文档库 最新最全的文档下载
当前位置:文档库 › 立体几何讲义作业帮版本

立体几何讲义作业帮版本

立体几何讲义作业帮版本
立体几何讲义作业帮版本

垂直的证明

1.(2016?新课标2)如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交于BD于点H,将△DEF沿EF折到△D′EF的位置,OD′=.

(Ⅰ)证明:D′H⊥平面ABCD;

(Ⅱ)求二面角B﹣D′A﹣C的正弦值.

2.(2016?新课标1)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.

(Ⅰ)证明平面ABEF⊥平面EFDC;

(Ⅱ)求二面角E﹣BC﹣A的余弦值.

3.(2014?四川)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形

(Ⅰ)若AC⊥BC,证明:直线BC⊥平面ACC1A1;

(Ⅱ)设D、E分别是线段BC、CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.

4.(2014秋?七星区校级月考)如图,三棱锥A﹣BCD中,AB⊥平面BCD,CD⊥BD,M为AD中点,AB=BD=CD=1.

(1)证明:BM⊥CD;

(2)求三棱锥A﹣MBC的体积.

5.(2015?新课标1)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.

(Ⅰ)证明:平面AEC丄平面AFC

(Ⅱ)求直线AE与直线CF所成角的余弦值.

6.(2015?北京)如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.

(Ⅰ)求证:AO⊥BE.

(Ⅱ)求二面角F﹣AE﹣B的余弦值;

(Ⅲ)若BE⊥平面AOC,求a的值.

7.(2014?辽宁)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F分别为AC、DC的中点.

(Ⅰ)求证:EF⊥BC;

(Ⅱ)求二面角E﹣BF﹣C的正弦值.

8.(2013?新课标Ⅰ)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.

(Ⅰ)证明AB⊥A1C;

(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.

平行的证明

1.(2014?湖北)如图,在正方体ABCD﹣A1B1C1D1中,E、F、P、Q、M、N分别是棱AB、AD、DD1、BB1、A1B1、A1D1的中点,求证:

(Ⅰ)直线BC1∥平面EFPQ;

(Ⅱ)直线AC1⊥平面PQMN.

2.(2014?江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:

(1)直线PA∥平面DEF;

(2)平面BDE⊥平面ABC.

3.(2012?湛江模拟)底面是正方形的四棱柱ABCD﹣A1B1C1D1中,侧棱AA1⊥底面ABCD,E是CC1的中点,O是AC、BD的交点.

(1)求证:AC1∥平面BDE;

(2)求证:平面BDE⊥平面ACC1.

4.(2015?江苏)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.

求证:

(1)DE∥平面AA1C1C;

(2)BC1⊥AB1.

5.(2014?新课标II)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.

(Ⅰ)证明:PB∥平面AEC;

(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.

6.(2013?福建)如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,BC=5,DC=3,AD=4,∠PAD=60°.

(Ⅰ)当正视方向与向量的方向相同时,画出四棱锥P﹣ABCD的正视图(要求标出尺寸,并写出演算过程);

(Ⅱ)若M为PA的中点,求证:DM∥平面PBC;

(Ⅲ)求三棱锥D﹣PBC的体积.

7.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.

(1)证明:MN∥平面PAB;

(2)求直线AN与平面PMN所成角的正弦值.

8.(2013?新课标Ⅱ)如图,直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.

(Ⅰ)证明:BC1∥平面A1CD

(Ⅱ)求二面角D﹣A1C﹣E的正弦值.

空间向量法

1.(2015?东阳市模拟)在正三棱柱ABC﹣A1B1C1中,若AB=BB1,D是CC1中点,则CA1与BD所成角的大小是()

A.B.C.D.

2.(2015?遵义校级一模)已知底面边长为的正三棱柱ABC﹣A 1B1C1的体

积为,若点P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为()

A.B.C.D.

3.(2016?新课标2)如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交于BD于点H,将△DEF沿EF折到△D′EF的位置,OD′=.

(Ⅰ)证明:D′H⊥平面ABCD;

(Ⅱ)求二面角B﹣D′A﹣C的正弦值.

4.(2015?新课标1)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.

(Ⅰ)证明:平面AEC丄平面AFC

(Ⅱ)求直线AE与直线CF所成角的余弦值.

高中数学第一二章立体几何复习讲义人教版必修二

一、立体几何知识点归纳 第一章空间几何体 (一)空间几何体的结构特征 (1)多面体——由若干个平面多边形围成的几何体. 围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。 旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其中,这条定直线称为旋转体的轴。 (2)柱,锥,台,球的结构特征 1.棱柱 1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的 关系: ①? ? ??????→?? ?????→? ? ?? L 底面是正多形 棱垂直于底面 斜棱柱 棱柱正棱柱 直棱柱 其他棱柱 底面为矩形 侧棱与底面边长相等 1.3 ①侧棱都相等,侧面是平行四边形; ②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形; ④直棱柱的侧棱长与高相等,侧面与对角面是矩形。 1.4长方体的性质: ①长方体一条对角线长的平方等于一个顶点上三条棱的 平方和;【如图】2222 11 AC AB AD AA =++ ②(了解)长方体的一条对角线 1 AC与过顶点A的三条 棱所成的角分别是αβγ ,,,那么 222 cos cos cos1 αβγ ++=,222 sin sin sin2 αβγ ++=; ③(了解)长方体的一条对角线 1 AC与过顶点A的相邻三个面所成的角分别是αβγ ,,,则222 cos cos cos2 αβγ ++=,222 sin sin sin1 αβγ ++=.

高中数学选修2-1《空间向量与立体几何》知识点讲义

第三章 空间向量与立体几何 一、坐标运算 ()()111222,,,,,a x y z b x y z == ()()()()121212121212 11112121 2,,,,,,,,a b x x y y z z a b x x y y z z a x y z a b x x y y z z λλλλ+=+++-=---=?=???则 二、共线向量定理 (),0,=.a b b a b a b λλ≠←??→?充要对于使 三、共面向量定理 ,,.a b p a b x y p x a y b ←??→?=+充要若与不共线,则与共面使 ,,, 1.O OP xOA yOB P A B x y =+←???→+=充要条件四、对空间任意一点,若则三点共线 ,1.P A B C O OP xOA yOB zOC P A B C x y z =++←??→++=充要五、对空间异于、、、四点的任意一点,若若、、、四点 ()()()11, 1.P A B C AP xAB y AC OP OA x OB OA y OC OA OP xOB yOC x y OA x y z x y z ∴=+∴-=-+-∴=++----=∴++=证明:①必要性 、、、四点共面, ,,, 令()()() 1, 1,x y z OP y z OA yOB zOC OP OA y OB OA z OC OA AP y AB z AC A B C P ++=∴=--++∴-=-+-∴=+∴②充分性,,、、、四点共面. 六、空间向量基本定理 {} ,,a b c p x y z p xa yb zc a b c a b c ?若,,不共面,对于任意,使=++,称,,做空间的一个基底,, ,都叫做基向量.

高中数学空间立体几何讲义

第1讲 空间几何体 高考《考试大纲》的要求: ① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. ② 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图. ③ 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. ④ 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). ⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式). (一)例题选讲: 例1.四面体ABCD 的外接球球心在CD 上,且CD =2,AB =3,在外接球面上两点A 、B 间的球面距离是( ) A . 6π B .3 π C .32π D .65π 例2.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为( ) A .π2 B .π2 3 C .π332 D .π2 1 例3.在正三棱柱ABC —A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角 是 . 例4.如图所示,等腰△ABC 的底边AB =66,高CD =3,点B 是线段BD 上异于点B 、D 的动点.点F 在BC 边上,且EF ⊥AB .现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE .记BE =x ,V (x )表示四棱锥P-ACFE 的体积. (1)求V (x )的表达式; (2)当x 为何值时,V (x )取得最大值? (3)当V (x )取得最大值时,求异面直线AC 与PF 所成角的余弦值。 (二)基础训练: 1.下列几何体各自的三视图中,有且仅有两个视图相同的是( ) A .①② B .①③ C .①④ D .②④ 2.设地球半径为R ,若甲地位于北纬045东经0120,乙地位于南纬度0 75东经0120,则甲、乙两地球面距离为( ) (A )3R (B) 6 R π (C) 56 R π (D) 23R π ①正方形 ②圆锥 ③三棱台 ④正四棱锥

2018届高三二轮复习--立体几何讲义

2018届高三二轮复习讲义--立体几何 分值:17-22分 题型:题型不固定,一般1-2个小题1个解答题; 难度:低、中档; 考查内容:如果是小题,主要考查三视图还原为几何体,几何体对应的三视图,空间几何体的表面积与体积的计算。对于解答题,主要考查空间线面平行、垂直关系的判定与性质,几何体的体积,表面积,距离。 第一讲空间几何体的三视图、表面积及体积 高考体验: 1、(2016年全国卷Ⅱ)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为() A.20π B. 24π C. 28π D. 32π 2、(2016年全国Ⅲ)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为() A.18+54+90 D.81 3、(2015年全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分的体积比值为() A.1 8 B. 1 7 C. 1 6 D. 1 5

(第1题图) (第2题图) (第3题图) (第4题图) 4、(2016年全国Ⅰ卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径。若该几何体的体积为 283 π ,则它的表面积是( ) A.17π B. 18π C. 20π D .28π 5、(2015年全国卷Ⅱ)已知,A B 是球面上两点,90o AOB ∠=,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为36,则球O 的表面积为( ) A.36π B.64π C.144π D.256π 6.(2015新课标1)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约 为3,估算出堆放斛的米约有( ) A.14斛 B.22斛 C.36斛 D.66斛 高考感悟:(1)由网格图给出三视图或由空间直角坐标系给出几何体。(2)由三视图还原直观图求线段的长 度、面积、体积等;(3)与求有关的“接”“切”问题。 例题讲解: 热点一: 空间几何体的三视图 考向1:几何体三视图的识别 例1 (1)(2016年天津卷)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的 几何体的正视图与俯视图如图所示,则该几何体的侧视图为( )

高中数学立体几何讲义

平面与空间直线 (Ⅰ)、平面的基本性质及其推论 图形 符号语言 文字语言(读法) A a A a ∈ 点A 在直线a 上。 A a A a ? 点A 不在直线a 上。 A α A α∈ 点A 在平面α内。 A α A α? 点A 不在平面α内。 b a A a b A =I 直线a 、b 交于A 点。 a α a α? 直线a 在平面α内。 a α a α=?I 直线a 与平面α无公共点。 a A α a A α=I 直线a 与平面α交于点A 。 l αβ=I 平面α、β相交于直线l 。 2、平面的基本性质 公理1: 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内 推理模式:A AB B ααα∈? ??∈? ?。 如图示: 应用:是判定直线是否在平面内的依据,也是检验平面的方法。 B A α

公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。 推理模式: A l A ααββ∈? ?=?∈? I 且A l ∈且l 唯一如图示: 应用:①确定两相交平面的交线位置;②判定点在直线上。 例1.如图,在四边形ABCD 中,已知AB ∥CD ,直线AB ,BC ,AD ,DC 分别与平面 α相交于点E ,G ,H ,F .求证:E ,F ,G ,H 四点必定共线. 解:∵AB ∥CD , ∴AB ,CD 确定一个平面β. 又∵AB I α=E ,AB ?β,∴E ∈α,E ∈β, 即E 为平面α与β的一个公共点. 同理可证F ,G ,H 均为平面α与β的公共点. ∵两个平面有公共点,它们有且只有一条通过公共点的公共直线, ∴E ,F ,G ,H 四点必定共线. 说明:在立体几何的问题中,证明若干点共线时,常运用公理2,即先证明这些点都是某二平面的公共点,而后得出这些点都在二平面的交线上的结论. 例2.如图,已知平面α,β,且αI β=l .设梯形ABCD 中,AD ∥BC ,且AB ?α,CD ?β,求证:AB ,CD ,l 共点(相交于一点). 证明 ∵梯形ABCD 中,AD ∥BC , ∴AB ,CD 是梯形ABCD 的两条腰. ∴ AB ,CD 必定相交于一点, 设AB I CD =M . 又∵AB ?α,CD ?β,∴M ∈α,且M ∈β.∴M ∈αI β. 又∵αI β=l ,∴M ∈l , 即AB ,CD ,l 共点. 说明:证明多条直线共点时,一般要应用公理2,这与证明多点共线是一样的. 公理3: 经过不在同一条直线上的三点,有且只有一个平面。 推理模式:,, A B C 不共线?存在唯一的平面α,使得,,A B C α∈。 应用:①确定平面;②证明两个平面重合 。 例3.已知:a ,b ,c ,d 是不共点且两两相交的四条直线,求证:a ,b ,c ,d 共面. 证明 1o 若当四条直线中有三条相交于一点,不妨设a ,b ,c 相交于一点A , α D C B A E F H G α D C B A l 例2 β M

空间几何体复习资料

空间几何体复习资料 一、空间几何体的类型 1、多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。常见的多面体有:棱柱、棱锥、棱台 2、旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。常见的旋转体有:圆柱、圆锥、圆台、球 3、简单组合体的构成形式: 一种是由简单几何体拼接而成,例如课本图1.1-11中(1)(2)物体表示的几何体; 一种是由简单几何体截去或挖去一部分而成,例如课本图1.1-11中(3)(4)物体表示的几何体。 例1、下列各组几何体中是多面体的一组是( ) A 三棱柱 四棱台 球 圆锥 B 三棱柱 四棱台 正方体 圆台 C 三棱柱 四棱台 正方体 六棱锥 D 圆锥 圆台 球 半球 例2、下图是由哪个平面图形旋转得到的( ) 二、几种空间几何体的结构特征 1 、棱柱的结构特征 (1)棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 (2)棱柱的分类: 棱 图1-1 棱柱 简单组合体

柱 四棱柱 平行六面体 直平行六 面体长方体正四棱柱正方体 (3)性质: Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; (4)棱柱的面积和体积公式 ch S =直棱柱侧( c 是底周长,h 是高) S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h 2 、棱锥的结构特征 (1)棱锥的定义 ①棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 ②正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。 (2)正棱锥的结构特征 ①平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; ②正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积:1 '2 S ch = 正棱椎(c 为底周长,'h 为斜高) 体积:1 3 V Sh = 棱椎(S 为底面积,h 为高) 注:正三棱锥是锥体中底面是等边三角形,三个侧面是全等的等腰三角形的三棱锥。 正三棱锥不等同于正四面体,正四面体必须每个面都是全等的等边三角形。 正三棱锥的性质:1. 底面是等边三角形。 2. 侧面是三个全等的等腰三角形。3. 顶点在底面的射影是底面三角形的中心(也是重心、垂心、外心、内心)。 正四面体: 对于棱长为a 正四面体的问题可将它补成一个边长为 a 2 2 的正方体问题。 棱长都相等 底面是正方形 底面是矩形 侧棱垂直于底面 底面是平行四边形 底面是四边形 A B C D P O H

立体几何讲义(线面平行,垂直,面面垂直)

D C B 1 A 1 C 1 立体几何讲义------线面平行,垂直,面面垂直 立体几何高考考点: 选择题:三视图 选择填空:球类题型 大题 (1)线面平行、面面平行 线面垂直、面面垂直 【运用基本定理】 (2)异面直线的夹角 线面角 面面角(二面角) 【几何法、直角坐标系法】 (3)锥体体积 【找到一个好算的高,运用公式】 点面距离 【等体积法】 线面平行 1、如图所示,边长为4的正方形 与正三角形 所在平面互相垂直,M 、Q 分别是PC ,AD 的中点.求证:PA ∥面BDM 2、如图,在直三棱柱ABC-A 1B 1C 1中, D 为AC 的中点,求证:;平面D BC AB 11// 3、如图,正三棱柱111C B A ABC 的底面边长是2,侧棱长是3,D 是AC 的中点.求证://1C B 平面BD A 1. A B C A 1 B 1 C 1 D

4、如图,在四棱锥P ﹣ABCD 中,ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点,求证:MN ∥平面PAD . 5、如图,PA 垂直于矩形ABCD 所在的平面,AD=PA=2,CD=2,E 、F 分别是AB 、PD 的中点.求证:AF ∥平 面PCE ; 6、(2012·辽宁)如图,直三棱柱ABC -A ′B ′C ′,∠BAC =90°,AB =AC =2,AA ′=1,点M 、N 分别为A ′B 和B ′C ′的中点. 证明:MN ∥平面A ′ACC ′; 7、【2015高考山东】 如图,三棱台DEF ABC -中,2AB DE G H =,,分别为AC BC ,的中点. (Ⅰ)求证://BD 平面FGH ;

[高中数学]立体几何.球专题讲义,附练习题、

E B C D A 立体几何-球-专题学案 ? 双基练习 1.下列四个命题中错误.. 的个数是 ( ) ①经过球面上任意两点,可以作且只可以作一个球的大圆 ②球面积是它大圆面积的四倍 ③球面上两点的球面距离,是这两点所在截面圆上以这两点为端点的劣弧的长 A.0 B.1 C.2 D.3 2.一平面截一球得到直径为6 cm 的圆面,球心到这个平面的距离是4 cm ,则该球的体积是 A.3π100 cm 3 B.3π208 cm 3 C.3π500 cm 3 D.3 π34161 cm 3 3.某地球仪上北纬30°纬线的长度为12π cm ,该地球仪的半径是_____________cm ,表面积是_____________cm 2. ? 知识预备 1. 球心到截面的距离d 与球半径R 及截面的半径r 有以下关系: . 2. 球面被经过球心的平面截得的圆叫 .被不经过球心的平面截得的圆叫 . 3. 在球面上两点之间的最短连线的长度,就是经过这两点的大圆在这两点间的一段劣弧长,这个弧长 叫 . 4. 球的表面积表面积S = ;球的体积V = . 5. 球面距离计算公式:__________ ? 典例剖析 (1)球面距离,截面圆问题 例1.球面上有3个点,其中任意两点的球面距离都等于大圆周长的 61,经过这3个点的小圆的周长为4π,那么这个球的半径为 A.43 B.23 C.2 D. 3 练习: 球面上有三点A 、B 、C ,A 和B 及A 和C 之间的球面距离是大圆周长的41,B 和C 之间的球面距离是大圆周长的61,且球心到截面ABC 的距离是7 21,求球的体积. 例2. 如图,四棱锥A -BCDE 中,BCDE AD 底面⊥,且AC ⊥BC ,AE ⊥BE . (1) 求证:A 、B 、C 、D 、E 五点都在以AB 为直径的同一球面上; (2) 若,1,3,90===∠AD CE CBE 求B 、D 两点间的球面距离.

空间立体几何讲义全

①规定长度为0的向量为零向量,记作0; ②模为1的向量叫做单位向量; 3.相等的向量:两个模相等且方向相同的向量称为相等的向量. 4.负向量:两个模相等且方向相反的向量是互为负向量.如a的相反向量记为-a. 5.共线与共面向量 (1)共线向量:与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,记作a∕∕b. (2)共面向量:平行于同一平面的向量叫做共面向量. (3)定理 共线向量定理:对于空间任意两个向量b (b≠ 、的充要条件是存在实数λ,使得.b ),0 a// a b = aλ共面向量定理:如果两个向量b、a不共线,则向量p与向量b、a共面的充要条件是存在唯一的有序史书对(x,y),使得p.b y = a x+ 6.注意: ①零向量的方向是任意的,规定0与任何向量平行; ②单位向量不一定相等,但单位向量的模一定相等且为1; ③方向相同且模相等的向量称为相等向量,因此,在空间,同向且等长的有向线段表示同一向量或相等向量; ④空间任意两个向量都可以通过平移成为共面向量; ⑤一般来说,向量不能比较大小.

二、空间向量的运算 1、加减法 (1)空间任意两个向量都是共面的,它们的加、减法运算类似于平面向量的加减法.空间向量和平面向量一样满足三角形法则和平行四边形法则. (2)加法运算律: 空间向量的加法满足交换律及结合律. 交换律: 结合律: (3)推广 *首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量: *首尾相接的若干向量若构成一个封闭图形,则它们的和为:零向量 2.空间向量的数乘运算 (1)实数λ与空间向量a的乘积λa仍是一个向量,称为向量的数乘运算. ①当λ>0时,λa与a的方向相同; ②当λ<0时,λa与a的方向相反; ③当λ=0时,λa=0. ④|λa|=|λ|a?,λa的长度是a的长度的|λ|倍.

高中数学立体几何之面面平行的判定与性质讲义及练习电子教案

高中数学立体几何之面面平行的判定与性质讲义及练习

面面平行的判定与性质 一、基本内容 1.面面平行的判定 文字 图形 几何符号 简称 判定定理1 判定定理2 2.面面平行的性质 文字 图形 几何符号 简称 性质定理1 性质定理2 二、例题 1. 正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面. 2.在正方体1111ABCD A B C D 中,E 、F 、G 分别是AB 、AD 、11C D 的中点. 求证:平面1D EF ∥平面BDG . A 1 A B 1 C 1 C D 1 D G E F

F E D B A P C 3.如图,在四棱锥ABCD P -中,底面ABCD 是正方形, PA ⊥平面ABCD , E 是PC 中点,F 为线段AC 上一点. (Ⅰ)求证:EF BD ⊥; (Ⅱ)试确定点F 在线段AC 上的位置,使EF //平面PBD . 4. 在四棱锥P ABCD 中,AB //CD ,AB AD ,4,22,2AB AD CD ,PA 平面 ABCD ,4PA . (Ⅰ)设平面PAB 平面PCD m =,求证:CD //m ; (Ⅱ)求证:BD ⊥平面PAC ; (Ⅲ)设点Q 为线段PB 上一点,且直线QC 与平面PAC 所 成角的正弦值为33,求PQ PB 的值. 5. 在如图所示的几何体中,四边形ABCD 为平行四边形,=90ABD ∠?, EB ⊥平面ABCD , EF//AB ,2AB=,=1EF ,=13BC ,且M 是BD 的中点. (Ⅰ)求证://EM 平面ADF ; (Ⅱ)在EB 上是否存在一点P ,使得CPD ∠最大? 若存在,请求出CPD ∠的正切值;若不存在, 请说明理由. P D C B A C A F E B M D

利用空间向量立体几何(完整版)

向量法解立体几何 引言 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。教材上讲的比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,给老师对这部分内容的教学及学生解有关这部分内容的题目造成一定的困难,下面主要就这几方面问题谈一下自己的想法,起到一个抛砖引玉的作用。 基本思路与方法 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为 a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系

线线垂直(共面与异面)?两线的方向向量垂直 线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离 点()111,,P x y z 与()222,,Q x y z 的 距离为222212121()()()PQ x x y y z z =-+-+- 2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y , 则向量PQ 在法向量(),n A B =上的射影PQ n n ?= 0022 Ax By C A B +++ 即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ , 计算平面α的法向量n , 计算PQ 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤:

高一讲义立体几何

立体几何 学习目标 1、认识由柱、锥、台、球组成的几何组合体的结构特征; 2、理解掌握立体图形的平行平面投影三视图; 3、能运用公式求解柱体、锥体和台体的体积,了解球的表面积和体积公式; 4、会用柱、锥、台体和球的表面积和体积公式求简单几何体的表面积和体积. 教学内容 1、如下图中所示几何体中是棱柱有( ) A .1 B .2个 C .3个 D .4个 2、如下图所示,正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是AA 1、C 1D 1的中点,G 是正方形BCC 1B 1的中心,则四边形AGFE 在该正方体的各个面上的射影可能是下图中的________. 3、已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( ) A . 323 π B .4π C .2π D .43π 4、如右图是某几何体的三视图,则该几何体的体积为( ) A .9122π+ B .9 182 π+ C .942π+ D .3618π+

空间几何体的结构 【知识梳理】 1、棱柱的结构特征 定义:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.在棱柱中,两个相互平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱.侧面与底的公共顶点叫做棱柱的顶点.棱柱中不在同一平面上的两个顶点的连线叫做棱柱的对角线.过不相邻的两条侧棱所形成的面叫做棱柱的对角面. 2、棱锥的结构特征 定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.这个多边形面叫做棱锥的底面.有公共顶点的各个三角形叫做棱锥的侧面.各侧面的公共顶点叫做棱锥的顶点.相邻侧面的公共边叫做棱锥的侧棱; 棱锥的分类:按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥……;

最新整理高三数学20 高考数学知识立体几何初步复习讲义.docx

最新整理高三数学20 高考数学知识立体几何初步复 习讲义 高中数学复习讲义第七章立体几何初步知识图解 方法点拨 立体几何研究的是现实空间,认识空间图形,可以培养学生的空间想象能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力。空间的元素是点、线、面、体,对于线线、线面、面面的位置关系着重研究它们之间的平行与垂直关系,几何体着重研究棱柱、棱锥和球。在复习时我们要以下几点:1.注意提高空间想象能力。在复习过程中要注意:将文字语言转化为图形,并明确已知元素之间的位置关系及度量关系;借助图形来反映并思考未知的空间形状与位置关系;能从复杂图形中逻辑的分析出基本图形和位置关系,并借助直观感觉展开联想与猜想,进行推理与计算。 2.归纳总结,分门别类。从知识上可以分为:平面的基本性质、线线、线面、面面的平行与垂直、空间中角与距离的计算。 3.抓主线,攻重点。针对一些重点内容加以训练,平行和垂直是位置关系的核心,而线面垂直又是核心的核心,角与距离的计算已经降低要求。 4.复习中要加强数学思想方法的总结与提炼。立体几何中蕴含着丰富的思想方法,如:将空间问题转化成平面图形来解决、线线、线面与面面关系的相互转化、空间位置关系的判断及角与距离的求解转化成空间向量的运算。 第1课空间几何体 考点导读 1.观察认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特

征描述现实生活中简单物体的结构; 2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合) 的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直 观图; 3.通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了 解空间图形的不同表示形式; 4.了解球、棱柱、棱锥、台的表面积和体积的计算公式。 基础练习 1.一个凸多面体有8个顶点,①如果它是棱锥,那么它有 14 条棱, 8 个面;②如果它是棱柱,那么它有 12 条棱 6 个面。 2.(1)如图,在正四面体A-BCD中,E、F、G分别是三角形ADC、ABD、BCD 的中心,则△EFG在该正四面体各个面上的射影所有可能的序号是③④。 (2)如图,E、F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是图的②③(要求:把可能的图的序 号都填上). 范例导析 例1.下列命题中,假命题是(1)(3)。(选出所有可能的答案) (1)有两个面互相平行,其余各个面都是平行四边形的多面体是棱柱 (2)四棱锥的四个侧面都可以是直角三角形 (3)有两个面互相平行,其余各面都是梯形的多面体是棱台 (4)若一个几何体的三视图都是矩形,则这个几何体是长方体 分析:准确理解几何体的定义,真正把握几何体的结构特征是解决概念题的

立体几何知识点归纳

一、立体几何知识点归纳 第一章 空间几何体 (一)空间几何体的结构特征 (1)多面体——由若干个平面多边形围成的几何体. 围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱 与棱的公共点叫做顶点。 旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其 中,这条定直线称为旋转体的轴。 (2)柱,锥,台,球的结构特征 1.棱柱 1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都 互相平行,由这些面所围成的几何体叫做棱柱。 1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: ①???????? →???????→?? ?? 底面是正多形 棱垂直于底面斜棱柱 棱柱正棱柱直棱柱其他棱柱 底面为矩形 侧棱与底面边长相等 1.3①侧棱都相等,侧面是平行四边形; ②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形; ④直棱柱的侧棱长与高相等,侧面与对角面是矩形。 1.4长方体的性质: ①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++ ②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ ,,,那么 222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=; ③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则2 2 2 cos cos cos 2αβγ++=,2 2 2 sin sin sin 1αβγ++=.

3立体几何综合大题讲义

立体几何 【典型例题】 题型一、线面平行 例1、(2012?山东)如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD. (Ⅰ)求证:BE=DE; (Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC 变式1:(2013?枣庄二模)一多面体的三视图和直观图如图所示,它的正视图为直角三角形,侧视图为矩形,俯视图为直角梯形(尺寸如图所示)直观图中的平面BEFC水平放置. (1)求证:AE∥平面DCF; 变式2:(2013?潍坊一模)如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,点E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABCD⊥平面EFDC,设AD中点为P. (I )当E为BC中点时,求证:CP∥平面ABEF (Ⅱ)设BE=x,问当x为何值时,三棱锥A-CDF的体积有最大值?并求出这个最大值. 例2、(2010?湖南)如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点. (Ⅰ)求直线BE与平面ABB1A1所成的角的正弦值; (Ⅱ)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.

变式:(2013?广州三模)如图,在等腰梯形PDCB中,PB∥CD,PB=3,DC=1,PD=BC=2,A为PB边上一点,且PA=1,将△PAD沿AD折起,使平面PAD⊥平面ABCD. (1)求证:平面PAD⊥平面PCD. (2)在线段PB上是否存在一点M,使截面AMC把几何体分成的两部分的体积之比为V PDCMA:V M-AC B=2:1,若存在,确定点M的位置;若不存在,说明理由. (3)在(2)的条件下,判断AM是否平行于平面PCD. 练习1、(2013?宁德模拟)如图所示的多面体A1ADD1BCC1中,底面ABCD为正方形,AA1∥BB1∥CC1,AA12AB=2AA1=CC1=DD1=4,且AA1⊥底面ABCD. (Ⅰ)求证:A1B∥平面CDD1C1; (Ⅱ)求多面体A1ADD1BCC1的体积V. 2、(2013?聊城一模)如图,四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,平面PAD⊥平面ABCD,PA=BC=1,PD=AB=2,E、F分别为线段PD和BC的中点 (I)求证:CE∥平面PAF; (Ⅱ)求三棱锥P-AEF的体积.

2020年高三数学第二轮复习讲义 立体几何 理

立体几何 类型一:三视图 例1. 陕西理5.某几何体的三视图如图所示,则它的体积是 ( ) (A )283 π- (B )83 π - (C )82π- (D )23 π 即一个正方体中间去掉一个圆锥体,所以它的体积是 3218222833 V π π=-???=- . 类型二:关于球 例2. 已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,ο30=∠=∠BSC ASC ,则棱 锥S —ABC 的体积为 A .33 B .32 C .3 D .1 变式训练2. (四川)如图,半径为R 的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是_________. 答案:2πR 2 解析:如图,设求的一条半径与圆柱相应的母线夹角为α,则圆柱的侧面积22sin 2cos 2sin 2S R R R πααπα=??=,当4 π α=时,S 取最大值22R π,此时球的 表面积与该圆柱的侧面积之差为22R π. 类型三:平行与垂直的证明 例3.如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD , AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点 求证:(1)直线EF//平面PCD ; (2)平面BEF ⊥平面PAD. 变式训练3:如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直。EF//AC ,AB=2,CE=EF=1 典型例题 (16) 第题图

(Ⅰ)求证:AF//平面BDE ; (Ⅱ)求证:CF ⊥平面BDF; 证明:(Ⅰ)设AC 于BD 交于点G 。因为EF ∥AG,且EF=1,AG= 1 2 AG=1 所以四边形AGEF 为平行四边形 所以AF ∥EG 因为EG ?平面BDE,AF ?平面BDE, 所以AF ∥平面BDE (Ⅱ)连接FG 。因为EF ∥CG,EF=CG=1,且CE=1,所以平行四边形CEFG 为菱形。所以CF ⊥EG. 因为四边形ABCD 为正方形,所以BD ⊥AC.又因为平面ACEF ⊥平面ABCD,且平面ACEF ∩平面ABCD=AC,所以BD ⊥平面ACEF.所以CF ⊥BD.又BD ∩EG=G,所以CF ⊥平面BDE. 类型四: 例4: 如图,直三棱柱111ABC A B C -中,AC BC =,1AA AB =,D 为1BB 的中点,E 为 1AB 上的一点,13AE EB =. (Ⅰ)证明:DE 为异面直线1AB 与CD 的公垂线; (Ⅱ)设异面直线1AB 与CD 的夹角为45°,求二面角 111A AC B --的大小. (19)解法一: (I )连接A 1B ,记A 1B 与AB 1的交点为F. 因为面AA 1BB 1为正方形,故A 1B ⊥AB 1,且AF=FB 1,又AE=3EB 1,所以FE=EB 1,又D 为BB 1的中点,故DE ∥BF ,DE ⊥AB 1. ………………3分 作CG ⊥AB ,G 为垂足,由AC=BC 知,G 为AB 中点. 又由底面ABC ⊥面AA 1B 1B.连接DG ,则DG ∥AB 1,故DE ⊥DG ,由三垂线定理,得DE ⊥CD. 所以DE 为异面直线AB 1与CD 的公垂线. (II )因为DG ∥AB 1,故∠CDG 为异面直线AB 1与CD 的夹角,∠CDG=45° 设AB=2,则AB 1= ,DG= ,CG= ,AC= . 作B 1H ⊥A 1C 1,H 为垂足,因为底面A 1B 1C 1⊥面AA 1CC 1,故B 1H ⊥面AA 1C 1C.又作HK ⊥AC 1,K 为垂足,连接B 1K ,由三垂线定理,得B 1K ⊥AC 1,因此∠B 1KH 为二面角A 1-AC 1-B 1的平面角.

高三一轮复习-立体几何讲义(带答案)

个性化辅导授课教案

轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段在直观图 中长度为原来的一半. 【方法与技巧】 1.三视图的画法特征 “长对正、宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.2.求空间几何体的侧面积、体积的思想与方法 (1)转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法. (2)求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.【失误与防范】 1.画三视图应注意的问题 (1)若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法. (2)确定正视、侧视、俯视的方向,观察同一物体方向不同,所画的三视图也不同. 2.求空间几何体的表面积应注意的问题 (1)求组合体的表面积时,要注意各几何体重叠部分的处理. (2)底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错. 【高频考点突破】 考点一空间几何体的结构特征[来源:Z。xx。https://www.wendangku.net/doc/f816598185.html,] 例1、给出下列命题: ①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥; ③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥; ④棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确命题的个数是() A.0B.1C.2D.3 【解析】①不一定,只有这两点的连线平行于轴时才是母线;②不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图(1)所示;③不一定.当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图(2)所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.

空间几何体的表面积和体积经典例题(学生讲义)

空间几何体的表面积和体积 一.课标要求: 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。 二.命题走向 近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。 由于本讲公式多反映在考题上,预测2016年高考有以下特色: (1)用选择、填空题考查本章的基本性质和求积公式; (2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题; 三.要点精讲 1.多面体的面积和体积公式

表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长。 2.旋转体的面积和体积公式 表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R表示半径。 四.典例解析 题型1:柱体的体积和表面积 例1.一个长方体全面积是20cm2,所有棱长的和是24cm,求长方体的对角线长.

例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD= 3 。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。 图1 图2

高中数学 第一章《立体几何》复习讲义1 新人教A版必修2

浙江省淳安县威坪中学高中数学第一章《立体几何》复习讲义 1 新人教A版必修2 一.知识回顾: 1.空间图形的位置关系 (1)空间直线的位置关系: (2)异面直线所成的角:特别地,找异面直线所成的角时,经常把一条异面直线平移到另一条异面直线的特殊点(如线段中点,端点等)上,形成异面直线所成的角。异面直线所成的角的范围: (3)直线与平面的位置关系: (4)平面与平面的位置关系: 2.平行关系(包括线面平行,面面平行) (1)线线平行线面平行: 面面平行 (2)直线与平面所成的角(简称线面角)的范围: 3.垂直关系(包括线面垂直,面面垂直)

(1)线线垂直 线面垂直 面面垂直 (2)二面角:二面角的平面角的范围: 二.立体几何常见题型归纳例讲 1、概念辨析题: (1)此题型一般出现在填空题,选择题中,解题方法可采用排除法,筛选法等。 (2)对于判断线线关系,线面关系,面面关系等方面的问题,必须在熟练掌握有关 的定理和性质的前提下,利用长方体,正方体,实物等为模型来进行判断。你认为正确的命题需要证明它,你认为错误的命题必须找出反例。 (3)相关例题:课本和报纸上出现很多这样的题型,举例说明如下: 2、证明题:证明平行关系,垂直关系等方面的问题。 三、例题分析 例1、设m ,n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个说法: ①,//m n m n αα⊥?⊥;②//,//,m m αββγαγ⊥?⊥;③//,////m n m n αα? ④,//αγβγαβ⊥⊥?,说法正确的序号是:_________________

例2、如右图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 为棱AD 、AB 的中点. (1)求证:EF ∥平面CB 1D 1; (2)求证:B 1D 1⊥平面CAA 1C 1 练习:如图,已知矩形ABCD 中,AB=10,BC=6,将矩形沿对角线BD 把△ABD 折起,使A 移到1A 点,且1A 在平面BCD 上的射影O 恰好在CD 上. (1)求证:1BC A D ⊥; (2)求证:平面1A BC ⊥平面1A BD ; (3)求三棱锥1A BCD -的体积 例3、如下图,在四棱锥P —ABCD 中,底面ABCD 是∠DAB =60°,且边长为a 的菱形, 侧面PAD 为正三角形,其所在的平面垂直于底面ABCD . (1)若G 为AD 边的中点,求证:BG ⊥平面PAD ; (2)求证:AD ⊥PB ; (3)若E 为BC 边的中点,能否在棱PC 上找一点F ,使得平面DEF ⊥平面ABCD ,并 证明 你的 结论 .

相关文档
相关文档 最新文档