文档库 最新最全的文档下载
当前位置:文档库 › 概率论期末考试试题

概率论期末考试试题

概率论期末考试试题
概率论期末考试试题

1.全概率公式 贝叶斯公式

1.某保险公司把被保险人分成三类:“谨慎的”、“一般的”和“冒失的”。统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.3。并且它们分别占投保总人数的20%,50%和30%。现已知某保险人在一年内出了事故,则他是“谨慎的”保险户的概率是多少?

解:设A i 、A 2、A 3分别表示“谨慎的” “一般的”和“冒失的”保险户,B 表示“发生事故”,由贝叶斯公式知

057

.030

.03.015.05.005.02.005

.02.0)

|()()|()()|()()

|()()|(332211111≈?+?+??=

++=A B P A P A B P A P A B P A P A B P A P B A P

2.老师在出考题时, 平时练习过的题目占60%. 学生答卷时, 平时练习过的题目在考试时答对的概率为90% , 平时没练习过的题目在考试时答对的概率为30%, 求:

(1) 考生在考试中答对第一道题的概率;

(2)

若考生将第一题答对了, 那么这题是平时没有练习过的概率.

3. 在蔬菜运输中,某汽车运输公司可能到甲、乙、丙三地去拉菜的概率依次为0.2,0.5,0.3。在三地拉到一级菜的概率分别为10%,30%,70%。

1)求能拉到一级菜的概率;2)已知拉到一级菜,求是从乙地拉来的概率。

解:1、 解:设事件A 表示拉到一级菜,1B 表示从甲地拉到,2B 表示从乙地拉到, 3B 表示从丙地拉到

则1()0.2P B =,2()0.5P B =;3()0.3P B = 1()0.1P A B =,2()0.3P A B =,

3()0.7P A B =

则由全概率公式得

3

1

()()(/)i i i P A P B P A B ==?∑=0.20.10.50.30.30.70.38?+?+?=—(7分)

(2)拉的一级菜是从乙地拉得的概率为

222()()0.50.3

()0.3947()0.38

P B P A B P B A P A ??=

==—————————(10分)

2.一维随机变量

5.设随机变量X 在区间[0,1]上服从均匀分布,求随机变量

2X Y=e 的密度函数.

6.

).1,0(~-X Y ),,N(~X 2N σμ

=

σμ用分布函数法证明:已知

证明: 设

b aX Y x f X x +=),(~, 则0≠a 时,Y~

)(y f

Y =a

1)(a b

y Y f -

{}{})

1,0(~21

2)()()()()()(2

2)(22

2

N Y e e y f y F y F y f y F y X P y X y Y P y F y y X X Y Y X Y ∴π

=

σ

πσ

=σμ+σ=μ+σ'='=μ+σ=μ+σ≤=?

??

???≤

σ

μ

-=≤=-

σμ-μ+σ-

7.设随机

7.变量X 的密度函数

1

()

01

x

f x

x

<

=

?

求(1)c的值;(2)

1

{}

2

P X≤;(3)EX (4)X的分布函数.

解:(1)由密度函数的性质1

=

?+-f(x)dx得:

1

∞∞

∞∞

===

???

++1

--

f(x)dx

故c=

1

π--------------------------------(4分)

(2)

11

2

1

2

111

{}sin|

23

P X arc x

π-

≤===

?---------- (7分)

(3)EX=0

∞∞

∞∞

===

???

++1

--

xf(x)dx---(10分)

8.设连续型随机变量X的分布函数为

?

?

?

?

?

<

<

=

1

1

1

)

(

x

x

x

A

x

x

F,

求:(1)系数A; (2)X的分布密度f(x); (3){

}

25

.0

X

P≤

解: (1)A=1;(2)

?

?

?

?

?

<

<

=

其它

1

x

2

1

)

(x

x

f;(3)0.5

3.二维随机变量

10.设(X,Y)的分布为

证明X与

证明:

cov(X,Y)=EXY-EXEY --------(1分)

而EXY=0EX=0,EY=0--------------(3分)

XY

ρ==故X与Y不相关。--------(5分)

下证独立性

{0,0}0

P X Y

==={0}1/4

P X==P{Y=0}=1/4-------(8分)

{0,0}{0}{0}P X Y P X P Y ==≠=?=

故X 与Y 也不独立。----------------(10分) 11.(X,Y)服从区域D 上的均匀分布,

22{(,)4}=+≤D x y x y ,证明X 与Y 不独立也不相关.

12.设随机变量(X,Y)服从区域D 上的均匀分布,其中D={(x,y)|x 2+y 2

≤1},求:

(1)X 与Y 的边缘密度函数;(2)判断X 与Y 是否独立。

解:(1) f X

(x)=?????≤π-其它 01 12

x x ,f Y

(y)=??

???≤π

-其它 01 12y y

(2) X 与Y 不独立。

4.中心极限定理

13.某车间有同型号机床200部,每部开动的概率为0.7,各机床开关独立,开动时每部要耗电15个单位,问至少要供应该车间多少单位电能,才能以95%的概率保证不致因供电不足而影响生产.(Φ(1.64)=0.95,42

≈6.48).

解:

X 用表示任一时刻车间有同型号机床,

则~(200,0.7)X B ,则140EX =,42DX =——(3分)

假定至少需要

m 单位电能,则有:()0.9515

m P X ≤=

由中心极限定理可得:

140140

0.95()15m m m P X P --=≤=≤≈Φ———(8分)

140

1.64m

-=, 所以2265m = ,

故至少需准备2265单位电能—————(10分)

14.某学院校园网中家属区每晚约有400台电脑开机, 而每台电脑约有

5

4

的时间登入互联网, 并且假定各台电脑是否上互联网彼此无关, 计算其中至少300台同时在互联网上的概率. (Φ(2.5)=0.99379)

15.某计算机有120个终端,每个终端在一小时内平均有3分钟使用打印机,假定各终端使用打印机与否相互独立,求至少有10个终端同时使用打印机的概率。(Φ(1.68)=0.95352,

7.5≈2.3874)

解:每个终端使用打印机的概率为p=1/20,设同时有X 个终端使用,则X ~B(120,1/20),EX=np=6,DX=npq=5.7, 由于n=120很大,由中心极限定理,近似地X ~N(6,5.7) ∴P(X ≥10)=1-F(10)=1-Φ(

7

.5610-)=1-

Φ(1.68)=1-0.95352=0.04648

16.某种电子元件的寿命服从指数分布,已知其平均寿命为100小时,将3 个这样的元件串联在一个线路中,求:在150小时后线路仍正常工作的概率。

解:由题可知0.01

λ=-----------(2分)

则某电子元件的寿命超过150小时的概率为

1.5{150}1(150)p P X F e -=>=-=-----------(8分)

故三个串联150小时仍正常的概率为3 4.5p e -= -------- (10分)

5.极大似然估计

17.设总体X 的密度函数为

=);(θx f ???

??>-其它

01x e

x

θθ (0>θ),

),,,(21n X X X ???为来自总体的一个样本, 求未知参数θ的最大似然估计值.

18.设总体

X 的分布密度为

??

?>θ<<θ=-θ其他

,10)(1

x x x f ,若X X X n 12,,, 为来自总体的一个样本,

求未知参数

θ的最大似然估计。

解:似然函数L(X 1, X 2,… X n ,)=

1

1

-θ=θ∏i

n

i

x

lnL=nln θ+ln(θ-1)

∑=n

i i

X 1

ln ,由

0ln =θ

d L

d

解得所求最大似然估计量∑=-

=θn

i i

X

n

1

ln ?

19.

X X X n

12,,, 为

X

的一个样本,且

X

的概率分布为

,3,2,1,)1(}{1=-==-k p p k X P k ,12n x x x ,,,为来自总体X

的一个样本观察值,求

p 的极大似

然估计值.

证明:

09-10-1-概率统计A--期末考试试卷答案

诚信应考 考出水平 考出风格 浙江大学城市学院 2009— 2010学年第 一学期期末考试试卷 《 概率统计A 》 开课单位: 计算分院 ;考试形式: 闭卷; 考试时间:2010年 1 月24日; 所需时间: 120 分钟 题序 一 二 三 总 分 得分 评卷人 一. 选择题 (本大题共__10__题,每题2分共__20 分) 1、已知()0.87.0)(,8.0)(===B A P B P A P ,,则下列结论正确的是(B ) )(A 事件B A 和互斥 )(B 事件B A 和相互独立 )(C )()()(B P A P B A P += )(D B A ? 2、设)(1x F 和)(2x F 分别为随机变量1X 和2X 的分布函数,为使)()()(21x bF x aF X F -=为某一随机变量的分布函数,在下列各组数值中应取( A ) )(A 5/2,5/3-==b a )(B 3/2,3/2==b a )(C 2/3,2/-1==b a )(D 2/3,2/1-==b a 3、设随机变量X 服从正态分布),(2σμN ,随着σ的增大,概率() σμ<-X P 满足 ( C ) )(A 单调增大 )(B 单调减少 )(C 保持不变 )(D 增减不定 4、设),(Y X 的联合概率密度函数为?? ???≤+=其他, 01 ,1),(2 2y x y x f π,则X 和Y 为 ( C )的随机变量 )(A 独立且同分布 )(B 独立但不同分布 )(C 不独立但同分布 )(D 不独立 且不同分布 得分 年级:_____________ 专业:_____________________ 班级:_________________ 学号:_______________ 姓名:__________________ …………………………………………………………..装………………….订…………………..线… …………………………………………………… 年级:_____________ 专业:_____________________ 班级:_________________ 学号:_______________ 姓名________________ …………………………………………………………..装………………….订…………………..线………………………………………………………

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

北京邮电大学概率论期末考试试卷及答案

第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中随 机地取一个球,求取到红球的概率。 §1 .7 贝叶斯公式 1. 某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1) 该厂产品能出厂的概率,(2)任取一出厂产品, 求未经调试的概率。 2. 将两信息分别编码为A 和B 传递出去,接收站收到时,A 被误收作B 的概率为,

概率论期末考试试题

1.全概率公式 贝叶斯公式 1.某保险公司把被保险人分成三类:“谨慎的”、“一般的”和“冒失的”。统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.3。并且它们分别占投保总人数的20%,50%和30%。现已知某保险人在一年内出了事故,则他是“谨慎的”保险户的概率是多少? 解:设A i 、A 2、A 3分别表示“谨慎的” “一般的”和“冒失的”保险户,B 表示“发生事故”,由贝叶斯公式知 057 .030 .03.015.05.005.02.005 .02.0) |()()|()()|()() |()()|(332211111≈?+?+??= ++=A B P A P A B P A P A B P A P A B P A P B A P 2.老师在出考题时, 平时练习过的题目占60%. 学生答卷时, 平时练习过的题目在考试时答对的概率为90% , 平时没练习过的题目在考试时答对的概率为30%, 求: (1) 考生在考试中答对第一道题的概率; (2) 若考生将第一题答对了, 那么这题是平时没有练习过的概率. 3. 在蔬菜运输中,某汽车运输公司可能到甲、乙、丙三地去拉菜的概率依次为0.2,0.5,0.3。在三地拉到一级菜的概率分别为10%,30%,70%。 1)求能拉到一级菜的概率;2)已知拉到一级菜,求是从乙地拉来的概率。 解:1、 解:设事件A 表示拉到一级菜,1B 表示从甲地拉到,2B 表示从乙地拉到, 3B 表示从丙地拉到 则1()0.2P B =,2()0.5P B =;3()0.3P B = 1()0.1P A B =,2()0.3P A B =, 3()0.7P A B = 则由全概率公式得 3 1 ()()(/)i i i P A P B P A B ==?∑=0.20.10.50.30.30.70.38?+?+?=—(7分) (2)拉的一级菜是从乙地拉得的概率为 222()()0.50.3 ()0.3947()0.38 P B P A B P B A P A ??= ==—————————(10分) 2.一维随机变量 5.设随机变量X 在区间[0,1]上服从均匀分布,求随机变量 2X Y=e 的密度函数. 6. ).1,0(~-X Y ),,N(~X 2N σμ = σμ用分布函数法证明:已知 证明: 设 b aX Y x f X x +=),(~, 则0≠a 时,Y~ )(y f Y =a 1)(a b y Y f - {}{}) 1,0(~21 2)()()()()()(2 2)(22 2 N Y e e y f y F y F y f y F y X P y X y Y P y F y y X X Y Y X Y ∴π = σ πσ =σμ+σ=μ+σ'='=μ+σ=μ+σ≤=? ?? ???≤ σ μ -=≤=- σμ-μ+σ- 7.设随机 7.变量X 的密度函数

概率论与数理统计期末考试

一 填空 1.设随机变量X 服从)1,1(-R ,则由切比雪夫不等式有{}≤≥1X P 2. 设B A 、是两相互独立事件,4.0)(,8.0)(==A P B A P ,则._____)(=B P 3. .__________)3(,3)(,2)(=-==Y X D Y X Y D X D 独立,则、且 4. 已知._________)20(,533.0)20(4.06.0=-=t t 则 5. n X X X ,,,21 是来自正态总体),(2σμN 的样本,S 是样本标准差,则 ________)( 2 2 =σ nS D 6. 设._______}3|{|,)(,)(2≤>-==σμσμX P X D X E 则由车比雪夫不等式 7. 假设一批产品中一、二、三等品各占%10%20%70、、 ,从中随意取一种,结果不是三等品,则取到的是一等品的概率是____________. 8、m X X X ,,,21 是取自),(211σμN 的样本,n Y Y Y ,,,21 是来自),(2 22σμN 的样本,且这两种样本独立,则___ ___ Y X -服从____________________. 9. 设____}3|{|,)(,)(2≤>-==σμσμX P X D X E 则由车比雪夫不等式得. 10、已知.__________)12(2)(=-=X D X D ,则 11、已知分布服从则变量)1(___________),1(~),,(~22--n t n Y N X χσμ 12设随机变量X 服从)1,1(-R ,则由切比雪夫不等式有{}≤≥1X P 。 13.已知1 1 1(),() ,()432 P A P B A P A B ===,则()P AB = , ()P A B = 。 14.若()0.5,()0.4,()0.3,P A P B P A B ==-=则()P A B = 。 15.若随机变量X 服从(1,3)R -,则(11)P X -<<= 。 16.已知随机变量X 和Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E (XY )= 。 17.设随机变量,X Y 相互独立,且X 服从(2)P ,Y 服从(1,4)N ,则(23)D X Y -= 。

四川大学概率统计往年期末试题

四川大学期末考试试题 (2008-2009学年第二学期) 一、单项选择题(每空2分,共10分) 1.设事件A 和B 独立,且,5.0)(,3.0)(==B P A P 则=)(B A P Y ( ) (A)0.8 (B)0.5 (C)0.65 (D)0.95 2.设随机变量X 的密度函数为+∞<<-∞=---x e x f x x ,61 )(625102π则 E(X)=( ) (A)5 (B)3 (C)-3 (D)-5 3.设X 有分布函数),(x F 令53-=X Y ,则Y 的分布函数为( ) (A)??? ??+3531y F (B))53(+y F (C) )353(-y F (D) ?? ? ??+35y F 4.设总体n X X X ,,,21Λ是独立同分布的随机变量序列,均服从参数为1的指数分布,令∑==n i i X n X 122 1,则?→?P X 2( ) (A)1 (B)2 (C)3 (D)4 5.设总体3212 ,,),,(~X X X N X σμ是来自X 的样本,记 32114 14121X X X Z ++=,3212313131X X X Z ++=,2125253X X Z += 这三个对μ的无偏估计量中,( )最有效 (A)1Z (B)2Z (C)3Z (D)无法判断 二、填空题(每空2分,共10分) 1.一个袋子中有3个红球,2个白球,从中任取3个球,则至少取得一个白球的概率是______; 2.设), 3.0,100(~B X 由切比雪夫不等式,≥<-)10|30(|X P _______; 3.设)4 3;914,1,1(~),(-N Y X 的二维正态分布,记Y X Z 32-=,则~Z _________分布; 4.设)(~λP X ,已知1)]2)(1[(=--X X E ,则=λ__________; 5.设总体)1,0(~N X ,321,,X X X 分别是来自X 的样本,

概率论与数理统计期末考试题及答案

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。 P( A ∪B) = 。 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:, ()1/4, 020,2 x Ae x x x x ??

8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本, 1 1n i i X X n ==∑为样本均值,则θ的矩估计量为: 。 9、设样本129,, ,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =, 求参数a 的置信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它 求:1){|21|2}P X -<;2)2 Y X =的密度函数()Y y ?;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为 1/4, ||,02,(,)0, y x x x y ?<<??

概率统计 期末考试试卷及答案

任课教师 专业名称 学生姓名 学号 密 封 线 X X 工业大学概率统计B 期末考试试卷(A 卷) } 分 分 108

求:(1)常数k ,(2)P(X<1,Y<3) (3) P(X<1.5); (4) P(X+Y ≤4) 解:(1)由()1)6(1 )(20 4 =--=???? +∞∞-+∞ ∞ -dx dy y x k dxdy xy f 即 解得24 1 = k 2分 (2)P(X<1,Y<3)=()dx dy y x )6241(1030--??=2 1 4分 (3) P(X<1.5)=()16 13 )6241(5.1040=--??dx dy y x 7分 (4)P(X+4≤Y ) =()9 8 21616241)6241(2202040=+-=--???-dx x x dx dy y x x 10分 4. 已知随机变量)3,1(~2N X ,)4,0(~2N Y ,且X 与Y 相互独立,设 2 3Y X Z += (1) 求)(Z E ,)(Z D ; (2) 求XZ ρ 解:(1)??? ??+=23)(Y X E Z E )(21)(3 1 y E X E += 021131?+?= 3 1 = 2分 =??? ??+=23)(Y X D Z D ()()2 2 22)23(23?? ? ??+-??? ??+=-Y X E Y X E EZ Z E =22 2)2 3()439( EY EX Y XY X E +-++ = 9 1 4392 2 -++EY EXEY EX 又因为()10192 2=+=+=EX DX EX 16016)(22=+=+=EY DY EY 所以DZ= 59 1 416910=-+ 6分 (2)),(Z X Cov ) ,(1 1Y X X Cov += =EX( 23Y X +)-EXE(23Y X +) EXEY -EX -EXEY +EX =21 )(31213122 233 1 ?==3 则XZ ρ= ()DZ DX Z X Cov ,= 5 5 5 33= 10分 5. 设二维随机变量),(Y X 的概率密度为 ?????≤≤≤≤=其它, 00,20,163),(2x y x xy y x f (1) 求X 的数学期望EX 和方差DX (2) 求Y 的数学期望EY 和方差DY 解:(1)dx x xf X E X )()(? ∞ +∞ -= ()()xyd dy y x f x f x x ? ? ==∞ +∞ -20 16 3 ,y dx x xf X E X )()(? ∞ +∞ -= = 分 27 12)163(2 2 =? ?dx xydy x x () ()分 549 3)712( 33)16 3 (22 2 22 2 22 =-====EX EX -EX =???∞ +∞ -DX dx xydy x dx x f x DX x X () ()分 72)16 3 (),()()(24 02====?? ???+∞∞ -+∞ ∞ -∞ +∞ -dy xydx y dy dx y x yf dy y yf Y E y Y ()()5 24 4323)163(),()(4034 02 2 22 2 =-====?????? +∞ ∞ -+∞∞ -∞ +∞-dy y y dy xydx y dy dx y x f y dy y f y EY y Y DY=()分 105 4452422 =-=EY -EY 6. 设随机变量X 的概率密度为) 1(1 )(2 x x f X += π,求随机变量 31X Y -=的概率密度函数。 ()()( )( ) ()() ( ) ()()()() ()()()()( )() ()() 分 分 解:10111311311315)1(111)1(16 2 3 2 2 33 3 3 3y y y f y y y f dy y dF y f y F y X y X y X y Y y F X X Y Y X Y -+-= --=----== ∴ --=-

【期末复习】大学概率论与数理统计期末考试试卷 答案

20**~20**学年第一学期概率论与数理统计期末考试试卷(A 卷)答案 一.(本题满分8分) 某城市有汽车100000辆,牌照编号从00000到99999.一人进城,偶然遇到一辆车,求该车牌照号中含有数字8的概率. 解: 设事件{}8汽车牌照号中含有数字=A ,所求概率为()A P .…………….2分 ()()40951.010 91155 =-=-=A P A P .…………….6分 二.(本题满分8分) 设随机事件,,满足:()()()41===C P B P A P ,()0=AB P ,()()16 1==BC P AC P .求随机事件,,都不发生的概率. 解: 由于AB ABC ?,所以由概率的非负性以及题设,得()()00=≤≤AB P ABC P ,因此有 ()0=ABC P .…………….2分 所求概率为() C B A P .注意到C B A C B A ??=,因此有…………….2分 ()()C B A P C B A P ??-=1…………….2分 ()()()()()()()ABC P BC P AC P AB P C P B P A P -+++---=1 8 3 016116104141411=-+++--- =.…………….2分 三.(本题满分8分) 某人向同一目标进行独立重复射击,每次射击时命中目标的概率均为,()10<

北京邮电大学概率论期末考试试卷及答案

北京邮电大学概率论期末考试试卷及答案

第1章概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A:出现奇数点,则 A= ;B:数点大于2,则B= . (2) 一枚硬币连丢2次, A:第一次出现正面,则A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A、B、C为三事件,用A、B、C的运算关 系表示下列各事件: (1)A、B、C都不发生表示为: .(2)A 与B都发生,而C不发生表示为: . (3)A与B都不发生,而C发生表示为: .(4)A、B、C中最多二个发生表示为: . (5)A、B、C中至少二个发生表示为: .(6)A、B、C中不多于一个发生表示为: .

2. 设}4 B =x ≤ x ≤ A S:则 x x = x < 3 1: }, { 2: { }, ≤ = {≤< 5 0: (1)= A,(2) ?B = AB,(3)=B A, (4)B A?= ,(5)B A= 。 §1 .3 概率的定义和性质 1.已知6.0 A P ?B = P A B P,则 ( ,5.0 ( ) ) ,8.0 (= ) = (1) =) (AB P, (2)() P)= , (B A (3)) P?= . (B A 2. 已知, 3.0 P A P则 =AB ( (= ) ,7.0 ) P= . A ) (B §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是。 2. 已知,2/1 A P =B A P则 = A P B | ( | ) ,3/1 ) ) ,4/1 ( (=

概率统计期末考试试题附答案

中国计量学院2011 ~ 2012 学年第 1 学期 《 概率论与数理统计(A) 》课程考试试卷B 开课二级学院: 理学院 ,考试时间: 2011 年 12_月26 日 14 时 考试形式:闭卷√、开卷□,允许带 计算器 入场 考生姓名: 学号: 专业: 班级: 1.某人射击时,中靶的概率为4 3 ,若射击直到中靶为止,则射击次数为3的概率为( ). (A) 43412?)( (B) 343)( (C) 41432?)( (D) 34 1)( 2.n 个随机变量),,3,2,1(n i X i =相互独立且具有相同的分布并且a X E i =)(,b X Var i =)(,则这些随机变量的算术平均值∑= =n i i X n X 1 1的数学期望和方差分别为( ). (A ) a ,2n b (B )a ,n b (C)a ,n b 2 (D )n a ,b 3.若100张奖券中有5张中奖,100个人分别抽取1张,则第100个人能中奖的概率为( ). (A) 01.0 (B) 03.0 (C) 05.0 (D) 0 4. 设 )(),(21x F x F 为两个分布函数,其相应的概率密度)(),(21x f x f 是连续函数,则必为概率密度的是( ). (A) )()(21x f x f (B))()(212x F x f (C))()(21x F x f (D) )()()()(1221x F x f x F x f + 5.已知随机变量X 的概率密度函数为?????≤>=-0,00 ,)(22 22x x e a x x f a x ,则随机变量X Y 1 = 的期望 =)(Y E ( ).

《概率论与数理统计》期末考试试题及解答(DOC)

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(的概率密 度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()()((Y X X F y P Y y P X y P X F F =≤=≤==- 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

深圳大学的概率论与数理统计试题(含答案)

期末考试试卷参考解答及评分标准 开/闭卷 闭卷 A/B 卷 A 2219002801- 课程编号 2219002811 课程名称 概率论与数理统计 _______________ 学分 J ________ 第一部分基本题 一、选择题(共6小题,每小题5分,满分30分。在每小题给出的四个选项中,只有一 个是符合题目要求的,把所选项前的字母填在题后的括号内) (每道选择题选对满分,选 错0分) 2?假设事件A 与事件B 互为对立,则事件A B( ) (A)是不可能事件 (B)是可能事件 (C) 发生的概率为1 (D)是必然事件 答:选A ,这是因为对立事件的积事件是不可能事件。 3. 已知随机变量X,Y 相互独立,且都服从标准正态分布,则 X 2 + Y 2服从( ) (A)自由度为1的2分布 (B)自由度为2的2分布 (C)自由度为1的F 分布 (D)自由度为2的F 分布 答:选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为 2分布。 4. 已知随机变量X,Y 相互独立,X~N(2,4),Y~N(-2,1),则( (A) X+Y~P ⑷ (B) X+Y~U(2,4) (C) X+Y~N(0,5) 答:选C ,因为相互独立的正态变量相加仍然服从正态分布, D(X+Y)=D(X)+D(Y)=4+1=5,所以有 X+Y~N(0,5)。 5. 样本(X 1,X 2,X 3)取自总体 X ,E(X)= < D(X)=-2,则有( ) 答:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。 6. 随机变量 X 服从在区间(2,5)上的均匀分布,贝U X 的数学期望E(X)的值为( ) (A) 2 (B) 3 (C) 3.5 (D) 4 答:选C ,因为在(a,b)区间上的均匀分布的数学期望为(a+b)/2。 二、填空题(共6小题,每小题5分,满分30分。把答案填在题中横线上) 1. 事件表达式A B 的意思是( ) (A) 事件A 与事件B 同时发生 (C)事件B 发生但事件A 不发生 答:选D , (B) 事件A 发生但事件B 不发生 (D)事件A 与事件B 至少有一件发生 ) (D) X+Y~N(0,3) 而 E(X+Y)=E(X)+E(Y)=2-2=0, (A) X 1+X 2+X 3是」的无偏估计 Y + V + V (B) X1 X2 入3 是邛勺无偏估计 3 (C) X ;是二2 的无偏估计 (D) .宁严2 是■-2的无偏估计

《概率论》期末考试试题及答案

07级《概率论》期末考试试题B 卷及答案 一、 填空题(满分15分): 1.一部五卷的文集,按任意次序放到书架上,则(1)“第一卷出现在旁边”的概率为 5 2 。 5 2 !5!422=?= p 2.设,)(,)(,)(r AB P q B P p A P ===则=)(B A P r p - 。性质 r p AB P A P AB A P B A P B A P -=-=-=-=)()()][)()( 3.设随机变量ξ的密度函数为() 0 3,其它 ?? ?>=-x ce x x ?则c= 3 . 33 )(130 =?= ==-+∞ +∞ ∞ -? ? c c dx e c dx x x ? 4. 设ξ、η为随机变量,且D (ξ+η)=7,D (ξ)=4,D (η)=1, 则Cov(ξ,η)= 1 . 1 21 472)(),cov() ,cov(2)(=--=--+=++=+ηξηξηξηξηξηξD D D D D D 5.设随机变量ξ服从两点分布) 1 ,1(B ,其分布律为 则ξ的特征函数为= )(t f ξit e 3 132+。 二、 单项选择题(满分15分): 1.设.A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示“三个事件恰好一个发生”为( ②. ). ① C B A ??. ② C B A C B A C B A ++ ③ ABC -Ω. ④ C B A C B A C B A C B A +++ 2.设随机变量ξ的分布函数为

00)(2 2 <≥?? ???+=-x x B Ae x F x 则其中常数为(① )。 ①A=-1,B=1 ②A=1,B=-1 ③ A=1,B=1 ④ A=-1,B =-1 B A B e A x F B B e A x F x x x x x x +=+===+==-→→- +∞ →+∞ →++2 2 22lim )(lim 0lim )(lim 1 解得1,1=-=B A 3设随机变量ξ的分布列为.,2,1,2 1 )2)1(( ==-=k k P k k k ξ则ξE ( ④ ) ①等于1. ② 等于2ln ③等于2ln - ④ 不存在 445111 =?==∑ ∞ =C C C i i ∑∑+∞=+∞ =+=?-11 1 1 4545) 1(i i i i i i i ,由调和级数是发散的知,EX 不存在 4.对于任意两个随机变量ξ与η,下面(④ )说法与0),cov(=ηξ不等价。 ①相关系数0,=Y X ρ ② )()()(ηξηξD D D +=+ ③ ηξξηE E E ?=)( ④ ξ 与η相互独立 5.设随机变量ξ服从二项分布)2 1 ,4(B ,由车贝晓夫不等式有 ( ② ). ①.31 )32(≤ ≥-ξP ②.91 )32(≤≥-ξP ③ 3 1 )32(≥<-ξP . ④ 9 1)32(≥ <-ξP 因为9 1 )32(,1,2≤≥-==ξξξP D E 三、(满分20分) (1)两人相约7点到8点在某地会面,试求一人要等另一人半小时以上的概率。 解:

概率论与数理统计期末考试题及答案

模拟试题 填空题(每空3分,共45 分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B| A) = 0.85,则P(A| B)= P( A U B)= 1 2、设事件A与B独立,A与B都不发生的概率为—,A发生且B不发生的概率与 B 9 发生且A不发生的概率相等,则A发生的概率为:_______________________ ; 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 I Ae x, X c 0 4、已知随机变量X的密度函数为:W(x) = {1/ 4, 0 < X V 2,则常数A= 0, x>2

分布函数F(x)= ,概率P{—0.51} =5/ 9,贝U p = 若X与丫独立,则Z=max(X,Y)的分布律: 6、设X ~ B(200,0.01), Y - P(4),且X 与丫相互独立,则D(2X-3Y)= COV(2X-3Y , X)= 7、设X1,X2,III,X5是总体X ~ N(0,1)的简单随机样本,则当k = 时, 丫"⑶; 8、设总体X~U(0,巧日:>0为未知参数,X i,X2,lil,X n为其样本, -1n X =—S X i为 n i 二 样本均值,则日的矩估计量为: 9、设样本X i,X2,川,X9来自正态总体N(a,1.44),计算得样本观察值X = 10,求参 数a的置信度为95%的置信区间: 计算题(35分) 1、(12分)设连续型随机变量X的密度函数为:

概率论期中考试试卷及答案

1.将4个不同的球随机地放在5个不同的盒子里,求下列事件的概率: (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球. 解: 把4个球随机放入5个盒子中共有45=625种等可能结果. (1)A={4个球全在一个盒子里}共有5种等可能结果,故 P(A)=5/625=1/125 (2) 5个盒子中选一个放两个球,再选两个各放一球有 30 2415=C C 种方法 4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法 因此,B={恰有一个盒子有2个球}共有12×30=360种等可能结果. 故 12572 625360)(= =B P 2.某货运码头仅能容纳一只船卸货,而,甲乙两船在码头卸货时间分别为1小时和2小时,设甲、乙在24小时内随时可能到达,求它们中间任何一船都不需要等待码头空出的概率。 解: 设x,y 分别为两船到达码头的时刻。 由于两船随时可以到达,故x,y 分别等可能地在[0,60]上取值,如右图 方形区域,记为Ω。设A 为“两船不碰面”,则表现为阴影部分。 222024,024024,024,2111 ()24576,()2322506.522 () ()0.8793 () x y x y x y y x m m A m A P A m Ω≤<≤<≤<≤<->->Ω===?+?===Ω={(x,y)}, A={(x,y)或},有所以, 3.设商场出售的某种商品由三个厂家供货,其供应量之比是3:1:1,且第一、二、三厂家的正品率依次为98%、98%、96%,若在该商场随机购买一件商品,求: (1) 该件商品是次品的概率。 (2) 该件次品是由第一厂家生产的概率。 解: 厦门大学概统课程期中试卷 ____学院___系___年级___专业 考试时间

概率统计期末考试真题经管类

2007级经管类《概率统计》期末试卷 一、1设B A ,是两随机事件,且()0.3,P A B -=(1)若B A ,互不相容,求()P A ;(2)若(|)0.4P B A =,求()P A ;(3)若()0.7P A B ?=,求)(B P 。 2.钥匙掉了,掉在宿舍里、掉在教室里、掉在路上的概率分别为40%、35%、25%,而掉在上述三处地方被找到的概率分别为、和. (1)求找到钥匙的概率;(2)找到了钥匙,求它恰是在宿舍找到的概率 二、1.随机变量 X ~?? ? ??≤<-≤≤=他其,021,21 0,)(x x x x x f 求:(1) X 的分布函数)(x F ;(2)(0.25)P X > 2. 袋装食盐每袋净重为随机变量,规定每袋标准重量为500克,标准差为10克,一箱装100袋.求一箱食盐净重超过50250克的概率. 三、1. 随机向量),(Y X 的联合分布如下表所示,求: (1)关于X 、Y 的边缘分布; (2)ov(,)0.08,()C X Y D X Y =-已知求 . 2 设随机变量X 服从[1,2]上的均匀分布,Y 服从(5,4)N ,且X 与Y 相互独立。(1)写出随机变量X 的密度函数)(x f X 与Y 的密度函数)(y f Y ;(2)写出随机向量()Y X ,的联合密度函数(,)f x y ;(3) ()1,5P X Y >> 四、 1. 已知总体X 的概率密度函数为

?? ?<<=-其他 1 0),(1 x x x f θθθ 其中θ为未知参数,对给定的样本观察值n x x x ,...,,21,求θ的最大似然估计。 2. 某洗涤剂厂有一台瓶装洗涤精的罐装机,在正常生产时,每瓶洗涤精的净重服从正态分布),(2 σμN ,均值454g μ=,标准差g 12=σ,为检查近期机器是否正常,从生产的产品中随机抽出16瓶,称得其净重的平均值456.64X g =.假定总体的标准差σ没有变化,试在显著性水平05.0=α下检验罐装机是否正常。 五、1、总体X ~),(2 σμN ,321,,X X X 是取自总体的简单随机样本。∑==3 1 131?i i X μ ,;414121?3212X X X ++=μ 32135 1 5152?X X X ++=μ,3411?4i i X μ==∑为总体均值μ的四个估计量.其中哪些是μ的无偏估计量,哪一个较有效,为什么 2、用机器自动包装某种产品总体服从正态分布,要求每盒重量为100克,今抽查了9盒,测得平均重量102克,样本标准差为4克,求总体方差2 σ 的95%的置信区间 六、为确定价格与销售量的关系的统计资料如下表: 数据分析结果为 回归统计 Multiple R R Square Adjusted R Square 标准误差 观测值 9 方差分析 df SS MS F Significanc

概率论与数理统计期末考试试题及解答.doc

《概率论与数理统计》期末试题 一、填空题(每小题 3 分,共 15 分) 1.设事件A, B仅发生一个的概率为,且 P( A) P(B) 0.5 ,则 A, B 至少有一个不发生的概率为 __________. 答案: 解: P( AB AB)0.3 即 0.3 P( AB ) P( AB) P(A) P( AB) P(B) P( AB) 0.52P( AB) 所以 P( AB) 0.1 P(A B) P( AB) 1 P(AB) 0.9. 2.设随机变量X服从泊松分布,且P ( X 1) 4P(X 2) ,则P(X 3) ______. 答案: 1 e1 6 解答: 2 P( X 1) P( X 0) P( X 1) e e , P( X 2) e 2 2e 2 由 P(X 1) 4P( X 2) 知 e e 即 2 2 1 0 解得1,故 1 P(X 3) e 1 6 3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y X 2在区间(0,4) 内的概率密度为 f Y ( y) _________. 答案: 1 1 , 0 y 4, f Y ( y) F Y ( y) f X ( y ) 4 y y 2 0 , 其它. 解答:设 Y 的分布函数为F Y( y), X 的分布函数为 F X (x) ,密度为 f X (x) 则 F Y (y) P(Y y) P(X 2 y) P( y X y ) F X ( y) F X ( y ) 因为 X ~U(0, 2) ,所以F X( y ) 0 ,即 F Y ( y) F X ( y )

故 1 1 , 0 y 4, f Y ( y) F Y ( y) 4 y f X ( y ) 2 y 0 , 其它 . 另解在 (0, 2) 上函数 y x2严格单调,反函数为h( y) y 所以 1 1 , 0 y 4, f Y ( y) f X ( y) 4 y 2 y , 其它 . 4.设随机变量X ,Y 相互独立,且均服从参数为的指数分布,P( X 1) e 2,则_________,P{min( X ,Y) 1} =_________. 答案: 2 ,P{min( X ,Y) 1} 1 e-4 解答: P( X 1) 1 P( X 1) e e 2,故 2 P{min( X ,Y ) 1} 1 P{min( X ,Y ) 1} 1 P( X 1)P(Y 1) 1 e 4. 5.设总体X的概率密度为 ( 1) x , 0 x 1, f ( x) 1 . 0, 其它 X1 , X 2 , , X n是来自X的样本,则未知参数的极大似然估计量为 _________. 答案: $ 1 1 n 1 ln x i n i 1 解答: 似然函数为 n 1)n ( x1 ,L , x n ) L( x1 ,L , x n ; ) ( 1)x i ( i 1 n ln L n ln( 1) ln x i i 1 d ln L n n ln x i @0 d 1 i 1 解似然方程得的极大似然估计为

相关文档
相关文档 最新文档