文档库 最新最全的文档下载
当前位置:文档库 › 结晶器正弦振动参数的取值限度及其与拉速的匹配关系——唐钢

结晶器正弦振动参数的取值限度及其与拉速的匹配关系——唐钢

结晶器正弦振动参数的取值限度及其与拉速的匹配关系——唐钢
结晶器正弦振动参数的取值限度及其与拉速的匹配关系——唐钢

结晶器正弦振动参数的取值限度及其与拉速的匹配关系

张洪波

(唐山钢铁集团公司)

摘要:正、负滑脱时间是结晶器振动的两个主要工艺参数,负滑脱时间影响振痕深度,正滑脱时间影响保护渣消耗。为使结晶器振动取得最佳工艺效果,正、负滑脱时间应合理选择,由此结晶器正弦振动参数不仅具有一定的取值限度,而且还应与拉坯速度合理匹配。本文探讨了结晶器正弦振动振幅的取值限度和频率与拉速的最佳匹配关系。

Limitation of parameters for sinusoidal oscillation and matching relation between oscillatory parameters and casting speed

Zhang Hongbo

(Tangshan Iron and Steel Group Compang )

Abstract: Positive and negative stripping time are main procers parameters of mould oscillation ,negative stripping time has a great influence on the depth of oscillation mark ,positive stripping time has a great influence on powder consumption. In order to obtain the best process result of mould oscillation, the value of positive negative stripping time should be reasonable. As a result, the oscillating parameters of mould not only should have the definite range of value, but also should have suit determing in accordance with casting speed . This paper discussed the litmitation of the stroke for sinusoidal mould oscillation and the best matching relation between oscillating freguency and casting speed .

1 前言

结晶器振动的目的是防止结晶器铜壁与坯壳粘结而发生漏钢事故。在振动过程中会产生负滑脱运动,并在铸坯表面造成周期性振痕,从而影响铸坯质量。控制振痕深度和防止坯壳结晶粘结有一定的矛盾。常规连铸中,为减少振痕深度,振动参数多采用低振幅、高频率;高速连铸时,随拉速的提高,保护渣的消耗量和粘度、控制坯壳粘结也是主要内容。由此提出,在一定目标拉速和保证负滑脱运动的前提下,振动参数是否应有一定的取值限度。

结晶器振动效果取决于振动参数,主要是正、负滑脱时间的取值,而振动参数与拉速的匹配关系是决定两者大小的关键因素。为得到负滑脱运动,振动参数应随拉速的提高而改变,同于振幅在连铸过程中难以随拉速连续变化,一般采用频率与拉速成正比的匹配关系,即f=KV C 。式中K为固定的比例常数,大K值应用于常规连铸,小K值应用于高速连铸,不同的K值使频率与拉速的匹配关系仅适合于某一拉速区间。为使此匹配关系能适合铸机整个设计拉速范围,K值应合理选择。本文旨在探讨结晶器正弦振动参数的取值限度,及常数K的合理取值从而优化频率与拉速的匹配关系。

2 振动参数取值的确定

正滑脱时间t p是结晶器振动两个主要工艺参数,其表达式如下:

t n=60/πfcos-1(1000V c/2πsf)(1)

t p=60/f[1-1/πcos-1(1000V c/2πsf)](2)

式中t n—负滑脱时间,s;t p —正滑脱时间,s;S—振幅,mm;f—频率,s-1 ;V c ——拉速,m/min。

试验及理论分析表明,保护渣消耗量和正滑脱时间成正比,与保护渣粘度成反比。振痕的形成可由“弯月面部分凝固理论”来解释。依此理论,振痕深度和负滑脱时间成正比,与保护渣粘度成反比。据上分析得出如下关系:d=k1×t n/ ?

Q=k2·t p /?

式中d——振痕深度,mm;Q—保护渣消耗量,kg/m2;?—保护渣粘度,Pas;k1 、k2 ——比

例常数。

可见,不能依靠调整保护渣性能来控制振痕深度和坯壳粘结,而要配合振动参数和合理选择才能达到,为此振动参数取值应遵循如下原则①t n >0,且t n 平稳、变化小,并取值较小为好。②在稳定t n 的前提下,t p取值较大为好。在正弦振动中,t n、t p互为增函数。为同时满足上述①和②两项要求,t n、t P取值都有一定限度,设N、M为两个限定值,则

0

t p ≥M

由式(3)、(4),N,M取值与保护渣性能有关,保护渣粘度低,N,M取值可较小,反之,N,M取值应较大。目前。负滑脱时间多取t n≤0.1s[3],即N=0.1s。由文献4中的数据,tp≥0.1s可以满足高速连铸的工艺要求,因此可以确定M=0.1s。本文讨论中取N,M均为0.1s。

3正弦振动参数取值的限度

3.1负滑脱时间的分析

负滑脱运动是控制连铸漏钢的条件之一,为此要求tn〉0,由式(1)应有2πsf>1000V c。定义振动参量Z=2S/V c(mm·min/m),则:

Z·f>1000/π=318.31≈320 (7)

设定Z·f=K(K≥320),将其代入式(1)得:

t n=60/πfcos-1(1000/π2f)=60Z/πKcos-1)1000/πK)(8)

据式(8)可做出不同Z值时的t n –f曲线,如图1所示。在此曲线中,有两个关键点f?和f m。可以证明,f0 f m时,t n是f的减函数。当Z较大即大振幅或低拉速时,f m> f 0较小,且t n较大变化非常剧烈极不稳定,此是f取值应避开区间[f0、f m]。随Z的减小,即小振幅或高拉速时,f m-f 0逐渐增大,t n取值亦较小且变化更平稳,结果表明[4],小Z值时f可在区间[f>f m]中取值而对连铸过程无不利影响。即常规连铸f取值为f>f m,高速连铸f取值为f0

3.2 振动参数的取值限度

由式(8)也可做出不同f值时的t n-Z曲线,如图2所示。图中直线1为不同f时t n-Z 曲线的包络线,其对应t n-f曲线中的极值点f m,此时t n =t nm。由式(8)limt n=60/2f=30/f,当30/f≤0.01,f≥300c/min时,总有t n=0.1s的充分条件,这样高的频率在小Z值时,从结晶器振动角度看极不经济,不宜采用。

由式(8),直线1的方程为:

t n=16.34/f=0.332 (9)

由式(9),当t n≤0.1s,得f≥164.3c/min、Z≤3(mm?min/m),两者分别对应图2中f n和N′点。可见当f、Z同时满足上述取值时总有t n≤0.1s。这正是采用低振幅、高速频率的目的。若铸机最小拉速为Vcl,则由Z≤3得:

S≤1.5Vcl (10)

式(10)给出了为使t n≤0.1s,振幅取值的上限。即当f≥164.3(min-1)、S≤1.5Vcl 时,可使t n≤0.1s。将Z?f=K代入式(2),得:

t p=60Z/K[1-1/πcos-1(1000/πK)]=60/f[1/πcos-1(1000/πK)] (11)

据式(11)可做出不同f值时的t p-Z曲线如图3所示。图中虚线对应t n取得极限值tpl。

由式(11),tpl方程为:

tpl=0.192=60/f (12)

由图3欲使t n≥M,须tpl>M,则fMˊ。取M=0.1,则由式(12)可得出f m=60/M=60/0.1=600c/min,Mˊ=M/0.19=0.1/0.19=0.53。即f<600c/min、Z>0.53是t p≥0.1s

的必要条件。

若铸机最大或目标拉速为V CA,则由Z>0.53得S>0.265V ca (13)

即若使t p>0.1s,必须有f<600(min-1),S>0.265V ca。

式(13)给出了正弦振动振幅的最小取值限度。

由前述分析,频率的最佳取值范围165~600c/min,而振幅的最佳取值为0.265V ca ~1.5V cl。

4频率与拉速匹配关系优化

4.1比例系数K的取值分析

为实现负滑脱振动,取频率与拉速的对应关系f=KV c。低拉速时以减少负滑脱时间,控制振痕深度为主;高拉速时以保证正滑脱时间,防止坯壳粘结为主。因此,低拉速时K 取值较大,而高拉速时K取值区间,为使f=KV c适合整个拉速范围应随拉速调整,这时K不再是常数,而是一个比例系数或f=KV c的形状参数。由式(8)可得:

Z=πt n K/60[cos-1(1000/πK)]-1(14)

由式(1)可得:

Z=t p K/60[1-1/πcos-1(1000/πK)]-1(15)

由式(14)(15)可分别做出等负滑脱及等正滑脱时间的K-Z曲线,如图4、图5所示。

两图中K0=6000/π≈318,对应t n=0;K m=1000/2.048≈488,对应t n的极大值点。常规连铸K的取值范围为K>K M,高速连铸的取值范围为K0 < K

图5中等正滑脱时间的K-Z曲线极近似于直线,且随t p=0.1s的K-Z曲线以下式为极限K=300Z (16)

图5中B点的纵坐标K0,横坐标为式(13)表示的Z的最小值点,即Z=0.53,可见当K与Z按线性关系变化时,总可保证t p为一常数而与Z值无关。图4中当K>K m时,等负滑脱时间的K-Z曲线也近于直线,亦以式(6)所示直线为极限。由两图若以B点为端点做一直线且其斜率小于K=300Z的斜率,则当小Z值即高速连铸时,可保证t p>0.1s、t n<0.1s,当在大Z值即常规连铸时,t p、t n均较大。

设所做曲线方程为:

K=a+bZ n(17)

式中a、b—常数;n—≥0的实数。

根据a、b、n的不同,式(17)可确定不同的K-Z关系,即确定不同的f-V c匹配关系。

4.2频率与拉速匹配关系的确定

由Z?f=K可得:

f=K/Z (18)

将式(17)代入式(18),得:

f=a/Z+Bz n-1=b(2S/V c)n-1+a/2SV c(19)

当b=0时,式(19)V c →0、f→+∞,这种匹配关系连铸中不宜采用。当n<1时,随V c增加,f增加较快,不利于高速连铸;当n=1时,f=b+a/2SV c,能较好适合整个拉速范围。

常规连铸时,K的取值原则是使NSR在55%~80%之间[5],一般取NSR=75%,NS=-60%,这是a=800,则f=800/Z=400/SV c(20)

高速连铸时,K的取值原则是使NS接近+20%取NS=20%[4],这时a=400,则

f=400/Z=200/SV c (21)

式(17)中,取n=1,a、b值可确定如下,首先直线K=a=bZ过B点(0.53、318点),其次令此直线过图4中A点,A点纵坐标为800。横坐标为K=800与t n=0.2S交点的横坐标,其值约为Z=7。可解得a≈280、b≈70。由此确定f-V c匹配关系:

f=70+280/2SV c(22)

此外,由式(16)可得f-V C 另一种匹配关系:

F=300 (23)

图6中分别定性示出由式(20)、(21)、(22)、(23)所定的f-V c匹配关系直线1、2、3、4。A点坐标根据大Z值即较低拉速时t n取值来定。若要求t n较小,则在相同的Z值时,A点坐标增加,反之纵坐标减少,带来b值的变化,从而使直线3在f轴上的截距不同。

设连铸最大目的的拉速为6m/min,则拉速范围为0~6m/min。由式(13),振幅取值限度为S>1.59mm。目前振幅取值多为3~4mm,本文中取S=3.5mm,将其代入式(20)、(21)、(22)得f=120V c、f=60V c、f=70+40V c。图7、图8分别示出了这三种匹配关系及f=300min-1时的t n - V c 及t p -V c曲线。

由两图可知,f=120V c时在较低拉速时t n亦较小,有利于减少常规连铸时铸坯表面振痕深度;但拉速增加时,t p明显减小,不利于控制高拉速时坯壳粘结,特别是V c﹤1m/min时,t n取值较大,变化亦很大、极不平稳(如图1)。且当V c=0时,t n、t p均出现“奇点”,因此不利于连铸开浇起步及低拉速过渡阶段控制坯壳粘结。此对应关系仅适合较低拉速的常规连铸。对于f=60V c,在常规连铸时,t n较大不利于减少铸坯表面振痕深度;高速连铸时,t p保持较大有利于控制高速连铸时坯壳粘结。但这种匹配关系在V c﹤2m/min时,t n 、t p同样出现“奇点”。这种匹配关系仅适合于高速连铸。对于f=300min-1,在0~6min的拉速范围内,t p较小、t p较大且在V C=0时,t n 、t p无奇点,其工艺效果最佳,但在很低拉速时,频率即取较大值,振动装置将承受很大冲击力,经济性不佳。对于f=70+40V c,V c﹤1m/min时,t n即较小且变化平稳;V c=0时t n 、t p无“奇点”。而V c在1~6m/min时,t n介于f=120V c和f=60V c之间,t p较大,从而兼顾了以上两种匹配关系的优点,这种匹配关系在连铸开浇前,结晶器已开始振动,使铸坯经过预脱模,从而很好地控制了连铸开浇及低拉速过渡时坯壳粘结,适应整个拉速范围,而且经济性亦较好,是频率与拉速匹配关系的较佳形式。

5结语

连铸随着拉速的提高,振动参数的取值要降低负滑脱时间,减少振痕深度,也要保证足够的正滑脱时间,防止坯壳粘结。由此,低振幅、高频率的取值趋势有一定的限度。在振动参数的取值限度内,为获得最佳的结晶器振动效果,需要优化频率与拉速的匹配关系,使之能满足最大的拉速范围。在一定目标拉速时,由S≥0.265Vca来确定振幅的取值,并同此确定f=A+BV C的匹配关系就可保证振动参数满足整个拉速范围。因此只要振动参数合理选择,结晶器正弦振动能够适应于高速连铸。

参考文献

1张洪波,王海之,结晶器振动参数与保护渣物化性能的相互关系.钢铁,1995,1:19-32.

2Ismael G.S.弯月面处浇铸条件的改善.钢铁译文集,1990,4:53-57.

3李宪奎等.CCC’93发展中国家连铸会议论文译文集.中国金属学会,1993,9:554-5589.

4文石斧.高速铸造条件下结晶器的振动问题.连铸,1993,4:5-9.

5陈家祥.连续铸钢手册.北京:冶金工业出版社,1991.474.

结晶器振动装置的应用与发展

结晶器振动装置的应用与发展 郭春香 (包头北雷连铸工程技术有限公司,包头014010) 摘要:介绍了结晶器振动装置在连续铸钢中的重要作用,两种振动方式(正弦振动与非正弦振动)的特点及采用的实现机构,分别分析了三种振动机构的特点、原理及应用。 关键词:结晶器振动装置;正弦振动;非正弦振动;四连杆振动机构;四偏心振动机构;液压振动机构Application and Development of the Mold Oscillation Equipment Guo Chunxiang (Baotou Beilei Continuous Casting Engineering and Research Corporation,Baotou014010) Abstract:Mold oscillation equipment is very important for CC.Distinguishing feature between sinusoidal oscillation and non-sinusoidal oscillation was introduced,and introduced main device to achieve.Distinguishing feature,fundamentals and applications of three kind oscillation mechanism was analyzed individually. Keywords:mold oscillation equipment;sinusoidal oscillation;non-sinusoidal oscillation;four-bar linkage oscillation mechanism;four-eccentric oscillation mechanism;hydraulic oscillation mechanism 1概述 结晶器是连续铸钢中的铸坯成型设备,是连铸机的核心部件,称之为连铸机的心脏设备。它是一个水冷的钢锭模,功能是将连续不断地注入其内腔的高温钢水通过水冷铜壁强烈冷却,导出其热量,使之逐渐凝固成为具有所要求断面形状和坯壳厚度的铸坯。并使这种芯部仍为液态的铸坯连续不断地从结晶器下口拉出,为其在以后的二次冷却区域内完全凝固创造条件。由于凝固过程是在坯壳与结晶器壁连续、相对运动下进行的,所以为防止坯壳与结晶器壁粘结而采用的结晶器振动装置是连铸过程中的一个非常重要的生产装置。 结晶器振动装置可用来支撑结晶器,其主要功能是使结晶器上下往复振动,确切地说,是使结晶器按给定的振幅、频率和波形偏斜特性沿连铸机半径作仿弧运动,使脱模更为容易。具体来说,连铸过程中,当铸坯与结晶器壁发生粘结时,如果结晶器是固定的,就可能出现坯壳被拉断造成漏钢。而当结晶器向上振动时,粘结部分和结晶器一起上升,坯壳被拉裂,未凝固的钢水立即填充到断裂处,开始形成新的凝固层;等到结晶器向下振动,且振动速度大于拉坯速度时,坯壳处于受压状态,裂纹被愈合,重新连接起来,同时铸坯被强制消除粘结,得到“脱模”。同时,由于结晶器上下振动,周期性地改变液面与结晶器壁的相对位置,有利于用于结晶器润滑的润滑油和保护渣向结晶器壁与坯壳间的渗漏,因而改善了润滑条件,减少拉坯摩擦阻力,防止铸坯在凝固过程中与结晶器铜壁发生粘结而被拉裂,从而出现粘结漏钢事故。 2结晶器振动方式 目前,结晶器振动主要有正弦振动和非正弦振动两种方式。 正弦振动,即振动的速度与时间的关系为一条正弦曲线,如图1中点划线所示。正弦振动方式的上下振动时间相等,上下振动的最大速度也相同。在整个振动周期中,铸坯与结晶器之间始终存在相对运动,而且结晶器下降过程中,有一小段下降速度大于拉坯速度,因而可以防止和消除坯壳与结晶器内壁间的粘结,并能对被拉裂的坯壳起到愈合作

板坯连铸机结晶器振动液压装置的设计及计算

板坯连铸机结晶器振动液压装置的设计及计算 文章介绍了某型不锈钢板坯连铸机组结晶器振动液压装置的设计计算过程。计算系统所需流量,配置核心液压元件型号规格,对循环冷却系统进行了精确计算。 标签:连铸结晶器;振动;液压 引言 结晶器是板坯连铸机组的核心设备,而结晶器振动装置又是结晶器设备重要装置之一。当结晶器上下振动时,钢水液面与结晶器壁面相对位置也随之改变。其目的在于防止坯材在凝固过程中与结晶器铜壁发生粘连而出现拉漏、拉裂事故,同时有利于脱坯,改善坯壳与结晶器壁的润滑性等[1]。结晶器液压振动因其能在线调整振动参数,近期有广泛的发展和推广。文章即围绕国内某型板坯连铸机组的结晶器液压振动装置,对其进行分析计算和设计。 1 系统原理 连铸机的结晶器液壓振动装置由两个液压缸推动整个机架做垂直方向上的非正弦曲线。 非正弦曲线运动的周期、振幅与正弦曲线其实是一致的,只是在半周期内由两条周期不同的正弦曲线(全周期为T,上升段周期为T+,下降为T-)拼接而成。定义非对称系数C=T+/T,当C=0.5,曲线即为对称的正弦曲线;当0.5≤C≤1,比如C=0.6,则T+=0.6T,T-=0.4T,使得结晶器上振时间长,而下振时间短。实际生产中C值大于0.5,一般在0.5~0.6。 振动装置由两部分组成:液压站和振动执行器。液压站向振动执行器提供油。振动执行器包括缸旁伺服阀和振动液压缸。 2 工作泵流量计算及选择 工作泵的选择取决于液压缸运动所需的流量,因此先计算各个工况下所需流量。 (1)对称正弦运动(C=0.5)时,振动所需的平均供油流量 振动液压缸参数为Φ125/Φ90。单个液压缸的最大振幅Am为6.5mm,最大频率160次/min,在1/4个周期内,其平均速度Vp=Am/(T/4)=69(mm/s)。此速度下单缸塞腔供油平均流量为51L/min。两个液压缸同时工作则需要102L/min,取效率系数0.8,得127 L/min。

结晶器液压振动操作说明

液压振动电控操作说明 液压振动系统简介: 一套液压振动系统主要包括二个振动单元。每个振动单元由一个电液伺服阀和一个位移传感器组成它的执行环节和反馈环节;一套PLC电控系统负责控制二个单元按照工艺要求协调动作;画面人机接口系统方便操作人员监视和操控振动单元,同时也方便电气人员维护设备;其它还包括液压站,液压阀台,蓄能器等相关设备。 操作方式: 液压振动电控主要有自动和手动控制方式。 自动联锁控制方式:这是它的主要工作方式,将振动台与开浇联锁,开浇的同时,启动液压振动。常用于正常浇铸。 自动解锁控制方式:将振动台与开浇解锁。常用于停浇后,随时让振动台工作。 手动升降控制方式:手动操作振动单元上升和下降。常用于检修和调试时设置参数。 手动故障控制方式:振动台做上升和下降周期运动。常用于在振动台位移传感器工作不正常时,又需要振动台短时工作一段时间。这种控制方式不能保证振动台的偏摆精度,慎用此种控制方式。应凌钢要求,此功能取消。 振动方式: 液压振动台主要有正弦曲线振动方式和非正弦曲线振动方式。它由非线性度参数As 决定。 当As=50%表明振动方式为正弦曲线; 当As<50%表明振动方式为非正玄曲线,在一个振动周期时间内,上升快,下降慢。 当As>50%表明振动方式为非正弦曲线,在一个振动周期时间内,上升慢,下降快。

人机接口画面简介: 图1-1 如上图1-1所见,液压振动主画面由主体示意图,显示参数,控件组成。 主画面控件为: “液压油通断阀控制”:主要作用控制通断阀接通和切断。点击此控件将弹出通断阀控制子画面如图1-2所示:点击控件“开”,此控件颜色变绿,表明通断阀接通;点击控件“关”,此控件颜色变红,表明通断阀切断;点击控件“返回”,此子画面消失,画面返回到主画面状态。 图1-2 “振动器控制”:主要作用控制振动器的运行方式。点击此控件将弹出振动器控制子画面如图1-3所示:点击控件“1#缸”,此控件颜色变绿,表明控制对

结晶器振动技术

内蒙古科技大学 实习论文 题目:结晶器振动技术姓名 学号: 班级 日期:

目录 内蒙古科技大学煤炭学院 (1) 目录 (2) 一、摘要 (3) 二、前言 (3) 三、结晶器振动技术 (5) 3.1正弦振动 (5) 3.2非正弦振动 (6) 3.4结晶器振动参数设置 (9) 3.5振动伺服阀 (10) 3.6结论 (10)

一、摘要 连铸连轧结晶器振动技术的发展历史和现状,简单分析了结晶器正弦振动和非正弦振动形式,并讨论了结晶器振动和润滑的关系。 关键词:结晶器;振动;润滑;振动参数;振动伺服阀; 二、前言 结晶器振动是连铸技术的一个基本特征。连铸过程中,结晶器和坯壳间的相互作用影响着坯壳的生长和脱膜,其控制因素是结晶器的振动和润滑。连铸在采用固定结晶器浇注时,连铸直接从结晶器向下拉出,由于缺乏润滑,易与结晶器发生粘结,从而导致出现拉不动或者拉漏事故,很难进行浇注。结晶器振动对于改善铸坯和结晶器界面间的润滑是非常有效的,振动结晶器的发明引进,工业上大规模应用连铸技术才得以实现。可以说,结晶器振动是浇注成功的先决条件,十年来发展的重要里程碑。近年来,冶金工业的迅速发展,要求连铸提高拉速和增加连铸机的生产能力,人们对结晶器振动的认识也在不断深入和发展。 连铸机结晶器振动的目的是防止拉坯时坯壳与结晶器黏结,同时获得良好的铸坯表面。结晶器向上运动时,减少新生坯壳与铜壁产生黏着,以防止坯壳受到较大的应力,使铸坯表面出现裂纹;而当结晶器向下运动时,借助摩擦,在坯壳上施加一定的压力,愈合结晶器上升时拉出的裂痕,要求向下运动的速度大于拉坯速度,形成负滑脱。结晶器壁与运动坯壳之间存在摩擦力,此摩擦力被认为是撕裂坯壳进而限制浇注速度的基本因素。在初生坯壳与结晶器壁之间存在液体渣膜,此处的摩擦为黏滞摩擦,即摩擦力大小正比于相对运动速度,渣膜黏度,反比于渣膜厚度。在结晶器振动正滑脱期间摩擦力及其引起的对坯壳的拉应力就较大,可能将初生坯壳拉裂,为此开发了采用负滑脱的非正弦振动技术来减小这一摩擦力。理论研究及模拟实验表明,适当选择非正弦振动参数(偏斜率)可减小摩擦力50% ~60%。在结晶器液压伺服非正弦振动出现之前都是采用机械式振动装置的,机械

连铸结晶器总成(英)

结晶器(mould) 承接从中间罐注入的钢水并使之按规定断面形状凝固成坚固坯壳的连续铸钢设备。它是连铸机最关键的部件,其结构、材质和性能参数对铸坯质量和铸机生产能力起着决定性作用。开浇时引锭杆头部即是结晶器的活动内底,钢水注入结晶器逐渐冷凝成一定厚度坯壳并被连续拉出,此时,结晶器内壁承受着高温钢水的静压力及与坯壳相对运动的摩擦力等产生的机械应力和热应力的综合作用,其工作条件极为恶劣。为了能获得合格的铸坯,结晶器应满足的基本条件有:(1)具有良好的导热性,以使钢水快速冷凝成形。(2)有良好的耐磨性,以延长结晶器的寿命,减少维修工作量和更换结晶器的时间,提高连铸机的作业率。(3)有足够的刚度,特别在激冷激热、温度梯度大的情况下需有小的变形。(4)结构简单、紧凑,易于制造,拆装方便、调整容易,冷却水路能自行接通、以便于快速更换;自重小,以减小结晶器振动时的惯性力和减少振动装臵的驱动功率,并使结晶器振动平稳。 Can take from the middle of the molten steel into the required section and shape into a solid billet solidification of continuous casting equipment shells. Continuous casting machine which is the most critical components, its structure, texture and performance parameters on the quality and slab caster plays a decisive role in production capacity. When open pouring dummy bar head mold that is at the end of the activities, of molten steel into the mold gradually condensed into a certain thickness and continuous billet shell out, at this time, mold wall temperature under the static pressure of molten steel and billet shell, such as the relative movement of the friction generated by mechanical stress and thermal stress of the combined effects, the extremely bad working conditions. In order to obtain qualified casting, mold should be to meet the basic conditions are: (1) has a good thermal conductivity to enable rapid condensation forming molten steel. (2) good wear resistance to extend the life of mold to reduce the workload of maintenance and replacement of the time mold and improve the operating rate of continuous casting machine. (3) have sufficient rigidity, especially in the cold shock-induced heat, large temperature gradient would be required under a small deformation. (4) structure is simple, compact, easy to manufacture, easy disassembly, easy adjustment, cooling water can be connected to in order to facilitate the rapid replacement; self-small, to reduce vibration at the time of mold and reduce the vibration of the inertial force of the drive power devices and a smooth mold vibration.

连铸结晶器振动参数取值限度问题

连铸结晶器振动参数取值限度问题 1 前言 随着连铸技术的发展,结晶器振动技术亦不断发展,主要表现在振动参数的选择更加灵 活,振动的工艺效果更好,尤其是振动参数更适合连铸高拉速的工艺要求。结晶器振动的每一次完善都是突破原有振动参数的取值限度,以适应连铸更高的工艺要求。随着结晶器非正弦振动形式的开发,本文讨论振动参数的取值限度问题。 2 结晶器振动参数的影响 拉速Vc是连铸工艺控制的一个最关键的参数,因此结晶器振动参数的选择亦必须适合 拉速的要求。结晶器振动工艺参数对其工艺效果的影响如下: 1)结晶器振动的负滑脱时TN控制铸坯表面的振痕深度,即两者呈增函数关系。TN越 长,振痕越深。 2)保护渣的消耗量与结晶器振动的正滑脱时间呈增函数关系,正滑脱时间越长,保护 渣消耗量越大。 3)结晶器振动的负滑脱时间率、负滑动量、结晶器上振的最大速度都反映结晶器振动 的工艺效果,但它们不是独立的参数,而且随着结晶器振动形式的确定,一般以其正、负滑脱时间来判定结晶器振动的工艺效果。 基于上述几点,为控制铸坯的振痕深度,希望TN短;而为保证结晶器的润滑效果,增 加保护渣的消耗量,希望正滑脱时间长,为此目的开发了结晶器的非正弦振动形式,从而突破了结晶器正弦振动参数的取值限度。 3 问题的提出 在结晶器非正弦振动中引入波形偏斜率α这一基本参数,增加了振动的独立参数,使振 动参数的选择更灵活,更适合高速连铸的工艺要求。即在一定的VC条件下,采用非正弦振 动可以明显地降低振动频率f ,即可以保持f 不变,通过调整α来适合Vc的要求。此外, 非正弦振动可以分别构造结晶器的上振和下振速度曲线。由此提出:在一定的Vc下,可否 通过不断地增加α而无限地降低f 。 图1示出在一定VC和振幅S时,不同α所对应的tN–f 曲线。可见α增加,tN–f 曲线

连铸机结晶器振动装置设计

摘要 结晶器是连铸机的心脏部件。它的主要作用就是对结晶器中的钢水提供快速而且均匀的冷却环境,促使坯壳的快速均匀生长,以形成质量良好的坯壳,保证连铸过程正常而稳定的进行。在浇注钢水时,若结晶器静止不动,坯壳容易与结晶器内壁产生粘结,这就增大了拉坯时的阻力,导致出现坯壳“拉不动”或者钢水被拉漏事故发生,很难进行浇注。而当结晶器以一定的规律振动时,这就能使其内壁获得比较良好的润滑条件,从而减少了摩擦阻力又能防止钢水和结晶器内壁的粘结,同时还可以改善铸坯的表面质量,因此结晶器振动装置具有重要的作用。 本文通过对连铸发展历史,以及结晶器振动技术的发展和结晶器振动方式的改进进行了阐述,提出了电液伺服装置驱动,并对其振动规律及工作原理做出了分析。然后绘制了机械简图,并对其工艺参数和运动参数进行了分析计算,最终完成了本次设计。 本文主要的设计内容包括: 1.结晶器振动正弦参数的确定 通过负滑脱量、频率和周期、结晶器运动的速度和加速度以及负滑脱时间的计算,来确定铸坯的工艺参数。 2.结晶器振动装置机械计算 设计校核了双摇杆机构的主要部分,并根据经验推出机架结构。 3.结晶器振动装置伺服系统的设计计算 由系统所需动力选择恰当的液压缸及液压泵。并对系统的辅助原件进行了计算和选择,同时提出了同步回路电液伺服系统。 4.结晶器振动装置的三维设计 关键词:连铸;结晶器;振动装置;振动规律;电液伺服装置

Abstract The mould is the heart part of continuous casting machine. Its main role is to mould the steel in providing rapid and uniform cooling environment, promote the rapid and uniform shell growth, to form a good quality of billet shell, guarantee the normal and stable for continuous casting process. In pouring molten steel in crystallizer, motionless, shell and the mold wall to produce a cohesive, which increases the casting the resistance, led to the emergence of billet shell" sticks" or molten steel is breakout occurs, it is difficult to cast. When the mould in regular vibration, which can make the inner wall is obtained in comparison with good lubrication condition, thereby reducing the friction resistance and can prevent the molten steel and the inner wall of the crystallizer is bonded, but also can improve the surface quality of billet crystallizer vibration device, therefore has an important role. Based on the history and development of continuous casting crystallizer vibration technique, development and improvement of crystallizer vibration mode undertook elaborating, put forward to the electro-hydraulic servo device driver, and the vibration regularity and working principle are analyzed. Then draw the mechanical model, and the process parameters and motion parameters are analyzed and calculated, the final completion of the design. The main design content includes: 1.crystallizer vibration sinusoidal parameters Through the negative slip quantity, frequency and cycle, mold movement velocity and acceleration and negative strip time calculation, to determine the process parameters of casting billet. 2.The device of vibration of crystallizer mechanical calculation Design of the double rocker mechanism the main part, and according to the experience introduction of frame structure. 3.The device of vibration of crystallizer of servo system design By the system the power required by the proper selection of hydraulic cylinder and hydraulic pump. And the system of auxiliary components were calculated and selected, simultaneously proposed synchronous electro-hydraulic servo system. 4.dimensional design of crystallizer vibration device

结晶器正弦振动装置的形式及其特点

现代连铸技术讨论课 结晶器正弦振动装置的形式及其特点 班级: 姓名: 课程名称:现代连铸技术 指导教师: 2013年11月7日

目录 1、结晶器振动技术的发展历史 (1) 2、结晶器的正弦振动 (1) 2.1正弦振动的定义 (1) 2.2正弦振动的特点 (1) 2.3正弦振动机构满足的条件 (1) 2.4结晶器实现弧形的轨迹方式 (2) 3、结晶器导向机构 (2) 3.1 长臂振动机构 (2) 3.2 导轨式振动机构 (3) 3.3 差动齿轮振动机构 (3) 3.4 四连杆振动机构 (4) 3.5 四偏心振动机构 (6) 4、机械驱动结晶器正弦振动振幅调整 (7) 5、同步控制模型 (8) 5.1 f=av模型 (8) 5.2 f=av+b模型控制 (8) 5.3 f=b模型 (8) 5.4 f=-av+b (8)

现代连铸技术讨论课 1、结晶器振动技术的发展历史 结晶器振动是连铸技术的一个基本特征。连铸过程中,结晶器和坯壳间的相互作用影响着坯壳的生长和脱膜,其控制因素是结晶器的振动和润滑。连铸在采用固定结晶器浇注时,铸坯直接从结晶器向下拉出,由于缺乏润滑,易与结晶器发生粘结,从而导致出现拉不动或者拉漏事故,很难进行浇注。结晶器振动对于改善铸坯和结晶器界面间的润滑是非常有效的,振动结晶器的发明引进,工业上大规模应用连铸技术才得以实现。可以说,结晶器振动是浇注成功的先决条件,是连铸发展的一个重要里程碑。近年来,冶金工业的迅速发展,要求连铸提高拉速和增加连铸机的生产能力,人们对结晶器振动的认识也在不断深入和发展。结晶器振动经历了早期的非正弦振动方式到正弦振动方式,目前又发展到非正弦振动方式的过程。当然,现在所采用的非正弦振动与早期的非正弦振动虽然振动波形同为非正弦,但其目的和实现方式上二者有本质的区别。 2、结晶器的正弦振动 2.1正弦振动的定义 当结晶器的运动速度与时间的关系为一条正弦曲线时称这种振动为正弦振动。2.2正弦振动的特点 正弦振动的主要特点是:结晶器在整个振动过程中速度一直是变化的,即铸坯与结晶器间时刻都在相对运动。在结晶器下降时还有一小段负滑动,因此能消除和防止粘结。另外,由于结晶器的运动速度是按正弦规律变化的,加速度则必然按余弦规律变化,所以,过度比较平稳,冲击比较小。它与梯速振动相比,坯壳处于负滑动状态的时间较短,且结晶器上升时间占振动周期的一半,故增加了坯壳断裂的可能性。为了弥补这一弱点应充分发挥加速度较小的长处,亦可采用高频率振动以提高脱模的效果。 2.3正弦振动机构满足的条件 正弦振动机构满足的两个条件: ①使结晶器准确地沿一定的轨迹振动; ②使结晶器按一定规律振动。

结晶器简介全解

结晶器简介 连铸结晶器结构有哪几种型式 按连铸机型式不同,结晶器可分为直的和弧形的两大类。按铸坯规格和形状来分,有小方坯、大方坯、板坯和异形坯结晶器。按结晶器本身结构来说,可分为3种类型:管式结晶器:它是用壁厚为6~12mm的铜管制成所需要的断面,在铜管外面,套有套管以形成5~7mm的冷却水通路,保证冷却水流速为每分钟6~10m。这种结晶器结构简单,制造方便,广泛用于小方坯连铸机上。 整体式结晶器:它是用整块铜锭刨削制成的,在其内腔四周钻有许多小孔用以通冷却水。这种结晶器刚性好,易维护,寿命较长,但制造成本高,耗铜多,近几年已不采用。 组合结晶器:它是由4块铜板组合成所需要的内腔。在20~50㎜的钢板上刨槽,并与一块钢板联结起来,冷却水在槽中通过。大方坯和板坯连铸机都用这种形式的结晶器。 连铸结晶器应具有哪些性能 结晶器是连铸机的重要部件。钢液在结晶器中凝固成型,结成一定厚度的坯壳并被连续拉出进入二次冷却区。 良好的结晶器应具有下列性能: (1)良好的导热性,能使钢液快速凝固。每lkg钢水浇注成坯并冷却到室温,放出的热量约为1340kJ/kg,而结晶器约带走5~10%,即67~134kJ/kg,若板坯尺寸为250×1700mm,拉速为lm/min时,结晶器每分钟带走的热量多达20万kJ。而结晶器长度又较短,一般不超过lm,在这样短的距离内要能带走大量的热量,要求它必须具有良好的导热性能。若导热性能差,会使出结晶器的铸坯坯壳变薄,为防止拉漏,只好降低拉速,因此结晶器具有良好的导热性是实现高拉速的重要前提。 (2)结构刚性要好。结晶器内壁与高温金属接触,外壁通冷却水,而它的壁厚又很薄(仅有10~20mm),因此在它的厚度方向温度梯度极大,热应力相当可观,其结构必须具有较大的刚度,以适应大的热应力。 (3)装拆和调整方便。为了能快速改变铸坯尺寸或快速修理结晶器,以提高连铸机的生产能力,现代结晶器都采用了整体吊装或在线调宽技术。 (4)工作寿命长。结晶器在高温状况下伴随有铸坯和结晶器内壁之间的滑动摩擦,因此结晶器内壁的材质应有良好的耐磨性和较高的再结晶温度。

连铸各种振动装置的优缺点比较

二连铸车间三台连铸机振动装置差异和优缺点 摘要: 结晶器振动装置是连铸机的重要设备之一,其主要作用是防止钢水与铜管内壁的粘结,改善铸坯的表面质量,当粘结发生时,则通过振动强制脱模,消除粘结;振动装置即是带动结晶器产生脱模所需的机械振动,本文通过对首钢水钢二炼钢厂的三台连铸机振动装置差异及优缺点的分析比较,充分了解各台铸机振动装置性能,做到心中有数,以便在以后的生产中趋利避害,对生产起到一定的指导和参考作用。 关键词:结晶器振动装置正弦振动非正弦振动四连杆镭目非正弦大扭矩直驱电机

目录 摘要 (2) 1、二连铸3台连铸机振动装置概况 (4) 1.1 1#连铸机振动装置概况 (4) 1.1.1 技术参数 (4) 1.1.2 振动装置结构 (4) 1.1.3 振动装置工作原理 (4) 1.2 2#连铸机振动装置概况 (5) 1.2.1 技术参数 (5) 1.2.2 振动装置结构 (5) 1.2.3 振动装置工作原理 (6) 1.3 3#连铸机振动装置概况 (6) 1.3.1 技术参数 (6) 1.3.2 振动装置结构.............................., (7) 1.3.3 振动装置工作原理 (7) 2、3台连铸机振动装置的差异及优缺点比较 (8) 2.1 振动波形 (8) 2.2 振动特点 (8) 2.2.1 1#机振动特点 (8) 2.2.2 2#机振动特点 (10) 2.2.3 3#机振动特点 (11) 3、结论 (13)

3.1 3台连铸机振动装置的差异 (13) 3.2 3台连铸机振动装置的优缺点 (13)

1、二连铸3台连铸机振动装置概况 1.1 1#连铸机振动装置概况: 1.1.1 技术参数: 振动曲线:正弦 电机:YTSP160M-4-B3 功率:11KW,转速:1440r/min 频率:64-300cpm(圈/每分钟) 振幅:±3mm、±4mm 减速机:锥包络蜗轮减速机 速比:7.75 [1] 1.1.2 振动装置结构: 1#连铸机振动装置为四连杆机构,振动机构为内弧布置,主要由交流电动机、减速机、偏心轮、连杆、振动臂、导向臂和振动台几大部分组成,这种装置的最大优点是将传动装置移到二冷室之外,振动机构为板簧四连杆,振动台不直接受连杆传动,而是把振动臂一端延长,形成传动臂,显然机构得到了进一步简化,电动机减速器的工作环境条件得到了大幅度改善。 1.1.3 振动装置工作原理: 1#连铸机振动装置采用变频器进行交流变频调速产生正弦振动,再用偏心机构将圆周运动转换成上下振动,带动连杆机构驱动振动台,通过调节偏心机构的偏心距调整振幅,就像汽车调档一样,不过此偏心机构只有两个振幅档可以调,分别为±3mm和±4mm,且只能

结晶器振动装置故障原因分析

结晶器振动装置故障原因分析 [摘要]结晶器振动装置主要是利用计算机数据采集分析的系统,可以更好地观察连铸过程,改善连铸性能。本文主要是分析了结晶器连铸机结晶器振动装置发生的故障原因,并给出了合理的解决。 前言 结晶器监控系统是计算机数据采集与分析的可视化系统。通过采集结晶器的相关数据,结晶器液面高度、铜板出现粘结温度、振幅、振动频率、冷却水量、水温等,操作人员对透视结晶器观察连铸过程,便于更好改善连铸性能。 一、结晶器监控的系统 我们所说的结晶器监控系统主要是由部分结晶器和部分工艺组成的。部分结晶器、振动装置的数据采集和自动化系统数据的显示,通过系统的核心来处理数据的服务器。部分是工艺的可以经过数据采集、数据算法、软件包进行可视化处理振动软件包。 结晶器是连铸设备的“心脏”。在连铸机中起着不可估量的作用,结晶器主要是通过结晶槽可用作蒸发结晶器或冷却结晶器。为提高晶体生产强度,可在槽内增设搅拌器。结晶槽可用于连续操作或间歇操作。间歇操作得到的晶体较大,但晶体易连成晶簇,夹带母液,影响产品纯度。这种结晶器结构简单,生产强度较低,适用于小批量产品(如化学试剂和生化试剂等)的生产。 结晶器不仅可以使钢液逐渐凝固成所需要规格、形状的坯壳;还可以通过结晶器的振动,使坯壳脱离结晶器壁而不被拉断和漏钢;进行调整结晶器的参数,使铸坯不产生脱方、鼓肚和裂纹等缺陷;必须保证坯壳均匀稳定的生成。 二、连铸机结晶器安装方圆坯连铸结晶器安装 1.结晶器离线时设备检修、铜管检查、试压、对弧、喷嘴检测等各项工作已经完成且达到上线要求,在此前提下结晶器吊运到浇注平台上进行结晶器安装工作。 2.结晶器若有内置式电磁搅拌则需在离线时检测完毕,若采用结晶器外置式电磁搅拌则在安装结晶器时,需先将电磁搅拌放置在在线的搅拌器安装托架上,不同的连铸机供应商有不同的设计理念,搅拌器的安装位置是有区别的。 3.在线的结晶器电磁搅拌装置安装完毕后,将结晶器吊装在振动装置上,振动装置与结晶器冷却水气的联接通常是自动联通的,根据振动装置上的定位销确定结晶器的安装位置,采用对弧装置对弧,使结晶器铜管的弧与连铸机基本弧半径吻合,若超出误差允许范围内,则需对结晶器进行相应调整,调整完毕后用固定装置锁死。 4.在线接通结晶器冷却水检查结晶器与振动装置接水板是否密封,是否有漏水现象,启动振动装置,观察结晶器是否有未锁紧或是偏摆现象。 5.检查完毕后盖上结晶器罩完成安装工作。启动二次水系统,检查足辊区的冷却管路是否通畅。 6.整个检查过程均没有问题,可以进行模拟浇注等工作,待模拟完成,引锭杆送到结晶器下口最终位置,利用压缩吹干铜管内冷却水,开始装冷料以准备开浇。 三、连铸机配置和故障 连铸机配置连铸设备主要包括钢包及钢包回转台-中间包-引锭装置-结晶器

连铸结晶器

连铸结晶器 结晶器是连铸机非常重要的部件,是一个强制水冷的无底钢锭模。称之为连铸设备的“心脏”。 结晶器的定义:一种槽形容器,器壁设有夹套或器内装有蛇管,用以加热或冷却槽内溶液。结晶槽可用作蒸发结晶器或冷却结晶器。为提高晶体生产强度,可在槽内增设搅拌器。结晶槽可用于连续操作或间歇操作。间歇操作得到的晶体较大,但晶体易连成晶簇,夹带母液,影响产品纯度。这种结晶器结构简单,生产强度较低,适用于小批量产品(如化学试剂和生化试剂等)的生产。 结晶器的作用: (1)使钢液逐渐凝固成所需要规格、形状的坯壳; (2)通过结晶器的振动,使坯壳脱离结晶器壁而不被拉断和漏钢; (3)通过调整结晶器的参数,使铸坯不产生脱方、鼓肚和裂纹等缺陷; (4)保证坯壳均匀稳定的生成。 结晶器的类型 (1)结晶器的类型按其内壁形状,可分为直形及弧形等 1)直型结晶器。直形结晶器的内壁沿坯壳移动方向呈垂直形,因此导热性能良好,坯壳冷却均匀。 该类型结晶器还有利于提高坯壳的质量和拉坯速度、结构较简单、易于制造、安装和调试方便;夹 杂物分布均匀;但铸坯易产生弯曲裂纹,连铸机的高度和投资增加。直形结晶器用于立式和立弯式 及直弧连铸机。 2)弧形结晶器。弧形结晶器的内壁沿坯壳移动方向呈圆弧形,因此铸坯不易产生弯曲裂纹;但导热性比直形结晶器差;夹杂物分布不均,偏向坯壳内弧侧。弧形结晶器用在全弧形和椭圆形连铸机上。 (2)按溶液获得过饱和状态的方法可分蒸发结晶器和冷却结晶器;按流动方式可分母液循环结晶器和晶浆(即母液和晶体的混合物)循环结晶器;按操作方式可分连续结晶器和间歇结晶器。 通俗的讲连铸结晶器: 就是一个钢水制冷成型设备。基本由框架,水箱和铜板(背板与铜板),调整系统(调整装置,减速机等);润滑系统(油管油路),冷却系统和喷淋等设备组成。 连铸结晶器需要和连铸结晶器保护材料(渣)一同使用。 保护材料用途: 1.确保连铸工艺顺行; 2.改善铸坯表面质量 连铸结晶器钢水流动控制技术 1、连铸板坯的表面和内部缺陷与结晶器内钢液的流动状态密切相关。伴随着连铸机拉速的提高,结晶器内液面波动加剧,容易产生卷渣,造成铸坯质量恶化。采用结晶器钢水流动控制技术可以改善结晶器内流场形态,抑制出料速度以平稳液面,促进夹杂物上浮。用于

连铸机结晶器振动装置

液压伺服驱动式铸坯结晶器振动装置设计 摘要 结晶器振动装置是连铸中的关键设备,其振动形式、控制方式以及在线监测与调整,对连铸质量具有重要影响。因此,研究连铸结晶器振动装置及控制技术具有重要的现实意义。本文通过对连铸机结晶器技术发展及结晶器振动方式演变的阐述,提出了电液伺服驱动,并对其振动形式及其工作原理进行了实质性的分析。然后绘制了机构简图,并对其运动参数及工艺参数进行了分析计算!最后通过校核、机构的仿真分析完成了本次设计! 关键词:连铸机;结晶器;正弦振动;电液伺服控制;振动装置

Desigh of the hydraulic pressure servo actuation type casts the semifinished product crystallizer shake-out equipment Abstract The crystallizer shake-out equipment is in the continuous casting key equipment, its vibration form, the control mode as well as the online monitor and the adjustment, have the material effect to the continuous casting quality. Therefore, the research continuous casting crystallizer shake-out equipment and the control technology have the vital practical significance. This article through the elaboration which evolves to the continue caster crystallizer technological development and the crystallizer vibration way, proposed the battery solution servo actuates, and has carried on the substantive analysis to its vibration form and the principle of work. Then has drawn up the organization diagram, and has carried on the analysis computation to its parameter of movement and the technological parameter! Finally through the examination, the organization simulation analysis has completed this design! Keywords: mould; sinusoidal oscillation; electro-hydraulic;

连铸机结晶器振动装置导向板的计算验证

龙源期刊网 https://www.wendangku.net/doc/f115870473.html, 连铸机结晶器振动装置导向板的计算验证 作者:张锡玉 来源:《中国新技术新产品》2014年第13期 摘要:本文介绍了连铸机结晶器振动装置导向板的计算验证。运用材料力学的理论及方法,将振动装置导向板简化为二次超静定问题,计算导向板内部应力,判断已选材料的强度是否满足要求。 关键词:连铸;结晶器振动装置;导向板 中图分类号:TF34 文献标识码:A 1 前言 连铸设备是决定炼钢厂产能及质量的最关键因素之一。结晶器振动装置又是连铸设备中的关键设备之一。现在使用的连铸机大部分用的是液压振动。使用液压振动装置来支撑结晶器,有助于在整个浇铸过程中使结晶器精确定位。方便调整振动振幅,频率及负滑脱率等。 2 振动装置结构及功能 液压振动装置由振动底座、结晶器振动台、振动驱动装置、振动导向装置组成。底座是焊接箱式结构,用于支撑结晶器台导向、振动驱动、结晶器台和结晶器。底座被放在振动装置基础框架上,并且通过定位销自动按照铸流导向定位。结晶器振动台和底座之间装有平衡重量的螺旋弹簧。结晶器的振动运动由驱动液压缸来产生。振动驱动装置是由两个固定在底座上的液压缸组成,液压缸由伺服阀和控制装置进行同步控制。 振动导向装置包括板式弹簧和夹紧板。它们布置在底座和结晶器平台的横向侧,用于结晶器平台和结晶器的垂直导向。每个板式弹簧的两个纵向端固定在底座上,板式弹簧的中部用螺栓固定在结晶器振动平台上,当发生振动时,板式弹簧对结晶器平台在板簧铅垂方向进行导向。 3 计算过程 振动装置导向板的质量对振动曲线有很大的影响。因此,如何选择振动装置导向板是连铸设备设计的一个很重要的工作。下面以液压振动装置的导向板为例,说明一下选用材料强度的计算方法。 首先将结晶器振动装置简化成如图1模型。

结晶器振动装置设计毕业设计说明书

毕业设计说明书结晶器振动装置设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

结晶器冷却水量控制

收稿日期: 2010-04-22;修订日期:2010-04-29作者简介:胡贤军(1981-,男,上海亚新连铸工程技术公司 工程师。 结晶器冷却水量控制 胡贤军,朱学斌,唐杰民 (上海亚新连铸工程技术公司,上海 200042 摘要:连铸机高端用户的产品种类繁多,铸坯断面和钢水成分变化也随之多样,为达到工艺要求的结晶器冷却效果,铜管冷却水流量需根据铸坯的规格、钢种以及拉速来进行相应的调整并控制水缝流速。气动薄膜阀自动控制模式的应用可以达到精确的水量控制的要求。 关键词:结晶器;冷却水;流量;传热 中图分类号:T F341 6 文献标识码:A 文章编号: 1001-196X (2010S1-0305-03 Control over a m ount of m ould cooling water HU X ian jun ,Z HU Xue bin ,TANG Jie m in (Y ax i n Conti nuous Caster Eng i nee ri ng &T echno l ogy Co .,L td ., Shangha i 200042,Ch i na Ab strac t :T he re is a w i de range o f h i gh end products , and casti ng frac t ure and mo lten stee l co m pos ition var if y

accordi ng l y .T o ach ieve the c rysta llize r coo ling e ffect requ ired by t he process ,coolant flo w i n t he copper t ub i ng needs to be ad j usted accordi ng to casting specificati ons ,g rade o f stee l and casti ng speed .A s w el,l the fl ow rate from w ate r slot shoul d be contro lled .The plan t data sho w s tha t the system can ach i eve accurate wa ter vo l u m e contro.l K ey words :m ou l d ; coo li ng wa ter ;w ater flow ; heat transfer 1 前言 一冷过程是指钢水进入到结晶器内,与铜管壁接触后,产生初生坯壳和钢水温度降低的过程。钢水温度和铜管壁温形成了约1300 以上的温差,横向传热的驱动力巨大,钢水温度降低的热量必须由铜管冷却水带走,才能保持铜管厚度上的温度差稳定在一定的水平,且使得铜管具有足够的刚度,从而构成稳定一冷传热过程。由一冷带走的热量作用较多。形成初生的坯壳并随着铸坯的下行不断增加其厚度。液态钢水转变为固态坯壳不仅带走显热能量,还要带走相变潜热能量,结晶器铜管冷却水带走的绝大部分就是这个热量。降低包围在坯壳内钢水温度。冷却保护 渣。结晶器内钢水循环到钢渣界面,不断熔化保护渣产生一定厚度的液态渣层,当结晶器上下振动时,液渣下行到铜管壁与初生坯壳之间,起到润滑和传热的作用,这是保护浇铸传热的基本模式。一冷水冷却液态保护渣,使其生成非金属保护渣坯壳,这个传热过程间接起到降低钢水温度的作用。 2 控制一冷水量的意义 配置高的连铸机,可以高拉速生产普碳钢 和建筑用材铸坯。在生产品质钢时,采用合理的拉速来协调质量和产量关系,不同断面和钢种对应不同的水量。如生产150方坯普碳钢时拉速可以达到3m /m in ;生产20钢需控制拉速低于2 3m /m i n ,这样才能保证其内在质量,但对于含锰量较

相关文档