文档库 最新最全的文档下载
当前位置:文档库 › 基于旋转变压器的永磁同步电机驱动技术研究

基于旋转变压器的永磁同步电机驱动技术研究

基于旋转变压器的永磁同步电机驱动技术研究
基于旋转变压器的永磁同步电机驱动技术研究

基于旋转变压器的永磁同步电机驱动技术研究

赵 金,刘永江,万淑芸

(华中科技大学,湖北武汉 430074)

摘要:设计并实现了一种基于旋转变压器的永磁同步电机驱动系统。给出了系统的硬软件设计方案,重点介绍了旋转变压器2数字转换芯片AD2S80A 及其相关参数的选择,并设计了它与电机专用芯片DSP TMS320F240的接口电路。实验结果表明,系统设计合理,旋转变压器和AD2S80A 组成的数字位置检测电路正确可行。

关键词:旋转变压器;驱动/数字信号处理器;控制芯片

中图分类号:TM35;TP273 文献标识码:A 文章编号:1000-100X (2004)01-0010-03

R esearch on PMSM Drive T echnology based on R esolver

ZHAO Jin ,L IU Y ong 2jiang ,WAN Shu 2yun

(Huaz hong U niversity of Science and Technology ,W uhan 430074,China )

Abstract :This paper introduces the control stratgy of PMSM drive based on resolver.The hardware and software of drive system are presented ,the feature of resolver 2digital converter AD2S80A and the choice of its correlative parameter are explained in detail ,and the im plementation of the interface circuit between AD2S80A and TMS320F240DSP con 2troller is described.The experimental results verify the rationality of the servo 2system and the validity and feasibility of the position digital measuring circuit consisted of resolver transformer and AD2S80A.

K ey w ords :resolver ;drive/DSP ;control chip

1 引 言

随着科学技术的发展,数控机床、雷达跟踪、机器人等对驱动系统的高精度、快速性、可靠性和小型化等方面的要求日渐提高。永磁同步电机采用自控式变频调速时,需要安装传感器实时检测转子的角位置和转速[1]。常用的转子位置传感器有光栅编码器、霍尔传感器和旋转变压器。旋转变压器因具有耐高温、耐湿度、抗冲击、抗干扰等优点而获得广泛应用。但旋转变压器的输出信号为模拟量,需与旋转变压器2数字转换器(RCD )配合使用,将其转换成数字量,以实现与数字信号处理器(80C196MC ,TMS320F240)等控制芯片的接口。所涉及的系统采用无刷变压器检测电机转子的角位置和速度,通过AD 公司的RCD 芯片AD2S80A 将模拟量转化为数字量,以控制永磁同步电机,取得了满意的效果。

2 系统硬件设计[2]

2.1 控制电路及功率部分简介

系统以TMS320F240为核心控制器件,构成系统硬件控制电路,系统控制硬件框图如图1所示。

定稿日期:2003-08-04

作者简介:赵 金(1967-),男,湖北松滋市人,博士,副

教授,研究方向为现代交流传动系统理论及应用、智能控制理论及应用等。

图1中虚线框内功能由TMS320F240和片外存储器组成的小系统实现。由于采用的TMS320F240片内集成有程序存储器,最小系统由DSP 本身或外接EPROM (或EEPROM )和RAM 、晶体振荡器、复位电路、译码电路等组成。在电机控制系统中,保护电路的正常工作至关重要,为了保证系统中功率转换电路和电机驱动电路安全可靠地工作,利用F240提供的/PDPIN T 中断保护输入信号,方便地实现了过流、过压、欠压、IPM 故障等各种故障的保护

图1系统硬件总体框图

系统的主回路采用交2直2交电压型变换器形式,由不控整流桥、滤波电容、逆变器以及永磁同步电机等组成。不控整流由功率二极管模块承担,逆变器由25A ,1200V 智能功率模块(IPM )PM25RSB120组成。IPM 模块内部集成了过流、短路、欠压或过热等故障保护电路。

1第38卷第1期2004年2月 电力电子技术Power Electronics

Vol.38,No.1

February ,2004

2.2 位置信号检测转换电路设计2.2.1 AD2S80A 芯片简介该芯片是AD 公司的RDC 芯片AD2S80系列的一种,具有精度可调、可靠性高;状态和控制信号数字化,易与微控制器DSP 相连;输入输出芯片既可用于角度跟踪控制,又可用于角度跟踪测量;自身无励磁电路,需要外部的正弦波发生器作为旋转变压器的励磁信号源。

2.2.2 AD2S80A 转换电路的设计

(1)正弦波发生器采用Intersil 公司的ICL8038

芯片,它可以生成方波、三角波和正弦波。实验中只用到正弦波输出功能,其频率为10kHz 。

(2)图2示出旋转变压器2数字变换器(RDC )[3]外围电路。根据Reference I/P 引脚引入的正弦信号和COS ,SIN 引脚输入的调制信号实现绝对角度测量,具体参数可由设计步骤中的公式或规则得到

图2 AD2S80A 外围电路连接框图

2.2.3 AD2S80A 与DSP 数字电路接口设计

该系统旋转变压器的跟踪转换器AD2S80A 和

数字信号处理器(TMS320F240)的接口原理如图3所示,转换器输出数据线直接与DSP 数据线相连,DSP 通过I/O 引脚控制转换器的信号输出

图3 AD2S80A 与DSP 的接口原理图

3 系统软件设计

[4]

在全数字化PMSM 驱动系统中,TMS320F240承担着管理、协调、监督控制系统各环节的工作,同

时还要运算和处理大量的数据,故在设计软件时必须合理安排各程序模块的结构及相互之间的时序配合,确保系统正常工作。3.1 系统初始化模块该模块主要完成系统各寄存器设置及参数变量的初始化,包括PLL 时钟模块、看门狗模块、事件管理器模块、中断寄存器等的设置;设定位置调节器、速度调节器、电流调节器控制参数及各环输入输出

限幅值;各给定、反馈单元的初始化;与上位机握手以确保通讯及上、下位机工作正常;检测转子磁极位置角。图4为系统初始化模块流程图

图4 系统初始化模块流程图

3.2 定时器T 1下溢中断处理模块

实验中,反馈信号的采样和控制算法的实现在

一个固定的时间内进行,对定子电流和转子电磁角度的采样每隔125μs 执行一次,电流环的控制程序也是125μs 执行一次,速度环的控制程序每隔1ms 执行一次,这些时间间隔是由T 1的下溢中断来控制的。图5示出定时器T 1下溢中断处理模块流程。

该模块的主要任务是:通过片内的A/D 转换器采样,由电流霍尔传感器输出处理的电压信号作为

1

1基于旋转变压器的永磁同步电机驱动技术研究

电流环的反馈信号;通过I/O 口控制AD2S80A 采样旋转变压器的正弦模拟信号,并转换作为速度环的反馈信号;完成速度环和电流环的运算;通过空间矢量模块的计算得到各个开关电压矢量的种类与作用时间,产生六路PWM 信号作为智能功率模块(IPM )的驱动信号

图5 定时器T 1下溢中断模块流程图

4 实验结果与结论

实验系统所采用的表面式永磁同步电机参数

为:电机额定功率为900W ,电机额定转速为1500r/min ,电机额定电流为4.1A ,电机额定电压为220V ,电机定子电阻为0.85Ω,电机定子电感7.2mH ,电磁时间常数为5.9ms ,机械时间常数为1.3ms ,转动惯量为1.0×10-3

kg ?m 2。系统的

PWM 频率为8kHz ,死区时间为3.2μs ,电流环采样

周期为125μs ,速度环采样周期为1.0ms 。速度环

的输出限幅值为额定电流的3倍,电流环的输出限

幅为额定电压的1.2倍,电机为空载。

为了验证旋转变压器及所设计电路的可行性,另外使用光电码盘作为检测器件以考查旋转变压器和跟踪器的工作情况,给定为100r/min 时的稳态速度曲线对比如图6所示。

图6中,encoder

为以码盘为检测元件时的速度曲线,其稳态速度波动在±1r/min 内;rdc 为以旋转变压器为检测元件时的速度曲线,其稳态速度波动为±4r/min 。实验用的码盘为2500个脉冲/转,经

4倍频处理后,则有10000个脉冲对应转子一周机

械位置;实验中AD2S80A 选用12位数字转换,即4096个数值对应转子一周机械位置,因而此时旋转变压器检测精度低于码盘的检测精度,故采用旋转变压器作为检测元件时,电机稳态速度波动比用码盘作为检测元件时的大。当然,如果AD2S80A 选用14位或16位数字转换,将明显提高其检测精度,降低其速度波动。

图6 给定为100r/min 时的系统稳态速度曲线

图7是以旋转变压器作为检测元件时系统从零到额定转速的起动过程响应曲线,其上升时间约为34ms ,超调量为13.6%,无稳态速度误差。

实验结果表明系统设计合理,旋转变压器和AD2S80A 组成的数字位置检测电路能实现永磁同

步电机磁极位置检测及其电机转速的估算,所构成的系统具有良好的动静态性能。

图7 给定为1500r/min 时系统速度响应曲线

参考文献

[1]李志民,张遇杰.同步电动机调速系统[M ].北京:机械工业出版社,1996.

[2]刘和平.TMS320L F240X DSP 结构、原理及应用[M ].北京:北京航空航天大学出版社,2002.

[3]Variable Resolution ,Monolithic Resolver 2to 2Digital Con 2verter AD2S80A[DB/OL ].http :∥www.analog ,com.

[4]

谭建成.电机控制专用集成电路[M ].北京:机械工业出版社,1997.

2

1第38卷第1期2004年2月 电力电子技术Power Electronics

Vol.38,No.1

February ,2004

永磁同步电机驱动系统

永磁同步电机驱动系统 架线式电机车是煤矿井下和地面原煤运输和辅助运输的重要设备,被煤矿企业广泛应用。由于现有电机车大都采用直流电机驱动,存在维护工作量大、维修费用高、能量损耗大及相关配套人员量大等缺点,致使电机车使用效率低下,使用费用很高。本项目是针对架线式电机车的现状,开发适用以架线式电机车的永磁同步电动机及其控制装置。采用IGBT或IPM实现逆变器主电路,设计优良的IGBT或IPM驱动电路,保证开关器件工作的安全、可靠。选用高性能数字信号处理器为核心,设计专用控制器,实现电机车的传动控制和工艺控制。 本项目研制成功将会给架线式电机车带来全新的变化,大大提高系统的运行效率和控制性能,延长架线式电机车的使用周期,起到节能的效果,也有效减少维修工作量。 1、国内外现状 电机车是煤矿井下和地面广泛应用的运输设备,现在直流电机驱动设备每年使用费用很高。而现有的电机车驱动及其控制技术共有三代五个阶段:第一代技术为串励式直流电动机及其控制:这一代技术又经历了三个阶段,第一个阶段为电阻调速,存在调速性能差(为有极调速)、能耗大、电机易损、机械磨损大,以上问题直接导致维护工作量和维护费用高;第二个阶段为可控硅斩波调速,第三个阶段为IGBT斩波调速,第二和第三阶段相对于第一阶段仅解决了一个无极调速问题,能量损耗相对于第一阶段要小点,但其他问题均没有解决。 第二代技术为三相异步电动机及其控制,主要采用变频技术进行。由于三相异步电动机的效率较低,变频技术在车辆上应用故障高,而且异步电动机起步转矩较低,不符合煤矿电机车运行环境。目前机车应用的异步电动机存在诸多问题,暂不符合大面积推广使用技术条件。 第三代技术为永磁同步电动机及其控制技术,就是现在在做的技术。在同步电动机中用永磁体取代传统的电激磁磁极,简化了结构,消除了转子的滑环、电刷,实现了无刷结构,缩小了转子体积;省去了激磁直流电源,消除了激磁损耗和发热。在交流驱动中,永磁同步电动机具有结构简单、坚固耐用,工作可靠,

永磁同步电机基础知识

(一) PMSM 的数学模型 交流电机是一个非线性、强耦合的多变量系统。永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。为了简化永磁同步电机的数学模型,我们通常做如下假设: 1) 忽略电机的磁路饱和,认为磁路是线性的; 2) 不考虑涡流和磁滞损耗; 3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的 磁势,忽略气隙中的高次谐波; 4) 驱动开关管和续流二极管为理想元件; 5) 忽略齿槽、换向过程和电枢反应等影响。 永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下: (l)电机在两相旋转坐标系中的电压方程如下式所示: d d s d d c q q q s q q c d di u R i L dt di u R i L dt ωψωψ?=+-????=++?? 其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。 若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示。 cos sin 22cos()sin()3322cos()sin()33a d b q c u u u u u θθθπθπθπθπ?? ?-????? ??=--- ? ???? ???? ?+-+? ? (2)d/q 轴磁链方程: d d d f q q q L i L i ψψψ=+???=?? 其中,ψf 为永磁体产生的磁链,为常数,0f r e ωψ=,而c r p ωω=是机械角速度,p 为同步电机的极对数,ωc 为电角速度,e0为空载反电动势,其值为 倍。

旋转变压器基础知识

旋转变压器是一种输出电压随转子转角变化的信号元件。当励磁绕组以一定频率的交流电压励磁时,输 出绕组的电压幅值与转子转角成正弦、余弦函数关系,或保持某一比例关系,或在一定转角范围内与转角成 线性关系。它主要用于坐标变换、三角运算和角度数据传输,也可以作为两相移相器用在角度 --数字转换装 置中。 按输出电压与转子转角间的函数关系 ,我所目前主要生产以下三大类旋转变压器: 1. 正--余弦旋转变压器(XZ )----其输出电压与转子转角的函数关系成正弦或余弦函数关系。 2. 线性旋转变压器(XX )、( XDX ----其输出电压与转子转角成线性函数关系。 线性旋转变压器按转子结构又分成隐极式和凸极式两种, 前者(XX )实际上也是正--余弦旋转变压器, 不同的是采用了特定的变比和接线方式。后者( XDX 称单绕组线性旋转变压器。 变化的交变电压信号。 应电势的幅值,便可间接地得到转子相对于定子的位置,即 角的大小。 以上是两极绕组式旋转变压器的基本工作原理, 在实际应用中,考虑到使用的方便性和检测精度等因素, 常采用四极绕组式旋转变压器。这种结构形式的旋转变压器可分为鉴相式和鉴幅式两种工作方式。 1. 鉴相式工作方式 鉴相式工作方式是一种根据旋转变压器转子绕组中感应电势的相位来确定被测位移大小的检测方式。如 图4-4所示,定子绕组和转子绕组均由两个匝数相等互相垂直的绕组组成。 图中SS 2为定子主绕组,K 1K 2 为定子辅助绕组。当 S 1S 2 和 K 1K 2中分别通以交变激磁电压时 V s = V m Cos t (4 3);V = V sin t (4—4)4) t (4 3);V s =V m Sin t (4 4) 根据线性叠加原理,可在转子绕组 感应电势 V BS 和V BK 之和,即 比例式旋转变压器(XL ) ----其输出电压与转角成比例关系。 二、旋转变压器的工作原理 由于旋转变压器在结构上保证了其定子和转子 当激磁电压加到定子绕组时,通过电磁耦合, 3. 原理图。图中Z 为阻抗。设加在定子绕组 (旋转一周)之间空气间隙内磁通分布符合正弦规律, 因此, 转子绕组便产生感应电势。图 4-3为两极旋转变压器电气工作 的激磁电压为 V S 《sin t 图4-3两极旋转变压器 根据电磁学原理,转子绕组 B 1B 2 V B KV s sin KV m sin sin t 式中K ――旋转变压器的变化; (4 — 1) 中的感应电势则为 4— 2) (4— 2) V m — V s 的幅值; ――转子的转角,当转子和定子的磁轴垂直时, 安装在机床丝杠上,定子安装在机床底座上,则 的角度,它间接反映了机床工作台的位移。 =0。如果转子 角代表的是丝杠转过 由式(4 — 2)可知,转子绕组中的感应电势 V B 为以角速度3随时间 t 其幅值 KV m sin 随转子和定子的相对角位移 以正弦函数变化。因此,只要测量出转子绕组中的感 (4— 4) Bl B 2 中得到感应电 势 V s 和 V k 在 Bl B 2 中产生

永磁同步电机弱磁控制的控制策略研究

永磁同步电机弱磁控制的控制策略研究 摘要 永磁同步电机是数控机床、机器人控制等的主要执行元件,随着稀土永磁材料、永磁电机设计制造技术、电力电子技术、微处理器技术的不断发展和进步,永磁同步电机控制技术成为了交流电机控制技术的一个新的发展方向。基于它的优越性,永磁同步电机获得了广泛的研究和应用。本文对永磁同步电机的弱磁控制策略进行了综述,并着重对电压极限椭圆梯度下降法弱磁控制、采用改进的超前角控制弱磁增速、内置式永磁同步电动机弱磁控制方面进行了调查、研究。 关键词:永磁同步电机、弱磁控制、电压极限椭圆梯度下降法、超前角控制、内置式永磁同步电动机 一、永磁同步电机弱磁控制研究现状 1.永磁同步电机及其控制技术的发展 任何电机的电磁转矩都是由主磁场和电枢磁场相互作用产生的。直流电机的主磁场和电枢磁场在空间互差90°电角度,因此可以独立调节;而交流电机的主磁场和电枢磁场互不垂直,互相影响。因此,交流电机的转矩控制性能不佳。经过长期的研究,目前交流电机的控制方案有:矢量控制、恒压频比控制、直接转矩控制等[1]。 1.1 矢量控制 1971年德国西门子公司F.Blaschke等与美国P.C.Custman等几乎同时提出了交流电机磁场定向控制的原理,经过不断的研究与实践,形成了现在获得广泛应用的矢量控制系统。矢量控制系统是通过坐标变换,把交流电机在按照磁链定向的旋转坐标系上等效成直流电机,从而模仿直流电机进行控制,使交流电机的调速性能达到或超过直流电机的性能。 1.2 恒压频比控制 恒压频比控制是一种开环控制,它根据系统的给定,利用空间矢量脉宽调制转化为期望的输出进行控制,使电机以一定的转速运转。但是它依据电机的稳态模型,从而得不到理想的动态控制性能。要获得很高的动态性能,必须依据电机的动态数学模型,永磁同步电机的动态数学模型是非线性、多变量,它含有角速度与电流或的乘积项,因此要得到精确控制性能必须对角速度和电流进行解耦。近年来,研究了各种非线性控制器,来解决永磁同步电机非线性的特性。 1.3 直接转矩控制 矢量控制方案是一种很有效的交流伺服电机控制方案,但是由于该方案需要进行矢量旋转变换,坐标变换比较复杂。此外,由于电机的机械常数慢于电磁常数,矢量控制中转矩响应的速度不够迅速。针对矢量控制的上述缺点,德国学者

旋转变压器基础知识

旋转变压器是一种输出电压随转子转角变化的信号元件。当励磁绕组以一定频率的交流电压励磁时,输出绕组的电压幅值与转子转角成正弦、余弦函数关系,或保持某一比例关系,或在一定转角范围内与转角成线性关系。它主要用于坐标变换、三角运算和角度数据传输,也可以作为两相移相器用在角度--数字转换装置中。 按输出电压与转子转角间的函数关系,我所目前主要生产以下三大类旋转变压器: 1. 正--余弦旋转变压器(XZ )----其输出电压与转子转角的函数关系成正弦或余弦函数关系。 2. 线性旋转变压器(XX )、(XDX )----其输出电压与转子转角成线性函数关系。 线性旋转变压器按转子结构又分成隐极式和凸极式两种,前者(XX )实际上也是正--余弦旋转变压器,不同的是采用了特定的变比和接线方式。后者(XDX )称单绕组线性旋转变压器。 3. 比例式旋转变压器(XL )----其输出电压与转角成比例关系。 二、 旋转变压器的工作原理 由于旋转变压器在结构上保证了其定子和转子(旋转一周)之间空气间隙内磁通分布符合正弦规律,因此,当激磁电压加到定子绕组时,通过电磁耦合,转子绕组便产生感应电势。图4-3为两极旋转变压器电气工作原理图。图中Z 为阻抗。设加在定子绕组的激磁电压为 sin ω=- S m V V t (4—1) 图 4-3 两极旋转变压器 根据电磁学原理,转子绕组12B B 中的感应电势则为 sin sin sin θθω== (4-2)B s m V KV KV t (4—2) 式中K ——旋转变压器的变化;—的幅值m s V V ; θ——转子的转角,当转子和定子的磁轴垂直时,θ=0。如果转子 安装在机床丝杠上,定子安装在机床底座上,则θ角代表的是丝杠转过 的角度,它间接反映了机床工作台的位移。 由式(4-2)可知,转子绕组中的感应电势 B V 为以角速度ω随时间t 变化的交变电压信号。 其幅值 sin θm KV 随转子和定子的相对角位移θ以正弦函数变化。因此,只要测量出转子绕组中的感 应电势的幅值,便可间接地得到转子相对于定子的位置,即θ角的大小。 以上是两极绕组式旋转变压器的基本工作原理,在实际应用中,考虑到使用的方便性和检测精度等因素,常采用四极绕组式旋转变压器。这种结构形式的旋转变压器可分为鉴相式和鉴幅式两种工作方式。 1.鉴相式工作方式 鉴相式工作方式是一种根据旋转变压器转子绕组中感应电势的相位来确定被测位移大小的检测方式。如 图4-4所示,定子绕组和转子绕组均由两个匝数相等互相垂直的绕组组成。图中12S S 为定子主绕组,12 K K 为定子辅助绕组。当12S S 和12K K 中分别通以交变激磁电压时 s m V V cos (43);V V sin (44)ωω--= = t t (4—3) s m (43);V V sin (44)ω-- = t t (4—4) 根据线性叠加原理,可在转子绕组12B B 中得到感应电势B V ,其值为激磁电压s V 和k V 在12B B 中产生 感应电势BS V 和BK V 之和,即

270V高压大功率永磁同步电机驱动器设计

270V高压大功率永磁同步电机驱动器设计 摘要:近年来270V高压直流供电体制在各种装备上开始大量应用,本文给出了 一种由TMS320F2812、高精度转子位置速度检测装置及高压MOS管组成的高压 大功率永磁同步电机驱动控制方案,详细描述了系统的硬件组成和软件设计结构。试验结果表明,该系统较好的解决了高压供电带来的干扰问题,具有调速性能良好、效率高、抗干扰能力强等特点,满足型号的使用要求。 关键词:270V高压;永磁同步电机驱动器;抗干扰 0 引言 随着我国对高压直流电源系统的深入研究,新一代装备已开始采用270V高压直流供电系统,这种新型电源体制不但具有传输功率大、传输效率高、供电可靠 性高和电源配电重量轻的特点,而且还将大大减小低压直流供电系统的电器设备 的大电流电弧干扰,提高了武器装备的综合能力[1]。 本文给出了一种由TMS320F2812、高精度转子位置速度检测装置及高压MOS 管组成的大功率PMSM驱动控制方案,详细叙述了系统的硬件组成和软件设计结构。并在此基础上,设计了一套大功率PMSM驱动控制系统,该系统具有调速性 能良好,效率高等特点,满足型号的使用要求。 1 系统总体设计 1.1 永磁同步电机(PMSM)数学模型 永磁同步电机由于具备小体积、高效率及功率密度、调速性能良好等优点得 到了越来越广泛的应用。PMSM的数学模型包括电动机的运动方程,物理方程和 转矩方程,这些方程是永磁同步电机数学模型的基础。控制对象的数学模型能够 准确的反应被控系统的静态和动态特性。为方便分析,先做以下假设[2~4]: 1)磁路不饱和,即电机电感大小不受电流变化影响,不计涡流和磁滞损耗; 2)忽略齿槽、换相过程和电枢反应等的影响; 3)三相绕组完全对称,永久磁钢的磁场沿气隙周围正弦分布; 4)电枢绕组在定子内表面均匀连续分布; 5)驱动开关管和续流二极管为理想元件。 优化设计后的永磁同步电机经过Park变换后,其dq坐标系下的数学模型可 表示为方程式: 式1.1 式1.2 式1.3 式中:、—定子电压dq轴分量;、—定子电流dq轴分量; —定子电阻;—转子极对数; —转子角速度;—定子电感; —电磁转矩;—永磁体产生的磁链,为常数; 从电磁转矩方程可以看出只要能准确地检出转子空间位置(d轴),通过控 制逆变器使三相定子的合成电流在q轴上,那么永磁同步电机的电磁转矩只与定 子电流的幅值成正比,即控制定子电流的幅值,就能很好地控制电磁转矩。 1.2 驱动控制策略 永磁同步电机的控制策略有很多种,如直接转矩控制、转子磁场定向控制等[5~6],本系统采用转子磁场定向控制,其基本原理是通过坐标变换,在转子磁场 定向的同步坐标系上对电机的磁场电流和转矩电流进行解耦控制,使其具有和传

第四章旋转变压器

第四章 旋转变压器 工作原理:一、二次绕组的电磁感应耦合程度由转子的转角决定。当旋转变压器的一次侧外施单相交流电压励磁时,二次侧的输出电压将与转子转角严格保持某种函数关系。 第一节 旋转变压器的结构特点和分类 结构: 旋转变压器的典型结构由定子和转子两部分构成。 铁心:高磁导率的铁镍软磁合金片或硅钢片经冲制、绝缘、叠装而成。定、转子之间的气隙是均匀的,绕组:两个轴线在空间互相垂直的分布绕组。 转子绕组引出线和滑环相接,滑环应有四个,固定在转轴的一端, 分类: 按照输出电压和转子转角的函数关系来分: 1) 正余弦旋转变压器(代号XZ) 2) 线性旋转变压器(代号XX) 3) 比例式旋转变压器(代号XL) 4) 特殊函数旋转变压器(正切函数、倒数函数、圆函数、对数函数等) 按照电机极对数多少来分:单极对和多极对(可以提高系统的精度)。 按照有无电刷与滑环间的滑动接触来分:接触式和无接触式两类。 第二节 正余弦旋转变压器的工作原理 4.2.1正弦绕组 在旋转变压器中常用的绕组有两种形式,即双层短距分布绕组和同心式正 弦绕组。 双层短距分布绕组能够达到较高的绕组精度并有良好的工艺性,但在绕组中存在一定量的谐波磁动势分量,其所引起的正余弦函数的误差达0.01%-0.07%,再加上工艺因素引起的误差,使旋转变压器的精度受到一定的限制,故双层短距分布绕组只适合对精度要求不很高的旋转变压器。 同心式正弦绕组为高精度绕组,它使各次谐波削弱到相当小,正余弦函数的误差从0.06%降到0.03%以下。缺点为工艺性差,绕组系数低。 正弦绕组是指绕组各元件的导体数沿定子内圆或转子外圆按正弦规律分布的同心式绕组。通常有两种分布形式:第一类是绕组的轴线对准槽的中心线,第二类是绕组的轴线对准齿的中心线。旋转变压器大都采用这两类正弦绕组。 图4-2表示了正弦绕组中各元件在空间沿转子圆周外圆分布的情况及空间磁动势的分布情况。为了使正弦绕组中各元件匝数沿圆周按正弦分布,各元件的匝数应满足 Z )i (cos N N cm ci π 12-= 正弦绕组每相的总匝数为 ])142cos(...3cos [cos 4 1 Z Z Z Z N N N cm Z i ci π ππ-+++==∑= 4.2.2 正余弦旋转变压器的工作原理 正余弦旋转变压器通常为两极结构,定子和转子分别安装两套互相垂直的正弦绕组。 定子绕组:21D D ——励磁绕组,43D D ——交轴绕组(或补偿绕组)。 转子绕组(输出绕组):21Z Z ——正弦绕组,43Z Z ——余弦绕组。定、转子间的气隙是均匀的。 图4-2 正弦绕组 f U α 图4-1 正余弦旋转变压器 的原理示意图

永磁同步电机研究

永磁同步电机研究 一、绪论 目前,在电动汽车电驱动系统中,永磁同步电动机(PMSM)系统以其高技、高控制精度、高转矩密度、良好的转矩平稳性及低振动噪声的特点受到国外电动汽车界的高度重视,是更具竞争力的电动汽车驱动电机系统。而且,中国拥有占世界80%储量的稀土资源,发展永磁电机作为电动汽车牵引电机具有得天独厚的优势。 PMSM:permanent magnet synchronous motor 是指根据电机的反电动势进行区分定义的电机:正弦反电势的永磁同步电机。以前采用的交流传动需要一个变速齿轮机构来将电机的转距传递到轮轴上,而采用永磁同步电机可以将电机整体地安装在轮轴上,形成整体直驱系统,即一个轮轴就是一个驱动单元,省去了一个齿轮箱 优点: (1)PMSM起动牵引力大 (2)PMSM本身的功率效率高以及功率因素高; (3)PMSM直驱系统控制性能好; (4)PMSM发热小,因此电机冷却系统结构简单、体积小、噪声小; (5)PMSM允许的过载电流大,可靠性显著提高; (6)在高速范围中电机噪声明显降低; (7)系统传动损耗明显降低,系统发热量小; (8)系统采用全封闭结构,无传动齿轮磨损、无传动齿轮噪声,免润滑油、免维护; (9)整个传动系统重量轻,簧下重量也比传统的轮轴传动的轻,单位重量的功率大; (10)由于电机采用了永磁体,省去了线圈励磁,理论可节能10%以上; (11)由于没有齿轮箱,可对装向架系统随意设计:如柔式装向架、单轴转向架,使列车动力性能大大提高。

二、电动汽车电机的性能要求: 汽车行驶的特点是频繁地启动、加速、减速、停车等。在低速或爬坡时需要高转矩,在高速行驶时需要低转矩。电动机的转速范围应能满足汽车从零到最大行驶速度的要求,即要求电动机具有高的比功率和功率密度。电动汽车电动机应满足的主要要求可归纳为如下10个方面: (1) 高电压。在允许的范围内,尽可能采用高电压,可以减小电动机的尺寸和导线等装备的尺寸,特别是可以降低逆变器的成本。工作电压由THS的274 V提高到THS B的500 V;在尺寸不变的条件下,最高功率由33 kW提高到50 kW,最大转矩由350 N"m提高到400ON"m。可见,应用高电压系统对汽车动力性能的提高极为有利。 (2)转速高。电动汽车所采用的感应电动机的转速可以达到8 000一12 000 r/min,高转速电动机的体积较小,质量较轻,有利于降低装车的装备质量。(3)质量轻,体积小。电动机可通过采用铝合金外壳等途径降低电动机的质量,各种控制装置和冷却系统的材料等也应尽可能选用轻质材料。电动汽车驱动电动机要求有高的比功率(电动机单位质量的输出功率)和在较宽的转速和转矩范围内都有较高的效率,以实现降低车重,延长续驶里程;而工业驱动电动机通常对比功率、效率及成本进行综合考虑,在额定工作点附近对效率进行优化。(4)电动机应具有较大的启动转矩和较大范围的调速性能,以满足启动、加速、行驶、减速、制动等所需的功率与转矩。电动机应具有自动调速功能,以减轻驾驶员的操纵强度,提高驾驶的舒适性,并且能够达到与内燃机汽车加速踏板同样的控制响应。 (5)电动汽车驱动电动机需要有4一5倍的过载,以满足短时加速行驶与最大爬坡度的要求,而工业驱动电动机只要求有2倍的过载就可以了。 (6)电动汽车驱动电动机应具有高的可控性、稳态精度、动态性能,以满足多部电动机协调运行,而工业驱动电动机只要求满足某一种特定的性能。 (7)电动机应具有高效率、低损耗,并在车辆减速时,可进行制动能量回收。 (8)电气系统安全性和控制系统的安全性应达到有关的标准和规定。电动汽车的各种动力电池组和电动机的工作电压可以达到300 V以上,因此必须装备高压保护设备以保证安全。

实验三旋转变压器

实验三旋转变压器 旋转变压器是一种输出电压随转子转角变化的信号元件。当激磁绕组以一定的频率的交流电激励时,输出绕组的电压可与转角的正弦、余弦成函数关系,或在一定范围内可以成线性关系。它广泛用于自动控制系统中的三角运算、传输角度数据等,也可以作为移相器用。 1、实验目的: (1)研究测定正余弦旋转变压器的空载输出特性和负载输出 特性。 (2)研究测定二次侧补偿、一次侧补偿的正余弦旋转变压器 的输出特性。 (3)了解正余弦旋转变压器的几种应用情况。 2、实验设备:

3、实验项目: (1)测定正余弦旋转变压器的空载时的输出特性。 (2)测定负载对输出特性的影响。 (3)二次侧补偿后负载时的输出特性。 (4)一次侧补偿后负载时的输出特性。 (5)正余弦旋转变压器作线性应用时的输出特性。 4、实验步骤: 图3.1 正余弦旋转变压器空载及负载实验接线图按图3.1接线。图中电源选自电源箱上400Hz专用电源,调定在60V(此电源在接上负载后可能会产生压降,因此在接上负载后注意调节电源电压到60V)。R和R L均用阻容综合元件板上的1200Ω阻值的电阻。开关S1、S2和S3选用综合开关板上的开关,D1、D2为激磁绕组,D3、D4为补偿绕组,Z1、Z2为余弦绕组,Z3、Z4为正弦绕组。开关S1、S2、和S3都在打开位置。 (1)测定正余弦旋转变压器空载时的输出特性

定子励磁绕组两端D1、D2施加60V 400Hz的额定电压,且保持不变。用手缓慢旋转刻度盘,找出余弦输出绕组输出电 压为最小值的位置,此位置即为起始零位。 在0度到180度之间每转角10度测量一次转子余弦空载输出电压U r0与刻度盘转角θ的数值。并记录表3.1中。根 据数据绘制出正余弦旋转变压器空载时的输出电压U r0与 转子转角θ的关系曲线,即U r0=F(θ)。 表3.1 (2)测定负载对输出特性的影响 在图3.1中,开关S1、S2仍打开,开关S3闭合,使正余弦旋转变压器带负载R L运行。 重复(1)中的实验方法,记录余弦负载输出电压Ur L与转角θ的数值并记录于表3.2中。根据数据绘制出正余弦旋转 变压器负载时的输出电压Ur L与转子转角θ的关系曲线,即 Ur L=F(θ)。 表3.2

永磁同步电机研究的热点及发展方向

永磁同步电机研究的热点及发展方向 一、永磁电机作为驱动电机的优越性 基于当前汽车对驱动电机的特殊要求,不同的电机解决方案都在研究和论证过程中,其中永磁电机作为驱动电机的解决方案已经被越来越多地采用,永磁电机是在Y系列电机的基础上,将电机转子嵌入稀土钕铁硼材料而成,其作为驱动电机具有如下特点[1]。 转矩、功率密度大、起动力矩大。永磁电机气隙磁密度可大大提高,电机指标可实现最佳设计,使得电机体积缩小、重量减轻,同容量的稀土永磁电机体积、重量、所用材料可以减轻30%左右。永磁驱动电机起动转矩大,在汽车起动时能够提供有效的起动转矩,满足汽车的运行需求。 力能指标好。Y系列电机在60%的负荷下工作时,效率下降15% ,功率因数下降30%,力能指标下降40%。而永磁电机的效率和功率因数下降甚微,当电机只有20%负荷时,其力能指标仍为满负荷的80%以上。同时永磁无刷同步电机的恒转矩区比较长,一直延伸到电机最高转速的50%左右,这对提高汽车的低速动力性能有很大帮助。 高效节能。在转子上嵌入稀土永磁材料后,在正常工作时转子与定子磁场同步运行,转子绕组无感生电流,不存在转子电阻和磁滞损耗,提高了电机效率。永磁电机不但可减小电阻损耗,还能有效地提高功率因数。如在25% ~120%额定负载范围内永磁同步电机可均可保持较高的效率和功率因素。 结构简单、可靠性高。用永磁材料励磁,可将原励磁电机中励磁用的极靴及励磁线圈由一块或多块永磁体替代,零部件大量减少,在结构上大大简化。同时省去了励磁用的基电环和电刷,不但改善了电机的工艺性,而且电机运行的机械可靠性大为增强,寿命增加。转子绕组中不存在电阻损耗,定子绕组中几乎不存在无功电流,使电机温升低,这样也可以使整车冷却系统的负荷降低,进一步提高整车运行的效率。 二、永磁同步电机研究的热点 在开发高性能永磁同步电机过程中,遇到一些问题,进而成为研究的热点[2]。 1)不可逆退磁问题。如果设计或使用不当,永磁同步电机在过高(钕铁硼永磁)或过低(铁氧体永磁)温度时,在冲击电流产生的电枢反应作用下,或在剧烈的机械振动时有可能产生不可逆退磁,或叫失磁,使电机性能下降,甚至无法使用。因此,既要研究开发适用于电机制造厂使用的检查永磁材料热稳定性的方法和装置,又要分析各种不同结构型式的抗去磁能力,以便设计和制造时,采用相应措施保证永磁同步电机不失磁。

永磁同步伺服电机驱动器设计原理

永磁同步伺服电机(PMSM) 驱动器设计原理 周瑞华周瑞华先生,中达电通股份有限公司应用工程师。 关键词:PMSM 整流功率驱动单元控制单元 永磁交流伺服系统的驱动器经历了模拟式、模拟数字混合式的发展后,目前已经进入了全数字的时代。全数字伺服驱动器不仅克服了模拟式伺服的分散性大、零漂、低可靠性等缺点,还充分发挥了数字控制在控制精度上的优势和控制方法的灵活,使伺服驱动器不仅结构简单,而且性能更加可靠。现在,高性能的伺服系统大多数采用永磁交流伺服系统,其中包括永磁同步交流伺服电动机和全数字交流永磁同步伺服驱动器两部分。后者由两部分组成:驱动器硬件和控制算法。控制算法是决定交流伺服系统性能好坏的关键技术之一,是国外交流伺服技术封锁的主要部分,也是技术垄断的核心。 一交流永磁伺服系统的基本结构 交流永磁伺服系统主要有伺服控制单元、功率驱动单元、通信接口单元、伺服电机及相应的反馈检测器件组成。 其中伺服控制单元包括位置控制器、速度控制器、转矩和电流控制器等。我们的交流永磁同步驱动器集先进的控制技术和控制策略为一体,使其非常适用于高精度、高性能要求的伺服驱动领域,还体现了强大的智能化、柔性化,是传统的驱动系统所 不可比拟的。 目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,其优点是可以实现比较复杂的控制算法,实现数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软起动电路,以减小起动过程对驱动器的冲击。 伺服驱动器大体可以划分为功能比较独立的两个模块,如图1所示。功率板(驱动板)是强电部分其中包括两个单元,一是功率驱动单元用于电机的驱动,二是开关电源单元为整个系统提供数字和模拟电源;控制板是弱电部分,是电机的控制核心也是伺服驱动器技术核心,控制算法的运行载体。控制板通过相应的算法输出PWM信号,作为驱动电路的驱动信号,来改变逆变器的输出功率,以达到控制三相永磁式同步交流伺服电机的目的。

正余弦旋转变压器

正余弦旋转变压器 课程名称新型特种电机学生学院自动化学院专业班级电机与电器学号2111004002 学生姓名梁国荣 指导教师黄开胜 2011年8 月1 日

概述 微特电机种类繁多,其中包括一类独特的电机——旋转变压器。本文将详细叙述旋转变压器中的正余弦旋转变压器。 旋转变压器(Resolver ),是一种将转子转角变换成与之呈某一函数关系的电信号的原件。当变压器的一次侧外施单相交流电压励磁时,其二次侧的输出电压与转子转角呈严格的函数关系。 正余弦旋转变压器的一、二次绕组间是可变的相对位置,而且正是利用它们之间的不同相对位置来改变它们之间的互感,以便在二次(转子)绕组中获得与旋转ɑ成正、余弦函数关系的端电压。 正余弦旋转变压器的空载运行 如图1所示, S1-S1’作为励磁绕组,S2-S2’作为定子交轴绕组,两者空间互相垂直且匝数、型式完全相同。R1-R1’和R2-R2’分别为转子上的正弦输出绕组和余弦输出绕组,它们的结构也完全相同。空载时,在定子励磁绕组上施加单相交流电压f U ,其余绕组均开路。设励磁绕组的轴线方向为直轴d 轴,这时电机中产生直轴脉振磁通d φ,它在励磁绕组中产生的感应电动势为 4.44f s d E fW φ=。式中,s W 为定子绕组有效匝数,d φ为直轴脉振磁通的幅值。 图1正余弦旋转变压器原理示意图 若略去励磁绕组的漏阻抗压降,则f f E U =,当交流电压恒定时,直轴磁通的幅值d φ为常数。将直轴磁通d φ分解为与正弦输出绕组轴向方向一致的1d φ和余弦输出绕组的轴向方向一致的2d φ。设转子正弦绕组的轴线与交轴之间的夹角ɑ为转子转角,如图1所示,则两个磁通分量的幅值分别为1sin d d αΦ=Φ和

直流电机的基本知识

直流电机的基本知识 1 直流电机的工作原理 永磁式直流电机是应用很广泛的一种。只要在它上面加适当电压。电机就转动。图是这种电机的符号和简化等效电路[1]。 工作原理图: 图直流电机的符号和等效电路 这种电机由定子、转子、换向器(又称整流子)、电刷等组成,定子用作产生磁场。转于是在定子磁场作用下,得到转矩而旋转起来。换向器及时改变了电流方向,使转子能连续旋转下去。也就是说,直流电压加在电刷上,经换向器加到转子线圈,流过电流而产生磁场,这磁场与定子的固定磁场作用,转子被强迫转动起来。当它转动时,由于磁场的相互作用,也将产生反电动势,它的大小正比于转子的速度,方向和所加的直流电压相反。图给出了等效电路。Rw代表转子绕组的总电阻,E代表与速度相关的反电动势。 永磁式换流器电机的特点: 当电机负载固定时,电机转速正比于所加的电源电压。 当电机直流电源固定时,电机的工作电流正比于转予负载的大小。 加于电机的有效电压,等于外加直流电压减去反电动势。因此当用固定电压驱动电机时,电机的速度趋向于自稳定。因为负载增加时,转子有慢下来的倾向,于是反电动势减少,而使有效电压增加,反过来又将使转子有快起来的倾向,所以总的效果使速度稳定。 当转子静止时,反电动势为零,电机电流最大。其最大值等于V/Rw(这儿V是电源电压)。最大·电流出现在刚起动的条件。 转子转动的方向,可由电机上所加电压的极性来控制。 体积小、重量轻、起动转矩大。 由于具备上述的那些特点,所以在医疗器械、小型机床、电子仪器、计算机、气象探空仪、探矿测井、电动工具、家用电器及电子玩具等各个方面,都得到广泛的应用。 对这种永磁式电机的控制,主要有电机的起停控制、方向控制、可变速度控制和速度的稳定控制。

直流永磁电机基本知识

直流永磁电机基本知识 一.直流电机的工作原理 1.直流电机的工作原理 这是分析直流电机的物理模型图。 其中,固定部分有磁铁,这里称作主磁极;固定部分还有电刷。转动部分有环形铁心和绕在环形铁心上的绕组。(其中2个小圆圈是为了方便表示该位置上的导体电势或电流的方向而设置的) 上图表示一台最简单的两极直流电机模型,它的固定部分(定子)上,装设了一对直流励磁的静止的主磁极N和S,在旋转部分(转子)上装设电枢铁心。定子与转子之间有一气隙。在电枢铁心上放置了由A和X两根导体连成的电枢线圈,线圈的首端和末端分别连到两个圆弧形的铜片上,此铜片称为换向片。换向片之间互相绝缘,由换向片构成的整体称为换向器。换向器固定在转轴上,换向片与转轴之间亦互相绝缘。在换向片上放置着一对固定不动的电刷B1和B2,当电枢旋转时,电枢线圈通过换向片和电刷与外电路接通。

直流电机的原理图 对上上图所示的直流电机,如果去掉原动机,并给两个电刷加上直流电源,如上图(a)所示,则有直流电流从电刷A 流入,经过线圈,从电刷B 流出,根据电磁力定律,载流导体和收到电磁力的作用,其方向可由左手定则判定,两段导体受到的力形成了一个转矩,使得转子逆时针转动。如果转子转到如上图(b)所示的位置,电刷A 和换向片2接触,电刷B 和换向片1接触,直流电流从电刷A 流入,在线圈中的流动方向是,从电刷B 流出。 此时载流导体和受到电磁力的作用方向同样可由左手定则判定,它们产生的转矩仍然使得转子逆时针转动。这就是直流电机的工作原理。外加的电源是直流的,但由于电刷和换向片的作用,在线圈中流过的电流是交流的,其产生的转矩的方向却是不变的。 实用中的直流电机转子上的绕组也不是由一个线圈构成,同样是由多个线圈连接而成,以减少电动机电磁转矩的波动,绕组形式同发电机。 将直流电机的工作原理归结如下

永磁同步电动机_开题报告

永磁同步电动机设计 一课题研究背景[1] 我国电动机保有量大,消耗电能大,设备老化,效率较低,永磁同步电动机(PMSM)具有体积小、效率高、功率因数高、起动力矩大、力能指标好、温升低等特点。永磁同步电机的运行原理与电励磁同步电机相同,但它以永磁体提供的磁通代替后者的励磁绕组励磁,使电机结构更为简单。近年来,永磁材料性能的改善以及电力电子技术的进步,推动了新原理、新结构永磁同步电机的开发,有力地促进了电机产品技术、品种及功能的发展,某些永磁同步电机已形成系列化产品,其容量从小到大,目前已达到兆瓦级,应用范围越来越广;其地位越来越重要,从军工到民用,从特殊到一般迅速扩大,不仅在微特电机中占优势,而且在电力推进系统中也显示出了强大的生命力。永磁同步电机以其效率高、比功率大、结构简单、节能效果显著等一系列优点在工业生产和日常生活中逐步得到广泛应用。尤其是近年来高耐热性、高磁性能钕铁硼永磁体的成功开发以及电力电子元件的进一步发展和改进,稀土永磁同步电机的研究开发在国内外又进入了一个新的时 期,在理论研究和应用领域都将产生质的飞跃,目前正向超高速、高转矩、大功率、微型化、高功能化方向发展。 二研究目的和意义 熟练掌握永磁同步电机的特点和机构,性能,掌握永磁同步电机的电磁计算,会设计永磁同步电机。

三研究内容 1 永磁同步电动机转子结构形式[2] (1)外贴式转子结构 永磁体贴到转子外表面上,径向充磁;永磁体也可以嵌入转 子表面内,贴于转子表面的转子结构制造容易,常用于矩形 波同步电动机和恒功率运行的正弦波永磁同步电动机中。 (2)内置式转子结构 1)径向式结构;漏磁系数小,永磁体轴向嵌入磁体槽中,通过磁漆桥限制漏磁通,转子机械强度高。

永磁同步电机性能要求与技术现状分析

在各类驱动电机中, 永磁同步电机能量密度高, 效率高、体积小、惯性低、响应快, 有很好的应用前景。永磁电动机既具有交流电动机的无电刷结构、运行可靠等优点, 又具有直流电动机的调速性能好的优点, 且无需励磁绕组, 可以做到体积小、控制效率高, 是当前电动汽车电动机研发与应用的热点。 永磁同步电动机( PMSM)系统具有高控制精度、高转矩密度、良好的转矩平稳性以及低噪声的特点, 通过合理设计永磁磁路结构能获得较高的弱磁性能, 提高电动机的调速范围, 因此在电动汽车驱动方面具有较高的应用价值。 作为车辆电驱动系统的中心环节, 驱动电机的总体性能是设计研制技术的关键之一。根据车辆运行的特殊环境以及电驱动车辆自身的特点, 对驱动电机的技术要求主要是: ( 1)体积小、重量轻; 有较高的功率和转矩密度; ( 2)要求在宽速域范围内, 电动机和驱动控制器都有较高的效率; ( 3)有良好的控制性能以及过载能力, 以提高车辆的起动和加速性能。 永磁同步电机的功率因数大, 效率高, 功率密度大, 是一种比较理想的驱动电机。但正由于电磁结构中转子励磁不能随意改变, 导致电机弱磁困难, 调速特性不如直流电机。目前, 永磁同步电机理论还不如直流电机和感应电机完善, 还有许多问题需要进一步研究, 主要有以下方面。 1) 电机效率: 永磁同步电机低速效率较低, 如何通过设计降低低速损耗, 减小低速额定电流是目前研究的热点之一。 2)提高电机转矩特性 电动车驱动电机要求低速大转矩且有一定的高速恒功率运行范围, 所以相应控制策略的研究也主要集中在提高低速转矩特性和高速恒功率特性上。 1.低速控制策略: 为了提高驱动电机的低速转矩,一般采用最大转矩控制。早期永磁同步电机转子采用表面式磁钢, 由于直轴和交轴磁路的磁阻相同, 所以采用 id= 0 控制。控制命令中直轴电流设为 0, 从而实现最大转矩控制。随着同步电机结构的发展, 永磁同步电机转子多采用内置式磁钢, 利用磁阻转矩增加电机的输出转矩。id= 0 控制电机电枢电流的直轴分量为 0, 不能利用电机的磁阻转矩, 控制效果不好。目前, 永磁同步电机低速时常采用矢量控制, 包括气隙磁场定向、转子磁链定向、定子磁链定向等。 2.高速控制策略: 为了获得更宽广的恒功率运行范围, 永磁同步电机高速运行通常采用弱磁控制。另外, 在电机采用低速转矩控制和高速弱磁控制的同时, 还要考虑如何

永磁直流电机设计

永磁直流電機設計 1.電機主要尺寸與功率,轉速的關系: 與異步電機相似,直流電機的功率,轉速之間的關系是: D22*Lg=6.1*108*p’/(αP*A*Bg*Ky*n) (1) D2 電樞直徑(cm) 電机初設計時的主要尺寸 Lg 電樞計算長度(cm) 根據電机功率和實際需要確定 p’計算功率(w) p’=E*Ia=(1+2η)*P N/3η E=Ce*Φ*n*Ky=(P*N/60*a)*Φ2*n*Ky*10-8 Ce 電勢系數 a 支路數在小功率電機中取a=2 p 极數在小功率電機中取p=2 N 電樞總導体數 n 電机額定轉速 Ky 電樞繞組短矩系數小功率永磁電机p=2時,采用單疊繞組Ky=Sin[(y1/τ)*π/2] y1繞組第一節矩 αP 極弧系數一般取αP=0.6~0.75 正弦分布時αP=0.637 Φ每極磁通Φ=αP*τ*Lg*Bg τ極矩(cm) τ=π*D2/P Bg 氣隙磁密(Gs) 又稱磁負荷對鋁鎳Bg=(0.5~0.7) Br 對鐵氧体Bg=(0.7~0.85) Br, Br為剩磁密度 A 電樞線負荷 A=Ia*N/(a*π*D2)Ia電樞額定電流對連續運行的永磁電動机,一般取A=(30~80)A/cm另外電機負荷Δ= Ia/(a*Sd),其中Sd=π*d2/4 d為導線直徑.為了保証發熱因子A*Δ≦1400 (A/cm*A/mm2 )通常以電樞直徑D2和電樞外徑La作為電机主要尺寸,而把電動機的輸出功率和轉睦為電机的主要性能,在主要尺寸和主要性能的基礎上,我們就可以設計電機了. 在(1)式的基礎上經過變換可為:

D22*Lg*n/P’=(6.1*108/π2)*1/(αP*Bg*A)=C A 由上式可以看, C A的值並不取決於電機的容量和轉速,也不直接與電樞直徑和長度有關,它 僅取決於氣隙的平均磁密及電樞線負荷,而Bg和A的變化很小,它近似為常數,通常稱為電機 常數,它的導數K A=1/C A=(p’/n)/(D22* Lg)∞αP*Bg*A 稱為電機利用系數,它是正比於單位電 樞有效体積產生的電磁轉矩的一個比例常數. 2.直流電機定子的確定 2.1磁鋼內徑 根據電機電樞外徑D2確定磁鋼內徑 Dmi=D2+2g+2Hp 其中g為氣隙長度,小功率直流電機g=0.02-0.06cm ,鐵氧體時g可取得大些,鋁鎳鈷磁 鋼電機可取得較小,因鐵氧體H C較大.氣隙對電機的性能有很大的影響,較小的g可以使電樞 反應引起的氣隙磁場畸變加劇,使電機的換向不良加劇,及電機運行不穩定,主極表面損耗和 噪音加劇,以及電樞撓度加大,較大的氣隙,使電機效率下降,溫升提高. 有時電機磁鋼采用極靴,這樣可以起聚磁作用,提高氣隙磁密,還可稠節極靴 形狀以改善空載氣隙磁場波形,負載時交軸電樞反應磁通經極靴閉,合對永磁磁 極的影響較小.但這樣會使磁鋼結構复雜,制造成本增加,漏磁系數較大,外形尺 寸增加,負載時氣隙磁場的畸變較大.而無極靴時永磁體直接面向氣隙,漏磁系數小,能產生較多的磁通,材料利用率高,氣隙磁場畸變,而且結構簡單,便於生產. 其缺點是容易引起不可逆退磁現象. Hp 極靴高(cm) 無極靴結構時Hp=0 2.2磁鋼外徑 Dm0=Dmi+2Hm (瓦片形結構) Hm 永磁體磁路長度,它的尺寸應從滿足(1)有足夠的氣隙磁密(產生不可逆退磁),(2)在要求的任何情運行狀態下會形成永久性退磁等方面來確定,一般Hm=(5~15)g Hm越大,則氣隙磁密也越大,否則,則氣隙磁密也越小. 2.3磁鋼截面積Sm 對于鐵氧體由于Br小,則Sm取較大值,而對于鋁鎳鈷來說, Br較大,則Sm取小值. 環形鐵氧體磁鋼截面積: Sm=αP*π*(Dmi+Hm)Lg/P (cm)

新能源汽车永磁同步驱动电机性能提升分析

新能源汽车永磁同步驱动电机性能提升分析 2017-02-15磁材在线磁材在线 通过分析永磁材料磁特性、转子结构形式、电枢绕组方式和控制策略对永磁同步驱动电机性能的影响。选用具有高剩磁感应强度、高内禀矫顽力和高最大磁能积的钕铁硼稀土永磁材料,采用稳态性能好、功率密度高的内嵌永磁钢转子。槽满率高、铜材消耗少、齿槽转矩小的分数槽集中绕组以及直接转矩弱磁扩速控制策略.给出了提升新能源汽车永磁同步驱动电机性能的最优设计方法。 引言 目前世界范围内能源严重缺乏.生态环境急剧恶化,环境保护问题日益突出,发展低碳经济迫在眉睫,新能源汽车成为全球节能与环保领域里最受推崇的新兴产业。汽车电气化技术提高更受人们关注。而作为混合动力汽车和纯电动汽车“发动机”的驱动电机.成为直接关系新能源汽车性能与节能减排的核心部件。永磁同步驱动电机具有高功率密度、高效率、脉动转矩小和较宽的弱磁调速范围,是节能、环保新能源汽车驱动电机的最佳选择。为了更好发挥永磁同步驱动电机的价值,本文在继续突破永磁材料研究瓶颈的基础上,优化电机结构设计,提升永磁同步驱动电机性能,推进新能源汽车更好地发展。 1永磁材料对永磁同步驱动电机性能的影响 近年来,永磁材料发展迅速、种类繁多,目前最常用的主要种类有:铁氧体永磁材料、铝镍钴永磁材料和钕铁硼稀土永磁材料等。永磁材料的发展历程如图1所示。

铁氧体永磁材料的突出优点是不含稀土元素和钴、镍等贵重金属,价格低廉,制造工艺简单,矫顽力大,抗去磁能力强,密度小,质量轻。但铁氧体永磁材料硬而脆,不能进行电加工,生产出来的电机功率小、效率低。铝镍钴永磁材料的特点是温度系数低、剩磁感应强度高、矫顽力低.易充磁和去磁,但含有钴这种贵重金属,所以价格很高。钕铁硼稀土永磁材料以其优异的磁性能成为永磁材料的主力军,其磁性能远超过铁氧体和铝镍钴等其他磁性材料。新一代钕铁硼永磁材料发展至今,其室温下剩余磁感应强度曰,已达到147 T。内禀矫顽力巩最高可超过1 000 kA/m,最大磁能积(BH)高达398 kj/m,为铁氧体永磁材料的5~12倍、铝镍钴永磁材料的3~10倍。钕铁硼永磁材料的不足之处是居里温度较低,在高温下使用时磁损失较大,热稳定性、耐腐蚀性和抗氧化性差,因此要根据磁体的使用环境来对其表面进行涂层处理.以满足车用环境要求。

相关文档
相关文档 最新文档