文档库 最新最全的文档下载
当前位置:文档库 › 找正公式

找正公式

找正公式
找正公式

Boris Zajdenberg Deputatskiy chas, Download Deputatskiy chas movie, Yuri Mazhuga Deputatskiy chas. Sumalatha Enthino Pookunna Pookal, movie Enthino Pookunna Pookal, Mohanlal Enthino Pookunna Pookal. R贸bert B谩n Festenek a gyerekek, Festenek a gyerekek, . ? Baseball Wally Yonamine: The Man Who Gothic Art From Renaissance to Impressionism: Styles Golf General Afternoons with Mr. Hogan, Order Online Golf Gotham , Biography & Autobiography Gotham.

当前位置:首页>> 产品展示>>客户服务

旋转机械的联轴器找正

联轴器的找正是机器安装的重要工作之一.找正的目的是在机器在工作时使主动轴和从动轴两轴中心线在同一直线上.找正的精度关系到机器是否能正常运转,对高速运转的机器尤其重要.

两轴绝对准确的对中是难以达到的,对连续运转的机器要求始终保持准确的对中就更困难.各零部件的不均匀热膨胀,轴的挠曲,轴承的不均匀磨损,机器产生的位移及基础的不均匀下沉等,都是造成不

易保持轴对中的原因.因此,在设计机器时规定两轴中心有一个允许

偏差值,这也是安装联轴器时所需要的.从装配角度讲,只要能保证联轴器安全可靠地传递扭矩,两轴中心允许的偏差值愈大,安装时愈容易达到要求。但是从安装质量角度讲,两轴中心线偏差愈小,对中愈精确,机器的运转情况愈好,使用寿命愈长。所以,不能把联轴器安装时两轴对中的允许偏差看成是安装者草率施工所留的余量。

1.联轴器找正时两轴偏移情况的分析

机器安装时,联轴器在轴向和径向会出现偏差或倾斜,可能出现四种情况,如图1所示。

图1联轴器找正时可能遇到的四种情况

根据图1所示对主动轴和从动轴相对位置的分析见表1。

表1联轴器偏移的分析

2.测量方法

安装机器时,一般是在主机中心位置固定并调整完水平之后,再进行联轴器的找正。通过测量与计算,分析偏差情况,调整原动机轴中心位置以达到主动轴与从动轴既同心,又平行。

联轴器找正的方法有多种,常用的方法如下:

(1)简单的测量方法如图2所示。用角尺和塞尺测量联轴器外圆各方位上的径向偏差,用塞尺测量两半联轴器端面间的轴向间隙偏差,通过分析和调整,达到两轴对中。这种方法操作简单,但精度不高,对中误差较大。只适用于机器转速较低,对中要求不高的联轴器的安装测量。

图2 角尺和塞尺的测量方法

(2)用中心卡及塞尺的测量方法找正用的中心卡(又称对轮卡)结构形式有多种,根据联轴器的结构,尺寸选择适用的中心卡,常见的结构图3 所示。中心卡没有统一规格,考虑测量和装卡的要求由钳工自行制作

图3常见对轮卡型式

(a)用钢带固定在联轴器上的可调节双测点对轮卡

(b)测量轴用的不可调节的双测点对轮卡

(c)测量齿式联轴器的可调节双测点对轮卡

(d)用螺钉直接固定在联轴器上的可调节双测点对轮卡

(e)有平滑圆柱表面联轴器用的可调节单测点对轮卡

(f)有平滑圆柱表面联轴器用的可调节双点对轮卡

利用中心卡及塞尺可以同时测量联舟轴器的径向间隙及轴向间隙,这种方法操作简单,测量精度较高,利用测量的间隙值可以通过计算求出调整量,故较为适用。

(3)百分表测量法把专用的夹具(对轮卡)或磁力表座装在作基准的(常是装在主机转轴上的)半联轴器上,用百分表测量联轴器的径向间隙和轴向间隙的偏差值。此方法使联轴器找正的测量精度大大提高,常用的百分表测量方法有四种。

A双表测量法(又称一点测量法) :

用两块百分表分别测量联轴器外圆和端面同一方向上的偏差值,故又称一点测量法,即在测量某个方位上的径向读数的同时,测量出同一方位上的轴向读数.具体做法是:先用角尺对吊装就位准备调整的机器上的联轴器做初步测量与调整。然后在作基准的主机侧半联轴器上装上专用夹具及百分表,使百分表的触头指向原动机侧半联轴器的外圆及端面,如图所示。

测量时,先测0°方位的径向读数a1及轴向读数s1。为了分析计算方便,常把a1和s1调整为零,然后两半联轴器同时转动,每转90°读一次表中数值,并把读数值填到记录图中。圆外记录径向读数a1,a2,a3,a4,圆内记录轴向读数s1,s2,s3,s4,当百分表转回到零位时,必须与原零位读数一致,否则需找出原因并排除之。常见的原因是轴窜动或地脚螺栓松动,测量的读数必须符合下列条件才属正确,即

a1+a3=a2+a4;s1+s3=s2+s4

通过对测量数值的分析计算,确定两轴在空间的相对位置,然后按计算结果进行调整。

这种方法应用比较广泛,可满足一般机器的安装精度要求。主要缺点是对有轴向窜动的联轴器,在盘车时其端面的轴向度数会产生误差。因此,这种测量方法适用于由滚动轴承支撑的转轴,轴向窜动比较小的中,小型机器。

B.三表测量法(又称两点测量法)

三表测量法与两表测量法不同之出是在与轴中心等距离处对称布置两块百分表,在测量一个方位上径向读数和轴向读数的同时,在相对的一个方位上测其轴向读数,即同时测量相对两方位上的轴向读数,可以消除轴在盘车时窜动对轴向读数的影响,其测量记录图如图所示,三表测量法示意图如下:

根据测量结果,取0°~180°和180°~0°两个测量方位上轴向读数的平均值,即

s1=(s1'+s1'')/2s3=(s3'+s3'')/2

取90°~270°和270°~90°两个测量方位上轴向读数的平均值,即

s2=(s2'+s2'')/2s4=(s4'+s4'')/2

s1,s2,s3,s4四个平均值作为各方位计算用的轴向读数,与a1,a2,a3,a4四个径向读数记入同一个记录图中,按此图中的数据分析联轴器的偏移情况,并进行计算和调整.这种测量方法精度很高,适用于需要精确对中的精密或高速运转的机器,如汽轮机,离心式压缩机等.相比之下,三表测量法比两表测量法在操作与计算上稍繁杂一些.

C.五表测量法(又称四点测量法)

在测量一个方位上的径向读数的同时,测出0°,90°,180°,270°四个方位上的轴向读数,并取其同一方位上的四个轴向读数的平均值作为分析与计算用的轴向读数,与同一方位的径向读数合起来分析联轴器的偏移情况,这种方法与三表法应用特点相同.

D.单表法

它是近年来国外应用日益广泛的一种联轴器找正方法。这种方法只测定联轴器轮毂外圆的径向读数,不测量端面的轴向读数,测量操作时仅用一个百分表,故称单表法。其安装,测量示意图如图8

此种方法用一块百分表就能判断两轴的相对位置并可计算出轴向和径向的偏差值。也可以根据百分表上的读数用图解法求得调整量。用此方法测量时,需要特制一个找正用表架,其尺寸,结构由两半联轴器间的轴向距离及轮毂尺寸大小而定。表架自身质量要小,并有足够的刚度。表架及百分表均要求固紧,不允许有松动现象。图8便是两轴端距离较大时找正用表架的结构示意图。

单表测量的操作方法是,在两个半联轴器的轮毂外圆面上各作相隔90°的四等分标志点1a,2a,3a,4a与1b,2b,3b,4b。先在“B”联轴器上架设百分表,使百分表的触头接触在“A”联轴器的外圆面上的1a点处,然后将表盘对到“0”位,按轴运转方向盘动“B”联轴器,分别测得“A”联轴器上的1a,2a,3a,4a的读数(其中1a=0),为准确可靠可复测几次。为了避免“A”联轴器外圆面与轴不同心给测量带来误差,可同时盘动“B”与“A”联轴器。然后再将百分表架设在“A”联轴器上,以同样方法测得“B”联轴器上1b,2b,3b,4b的读数(其中1b=0)。

测出偏差值后,利用上图所示的偏差分析示意图分析方法,可得

出“A”与“B”两半联轴器在垂直方向和水平方向两轴空间相对位置的各种情况,如表2,表3所示。

表2垂直方向两轴相对位置分析

表3水平方向两轴相对位置分析

图中假设“B”轴向上平移,使Ob’与Oa’相重合,此时3b=0,而3a的读数则变为3ac,由于3ac=3a+3b(代数和),这时Oa’与Oa’’的垂直距离也就是两轴在垂直方向的偏差值3ac/2 。因此,只要测得3a与3b的数值,可以求得3ac的数值(要注意读数的正负号)。水平方向的偏差分析与垂直方向相同。

3.调整方法

测量完联轴器的对中情况之后,根据记录图上的读数值可分析出两轴空间相对位置情况。按偏差值作适当的调整。为使调整工作迅速,准确进行,可通过计算或作图求得各支点的调整量。测量方法不同,计算方法也不同。

(1)两表测量法,三表测量法及五表测量法

两表,三表及五表测量都可得出同一方位上的径向读数和轴向读数,若测点位置及调整支点的位置如图10所示(请注意测量轴向读数百分表的指向),可用下式进行计算:

H1=L1*(s1-s3)/D + (a1-a3)/2-----------------(1—9)

H2=(L1+L2)*( s1-s3)/D + (a1-a3)/2----------(1—10)式中H1 ,H2---------支点1和支点2的调整量,(正值时为加垫负值时减垫),mm;

s1,s3及a1,a3-------分别为0°和180°方位测得轴向和径向百分表读数,mm;

D---------------------------联轴器的计算直径(百分表触点,即测点到联轴器中心点的距离),mm;

L1--------------------------支点1到联轴器测量平面间的距离,mm;

L2--------------------------支点1与支点2之间的距离,mm;应用上式计算调整量时的几点说明:

①式中s1,s3,a1,a3是用百分表测的读数,应包含正负号一起代入计算公式。

②H的计算值是由两项组成,前项L(s1-s3)/D中,L与D不可能出现负值,所以此项的正负决定于(s1-s3)。S1-s3>0时,前项为正值,此时联轴器的轴向间隙呈形状,称为“上张口”;S1

-s3<0时,前项为负值,联轴器的间隙呈形状,称为“下张口”。当a1-a3>0时,后项为正值,此时被测的半联轴器中心(主动轴中心)比基准的半联轴器中心(从动轴中心)偏低,当a1-a3<0时,被测的半联轴器中心偏高,

③机器安装时,通常以主机转轴(从动轴)做基准,调整电机转轴(主动轴)。电机低座四个支点于两侧对称布置,调整时,对称的两支点所加(或减)垫片厚度应相等。

④若安装百分表的夹具(对轮卡)结构不同,测量轴向间隙的百分表触点指向原动机(触点与被测半联轴器靠结合面一侧的端面接触)时,百分表的读数值大小恰与联轴器间实际轴向间隙方向相反,所以H值的公式前项s1-s3应改为s3-s1,即s3-s1>0时为“上张口”,s3-s1<0时为“下张口”。

⑤机器在运转工况下因热膨胀会引起轴中心位置变化,联轴器找正的任务时把轴中心线调整到设计要求的冷态(安装时的状态)轴中心位置,使机器在热态(运转工况下)达到两轴中心线一致(既同心,又平行)的技术要求。安装机器时各支点温升的数据可以从制造厂的安装说明书中得到;有的直接给定机器冷态找正时的读数值;也有的给定各支点的温升数据,由图解法求出冷态找正时的读数值。在安装

大型机组时,有的给出各类机器在不同工况下的经验图表,通过查表或计算找出冷态找正时的读数值。经验丰富的安装人员还可从实践中得出一些经验数据。总之,对于安装者来说,要考虑机器从冷态到热态支点处轴中心位置的变化,在工作中保证机器能处于理想的对中状态。

⑥在水平方向上调整联轴器的偏差时,不需要加减垫片,通常也不计算。操作时利用顶丝和百分表,边测量,便调整,达到要求的精度为止。一些大型的,重要的机组在调整水平偏差时,各支点的移动量可通过计算或作图求出。

(2)单表测量时计算调整量的方法

计算前,后两支点的调整量如下图所示。以“B”轴作基准轴,调整“A”轴时应先测定X,Y,Z之值(图(a)),若以δy与δz分别表示前后支点的调整量,从图(b)可推导出:

⊿Oa’Oa”G ∽ ⊿EO”F

由于GO”=XFO”=YGO’=3ac/2(忽略Oa”Ob’)所以EF=Y/X×3ac/2

δy=EF+3b/2=Y/X×3ac/2+3b/2--------(1-11) 同理可得

HI=Z/X×3ac/2

δz=HI+3b/2=Z/X×3ac/2+3b/2---------(1-12) 几点说明:

①δy及δz为正值,则要求增加垫片厚度;若为负值,则减少垫片厚度.

②上式为垂直方向调整的计算.若水平方向计算调整量可用同样原理,只是调整量为支点的左右移动量,而不需增减垫片厚.

③上述方法是将两轴中心线调成一条直线(冷态联轴器对中),然后根据各转轴支点处的热膨胀量大小撤去相应厚度的垫片,以达到冷态找正的要求.为此,首先根据3a,3b及3ac的数值判断两轴之间的空间位置,再进行计算.调整工作必须分成两步走:先将两转轴中心线调成一条直线,再按热膨胀量大小在支点处撤去相应厚度的垫片。

单表测量法在实际操作中可以在两个半联轴器上同时装上百分表架和百分表,一个百分表指在“A”联轴器上,另一个百表指在“B”联轴器上,互相错开180°,两轴同步盘动360°,两个百分表同时记录读数。可以免去装拆卸百分表架的麻烦,减少发生误差的可能性,加快调整速度。

当水平面内两側读数都不是零时,为方便起见,可在两側读数中分别加上一个相等到的数(包括正或负),使其中一側变为零。这种数学变换对实际偏差没有影响。应该注意的是支脚螺栓孔和螺栓之间的空隙要满足在水平方向上的调整量,否则应调整基准轴,使其它轴的位置作相称应的调整。

此外,随科技的发展,现在有了激光对中仪,价格从初时的20多万降到现在的7,8万,也已经非常普及了。相对于其它的找正方式,它具有快捷,简单,准确性高的优势,由其对于大型机组,更为明显。它由几部分组成:激光发射器,激光接收器,控制液晶屏,这三者之间的连接数据线,专用的链条式(或磁力表坐)卡具(用来把激光发射和接收器固定在联轴器上)。在把激光发射器和激光接收器固定在联轴器上之后,再将连线和控制屏接到一起,选择找正模式,按提示输入相应的数据,一般有激光发射器的回转直径,激光发射器和激光接收器之间的距离,调整机各支脚到接收器的距离。一般只须盘车180°即可,之后各脚的加减垫片数据和水平方向移动调整数据将由控制液晶屏显示出来。一般经过两次调整即可完成。

无论用那种方法求调整量,复查测量时仍可能产生一定的误差。联轴器找正与调整需要反复进行多次,最终将误差限制在允许的范围内.

电机负载扭矩计算

一、计算折合到电机上的负载转矩的方法如下: 1、水平直线运动轴: 9.8*μ·W·P B T L=2π·R·η(N·M) 式P B:滚珠丝杆螺距(m) μ:摩擦系数 η:传动系数的效率 1/R:减速比 W:工作台及工件重量(KG) 2、垂直直线运动轴: 9.8*(W-W C)P B T L=2π·R·η(N·M) 式W C:配重块重量(KG) 3、旋转轴运动: T1 TL=R·η(N·M) 式T1:负载转矩(N·M) 二:负载惯量计算 与负载转矩不同的是,只通过计算即可得到负载惯量的准确数值。不管是直线运动还是旋转运动,对所有由电机驱动的运动部件的惯量分别计算,并按照规则相加即可得到负载惯量。由以下基本公式就能得到几乎所有情况下的负载惯量。 1、柱体的惯量 D(cm) L(cm) 由下式计算有中心轴的圆柱体的惯量。如滚珠丝杆,齿轮等。 4L(kg·cm·sec2)或πγ·L·D4(KG·M2) πγD J K=32*980J K=32 式γ:密度(KG/CM3)铁:γ〧7.87*10 -3KG/CM3=7.87*103KG/M3 铝:γ〧2.70*10 -3KG/CM3=2.70*103KG/M3 JK:惯量(KG·CM·SEC 2)(KG·M2)

D:圆柱体直径(CM)·(M)

L:圆柱体长度(CM)·(M) 2、运动体的惯量 用下式计算诸如工作台、工件等部件的惯量 WPB2 J L1=9802π(KG·CM·SEC 2) PB2 2 =W2π(KG·M) 式中:W:直线运动体的重量(KG) PB:以直线方向电机每转移动量(cm)或(m) 3、有变速机构时折算到电机轴上的惯量 1、 Z2 JJO 电机 Z1 KG·CN:齿轮齿数 2 Z1 22 JL1=Z2*J0(KG·CM·SEC)(KG·M ) 三、运转功率及加速功率计算 在电机选用中,除惯量、转矩之外,另一个注意事项即是电机功率计算。一般可按下式求得。 1、转功率计算 2π·Nm·T L P0=60(W) 式中:P0:运转功率(W) Nm:电机运行速度(rpm) TL:负载转矩(N·M) 2、速功率计算 2 2π·NmJL Pa=60Ta 式Pa:加速功率(W)

双表找正的基本方法.doc

如对你有帮助,请购买下载打赏,谢谢! 双表找正法 一采用两块百分表分别测定连轴节径向和轴向的找正情况。在使用该法对联轴节进行找正的操作中,一般分两步进行。第一步是用钢板尺和塞尺进行初步找正。即用钢板尺在连轴节外圆面的不同轴向位置上进行靠测,利用透光法检查两联轴节的同心度情况。并用塞尺测定两联轴节对口间隙情况,以确保联轴节两端面的平行度及一定的间隙值。第二步采用两块百分分表进行精找,即由两块表分别鉴定轴向与径向的调整值,直至确保合格为止。 二.在采用“二表找正法”时应注意 ①由于一般连轴节的外圆加工的光洁度较差,不利于找正时百分表环向移动。所以常在联 轴节外圆环面上取上、下、左、右各相隔90度的测点位置,测点距靠背轮边缘约10~15毫米并将各测点做好记号以供复用。在实际测定时常需多次测定以达到更合适的找正数据。除了以上找正时单轮转动方法以外,现在常用双轮同时转动的方法,即使联轴节组同时旋转,并分别测定四个位置上的数据。这种方法的优点是:测点的百分表触头基本上只作很有限的位移,对测定结果的准确度是有利的。 ②对测出数值应进行复核,复核的方法是将联轴节再向前转动,核对各位置的测量数值不 应有变动;若有变动,则可能是找正架安装固定不牢、百分表固定不牢、轴有窜动等原因;查明情况,重新测量;所测数值上+下应该等于左+右;如果不相等,钳工称之为丢数,也应查明原因,消除后重新测量。 ③对于联轴节外缘比较宽的要考虑采用的百分表支架要有适当的刚性和稳定性。百分表在 主轮上的固定要可靠,在使用磁力表座时也可以采用包箍等方法来固定百分表架。 ④在测量过程中,使百分表首先位于上方垂直的位置0°把百分表指针调至零位,为使测量有一定范围,一般让表处于量程的一半位置。然后将两半联轴器顺次转到90°、180°、270°三个位置上,分别测出a2、s2、;a3、s3;a4、s4。将测得数值记在记录图中。当两半联轴器重新转到0°位置时,百分表的读数应该归零。否则应检查其原因,轴是否有窜动,百分表是否牢固,并予消除,然后再继续测量,直到所测得的数值正确为止。在偏移不大的情况下,最后测得数据应该符合下列条件:a1﹢a3﹦a2+a4;s1+s3=s2+s4。其中a为径向表读数,s为轴向表读数。在测量过程中,如果由于基础的构造影响,使联轴器最低位置的径向间隙a3和轴向间隙s3测不到,则可根据其他三个已测的间隙数值推算出来: A3=a2+a4-a1;s3=s2+s4-s1 轴向径向 A1 s1 A4 a2 s4 s2 A3 s3 最后,比较对称点上的两个径向间隙和轴向间隙数值如a1和a3;s1和s3,如果对称点的数值相差不超过规定的数值时,则认为符合要求,否则要进行调整。调整时通常采用在垂直方向加减主动机支脚下面的垫片或在水平方向移动主动机位置的方法来实现。 对于粗糙和小型的机器,在调整时,根据偏移情况采取逐渐近似的经验方法来进行调整即逐次试加或试减垫片,以及左右敲打电机来进行调整。对于精密的大型的机器,在调整时,则应该通过计算来确定加减垫片的厚度和左右的移动量。 三找正联轴器时,一般可能遇到如图所示的四种情况: ① S1=s3,a1=a3如图一所示,这表示两半联轴器的端面互相平行,主动轴和从动轴的 中心线又同在一条中心线上,这时两半联轴器处于正确的位置。此处s1、s3和a1、a3表示在联轴器上方和下方两个位置上的轴向间隙和径向间隙。 ②S1=s3,a1≠a3,如图二所示,这表示两半联轴器的端面互相平行,两轴的中心线不 同轴。这时两轴的中心线之间有径向位移,即两轴没有开口,只有径向位移。这时

同步带计算公式

带长的计算公式 圆弧齿同步带轮轮齿 Arc tooth Timing tooth 槽 型 节距 pb 齿槽深 hg 齿槽圆弧半 径 R 齿顶圆半角 r1 齿槽宽 s 两倍节顶距 2δ 齿形角3M 3 1.28 0.91 0.26~0.35 1.90 0.762 ≈14°5M 5 2.16 1.56 0.48~0.52 3.25 1.144 ≈14°8M 8 3.54 2.57 0.78~0.84 5.35 1.372 ≈14°14M 14 6.20 4.65 1.36~1.50 9.80 2.794 ≈14°20M 20 8.60 6.84 1.95~2.25 14.80 4.320 ≈14°直边齿廓尺寸 Dimension of linear type pulley

型号MXL XXL XL L H XH XXH 齿槽底宽 bw 0.84±0.051.14±0.051.32±0.053.05±0.104.19±0.137.90±0.1512.17±0.18齿槽深 hg 0.69 0.84 1.65 2.67 3.05 7.14 10.31 0 -0.05 -0.05 -0.08 -0.10 -0.13 -0.13 -0.13 齿槽半角 Φ+1.5° 20 25 25 20 20 20 20 齿根圆角 半径 rb 0.35 0.35 0.41 1.19 1.60 1.98 3.96 齿顶圆角 半径 rt 0.13 +0.05 0.30 +0.05 0.64 +0.05 1.17 +0.13 1.60 +0.13 2.39 +0.13 3.18 +0.13 0 0 0 0 0 0 0 两倍节顶 距2β 0.508 0.508 0.508 0.762 1.372 2.794 3.048

电机转矩功率转速之间的关系及计算公式

电机转矩、功率、转速之间的关系及计算公式 电动机输出转矩: 使机械元件转动的力矩称为转动力矩,简称转矩。机械元件在转矩作用下都会产生 一定程度的扭转变形,故转矩有时又称为扭矩。 转矩与功率及转速的关系:转矩(T)=9550*功率(P)/转速(n)? 即:T=9550P/n 由此可推导出: 转矩=9550*功率/转速《===》功率=转速*转矩/9550 方程式中: P—功率的单位(kW); n—转速的单位(r/min); T—转矩的单位(N.m); 9550是计算系数。 电机扭矩计算公式 T=9550P/n 是如何计算的呢? 分析: 功率=力*速度即 P=F*V---——--公式【1】 转矩(T)=扭力(F)*作用半径(R) 推出F=T/R------公式【2】 线速度(V)=2πR*每秒转速(n秒)=2πR*每分转速(n分)/60=πR*n分/30------公式【3】 将公式2、3代入公式1得: P=F*V=T/R*πR*n分/30 =π/30*T*n分 -----P=功率单位W, T=转矩单位N.m, n分=每分钟转速单位转/分钟 如果将P的单位换成KW,那么就是如下公式: P*1000=π/30*T*n 30000/π*P=T*n 30000/3.1415926*P=T*n 9549.297*P=T*n 这就是为什么会有功率和转矩*转速之间有个9550的系数关系。。。 转矩的类型 转矩可分为静态转矩和动态转矩。 ※静态转矩 静态转矩是值不随时间延长而变化或变化很小、很缓慢的转矩,包括静止转矩、恒定转矩、缓变转矩和微脉动转矩。? 静止转矩的值为常数,传动轴不旋转; 恒定转矩的值为常数,但传动轴以匀速旋转,如电机稳定工作时的转矩; 缓变转矩的值随时间延长而缓慢变化,但在短时间内可认为转矩值是不变的; 微脉动转矩的瞬时值有幅度不大的脉动变化。 ※动态转矩 动态转矩是值随时间延长而变化很大的转矩,包括振动转矩、过渡转矩和随机转矩三种。 振动转矩的值是周期性波动的; 过渡转矩是机械从一种工况转换到另一种工况时的转矩变化 过程;随机转矩是一种不确定的、变化无规律的转矩。

单表找正方法

单表对中法 单表对中法是将对中表架和百分表分别固定在相邻两机器的半联轴器上,然后各自转动两轴或同时转动两轴,通过百分表的读数来计算和调整对中状况。该法的优点是:直观明确、表架简单、计算调整方便。由于它从根本上消除了转子轴向窜动对对中读数的影响,因此对中精度较高,对大型多台单机组成的机组特别适用。 (一)单表法对中的基本程序: ?测定对中表架(以下简称表架)的挠度,将挠度值在表架上打永久性标志。对中时用实测值减去表架挠度。即为表的实际读数值,底部的读数值应减去挠度的二倍,左右的读数应减挠度。 ?将相邻机器的两半联轴器沿圆周做出四等分标志(见附图 ??) 图 ?? 单表法对中测量简图 ?将表架固定在?轴上,表头触在 轴半联轴器外圆上,百分表不动,转动 轴 ??°此时百分表的读数为半联轴器外圆的圆度偏差。在实测时应减去此偏差值,两轴同时转动不产 ?向

生偏差值; ?调整百分表到??= 。按转动方向转动?轴(或同时转动两轴),在 轴联轴器外圆测出??、??、??的值,检查读数应使??+??=??+??(误差应小于 ?????),若不等时查明原因重新测量。百分表读数是对中时进行调整的依据,因此要求百分表读数应准确无误,并注意数值的“正”“负”。 ?同样将表架固定在 轴上,重复步骤 、 ,调整??= ,并测出??、??、??四个数值。(注意:两次盘车方向和读数方向应保持一致)。 ?根据两组百分表读数,确定支脚在垂直和水平方向的调整量和调整方向,调整量可用计算法、作图法和填表计算法确定。 (二)支脚调整量的确定: ?计算法 )用计算法调整轴(?)支脚垫片调整量时应先测出 、?、?之值(见附图 ??),并用??和??分别表示前后支脚的调整量。 这种计算方法只是先将两轴找成一条直线,在实际调整时还应将各支脚处的膨胀量或收缩量考虑进去。 图 ?? 单表对中示意图 )计算公式 2 21B AC L -= 式中?——机器支脚在垂直和水平方向的调整值,即 2 y 21垂 垂垂B C A Ly -=

电机扭矩计算方法

电机扭矩计算方法标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

电机转速和扭矩(转矩)计算公式 含义: 1kg= 1千克的物体受到地球的吸引力是牛顿 含义:·m 推力点垂直作用在离磨盘中心1米的位置上的力为了。 转速公式:n=60f/P (n=转速,f=电源频率,P=磁极对数) 扭矩公式:T=9550P/n T是扭矩,单位N·m P是输出功率,单位KW n是电机转速,单位r/min 扭矩公式:T=973P/n T是扭矩,单位Kg·m P是输出功率,单位KW n是电机转速,单位r/min 形象的比喻: 功率与扭矩哪一项最能具体代表车辆性能有人说:起步靠扭矩,加速靠功率,也有人说:功率大代表极速高,扭矩大代表加速好,其实这些都是片面的错误解释,其实车辆的

前进一定是靠发动机所发挥的扭力,所谓的「扭力」在物理学上应称为「扭矩」,因为以讹传讹的结果,大家都说成「扭力」,也就从此流传下来,为导正视听,我们以下皆称为「扭矩」。 扭矩的观念从小学时候的「杠杆原理」就说明过了,定义是「垂直方向的力乘上与旋转中心的距离」,公制单位为牛顿-米(N-m),除以重力加速度 sec2之后,单位可换算成国人熟悉的公斤-米(kg-m)。英制单位则为磅-尺(lb-ft),在美国的车型录上较为常见,若要转换成公制,只要将lb-ft的数字除以即可。汽车驱动力的计算方式:将扭矩除以车轮半径即可由发动机功率-扭矩输出曲线图可发现,在每一个转速下都有一个相对的扭矩数值,这些数值要如何转换成实际推动汽车的力量呢答案很简单,就是「除以一个长度」,便可获得「力」的数据。举例而言,一部升的发动机大约可发挥的最大扭矩,此时若直接连上185/ 60R14尺寸的轮胎,半径约为41公分,则经由车轮所发挥的推进力量为15/=公斤的力量(事实上公斤并不是力量的单位,而是重量的单位,须乘以重力加速度sec2才是力的标准单位「牛顿」)。 36公斤的力量怎么推动一公吨的车重呢而且动辄数千转的发动机转速更不可能恰好成为轮胎转速,否则车子不就飞起来了幸好聪明的人类发明了「齿轮」,利用不同大小的齿轮相连搭配,可以将旋转的速度降低,同时将扭矩放大。由于齿轮的圆周比就是半径比,因此从小齿轮传递动力至大齿轮时,转动的速度降低的比率以及扭矩放大的倍数,都恰好等于两齿轮的齿数比例,这个比例就是所谓的「齿轮比」。

单表格模板找正方法

欢迎阅读单表对中法 单表对中法是将对中表架和百分表分别固定在相邻两机器的半联轴器上,然后各自转动两轴或同时转动两轴,通过百分表的读数来计算和调整对中状况。该法的优点是:直观明确、表架简单、计算调整方便。由于它从根本上消除了转子轴向窜动对对中读数的影响,因此对中精度较高,对大型多台单机组成的机组特别适用。 (一)单表法对中的基本程序: 1.测定对中表架(以下简称表架)的挠度,将挠度值在表架上打永久性标志。对中时用实测值减去表架挠度。即为表的实际读数值,底部的读数值应减去挠度的二倍,左右的读数应减挠度。 2.将相邻机器的两半联轴器沿圆周做出四等分标志(见附图5.1) b 图 3. 4.b2、b3 “负”。5. 6. 1.计算法 1)用计算法调整轴(A)支脚垫片调整量时应先测出D、Y、Z之值(见附图5.2),并用Ly和Lz分别表示前后支脚的调整量。 这种计算方法只是先将两轴找成一条直线,在实际调整时还应将各支脚处的膨胀量或收缩量考虑进去。 图5.2单表对中示意图 2)计算公式: 式中L——机器支脚在垂直和水平方向的调整值,即 计算结果为正值时应加垫;为负值应减垫;水平方向只是用调节螺钉调整中心偏差而不是增减垫片。A——两机器在垂直方向(A垂)和水平方向(A水)百分表读数的代数和;

其中:A垂=a3+b3 A水=a2-a4+b2-b4 C——调整轴(A)支脚中心与基准轴(B轴)半联轴器上百分表读数平面间的距离(Y,Z)和两百分表读数平面距离(D)之比,即Cy=Y/D或Cz=Z/D。(见附图5.2) B——基准轴在垂直方向(B垂)和水平方向(B水)百分表读数的代数和; 其中:B垂=b3-b1 B水=b2-b4 2.作图法 单表对中作图法是在单表对中计算法的基础上发展起来的,它的最大优点是简单,直观、方向性好,尤其是在垂直面需要预留垫膨胀量及水平面上需要留出水平偏差时,这一优点更加突出。缺点是比例不当时,误差较大。下面以垂直方向的调整为例介绍作图法的步骤。 1) 5.3); 2 A1、A2A3和 B3 3 A4轴与A 4 B轴中心偏差= 2,A轴中心偏差= 2 把各轴中心偏差值分别标在画有安装曲线的座标纸上,得出C、D两点。连接C、D两点成一直线并向A轴侧延长,与A轴支座处垂直线分别交于E、F两点,此DEF线(虚线)即是A轴中心调整前实际所处的位置线(见附图5.5) 图5.5调整前的实际位置曲线

联轴节单表找正

1、单表对中找正的装架示意图(图示为单表双打) 2、使用单表双打对中法的前提条件: S—两转子轴头之间的距离 D—联轴节的外径 前提条件:S≥D/2 轴端距离越大,联轴节的直径越小,计算就越准确,当S≥D/2时,单表双打对中法对张口的敏感性强,对中的精度可以达到更高的水平。 联轴节直径比较大,端面跳动显著,建议用三表法(或双表法) 联轴节直径比较小,端面跳动较小,建议用单表法,单表法适用于长联轴节(指中间接筒较长)设备对中。 3、单表双打对中法的数据记录规定 当把表架固定在A转子的轴头上,表杆头触到B转子的联轴节的外圆上时,如(E)所示,叫A打B,记A →B 。当把表架固定在B转子的轴头上,表杆头触到A转子的联轴节的外园上时,如(F)所示,叫B打A,记B →A 。 记录如下: 在两次打表的过程中,盘车时的旋转方向必须相同,在记录时 四个方向的数据要一一对应,便于下一步进行计算和张口方向的判断。 4、数据有效性判则: (1)数据要“园”。当我们取在0°时表的读数为零,盘表一周回到0°位置时,表的读数要回零。否则,我们称数据不“园”,为无效数据,要查找原因。 造成数据不园的原因: A、百分表不准(先检查表是否回零) B、表架没有拧紧(用手指轻敲表架,看表针是否转动) C、磁力表座的磁力不够,未吸牢(同上) D、联轴节的外圆不园,盘车时 两联轴节没有转动相同的角度。(确保转动相同的角度) (2)遵守数据有效性判则: a1﹢a3=a2﹢a4 b1﹢b3=b2﹢b4 5、关于径向偏差的测量: 为什么两转子径向的实际偏差值等于表值的一半?(即为什么实际偏差值是表值的一半?) 如图所示:以垂直方向为例,假设A、B两转子的高低差为h,联轴节的外圆半径为R。 当我们以A转子的轴心为基准,可测得B转子联轴节的最高点的实际高度为: L1=R-h

电机输出扭矩计算公式

电动机输出转矩 转矩(英文为torque ) 使机械元件转动的力矩称为转动力矩,简称转矩。机械元件在转矩作用下都会产生一定程度的扭转变形,故转矩有时又称为扭矩。转矩是各种工作机械传动轴的基本载荷形式,与动力机械的工作能力、能源消耗、效率、运转寿命及安全性能等因素紧密联系,转矩的测量对传动轴载荷的确定与控制、传动系统工作零件的强度设计以及原动机容量的选择等都具有重要的意义。此外,转矩与功率的关系T=9549P/n 电机的额定转矩表示额定条件下电机轴端输出转矩。转矩等于力与力臂或力偶臂的乘积,在国际单位制(SI)中,转矩的计量单位为牛顿?米(N?m),工程技术中也曾用过公斤力?米等作为转矩的计量单位。电机轴端输出转矩等于转子输出的机械功率除以转子的机械角速度。直流电动机堵转转矩计算公式TK=9.55KeIK 。 三相异步电动机的转矩公式为: S R2 M=C U12 公式[2 ] R22+(S X20)2 C:为常数同电机本身的特性有关;U1 :输入电压; R2 :转子电阻;X20 :转子漏感抗;S:转差率 可以知道M∝U12 转矩与电源电压的平方成正比,设正常输入电压时负载转矩为M2 ,电压下降使电磁转矩M下降很多;由于M2不变,所以M小于M2平衡关系受到破坏,导致电动机转速的下降,转差率S上升;它又引起转子电压平衡方程式的变化,使转子电流I2上升。也就是定子电流I1随之增加(由变压器关系可以知道);同时I2增加也是电动机轴上送出的转矩M又回升,直到与M2相等为止。这时电动机转速又趋于新的稳定值。 转矩的类型 转矩可分为静态转矩和动态转矩。 静态转矩是值不随时间变化或变化很小、很缓慢的转矩,包括静止转矩、恒定转矩、缓变转矩和微脉动转矩。 静止转矩的值为常数,传动轴不旋转; 恒定转矩的值为常数,但传动轴以匀速旋转,如电机稳定工作时的转矩; 缓变转矩的值随时间缓慢变化,但在短时间内可认为转矩值是不变的; 微脉动转矩的瞬时值有幅度不大的脉动变化。 动态转矩是值随时间变化很大的转矩,包括振动转矩、过渡转矩和随机转矩三种。振动转矩的值是周期性波动的;过渡转矩是机械从一种工况转换到另一种工况时的转矩变化过程;随机转矩是一种不确定的、变化无规律的转矩。 根据转矩的不同情况,可以采取不同的转矩测量方法。 转矩=9550*功率/转速 同样 功率=转速*转矩/9550 平衡方程式中:功率的单位(kW);转速的单位(r/min);转矩的单位(N.m);9550是计算系数。

单表法找正压缩机联轴器

单表法找正压缩机联轴器 1前言 压缩机在安装时要求转子不能出现太大的振动(在允许范围内),对准轴的目的是定位驱动机械与被驱动机械的关系,以避免传送不希望的应力。恰当的对准应该提供与轴中线最小的斜度和最小偏移。不正确的对准是减少轴承、联轴器、轴和齿轮寿命的主要原因。否则会减少压缩机的寿命或引发大的事故无法运行。在压缩机机体找正以后为了达到精确对中的要求,通过联轴器的对中来实现。通过联轴器的对中目前有三表法、两表法、单表法和激光法等。其中单表法的使用越来越普遍和实用。尤其在有压缩机和它的驱动机(特别是气轮机)之间热伸长的差别有要求时,采用单表法有其它方法不能替代的优点,能在冷对中时预留伸缩量,使热态工作时达到精确的对中效果,实现机器的平稳运行。下面以空分装置氮压机联轴器找正为例浅谈单表法找正压缩机联轴器。 2方法 压缩机安装就位以后,把驱动机粗略地与压缩机对准。在固定压缩机连接轮毂时,制作两个托架给驱动机轮毂上的刻度盘千分表提供刚性支持,如图 1 所示。把一个托架牢固地固定到压缩机的轮毂上,把千分表指向驱动机轮毂外缘。把另一个托架固定到带刻度盘千分表的驱动机轮毂上,千分表指向压缩机轮毂的外径。用手转动驱动机的轴并增加垫片抬高驱动机。 要考虑在运行温度下压缩机和驱动机之间热伸长的差别。在联轴器之间安装联轴器垫片。某些垫片和轮毂已经动态平衡。匹配标志的对准将保证良好的平衡。

2.1对准检查 灌浆凝固和拧紧螺丝后,检验压缩机是否已经保持水平并与驱动机对准。再按照上述说明检查轴的对准。 初次对准:首先利用中心线等确定齿轮箱(在“双齿轮箱”设备上最靠近驱动机)的位置。然后,用暗销固定齿轮箱就位。 接着的对准核对:首先精确地定位先前用暗销固定的齿轮箱(带着它的暗销)提供附加对准工作的参照。 ( l )压缩机必须被螺钉牢固地固定并用暗销结合到它的底座上。 ( 2 )驱动机的脚和底板安装支点必须相当的平,清洁和没有毛刺。 ( 3 )驱动机应该在正确的轴向距离上粗略地对准压缩机。在驱动机支持垫块的孔和固定螺钉之间必须留有足够的空隙,以便驱动机活动。 ( 4 )所有的薄垫片必须清洁,没有毛刺和平整上下面平行。 ( 5 )驱动机的脚和底板支点之间的空隙必须在4个支点上完全用薄垫片塞满,以避免损坏或扭曲驱动机机架。所有固定螺钉必须均匀地拧紧,使力矩达到最终数值。 ( 6 )固定刻度盘千分表的托架必须制造得具有刚性,而且可以牢固的固定到联轴器的轮毂上,如图 1 所示。 这些托架的任何变形或移动,刻度盘千分表读数将产生错误。 当使用两只刻度盘千分表完成驱动机和压缩机垂直的和水平的对准时,按照规定的方式读取所有刻度盘千分表的读数。 ( l )在图2所示的位置上设置零点。 ( 2 )读取的所有读数应该尽可能的接近垂直中心线和水平中心线。如果读数不在这些中心线上读取,读数越大,初次对准越差,误差就越大。 ( 3 )为了方便读取精确的读数,在法兰盘的表面用粉笔,蜡笔或标志笔,做联轴器轮毂水平中心线和垂直中心线的记号。(使用法兰盘螺钉孔作为参照。)使用这些准线确定刻度盘千分表的位置。轴总是朝着一个方向转动。 ( 4 )用核对零点结束读数。如果千分表在原始起点不能够读零,复位到零重新读取读数。 ( 5 )总是读取4个读数,间隔90o,核对精确度。垂直和水平读数的代数和应该等于零。如果两个合计数差别每英寸大于0 . 002 ,检查托架,并读取另外的读数。 ( 6 )一些简单测量方法要求使用在表2中给出的公式。对于所有的情况,应用下列字符,如图 2 所示:

电机转速和扭矩(转矩)计算公式

电机转速和扭矩(转矩)公式 含义: 1kg=9.8N 1千克的物体受到地球的吸引力是9.8牛顿。 含义: 9.8N·m 推力点垂直作用在离磨盘中心1米的位置上的力为9.8N。 转速公式:n=60f/P (n=转速,f=电源频率,P=磁极对数) 扭矩公式:T=9550P/n T是扭矩,单位N·m P是输出功率,单位KW n是电机转速,单位r/min 扭矩公式:T=973P/n T是扭矩,单位Kg·m P是输出功率,单位KW n是电机转速,单位r/min 形象的比喻: 功率与扭矩哪一项最能具体代表车辆性能?有人说:起步靠扭矩,加速靠功率,也有人说:功率大代表极速高,扭矩大代表加速好,其实这些都是片面的错误解释,其实车辆的前进一定是靠发动机所发挥的扭力,所谓的「扭力」在物理学上应称为「扭矩」,因为以讹传讹的结果,大家都说成「扭力」,也就从此流传下来,为导正视听,我们以下皆称为「扭矩」。 扭矩的观念从小学时候的「杠杆原理」就说明过了,定义是「垂直方向的力乘上与旋转中心的距离」,公制单位为牛顿-米(N-m),除以重力加速度9.8m/sec2之后,单位可换算成国人熟悉的公斤-米(kg-m)。英制单位则为磅-呎(lb-ft),在美国的车型录上较为常见,若要转换成公制,只要将lb-ft的数字除以7.22即可。汽车驱动力的计算方式:将扭矩除以车轮半径即可由发动机功率-扭矩输出曲线图可发现,在每一个转速下都有一个相对的扭矩数值,这些数值要如何转换成实际推动汽车的力量呢?答案很简单,就是「除以一个长度」,便可获得「力」的数据。举例而言,一部1.6升的发动机大约可发挥15.0kg-m的最大扭矩,此时若直接连上185/ 60R14尺寸的轮胎,半径约为41公分,则经由车轮所发挥的推进力量为15/0.41=36.6公斤的力量(事实上公斤并不是力量的单位,而是重量的单位,须乘以重力加速度9.8m/sec2才是力的标准单位「牛顿」)。

单表找正座标作图法

单表找正座标作图法-----调整压缩机支座垫片找正法 1.单表找正法 单表找正法是利用百分表支架和一块百分表,交替地安装在相邻两半联轴节上,转动两轴分别测出对应联轴节上的径向位移偏差(或用两组百分表支架同时得出两组读数)。得出两组实际的百分表读数。根据读数,可计算法或作图法,确定被调整轴各支座的调整量和调整方向。通过调整,使机组达到对中要求。见图G1、图G2。 图G1 单表法对中示意图 图G2 用双百分表支架单表法对中示意图 单表找正步骤: (1)将相邻两个半联轴节沿圆周划出四等分标记。

(2)把百分表支架装在汽轮机轴的半联轴节上,装上百分表,使测量头与压缩机轴端的半联轴节外圆相接触,并使表的测量头对准标记a1的位置。见图G3。 图G3 单表找正对中示意图 b1 a1 b 4 R b2a4R a2 b3 a3 汽轮机侧找正读数压缩机侧找正读数 (3)按转动方向旋转汽轮机轴(或同时旋转两轴)。记录百分表在压缩机半联轴节上测出的a1、a2、a3、a4四个读数。检查读数应使a1 + a3 = a2 + a4(偏差应小于0.02mm)。若不等,查明原因后重新测量。百分表读数是对中时进行调整的依据,因此,要求百分表读数应准确无误。还应注意数值的“正”或“负”。 (4)把百分表支架换装在压缩机轴端的半联轴节上,用同样方法测出b1、b2、b3、b4四个读数。 (5)确定调整量和调整方向。 压缩机在垂直方向上两支座的调整量及水平位置的左右移动量用座标

作图法来确定。 (6)垂直方向调整量作图步骤: a.画出机组运转时的热态线,见图G4,根据机组各轴向尺寸,标出各相应位置。 b.画出冷态找正曲线。 在热态曲线上,通过各支座点、轴承点等分别作热态线的垂直线,按比例将制造厂提供的或计算出的轴中心在各处所要求的预留膨胀量数值标注在各自的垂直线上。 图G4 透平—压缩机冷态找正曲线 透平冷态找正曲线 例1. 乙烯裂解装置C300透平压缩机的冷态找正调整。 裂解气压缩机级的汽轮机在前后轴承处轴中心的膨胀量,按照机体受热膨胀计算公式计算后分别为0.29mm和0.336mm(环境温度为10°C)。制造厂技术文件给出压缩机低压缸支座处轴中心位移数值分别为0.15mm和0.12mm。在

对中找正理论计算

旋转机械的联轴器找正 联轴器的找正是机器安装的重要工作之一.找正的目的是在机器在工作时使主 动轴和从动轴两轴中心线在同一直线上.找正的精度关系到机器是否能正常运转,对高速运转的机器尤其重要. 两轴绝对准确的对中是难以达到的,对连续运转的机器要求始终保持准确的对 中就更困难.各零部件的不均匀热膨胀,轴的挠曲,轴承的不均匀磨损,机器产生的位移及基础的不均匀下沉等,都是造成不易保持轴对中的原因.因此,在设计机器时规定两轴中心有一个允许偏差值,这也是安装联轴器时所需要的.从装配角度讲,只要能保证联轴器安全可靠地传递扭矩,两轴中心允许的偏差值愈大,安装时愈容易达到要求。但是从安装质量角度讲,两轴中心线偏差愈小,对中愈精确,机器的运转情况愈好,使用寿命愈长。所以,不能把联轴器安装时两轴对中的允许偏差看成是安装者草率施工所留的余量。 1.联轴器找正时两轴偏移情况的分析 机器安装时,联轴器在轴向和径向会出现偏差或倾斜,可能出现四种情况,如图1所示。图1联轴器找正时可能遇到的四种情况 根据图1所示对主动轴和从动轴相对位置的分析见表1。 表1联轴器偏移的分析

2.测量方法 安装机器时,一般是在主机中心位置固定并调整完水平之后,再进行联轴器的找正。通过测量与计算,分析偏差情况,调整原动机轴中心位置以达到主动轴与从动轴既同心,又平行。联轴器找正的方法有多种,常用的方法如下: (1)简单的测量方法如图2所示。用角尺和塞尺测量联轴器外圆各方位上的径向偏差,用塞尺测量两半联轴器端面间的轴向间隙偏差,通过分析和调整,达到两轴对中。这种方法操作简单,但精度不高,对中误差较大。只适用于机器转速较低,对中要求不高的联轴器的安装测量。 图2 角尺和塞尺的测量方法

电机转速和扭矩(转矩)计算公式

电机转速和扭矩(转矩)公式 1、电机有个共同的公式,P=MN/9550 P为额定功率,M为额定力矩,N为额定转速,所以请确认电机功率和额定转速就可以得出额定力矩大小。注意P的单位是KW,N的单位是R/MIN(RPM),M的单位是NM 2、扭矩和力矩完全是一个概念,是力和力臂长度的乘积,单位NM(牛顿米) 比如一个马达输出扭矩10NM,在离输出轴1M的地方(力臂长度1M),可以得到10N的力;如果在离输出轴10M的地方(力臂长度10M),只能得到1N的力 含义:1kg=9.8N 1千克的物体受到地球的吸引力是9.8牛顿。 含义:9.8N·m 推力点垂直作用在离磨盘中心1米的位置上的力为9.8N。 转速公式:n=60f/P (n=转速,f=电源频率,P=磁极对数) 扭矩公式:T=9550P/n T是扭矩,单位N·m P是输出功率,单位KW n是电机转速,单位r/min 扭矩公式:T=973P/n T是扭矩,单位Kg·m P是输出功率,单位KW n是电机转速,单位r/min 力矩、转矩和扭矩在电机中其实是一样的。一般在同一篇文章或同一本书,上述三个名词只采用一个,很少见到同时采用两个或以上的。虽然这三个词运用的场合有所区别,但在电机中都是指电机中转子绕组产生的可以用来带动机械负载的驱动“矩”。所谓“矩”是指作用力和支点与力作用方向相垂直的距离的乘积。 对于杠杆,作用力和支点与力作用方向相垂直的距离的乘积就称为力矩。对于转动的物体,若将转轴中心看成支点,在转动的物体圆周上的作用力和转轴中心与作用力方向垂直的距离的乘积就称为转矩。当圆柱形物体,受力而未转动,该物体受力后只存在因扭力而发生的弹性变形,此时的转矩就称为扭矩。因此,在运行的电机中严格说来只能称为“转矩”。采用“力矩”或“扭矩”都不太合适。不过习惯上这三种名称使用的历史都较长至少也有六七十年了,因此也没有人刻意去更正它。 至于力矩、转矩和扭矩的单位一般有两种,就是千克·米(kg·m)和牛顿·米(N·m) 两种,克·米(g·m)只是千克·米(kg·m)千分之一。如一楼的朋友所说,“1kg力=9.8N”。1千克·米(kg·m)=9.8牛顿·米(N·m)。 形象的比喻: 功率与扭矩哪一项最能具体代表车辆性能?有人说:起步靠扭矩,加速靠功率,也有人说:功率大代表极速高,扭矩大代表加速好,其实这些都是片面的错误解释,其实车辆的前进一定是靠发动机所发挥的扭力,所谓的「扭力」在物理学上应称为「扭矩」,因为以讹传讹的结果,大家都说成「扭力」,也就从此流传下来,为导正视听,我们以下皆称为「扭矩」。 扭矩的观念从小学时候的「杠杆原理」就说明过了,定义是「垂直方向的力乘上与旋

电机扭矩计算方法

电机转速和扭矩(转矩)计算公式 含义: 1kg=9.8N???? 1千克的物体受到地球的吸引力是9.8牛顿????? 含义:9.8N·m????? 推力点垂直作用在离磨盘中心1米的位置上的力为了9.8N。 转速公式:n=60f/P (n=转速,f=电源频率,P=磁极对数) 扭矩公式:T=9550P/n ????? T是扭矩,单位N·m ????? P是输出功率,单位KW ????? n是电机转速,单位r/min 扭矩公式:T=973P/n ???? T是扭矩,单位Kg·m ???? P是输出功率,单位KW ???? n是电机转速,单位r/min 形象的比喻: ????? 功率与扭矩哪一项最能具体代表车辆性能?有人说:起步靠扭矩,加速靠功率,也有人说:功率大代表极速高,扭矩大代表加速好,其实这些都是片面的错误解释,其实车

辆的前进一定是靠发动机所发挥的扭力,所谓的「扭力」在物理学上应称为「扭矩」,因为以讹传讹的结果,大家都说成「扭力」,也就从此流传下来,为导正视听,我们以下皆称为「扭矩」。 ????? 扭矩的观念从小学时候的「杠杆原理」就说明过了,定义是「垂直方向的力乘上与旋转中心的距离」,公制单位为牛顿-米(N-m),除以重力加速度 9.8m/sec2之后,单位可换算成国人熟悉的公斤-米(kg-m)。英制单位则为磅-尺(lb-ft),在美国的车型录上较为常见,若要转换成公制,只要将lb-ft的数字除以7.22即可。汽车驱动力的计算方式:将扭矩除以车轮半径即可由发动机功率-扭矩输出曲线图可发现,在每一个转速下都有一个相对的扭矩数值,这些数值要如何转换成实际推动汽车的力量呢?答案很简单,就是「除以一个长度」,便可获得「力」的数据。举例而言,一部1.6升的发动机大约可发挥15.0kg-m 的最大扭矩,此时若直接连上185/ 60R14尺寸的轮胎,半径约为41公分,则经由车轮所发挥的推进力量为15/0.41=36.6公斤的力量(事实上公斤并不是力量的单位,而是重量的单位,须乘以重力加速度9.8m/sec2才是力的标准单位「牛顿」)。 ???? 36公斤的力量怎么推动一公吨的车重呢?而且动辄数千转的发动机转速更不可能恰好成为轮胎转速,否则车子不就飞起来了?幸好聪明的人类发明了「齿轮」,利用不同大小的齿轮相连搭配,可以将旋转的速度降低,同时将扭矩放大。由于齿轮的圆周比就是半径比,因此从小齿轮传递动力至大齿轮时,转动的速度降低的比率以及扭矩放大的倍数,都恰好等于两齿轮的齿数比例,这个比例就是所谓的「齿轮比」。

同步带轮计算公式

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 各种同步带轮的计算公式 同步带轮的节圆直径计算: Dp=p×Z/∏ Dp:节径 Z :齿数 ∏:圆周率 同步带轮实际外圆直径计算: De= Dp-2δ Dp:节径 δ:节顶距 同步带轮中心距及同步带节线长计算

L’ :近似皮带节线长 C :两轴的中心距 Dp :大带轮的节径 dp :小带轮节径 中心距的确定 B= L – 1.57 (Dp + dp) L:皮带节线长 单位(mm) 规格齿数节径 d外径 do 档边直径 df 档边内径 db 档边厚度 h 22-8M2256.0254.656145 1.5 23-8M2358.5757.26448 1.5 24-8M2461.1259.756852 1.5 25-8M2563.6662.297555 1.5 26-8M2666.2164.847555 1.5 27-8M2768.7567.387555 1.5 28-8M2871.369.938060 1.5 30-8M3076.3975.028264 1.5 32-8M3281.4980.129070 1.5 34-8M3486.5885.219878 1.5 36-8M3691.6790.39878 1.5 38-8M3896.7795.410688 1.5 40-8M40101.86100.49108.590 1.5 42-8M42106.95105.5811595 1.5 44-8M44112.05110.68123103 1.5 46-8M46117.14115.77123103 1.5 48-8M48122.23120.86131111 1.5

电机转矩的计算公式

电机转速和扭矩(转矩)计算公式(转载) 2010-01-11 12:03 含义:1kg= 1千克的物体受到地球的吸引力是牛顿。 含义:·m 推力点垂直作用在离磨盘中心1米的位置上的力为了。 转速公式:n=60f/P (n=转速,f=电源频率,P=磁极对数) 扭矩公式:T=9550P/n T是扭矩,单位N·m P是输出功率,单位KW n是电机转速,单位r/min 扭矩公式:T=973P/n T是扭矩,单位Kg·m P是输出功率,单位KW n是电机转速,单位r/min 形象的比喻: 功率与扭矩哪一项最能具体代表车辆性能有人说:起步靠扭矩,加速靠功率,也有人说:功率大代表极速高,扭矩大代表加速好,其实这些都是片面的错误解释,其实车辆的前进一定是靠发动机所发挥的扭力,所谓的「扭力」在物理学上

应称为「扭矩」,因为以讹传讹的结果,大家都说成「扭力」,也就从此流传下来,为导正视听,我们以下皆称为「扭矩」。 扭矩的观念从小学时候的「杠杆原理」就说明过了,定义是「垂直方向的力乘上与旋转中心的距离」,公制单位为牛顿-米(N-m),除以重力加速度9.8m/sec2之后,单位可换算成国人熟悉的公斤-米(kg-m)。英制单位则为磅-呎(lb-ft),在美国的车型录上较为常见,若要转换成公制,只要将lb-ft的数字除以即可。汽车驱动力的计算方式:将扭矩除以车轮半径即可由发动机功率-扭矩输出曲线图可发现,在每一个转速下都有一个相对的扭矩数值,这些数值要如何转换成实际推动汽车的力量呢答案很简单,就是「除以一个长度」,便可获得「力」的数据。举例而言,一部1.6升的发动机大约可发挥15.0kg-m的最大扭矩,此时若直接连上185/ 60R14尺寸的轮胎,半径约为41公分,则经由车轮所发挥的推进力量为15/=公斤的力量(事实上公斤并不是力量的单位,而是重量的单位,须乘以重力加速度9.8m/sec2才是力的标准单位「牛顿」)。 36公斤的力量怎么推动一公吨的车重呢而且动辄数千转的发动机转速更不可能恰好成为轮胎转速,否则车子不就飞起来了幸好聪明的人类发明了「齿轮」,利用不同大小的齿轮相连搭配,可以将旋转的速度降低,同时将扭矩放大。由于齿轮的圆周比就是半径比,因此从小齿轮传递动力至大齿轮时,转动的速度降低的比率以及扭矩放大的倍数,都恰好等于两齿轮的齿数比例,这个比例就是所谓的「齿轮比」。 举例说明,以小齿轮带动大齿轮,假设小齿轮的齿数为15齿,大齿轮的齿

轴系找正(自用)

联轴器的找正 各位考官,大家好! 今天我要讲的主题是联轴器的找正,联轴器的找正是设备安装的重要工作之一。找正的目的是设备在工作时使主动轴和从动轴两轴中心线在同一直线上,找正的精度关系到设备是否能正常运转,对高速运转的设备尤其重要。 两轴绝对准确的对中是难以达到的,对连续运转的机器要求始终保持准确的对中就更困难,各零部件的不均匀热膨胀,轴的挠曲,轴承的不均匀磨损,设备产生的位移及基础的不均匀下沉等,都是造成不易保持轴对中的原因。因此,在设计时规定两轴中心有一个允许偏差值,这也是安装联轴器时所需要的。从装配角度讲,只要能保证联轴器安全可靠地传递扭矩,两轴中心允许的偏差值愈大,安装时愈容易达到要求。但是从安装质量角度讲,两轴中心线偏差愈小,对中愈精确,机器的运转情况愈好,使用寿命愈长。所以,不能把联轴器安装时两轴对中的允许偏差看成是安装者草率施工所留的余量。 一、联轴器找正时两轴偏移情况的分析 机器安装时,联轴器在轴向和径向会出现偏差或倾斜,可能出现如图一所示四种情况: 图一

根据图一所示对主动轴和从动轴相对位置的分析见表1。 表一 二、测量方法 安装或维修设备时,一般是在主机(减速箱)中心位置固定并调整完水平之后,再进行联轴器的找正。通过测量与计算,分析偏差情况,调整原动机(电机)轴中心位置以达到主动轴与从动轴既同心,又平行。 联轴器找正的方法有多种,常用的方法如下: 1)角尺和塞尺测量法 用角尺和塞尺测量联轴器外 圆各方位上的径向偏差,简单的 测量方法如图二所示。用塞尺测 量两半联轴器端面间的轴向间隙 偏差,通过分析和调整,达到两 轴对中。这种方法操作简单,但 精度不高,对中误差较大。只适 用于机器转速较低,对中要求不 高或粗排时联轴器的安装测量。图二

同步带及带轮选型计算

一,竖直同步带及带轮选型计算: 竖直方向设计要求:托盘及商品自重20kg (196N ),滑块运动1250mm 所需时间6s 。 1,设计功率P K P A ?=d w w s m kg N kg kw Fv P 4.45)(9 .0625.1/8.920)(103=÷??=?=-η A K 根据工作情况查表取1.5 w w P K P A 1.684.455.1d =?=?= 2,带型选择 根据w P 1.68d =和带轮转速r/min 100=n 查询表格选择5M 圆弧带 3,带轮齿数z 及节圆直径1d 根据带速,和安装尺寸允许,z 尽可能选择较大值,通过查表选择 5M 带,齿数z=26,节圆直径m m 38.411=d ,外圆直径m m 24.400=d 4,带速v m a x 1/22.0100060v s m n d v <=?=π 5,传动比 主动从动带轮一致,传动比i=1,主动轮与从动轮同一个型号 6,初定中心距0a mm 1644a 0= 7,初定带的节线长度p 0L 及其齿数p z

mm a d d d d a L p 34184)()(2202 212100=-+++≈π 8,实际中心距a mm L L op 16452a a p 0≈-+= 9,基准额定功率0P 可查表得w 50P 0= 10,带宽S b mm 06.10b 14.10 0S =≥P K K P b Z L d S (基准带宽9b S0=时) 11,挡圈的设置 5M 带轮,挡圈最小高度K=2.5~3.5 R=1.5 挡圈厚度t=1.5~2 挡圈弯曲处直径mm R d 24.432d 0w =+= 挡圈外径m m 24.482d f =+=K d w 竖直方向同步带轮: 带轮型5M 圆弧齿,节径41.38mm ,齿数26,外径40.24mm ,带轮总宽13.3mm ,挡圈外径48.24mm ,带轮孔10mm ,固定方式紧定螺钉(侧边紧定螺钉固定台宽7mm ,螺纹孔m3,两个成90度) 竖直方向同步带: 带型5M 圆弧带,带宽10.3mm ,节线长度约3418mm 二,电机输出同步带轮选型计算: 功率,转速,带轮选择与竖直方向相同

相关文档