆破 石渣,碎石类土,杂填土,沙 土,,夯实法:,砂性土,湿性粘 土,杂填土,振动压实法:对 于密实要求不高的大面积填方, 在缺乏碾压机械时,可采用推土 机拖拉机或铲运机行驶,推土, 平土来压实。 桩的吊起,运输和堆放:当桩 的混凝土强度达到设计强度的 70%方可起吊,100%时方可运 输打桩。灌注桩:是直接在桩位 上就地成孔,然后再孔内灌注混 凝土或钢筋混凝土的一种成桩 方法。优:有节约材料,成本低 廉,施工不收地层变化的限制, 无需接桩及截桩,缺:技术时间 间隔长,不能立即承受荷载,操 作要求严,早软土地基中易缩 颈,断裂冬季施工困难9钻孔灌 注桩是利用钻机在桩位成孔,然 后再桩孔内放入钢筋骨架再灌 混凝土而成的灌注桩。 10反插法施工:满混凝土后先 震动后开始拔管,高度0.5到1 米,后像下反插深度为0.3到0.5. 反复始终震动,直至套管全部拔 出地面。在拔出过程中,分段添 加混凝土,保持管内的混凝土面 高于地表面或高于地下水位1 到1.5,拔管的速度应小于0.5 米每分钟。反插能使桩的截面增 大,从而提高桩的承载力,宜在 较差的软土地基应用。11扣件 的形式:回转扣件,将两根钢管 成90度(立杆与大横杆,小横 杆);直角扣件,将两根钢管加 大(立杆大横杆);对角扣件, 将两根钢管成任意角度(抛撑剪 力力撑)12确定试件的混凝土 的强度代表值。每组3个时间 应在同盘混凝土中取样制作,并 按下列规定确定该组试件的混 凝土的强度代表值a取3个试件 强度测量平均值b当3试件个中 的最大值或最小值之差超过中 间值的百分之15是,取中间值。 C当3个试件中的最大值和最 小值与中间值的差均超过中间 值的百分之15,该组试件不应 作为强度品d评定依据。 履带式起重机:W1-50型, W1-100型,W1-200型;三个 主要参数:起重量Q,起重半径 R,起重高度H 单层结构厂房结构安装:分拣 安装法和综合安装法。分拣安装 法,起重机在车间内每开行一次 仅安装一种或两种构件,通常分 三次安装完成所有构件。综合安 装:起重机在车间内的一次开行 中,分节间安装完所有的各种类 型的构件。分件安装,更换掉沟 的次数少,但是所走的路程较 长;综合吊装,需要频繁的更换 掉钩,但走的路线较短。 、某混凝土的实验室配 合比为1:2.21:4.32,水 灰比W/C=0.58。每m3 混凝土水泥用量 C=285千克。现场实测 砂的含水率为3%,石 子含水率为2%,试求: (1)该混凝土的施工 配合比,(2)每m3 混 凝土各种材料用量。 施工配合比=1:2.21 (1+3%):4.32(1+2%) =1:2.276:4.41(4分) 2 1m3各种材料用量 水泥C=285kg,砂 S=285x2.276=649kg 子G=285x4.41=1257kg =285x0.58-285x2.21-3 %-4.32x285-2%=156.4 kg

2020年个人教学工作总结范文总结

个人教学工作总结范文总结 一、班主任工作:担任班主任这么多年了,工作之中充满欢乐,但又有难言的苦衷,对于我们汝州市体育中学的学生,班主任工作真是不轻松,在面对他们调皮和聪明并存的双重情况下,我只有审慎选择合理的方法, 我的小结分以下几部分: 1、对学生情况的掌握: ①学生底子差、基础特别薄弱; ②没有良好的学习习惯(课前不预习,课后不复习); ③任性、自我缺乏集体主义精神; ④思维活跃,反映灵敏,对新生事物接受比较快,对外界的变化反映灵敏; ⑤没有良好的习惯,前五天花钱花个够,后五天饥一顿,饱一顿,要请假。

2、对班风情况的掌握: ①学生在对事物的认同上容易达成共识; ②学生活跃,乐于参加学校的各项政治活动; ③学生中也有较强的自我组织活动能力; ④思想浮动,没有形成良好的学风。 3、我的工作方法: ①腿勤、口勤、手勤,以身作则,有条有理; ②以学习为中心,形成学生动手、动脑的良好学风; ③作好班干部的培养工作; ④随时同学生谈心,及时找出缺点,使学生加以改正。 ⑤在班上树立正气,对不良苗头及时制止。

4、我的工作思路: ①教会学生做人。在班级管理中,要求每一位学生认真对照自己的行为习惯,反思自己,提升自我的人格魅力,学会堂堂正正做人,踏踏实实做事, ②正确看待基础和发展的关系。针对我们学生基础差、底子薄的情况,首先端正自己的态度,恰当地看待基础和发展的关系。不放弃每一位学生,只要他们有一点进步就表扬鼓励他们。增加学生的学习信心、勇气和坚韧不拔的毅力。这半学期我班学生的学习情绪不断高涨,学风有所进步,班风有正气,学生基本上没有因班主任的工作失误而流失。 ③教育应用针对性。在班上设立了严厉的奖罚制度,对表现好的学生进行表扬,对差生进行个别谈心、家访等工作,使差生迎头赶上。 二、教学工作:今年我教的科目是七年级教学,学生基础差,对老师的教学水平要求更高。我从个个环节做起,一个环节也不放松。 ①备课。备课是教学环节第一步,决定这些课的成功与失败。虽然按我的教龄可能简备,提纲式的备课,但 ___这样做。还是一节一节地认真详细的备课。细心琢磨 ___使学生接受的更快。

材料科学基础总结

材料基础 一、名词解释 1、塑形变形: 2、滑移:晶体一部分相对另一部分沿着特定的晶面和晶向发生的平移滑动。滑移后再晶体表面留下滑移台阶,且晶体滑移是不均匀的。 3、滑移带:单晶体进行塑性变形后,在光学显微镜下,发现抛光表面有许多线条,称为滑移带。 4、滑移线:组成滑移带的相互平行的小台阶。 5、滑移系:一个滑移面和其上的一个滑移方向组成一个滑移系,表示晶体滑移是可能采取的一个空间方向。滑移系越多,晶体的塑形越好。 6、单滑移:当只有一组滑移系处于最有利的取向时,分切应力最大,便进行单系滑移。 7、多滑移:至少有两组滑移系的分切应力同时达到临界值,同时或交替进行滑移的过程。 8、交滑移:至少两个滑移面沿着某个共同的滑移方向同时或交替滑移,这种滑移叫交滑移。(会出现曲折或波纹状滑移带\最易发生交滑移的是体心立方晶体\纯螺旋位错) 9、孪生变形:在切应力作用下,晶体的一部分沿一定晶面和一定的晶向相对于另一部分作均匀的切变所产生的变形。(相邻晶面的相对位移量相等) 10、孪晶:孪生后,均匀切变区的取向发生改变,与未切变区构成镜面对称,形成孪晶。 11、晶体的孪晶面和孪生方向:体心,{112}【111】,面心立方{111}【112-】,密排六方{101-2} 【1-011】。 12、软取向,硬取向:分切应力最大时次取向是软取向;当外力与滑移面平行或垂直时,晶体无法滑移,这种取向称为硬取向。 13、几何软化、硬化:在拉伸时,随着晶体的取向的变化,滑移面的法向与外力轴的夹角越来越远离45度时滑移变得困难的这种现象是几个硬化;当夹角越来愈接近45度,使滑移越来越容易进行的现象叫做几何软化。 14、细晶强化:晶体中,用细化晶粒来提高材料强度的方法为细晶强化。也能改善晶体的塑形和韧性。 15、固熔强化:当合金由单相固熔体构成时,随熔质原子含量的增加,其塑性变形抗力大大提高,表现为强度,硬度的不断增加,塑性、韧性的不断下降,的这种现象称为固熔强化。(单相) 16、(多相)沉淀强化、时效强化:相变热处理 17、(多相)弥散强化:粉末冶金 18、纤维组织:随变形量的增加,晶粒沿变形方向被拉长扁平晶粒,变形量很大时,各晶粒一不能分辨而成为一片如纤维状的条纹称为纤维组织。 19、带状组织:当金属中组织不均匀,如有枝晶偏析或夹杂物时,塑性变形会使这些区域伸长,在热加工后或随后的热处理中会出现带状组织。 20、变形织构:多晶体材料中,岁变形度的增加,多晶体中原先取向的各个晶粒发生转动,从而使取向趋于一致,形成择优取向。丝织构【***】平行于线轴,板织构{***}【***】平行于扎制方向。 21、制耳:用有织构的扎制板材深冲成型零件时,将会因为板材各方向变形能不同,使深冲出来工件边缘不齐,壁厚不均的现象。 22、应变硬化、加工硬化:金属塑性变形过程中,随着变形量的增加,金属强度,硬度上升,塑性、韧性下降的现象。作用:变形均匀,均衡负载,增加安全性,提高强度 23、冷拉:试样在拉断前卸载,或因试样因被拉断二自动卸载,则拉伸中产生的大变形除少量可恢复外,大部分变形将保留下来的过程。

材料科学基础知识点总结

金属学与热处理总结 一、金属的晶体结构 重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。 基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。 金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。 位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。 二、纯金属的结晶 重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。 基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。 相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。 过冷度:理论结晶温度与实际结晶温度的差称为过冷度。 变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。 过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学的角度上看,

《建设工程施工管理》知识点汇总

2Z101000 施工管理 一、施工方的项目管理(2分) 由于项目管理的核心任务是项目的因此按项目管理学的基本理论,没有明确目标的建设工程不能成为项目管理的对象。(去年考点) 2Z101011 1、建设工程项目管理的内涵是 (哪三大目标,通过什么实现三大目标) 2、“自项目开始至项目完成”指的是项目的实施期; 3、建设工程项目管理的类型: (1)业主方的项目管理。是管理的核心。 (2)设计方的项目管理。 (3)施工方的项目管理。 (4)供货方的项目管理。 (5)建设项目工程总承包方的项目管理等。EPC承包 4、业主方项目管理的目标和任务: (1 招投标工作分散,不列为单独阶段。 (2 (3 5、设计方项目管理的目标和任务: (1)设计方作为项目建设的一个参与方,其项目管理主要服务于项目的整体利益和设计方本 身的利益。其项目管理的目标包括 项目投资目标能否实现,与设计工作密切相关。(2)设计方的项目管理工作主要在设计阶段进行,但它也涉及设计前的准备阶段、施工阶段、动用前准备阶段和保修期。 (3

6、供货方项目管理的目标和任务 (1)供货方作为项目建设的一个参与方,其项目管理主要服务于项目的整体利益和供货方本 (三大目标) (2 7、建设项目工程总承包方项目管理的目标和任务 (1)建设项目工程总承包方作为项目建设的一个参与方,其项目管理主要服务于项目的整体 (2 2Z101012 8、施工方项目管理的任务 (1)施工方是承担施工任务的单位的总称谓,它可能是施工总承包方、施工总承包管理方、 分包施工方、建设项目总承包的的施工任务执行方或仅仅提供施工劳务的参与方。 9、施工总承包方的管理任务 (1)负责整个工程的施工安全、施工总进度控制、施工质量控制和施工的组织等。 (2)控制施工的成本. (3 (4)负责施工资源的供应组织。 (5 10、施工总承包管理方的主要特征(只负责管理) (1)施工总承包管理方对所承包的建设工程承担施工任务组织的总的责任。 。 ○1、一般情况下,施工总承包方不承担施工任务,它主要进行施工的总体管理和协调。如果施工总承包管理方通过投标,获得一部分施工任务,则它也可以参与施工。 ○2 协助业主参与与施工的招标和发包工 作, ○3

2020年教师个人工作总结范文大全

2020年教师个人工作总结范文大全 【篇一】2020年教师个人工作总结范文 一年来,在教育教学工作中,我始终坚持党的教育方针,面向全 体学生,教书育人,为人师表,确立“以学生为主体”,“以培养学 生主动发展”为中心的教学思想,重视学生的个性发展,重视激发学 生的创造水平,培养学生德、智、体、美、劳全面发展。 在这年里,我在思想上严于律己,热爱教育事业。时时以一个团 员的身份来约束自己,鞭策自己。对自己要求严格,力争在思想上、 工作上在同事、学生的心目中树立起榜样的作用。我还积极参加各类 政治业务学习,努力提升自己的政治水平和业务水平。服从学校的工 作安排,配合领导和老师们做好校内外的各项工作。 一、增强学习,持续提升思想业务素质。 这个学期,在教育教学工作中,我始终坚持党的教育方针,面向 全体学生,教书育人,为人师表,确立“以学生为主体”,“以培养 学生主动发展”为中心的教学思想,重视学生的个性发展,重视激发 学生的创造水平,培养学生德、智、体、美、劳全面发展。我在思想 上严于律己,热爱教育事业。时时以一个好教师的身份来约束自己, 鞭策自己,力争在思想上、工作上取得进步,得到提升,使自己能顺 应社会发展的需要,适合岗位竞聘的需要。 一学期来,我还积极参加各类学习,深刻剖析自己工作中的不足,找出自己与其他教师间的差别,写出心得体会,努力提升自己的政治 水平和理论修养。同时,服从学校的工作安排,配合领导和老师们做 好校内外的各项工作。“学海无涯,教无止境”,作为一名教师,只 有持续充电,才能维持教学的青春和活力。随着社会的发展,知识的 更新,也催促着我持续学习。所以,本学期,除了积极参加政治理论 学习外,我还积极实行业务学习,提升自己的工作水平和业务素养,

材料科学基础总结

材料科学基础总结 铸造C081 张云龙 一、名词解释 1、空间点阵:由周围环境相同的阵点在空间排列的三维列阵称为空间点阵。 2、晶体结构:由实际原子、离子、分子或各种原子集团,按一定规律的具体排列方式称为 晶体结构,或称为晶体点阵。 3、晶格常数:(为了便于分析晶体中的粒子排列,可以从晶体的点阵中取一个具有代表性 的基本单元作为点阵的基本单元,称为晶胞。)晶格常数就是指晶胞的边长。 4、晶向指数:(在晶格中,穿过两个以上结点的任一直线,都代表晶体中一个原子阵列在 空间的位向,称为晶向。)为了确定晶向在晶体中的相对取向,需要一种符号,这种符号称为晶向指数。 5、晶面指数:(在晶格中,由结点组成的任一平面都代表晶体的原子平面,称为晶面)为 了确定晶面在晶体中的相对取向,需要一种符号,这种符号称为晶面指数。 6、晶向族:原子排列相同但空间位向不同的所有晶向称为晶向族。 7、配位数:每个原子周围最近邻且等距离的原子的数目称为配位数。 8、致密度:计算单位晶胞中原子所占体积与晶胞体积之比,比值称为致密度。 9、各向异性:晶体的某些物理和力学性能在不同方向上具有不同的数值,此为晶体的各向 异性。 10、晶体缺陷:通常把晶体中原子偏离其平衡位置而出现不完整性的区域称为晶体缺陷。 11、点缺陷:在三维方向上尺寸都有很小的缺陷。 12、线缺陷:在两个方向上尺寸很小、令一个尺寸上尺寸较大的缺陷。(指各种类型的位错, 是晶体中某处一列或若干列原子发生了有规律的错排现象) 13、面缺陷:在一个方向上尺寸很小,令两个方向上尺寸较大的缺陷。 14、刃型位错:位错线与滑移方向垂直的位错。 15、螺型位错:位错线与滑移方向平行的位错。 16、混合型位错:位错线与滑移方向既不垂直也不平行而成任意角度的位错。 17、位错的滑移:在切应力的作用下,位错沿滑移面的运动称为位错的滑移。 18、位错的攀移:刃型位错在正应力的作用下,位错垂直于滑移面的运动。 19、单位位错:柏氏矢量的模等于该晶向上原子的间距的位错则为单位位错。 20、部分位错:柏氏矢量的模小于该晶向上原子的间距的位错则为部分位错。 21、扩展位错:两个肖克莱部分位错中间夹一层错,这样的位错组态称为扩展位错。 22、肖克莱部分位错:层错区与完整晶体区的交线。 23、弗克莱部分位错:层错区与右半部分完整晶体之间的边界。 24、上坡扩散:扩散由低浓度向高浓度进行而导致成分偏析或形成第二相的扩散。 25、下坡扩散:扩散由高浓度向低浓度进行而导致成分均匀的扩散。 26、原子扩散:扩散中只形成固溶体而无其它新相形成的扩散。 27、反应扩散:扩散中有新相形成的扩散。 28、自扩散:在均匀的固溶体或纯金属中原子的扩散,此种扩散不伴有浓度的变化。 29、互扩散:在不均匀的固溶体中异类原子的相对扩散,此种扩散伴有浓度的变化。 30、体扩散:通过均匀介质的扩散。 31、扩散能量:单位时间内通过垂直于扩散方向的单位面积的扩散物质流量。

2020年度小学教师工作总结范文

2020年度小学教师工作总结范文 时间如流水,一学年的教学工作已接近尾声,回顾一年的工作, 想说的真是太多太多。这个年,既忙碌,又充实,在校领导和同事们 的协助下,我顺利的完成了各方面的工作。现将本学年的工作做一个 小结,借以促动提升。一、思想工作方面 本人思想端正,热情努力,服从领导的工作安排,办事认真负责。并在各方面严格要求自己,努力地提升自己,以便使自己更快地适合 社会发展的形势。热爱教育事业,把自己的精力、水平全部用于学校 的教学过程中,并能自觉遵守职业道德,在学生中树立了良好的教师 形象。能够主动与同事研究业务,互相学习,配合默契,教学水平共 同提升,能够顾全大局,团结协作。作为老师我更明白,只有持续充 电,才能维持教学的活力。这学期有幸有外出学习的机会,通过 学习活动,持续充实了自己、丰富了自己的知识和见识、为自己更好 的教学实践作好了准备。 二、教育教学方面 教育教学是我们教师工作的首要任务。教育是爱心事业,为培养 高素质的下一代。今年上半年本人担任初三(8)班班主任及数学教学工作,同时兼带初一一个班的数学教学。备课量大,任务繁重自不必多言。虽然很消耗脑力,每天要转换角色,转换思路上两节不同的数学课, 但是却使自己更快的再次熟悉教材,知识量也飞速增加,并融会贯通. 这对提升教学水平有很大的协助!痛并收获着,快乐着!我想,这种跨头 的独特经历今后不会在有了! 下半年本人担任初一(7)班的班主任,担任初一4、7两个班的数学 教学工作.在班级管理和课堂教学中,本人仍以培养学生自学水平为主,提升学生的素质为目标。通过教育,让学生深切的感受到拥有知识能够 提升生活和工作的质量,使自己成为一个睿智和有品位的人!本人深切 的明白,教育不是灌输,而是点燃火焰!班级作为学校教学活动的基础单

材料科学基础要背知识总结

2010级材料科学基础复习参考材料 一、名词解释 第二章 2-1 Crystalline and Non-crystalline 结晶态与非晶态 Crystalline: The state of a solid material characterized by a periodic and repeating three-dimensional array of atoms,ions,or molecules. Non-crystalline:The solid state wherein there is no long-range atomic order.sometimes the terms amorphous,glassy,and vitreous are used synonymously. 2-2 Single crystalline materials and polycrystalline materials 单晶与多晶材料 Single crystalline materials:A crystalline solid for which the periodic and repeated atomic pattern extends throughout its entirety without interruption. polycrystalline materials:Referring to crystalline materials that are composed of more than one crystal or grain. 2-3 Crystal structure, point lattice and unit cell 晶体结构、空间点阵、单位晶胞 Crystal structure:For crystalline materials,the manner in which atoms or ions are arrayed in space.It is defined in terms of the unit cell geometry and the atom positions within the unite cell. point lattice:The regular geometrical arrangement of points in crystal space. unit cell:The basic structural unit of a crystal structure.It is generally defined in terms of atom(or ion) positions within a parallelepiped volume. 2-4点群与空间群 点群:是指宏观晶体中对称要素的集合。它包含了宏观晶体中全部对称要素的总和以及它们相互间的组合关系。 空间群:晶体内部结构中全部对称要素的集合。 2-5 Direction indices and plane indices 晶向指数与晶面指数 晶向指数:晶体点阵在任何方向上分解为相互平行的结点直线组,质点等距离地分布在直线上。位于一条直线上的质点构成一个晶向。用表示,其中u v w是晶向矢量在参考坐标系X Y Z轴上的矢量分量等比例化简而得到。 晶面指数:可将晶体点阵在任何方向上分解为相互平行的结点平面,即晶面,用表示,h l k是晶面在三个坐标轴(晶轴)上截距倒数的互质整数比。 2-6 Coordination number and coordination polyhedron配位数与配位多面体 配位数:一个原子(或离子)周围同种原子(或异号离子)的数目为原子或离子的配位数 配位多面体:由原子(或离子)与其配位原子(或异号离子)组成的多面体结构为配位多面体。

二建施工管理讲义及重点笔记(精华总结)

1000 施工管理施工管理 1010 施工方的项目管理 建设工程项目的全寿命周期包括项目的决策阶段(编制项目建议书、可研报告)实施阶段、使用阶段。(三阶段)

项目各参与方项目管理涉及的阶段、目标和任务

施工总承包方和施工总承包管理方的比较

满意,业主执意不更换, 可拒绝对该分包承担管 理责任) 1020 施工管理的组织(重点) 影响项目目标实现的因素(3个)组织、人、方法与工具 系统的目标决定了系统的组织,组织是目标能否实现的决定性因素(管理目标失控。对项目管理进行诊断,首先应分析组织方面的问题) 目标控制的主要措施(4个)组织、管理、经济、技术。 组织措施是最重要的措施 组织论主要研究:组织结构模式、组织分工、工作流程组织 组织结构模式(职能、线性、矩阵)反映各子系统部门、人员指令关系,、是相对静态的组织关系 组织分工反映各子系统的工作任务分工和管理职能分工、是相对静态的组织关系工作流程组织反映系统中各工作之间的逻辑关系,用来描述工作流程组织的组织工具,是一种动态关系 特征表达的含义矩形框的含义 项目结构图 直线连接矩形 框 (树状图)WBS 对一个项目结构进行逐层分 解。反映组成该项目的所有工作 任务 一个项目的组成部分 组织结构图 单向箭线连接 矩形框(OBS) 反映系统中各组成部门之间 的(组织)指令关系 一个组织系统中的工作 部门 工作流程图 单向箭线连接 矩形框、菱形框表 示判别条件 反映组织系统中各项工作之 间的逻辑关系 各项工作 合同结构图 双箭线连接矩 形框 反映一个建设项目各参与单 位之间的合同关系 各参与方

三种组织结构模式的比较 工作任务分工表:首先对管理任务进行详细分解,然后明确项目经理、主管部门或主 管人员的工作任务,并明确主办、协办、配合的部门,每一个任务至少有一个主办工作部门 工作任务分工表应视项目的进展做必要性的调整 管理职能的分工表:首先对管理任务进行详细分解,再确定项目经理、各工作部门、 各工作岗位职能分工 工作流程组织包括:管理工作流程组织(投资、进度、合同、付款和设计变更等流程) 信息处理工作流程组织(月进度报告数据处理流程) 物质流程组织(钢结构深化设计、弱电工程物资采购、外立面施工工作流程) 1030 施工组织设计的内容和编制方法 施工组织设计一般包括以下基本内容:5项 1.工程概况 特征 指令 适用工程 职能组织结构 传统的组织结构模式 有多个指令源、一个上 级可有多个下级,一个下级 可有多个上级 多个矛盾的指令源会影响企业管理机制的运行不适合大型组织系统 线性组织结构 十分严谨的军事组织系统 指令源是唯一的、一个上级可有多个下级,但一个 下级只能有一个上级,是国际上常用模式 信息传递路线长, 不适合特大工程, 矩阵组织结构 较新型组织结构模式 设纵向和横向两种不同类型的工作部门。指令源为 两个当纵向和横向工作部门 的指令发生矛盾时,由该组 织系统的最高指挥者(部门),进行协调或决策。也可以约定采用纵或横指令为主 适用于大型项目上 可避免矛盾指令影响系统运行

教师个人年度工作总结范文5篇

教师个人年度工作总结范文5篇 工作总结对于我们的工作来说有不可替代的作用,通过工作总结,能寻找出工作中不足和优势,下面是小编搜集整理的教师个人年度 工作总结范文5篇,欢迎阅读。 (一)思想政治方面 我在师德上首先严格要求自己、与时俱进、爱岗敬业、为人师表、热爱学生、尊重学生。作为一名教师,自身的师表形象要时刻注意,在工作中我积极、主动、勤恳、责任心强,乐于接受学校布置的各 项工作;任劳任怨。在不断地学习中,努力使自己的思想觉悟、理论 水平、业务能力都得到较快的提高。对待学校分配的工作,在思想上 不敢有半点懈怠,积极认真的去完成,向优秀的同志看齐,用更高的标 准要求自己,不甘于平淡,不流于平庸.在与人相处中,做到谦虚谨慎,与 人为善,遵守工作纪律,不迟到,不早退。 (二)教育教学工作 根据学校的课堂教学常规严格做好备课、上课、听课、评课,及时批改作业、讲评作业,做好课后 辅导工作。追求扎实有效的课堂教学。根据学生的实际情况进行集体辅导和个人辅导,热情辅导中下生,重视对学生的知识考查, 做好学生的补漏工作。把堂上获取知识的主动权交给学生,让学生 成为信息的主动摄取者和加工者,充分发掘学生自己的潜能。使学 生从被动接受的“要我学”转化为主动的“我要学”,变“学会”为“会学”。班级工作: (1)本学期进行家访28次,主动电访80余次。10月获得班主任 之星。 (2)家长对班级整体工作和班主任工作的满意率比上期有一些提高,师生关系融洽。(3)班级五项评比、寝室生活两项工作呈上升的

趋势。班主任工作连续3个月为一等奖(4)庆祝国庆比赛获学校三等奖, (5)关注班级整体工作教学质量的提高,积极协助各科任老师对 班级教育教学4、语文教研方面 以上汇报,还有许多不足,恳请领导和教师的监督、关心、帮助,更好地发挥自己的一份力量,为学校增光添彩,愿和全校教职工携 手并进,共创美好明天 在教学工作上,根据学校的工作目标和教材的内容,了解学生的实际情况通过钻研教材、研究具体教学方法,制定了切实可行的学 期工作计划,为整个学期的**教学工作定下目标和方向,保证了整 个学期的教学工作顺利完成.在教学的过程中,学生是主体,让学生 学好知识是老师的职责。因此,在教学之前,认真贯彻《九年义务 教育**教学大纲》的精神,认真细致地研究教材,研究学生掌握知 识的方法。通过钻研教学大纲和教材,不断探索,尝试各种教学的 方法,以如何培养中学生创造能力教学实验专题。积极进行教学改革。积极参加市教研室、及学校组织的教研活动,通过参观学习, 外出听课,等教学活动,吸取相关的教学经验,提高自身的教学水平。通过利用网络资源、各类相关专业的书报杂志了解现代教育的 动向,开拓教学视野和思维。艺术需要个性,没有个性就无所谓艺术。在教学中尊重孩子的不同兴趣爱好,不同的生活感受和不同的 表现形式,方法等等,使他们形成自己不同的风格,不强求一律。 艺术的魅力就在于审美个性的独特性,越有个性的艺术就越美,越 能发现独特的美的人就越有审美能力,越有创造力。所以,在中学 **教育中,有意识地以学生为主体,教师为主导,通过各种游戏、 比赛等教学手段,充分调动他们的学习兴趣及学习积极性。让他们 的天性和个性得以自由健康的发挥。让学生在视、听、触觉中培养 了创造性思维方式,在进行艺术创作时充分得以自由地运用。四、 其它工作 除了日常的教学工作之外,能够积极参加学校组织的各项活动. 加强''师德师风''的学习.工作上不计酬劳,任劳任怨,通过和同事们 的共同努力,按时保质地完成了工作,取得一定的成绩。但在教学工

关于新教师年度工作总结范文八篇

关于新教师年度工作总结范文八篇 总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,因此十分有必须要写一份总结哦。那么总结有什么格式呢?下面是小编整理的新教师年度工作总结8篇,欢迎阅读与收藏。 转眼间,来到xx中学工作已将近一年的时间了。一年对于整个历史长河来说,只不过是沧海一粟,对于人的整个生命来说也只不过是几十分之一。但是,一年对于我这个刚刚走入社会的学生来说都可以用意义非凡来概括。在这近一年里我深刻体会到了做老师的艰辛和快乐,我把自己的青春倾注于我所钟爱的教育事业上,倾注于每一个学生身上。以下是我对一年工作的总结 一、师德方面 我始终认为作为一名教师应把“师德”放在一个极其重要的位置上,因为这是教师的立身之本。“学高为师,身正为范”。从踏上讲台的第一天,我就时刻严格要求自己,力争做一个有崇高师德的人。我始终坚持给学生一个好的师范,希望从我这走出去的都是合格的学生。为了给自己的学生一个好的表率,同时也是使自己陶冶情操,加强修养,不断提高自己水平。今后我将继续加强师德方面的修养,力争在这一方面有更大的提高。 二、教学方面 在教学准备上,新老师面临的问题是不熟悉教材,不了解重、难

点,也不知道应该怎样上课。对此,工作之初,我的心里十分着急,生怕因为课上得不好而影响了学生对知识的掌握以及对这门课的兴趣。但是,我也坚信“万事开头难”。所以,我每次都很认真的备课,查阅资料把自己的教案写好,因为写好教案是上好课德前提。 我有幸能得到一位教学经验非常丰富老师梁义红老师的指导,他在教学方面给我提出很多宝贵的建议,从他身上我学到了很多有用的东西。由于自己教学经验不足,有时还会在教学过程中碰到这样或那样的问题而不知如何处理。因而我虚心向老教师学习,力争从他们那里尽快增加一些宝贵的教学经验。这些使我个人应付和处理课堂各式各样问题的能力大大增强。为了把自己的教学水平提高,还经常网上找一些优秀的教案课件学习,还争取机会多出外听课,从中学习别人的长处,领悟其中的教学艺术。 在从教学理论方面。我在课余时间阅读了教育学理论的教学参考,而且还借阅大量有关中学数学教学方法的书籍,博采众家之长为己所用。在让先进的理论指导自己的教学实践的同时,我也在一次次的教学实践中来验证和发展这种理论。 三、考勤方面 我在做好各项教育教学工作的同时,严格遵守学校的各项规章制度。处理好学校工作与个人之间的关系,晚上也尽量到校,为学生解决学习上的问题。“路漫漫其修远兮,吾将上下求索”。作为新教师,我唯有以最充分的准备、的努力去迎接新的挑战。 20xx即将过去,作为一个老师,肩负教书育人的职责,行为上要

2019年材料科学基础期末总结复习资料

材料科学基础期末总结复习资料 1、名词解释 (1)匀晶转变:由液相结晶出单相固溶体的过程称为匀晶转变。 (2)共晶转变:合金系中某一定化学成分的合金在一定温度下,同时由液相中结晶出两种不同成分和不同晶体结构的固相的过程称 为共晶转变。 (3)包晶转变:成分为H点的δ固相,与它周围成分为B点的液相L,在一定的温度时,δ固相与L液相相互作用转变成成分是J 点的另一新相γ固溶体,这一转变叫包晶转变或包晶反应。即HJB---包晶转变线,LB+δH→rJ (4)枝晶偏析:合金以树枝状凝固时,枝晶干中心部位与枝晶间的溶质浓度明显不同的成分不均匀现象。 (5)晶界偏析:晶粒内杂质原子周围形成一个很强的弹性应变场,相应的化学势较高,而晶界处结构疏松,应变场弱,化学势低,所以晶粒内杂质会在晶界聚集,这种使得溶质在表面或界面上聚集的现象称为晶界偏析 (6)亚共晶合金:溶质含量低于共晶成分,凝固时初生相为基体相的共晶系合金。 (7)伪共晶:非平衡凝固时,共晶合金可能获得亚(或过)共晶组织,非共晶合金也可能获得全部共晶组织,这种由非共晶合金所获得的全部共晶组织称为伪共晶组织。

(8)离异共晶:在共晶转变时,共晶中与初晶相同的那个相即附着在初晶相之上,而剩下的另一相则单独存在于初晶晶粒的晶界处,从而失去共晶组织的特征,这种被分离开来的共晶组织称为离异共晶。 (9)纤维组织:当变形量很大时,晶粒变得模糊不清,晶粒已难以分辨而呈现出一片如纤维状的条纹,这称为纤维组织。 (10)胞状亚结构:经一定量的塑性变形后,晶体中的位错线 通过运动与交互作用,开始呈现纷乱的不均匀分布,并形成位错缠结,进一步增加变形度时,大量位错发生聚集,并由缠结的位错组成胞状亚结构。 (11)加工硬化:随着冷变形程度的增加,金属材料强度和硬 度指标都有所提高,但塑性、韧性有所下降。 (12)结构起伏:液态结构的最重要特征是原子排列为长程无序、短程有序,并且短程有序原子集团不是固定不变的,它是一种此消彼长、瞬息万变、尺寸不稳定的结构,这种现象称为结构起伏。 (13)能量起伏:能量起伏是指体系中每个微小体积所实际具 有的能量,会偏离体系平均能量水平而瞬时涨落的现象。 (14)垂直长大:对于粗糙界面,由于界面上约有一半的原子 位置空着,故液相的原子可以进入这些位置与晶体结合起来,晶体便连续地向液相中生长,故这种长大方式为垂直生长。 (15)滑移临界分切应力:晶体的滑移是在切应力作用下进行的,但其中许多滑移系并非同时参与滑移,而只有当外力在某一滑移

材料科学基础知识点大全

点缺陷1范围分类1点缺陷.在三维空间各方向上尺寸都很小,在原子尺寸大小的晶体缺陷.2线缺陷在三维空间的一个方向上的尺寸很大(晶粒数量级),另外两个方向上的尺寸很小(原子尺寸大小)的晶体缺陷.其具体形式就是晶体中的位错3面缺陷在三维空间的两个方向上的尺寸很大,另外一个方向上的尺寸很小的晶体缺陷 2点缺陷的类型1空位.在晶格结点位置应有原子的地方空缺,这种缺陷称为“空位”2.间隙原子.在晶格非结点位置,往往是晶格的间隙,出现了多余的原子.它们可能是同类原子,也可能是异类原子3.异类原子.在一种类型的原子组成的晶格中,不同种类的原子替换原有的原子占有其应有的位置3点缺陷的形成弗仑克耳缺陷:原子离开平衡位置进入间隙,形成等量的空位和间隙原子.肖特基缺陷:只形成空位不形成间隙原子.(构成新的晶面)金属:离子晶体:1 负离子不能到间隙2 局部电中性要求 4点缺陷的方程缺陷方程三原则: 质量守恒, 电荷平衡, 正负离子格点成比例增减. 肖特基缺陷生成:0=V M,,+ V O··弗仑克尔缺陷生成: M M=V M,,+ M i ·· 非计量氧化物:1/2O2(g)=V M,,+ 2h·+ O O不等价参杂:Li2O=2Li M,+ O O + V O··Li2O+ 1/2O2 (g) =2Li M, + 2O O + 2h· .Nb2O5=2Nb Ti ·+ 2 e, + 4O O + 1/2O2 (g) 5过饱和空位.晶体中含点缺陷的数目明显超过平衡值.如高温下停留平衡时晶体中存在一平衡空位,快速冷却到一较低的温度,晶体中的空位来不及移出晶体,就会造成晶体中的空位浓度超过这时的平衡值.过饱和空位的存在是一非平衡状态,有恢复到平衡态的热力学趋势,在动力学上要到达平衡态还要一时间过程. 6点缺陷对材料的影响.原因无论那种点缺陷的存在,都会使其附近的原子稍微偏离原结点位置才能平衡即造成小区域的晶格畸变.效果1提高材料的电阻定向流动的电子在点缺陷处受到非平衡力(陷阱),增加了阻力,加速运动提高局部温度(发热)2加快原子的扩散迁移空位可作为原子运动的周转站3形成其他晶体缺陷过饱和的空位可集中形成内部的空洞,集中一片的塌陷形成位错4改变材料的力学性能.空位移动到位错处可造成刃位错的攀移,间隙原子和异类原子的存在会增加位错的运动阻力.会使强度提高,塑性下降. 位错 7刃型位错若将上半部分向上移动一个原子间距,之间插入半个原子面,再按原子的结合方式连接起来,得到和(b)类似排列方式(转90度),这也是刃型位错. 8螺型位错若将晶体的上半部分向后移动一个原子间距,再按原子的结合方式连接起来(c),同样除分界线附近的一管形区域例外,其他部分基本也都是完好的晶体.而在分界线的区域形成一螺旋面,这就是螺型位错 9柏氏矢量.确定方法,首先在原子排列基本正常区域作一个包含位错的回路,也称为柏氏回路,这个回路包含了位错发生的畸变.然后将同样大小的回路置于理想晶体中,回路当然不可能封闭,需要一个额外的矢量连接才能封闭,这个矢量就称为该位错的柏氏矢10柏氏矢量与位错类型的关系刃型位错,柏氏矢量与位错线相互垂直.(依方向关系可分正刃和负刃型位错).螺型位错,柏氏矢量与位错线相互平行.(依方向关系可分左螺和右螺型位错).混合位错,柏氏矢量与位错线的夹角非0或90度. 柏氏矢量守恒1同一位错的柏氏矢量与柏氏回路的大小和走向无关.2位错不可能终止于晶体的内部,只能到表面,晶界和其他位错,在位错网的交汇点, 11滑移运动--刃型位错的滑移运动在晶体上施加一切应力,当应力足够大时,有使晶体上部向有发生移动的趋势.假如晶体中有一刃型位错,显然位错在晶体中发生移动比整个晶体移动要容易.因此,①位错的运动在外加切应力的作用下发生;②位错移动的方向和位错线垂直;③运动位错扫过的区域晶体的两部分发生了柏氏矢量大小的相对运动(滑移);④位错移出晶体表面将在晶体的表面上产生柏氏矢量大小的台阶.螺型位错的滑移在晶体上施加一切应力,当应力足够大时,有使晶体的左右部分发生上下移动的趋势.假如晶体中有一螺型位错,显然位错在晶体中向后发生移动,移动过的区间右边晶体

相关文档
相关文档 最新文档