文档库 最新最全的文档下载
当前位置:文档库 › 05 第五节 二项分布和泊松分布总体参数的区间估计

05 第五节 二项分布和泊松分布总体参数的区间估计

05 第五节 二项分布和泊松分布总体参数的区间估计
05 第五节 二项分布和泊松分布总体参数的区间估计

第五节 二项分布和泊松分布总体参数的区间估计

上一节讲的区间估计适用于正态总体,但当总体不服从正态分布时,需要用另外的方法.在实际问题中,当一个总体服从二项分布或泊松分布时,它们的参数λ或p 往往是未知的,下面讨论二项分布和泊松分布总体参数的区间估计问题.

内容分布图示

★ 二项分布蚕食p 的区间估计 ★ 例1

★ 泊松分布参数的区间估计 ★ 例2

★ 二项分布参数的区间估计 ★ 例3

★ 泊松分布的区间估计 ★ 例4

★ 内容小结

★ 习题6-5

内容要点:

一、精确估计的方法

1.二项分布参数p 的区间估计

设总体容量为N,其中具有某种特征的个体数为M,则称N

M P =为具有某种特征的个体的总体率,如阳性率,治愈率等.但总体率通常是未知的,需要通过从总体中随机抽取样本来对其进行估计.

设从总体中抽取容量为n 的样本,其中具有某种特征的个体数为m,则称n m p =为具有某种特征的个体的样本率.

二、正态近似法

1.二项分布参数的区间估计

若从总体中随机抽取n 个个体,则其中具有该种特征的个体数k 服从二项分布b(n,P),其中P 为总体率.则

)1()(,

)(P nP k V nP k E -==. 对于样本率n k p =,有 n

P P n k V p V P n

k E p E )1()()(,)()(-====. 当n 充分大时,由中心极限定理知,样本率n k p =近似服从正态分布))1(,(n P P P N -,则

)1,0(~)

1(N n P P P

p u 近似--=.

由于总体率P 未知,样本率是总体率的无偏估计量,因此,可以用样本率p 来估计总体率P,得到样本率p 的总体标准差的近似值 n

p p p )1(-≈

σ, 则对于给定的显著性水平α,由 αα-=??????? ?

?<--1)1(2u n p p P p P , 得到总体率P 的α-1置信区间为 ???? ??-+--n p p u p n p p u p )1(,)1(2

2αα. 2.泊松分布参数的区间估计

若随机变量X 服从参数为λ的泊松分布,则

λλ==)(,)(X D X E .

若由此总体中随机抽取容量为n 的样本n x x x ,,,21 ,得样本均值∑==n

i i x n x 1

1,则 n x D x E λ

λ==)(,)(.

当样本容量n 充分大时,由中心极限定理知),(~n N x λ

λ近似

.则

)1,0(~N n x u λ

λ

-=.

由于参数λ未知,样本均值∑==n

i i x n x 1

1是参数λ的无偏估计量,当样本容量n 充分大时,用样本均值∑==n

i i x n x 1

1来估计参数λ,得到x 的总体标准差 n

x x =

σ. 从而

)1,0(~N n

X

n X n x x u λλ-=-=, 其中X 为事件A 在n 次试验中出现的总次数.

则由

αλα-=?????

? ??<-12u n

X n X P , 得到总体均数λ的α-1置信区间 ???

? ???+?-n X u n X n X u n X 22,αα. 总体总计数λn 的α-1置信区间为

???

? ???+?-X u X X u X 22,αα. 例题选讲:

例1(E01)某医院欲研究某种溶栓药的疗效,让20名脑血栓患者服用此药,经治疗后其中对12人有效.试计算有效率p 的95%的置信区间.

解 对,12,20==k n 给定的显著性水平05.0=α,查二项分布参数p 的置信区间表得总体治愈率P 的95%置信区间为(0.361,0.809).

例2(E02)用甲、乙两法对50份血样进行化验,甲法是阳性的有40例,乙法是阳性的有35例,试分别计算用甲、乙两法化验一份血样是阳性的95%的置信区间.

解 对甲法,05.0,40,50===αk n ,查泊松分布参数的置信区间表得用甲法化验50份血样是阳性的95%的置信区间为(28.58,54.47),则用甲法化验一份血样是阳性的95%的置信区间为(0.5736,1.0894).

对乙法,05.0,35,50===αk n ,查泊松分布参数的置信区间表得用甲法化验50份血样是阳性的95%的置信区间为(24.38,48.68),则用乙法化验一份血样是阳性的95%的置信区间为(0.4876,0.9736).

例3(E03)在观察一种药物对某种非传染性疾病的治疗效果时,用该药物治疗了此种非传染性疾病患者100人,发现55人有效,试求该药物治疗有效率的95%的置信区间.

解 样本有效率96.1,05.0,55.0100552

====ααu p ,所求置信区间为 ???

? ??-??+-??-100)55.01(55.096.155.0,100)55.01(55.096.155.0

即该药物治疗有效率的95%的置信区间为(0.4525,0.6475).

例4(E04)从同一水源制备10份随机试样,每份1ml,在相同条件下分别作平板培养,共得菌落144个,试估计该水源中每毫升平均菌落数的95%置信区间.

解 由95.01=-α,X=144,96.12

=αu ,则10ml 水中所含菌落的总个数的95%置信区间为

()

14496.1144,14496.1144?+?-, 即置信区间为 (120.48,167.52).

则该水源中每毫升平均菌落数的95%置信区间为

(12.048,16.752).

泊松分布的概念及表和查表方法

目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质 命名原因 泊松分布实例

泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。 应用场景 在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法 Poisson分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德 目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质

命名原因 泊松分布实例 泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。应用场景

在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例 泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。 观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示: 例如采用0.05J/㎡紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式: …… 是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/㎡照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此就意味着全部死亡的概率。 推导 泊松分布是最重要的离散分布之一,它多出现在当X表示在一定的时间或空间内出现的事件个数这种场合。在一定时间内某交通路口所发生的事故个数,是一个典型的例子。泊松分布的产生机制可以通过如下例子来解释。

数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布) 生存分析 贝叶斯概率公式 全概率公式讲解

数学期望:随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。它是简单算术平均的一种推广。例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11。 也就是说,我们用数学的方法分析了这个概率性的问题,对于每一个家庭,最有可能它家的孩子为1.11个。 可以简单的理解为求一个概率性事件的平均状况。 各种数学分布的方差是: 1、一个完全符合分布的样本 2、这个样本的方差 概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。比如某地某次考试的成绩近似服从均值为80的正态分布,即平均分是80分,由正态分布的图形知x=80时的函数值最大,即随机变量在80附近取值最密集,也即考试成绩在80分左右的人最多。 下图为概率密度函数图(F(x)应为f(x),表示概率密度):

离散型分布:二项分布、泊松分布 连续型分布:指数分布、正态分布、X 2分布、t 分布、F 分布 抽样分布只与自由度,即样本含量(抽样样本含量)有关 二项分布(binomial distribution ):例子抛硬币 1、 重复试验(n 个相同试验,每次试验两种结果,每种结果概率恒定————伯努利试验) 2、 抽样分布

06二项分布及泊松分布

●Bernoulli 试验(Bernoulli T est): 将感兴趣的事件A出现的试验结果称为“成功”,事件A不出现的试验结果称为“失败”,这类试验就称为Bernoulli 试验 ●二项分布(binomial distribution): 是指在只会产生两种可能结果如阳性或阴性之一的n次独立重复试验中,当每次试验的阳性概率π保持不变时,出现阳性次数X=0,1,2,…,n的一种概率分布。 ●Poisson分布(Poisson distribution): 随机变量X服从Poisson分布式在足够多的n次独立试验中,X取值为1,2,…,的相应概率为 …的分布。 ★二项分布成立的条件: ①每次试验只能是互斥的两个结果之一;②每次试验的条件不变;③各次试验独立。 ★二项分布的图形: 当∏=0.5,二项分布图形是对称的,当∏不等于0.5,图形是偏态的,随着n增大,图形趋于对称。当n趋于无穷大时,只有∏不太靠近0或者1,二项分布近似正态分布。 ★二项分布的应用 总体率的区间估计,样本率与总体率比较,两样本率的比较 ★Poisson 分布的应用 总体均数的区间估计,样本均数与总体均数的比较,两个样本均数的比较:两个样本计数均较大时,可根据Poisson 分布的正态近似性对其进行u 检验。 ★Poisson 分布成立的条件: ①平稳性:X 的取值与观察单位的位置无关,只与观察单位的大小有关;②独立增量性:在某个观察单位上X 的取值与前面各观察单位上X 的取值无关;③普通性:在充分小的观察单位上X 的取值最多为1。 Poisson 分布,X~P(μ),X 的均数μX =μ,X的方差σ2 =μ,X的标准差σX ★Poisson分布的性质 1、总体均数λ与总体方差相等是泊松分布的重要特点。 2、当n增大,而∏很小,且n∏=λ总体均数时,二项分布近似泊松分布。 3、当总体均数增大时,泊松分布渐近正态分布,一般而言,总体均数》20时,泊松分布资料做为正态分布处理。 4、泊松分布具有可加性。 ★泊松分布的图形 当总体均数越小,分布就越偏态,当总体均数越大,泊松分布就越趋近正态分布。当总体均数小于等于1时,随X取值的变大,P(X)值反而变小;当总体均数大于1时,P(X)值先增大而后变小,若总体均数取整数时,则P(X)在X=总体均数,和X=总体均数—1取得最大值。 ★二项分布和泊松分布的特性 1.可加性 二项分布和Poisson 分布都具有可加性。 如果X1,X2,?Xk 相互独立,且它们分别服从以ni,p(i=1,2, ?,k)为参数的二项分 布,则X=X1+X2+?+Xk 服从以n,p(n=n1+n2+?+nk)为参数的二项分布。如果X1,X2,?,Xk相互独立,且它们分别服从以μi(i=1,2, ?,k)为参数的Poisson 分布,则X=X1+X2+?+Xk服从以μ(μ=μ1+μ2+?+μk)为参数的Poisson 分布。 2.近似分布

浅析二项分布与泊松分布之间的关系

学年论文 题目:浅析二项分布与泊松分布之间的关系 学生: 学号: 院(系):理学院 专业:信息与计算科学 指导教师:安晓钢 2013 年11月25日

浅析二项分布与泊松分布之间的关系 信息121班; 指导教师:安晓钢 (陕西科技大学理学院 陕西 西安 710021) 摘 要:泊松分布刻画了稀有事件在一段时间内发生次数这一随机变量的分布,如电话交换台单位时间内接到的呼唤次数等。二项分布是n 个独立的是/非试验中成功的次数的离散概率分布。它们有着密切的关系。泊松分布是二项分布的特例。某现象的发生率很小,而样本例数n 很大时,则二项分布接近于泊松分布,即:如果试验次数n 很大,二项分布的概率p 很小,且乘积np =λ比较适中,则事件出现的次数的概率可以用泊松分布来逼近。事实上,二项分布可以看作泊松分布在离散时间上的对应物,是二项分布的特例。通过分析二项分布和泊松分布之间的关系,使学生对概率分布理论的理解更为深刻,能够将学到的理论知识应用在实际生活中,从而提高自己的综合素质。 关 键 词:二项分布, 泊松分布, 近似 The Application of Asignment Poblem ABSTRACT: Poisson distribution is used to depict the distribution of rare events that a random variable frequency over a period of time, such as a telephone exchange in unit time received the call number. The two distribution is n independent / discrete probability distributions of number of successful non trials. They have a close relationship. Poisson distribution is two distribution case. The incidence of the phenomenon is very small, and the number of sample n is large, then the two distribution is close to the Poisson distribution, i.e.: if the test number n is large, the two probability distribution P is small, and the product of lambda = N P is moderate, the probability of the event can be used to force the Poisson distribution near. In fact, the two distribution can be seen as the counterpart of Poisson distribution in discrete time, are the two distribution case. Through the analysis of the relationship between two binomial distribution and Poisson distribution, enables the student to the theory of probability distribution for more profound understanding will be able to learn the application of theoretical knowledge in real life, so as to improve their comprehensive quality. KEY WORDS : Two distribution, Poisson distribution, Approximate

二项分布、泊松分布和正态分布的区别及联系

二项分布、泊松分布和正态分布的区别及联系 二项分布、泊松分布和正态分布的区别及联系?被浏览8,9732 个回答猴子微信公众号:猴子聊人物之前你已经了解概率的基础知识(如果还不知道概率能干啥,在生活中有哪些应用的例子,可以看我之前的《投资赚钱与概率》)。 今天我们来聊聊几种特殊的概率分布。这个知识目前来看,还没有人令我满意的答案,因为其他人多数是在举数学推导公式。我这个人是最讨厌数学公式的,但是这并不妨碍我用统计概率思维做很多事情。相比熟悉公式,我更想知道学的这个知识能用到什么地方。可惜,还没有人讲清楚。今天,就让我来当回雷锋吧。 首先,你想到的问题肯定是:1. 什么是概率分布?2. 概率分布能当饭吃吗?学了对我有啥用?好了,我们先看下:什么是概率分布? 1. 什么是概率分布?要明白概率分布,你需要知道先两个东东:1)数据有哪些类型2)什么是分布数据类型(统计学里也叫随机变量)有两种。第1种是离散数据。离散数据根据名称很好理解,就是数据的取值是不连续的。例如掷硬币就是一个典型的离散数据,因为抛硬币的就2种数值(也就是2种结果,要么是正面,要么是反面)。你可以把离散数据想象成一块一块垫脚石,你可以从一个数值调到另一个数

值,同时每个数值之间都有明确的间隔。 第2种是连续数据。连续数据正好相反,它能取任意的数值。例如时间就是一个典型的连续数据1.25分钟、1.251分钟,1.2512分钟,它能无限分割。连续数据就像一条平滑的、连绵不断的道路,你可以沿着这条道路一直走下去。 什么是分布呢?数据在统计图中的形状,叫做它的分布。 其实我们生活中也会聊到各种分布。比如下面不同季节男人的目光分布.。 各位老铁,来一波美女,看看你的目光停在哪个分布的地方。美女也看了,现在该专注学习了吧。现在,我们已经知道了两件事情:1)数据类型(也叫随机变量)有2种:离散数据类型(例如抛硬币的结果),连续数据类型(例如时间)2)分布:数据在统计图中的形状现在我们来看看什么是概率。概率分布就是将上面两个东东(数据类型+分布)组合起来的一种表现手段:概率分布就是在统计图中表示概率,横轴是数据的值,纵轴是横轴上对应数据值的概率。很显然的,根据数据类型的不同,概率分布分为两种:离散概率分布,连续概率分布。那么,问题就来了。为什么你要关心数据类型呢?因为数据类型会影响求概率的方法。对于离散概率分布,我们关心的是取得一个特定数值的概率。例如抛硬币正面向上的概率为:p(x=正面)=1/2而对于连续概率分布来说,我们无法给出每一个数值的概率,因为我们不可能列举每一

参数估计练习题

第七章参数估计练习题 一.选择题 1. 估计量的含义是指() A. 用来估计总体参数的统计量的名称 B. 用来估计总体参数的统计量的具体数值 C.总体参数的名称 D.总体参数的具体取值 2.一个95%的置信区间是指() A. 总体参数有95%的概率落在这一区间内 B. 总体参数有5%的概率未落在这一区间内 C. 在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数。 D. 在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数。 %的置信水平是指() A. 总体参数落在一个特定的样本所构造的区间内的概率是95% B.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为95% C.总体参数落在一个特定的样本所构造的区间内的概率是5% D.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为5% 4. 根据一个具体的样本求出的总体均值的95%的置信区间() A.以95%的概率包含总体均值 B.有5%的可能性包含总体均值 C. 一定包含总体均值 D.要么包含总体均值,要么不包含总体均值 5. 当样本量一定时,置信区间的宽度() A.随着置信水平的增大而减小 B. .随着置信水平的增大而增大 C.与置信水平的大小无关D。与置信水平的平方成反比 6. 当置信水平一定时,置信区间的宽度() A.随着样本量的增大而减小 B. .随着样本量的增大而增大 C.与样本量的大小无关D。与样本量的平方根成正比 7. 在参数估计中,要求通过样本的统计量来估计总体参数,评价统计量的标准之一是使它与 总体参数的离差越小越好。这种评价标准称为() A.无偏性 B. 有效性 C. 一致性 D. 充分性 8. 置信水平(1-α)表达了置信区间的() A.准确性 B. 精确性 C. 显着性 D. 可靠性 9. 在总体均值和总体比例的区间估计中,边际误差由()A.置信水平决定 B. 统计量的抽样标准差确定 C. 置信水平和统计量的抽样标准差 D. 统计量的抽样方差确定 10. 当正态总体的方差未知,且为小样本条件下,估计总体均值使用的分布是() A.正态分布 B. t 分布 C.χ2分布 D. F分布

正确理解泊松分布

正确理解泊松分布 很多人在上概率论这门课的时候就没搞明白过泊松分布到底是怎么回事,至少我就是如此。虽然那个时候大家都会背“当试验的次数趋于无穷大,而乘积np固定时,二项分布收敛于泊松分布”,大部分的教科书上也都会给出这个收敛过程的数学推导,但是看懂它和真正的理解还有很大距离。如果我们学习的意义是为了通过考试,那么我们大可停留在“只会做题”的阶段,因为试卷上不会出现“请发表一下你对泊松公式的看法”这样的题目,因为那样一来卷子就变得不容易批改,大部分考试都会出一些客观题,比如到底是泊松分布还是肉松分布。 而如果我们学习的目的是为了理解一样东西,那么我们就有必要停下来去思考一下诸如“为什么要有泊松分布?”、“泊松分布的物理意义是什么?”这样的“哲学”问题。 如果我们要向一个石器时代的人解释什么是电话,我们一定会说:“电话是一种机器,两个距离很远的人可以通过它进行交谈”,而不会说:“电话在18XX年由贝尔发明,一台电话由几个部分构成……”(泊松分布在18XX年由泊松提出,泊松分布的公式是……)所以我们问的第一个问题应该是“泊松分布能拿来干嘛?” 泊松分布最常见的一个应用就是,它作为了排队论的一个输入。什么是排队论?比如我们去每天食堂打饭,最头疼的一个问题就是排队,之所以要排队是因为食堂打饭的大叔有限,假设学校有1000个学生,而食堂恰好配了1000个大叔和打饭的窗口,那么就永远不会有人排队。但是出于经营成本方面的考虑食堂通常不会这么干,因此如何控制窗口的数量并且保证学生不会因为排队时间太长而起义是一门很高深的学问。 在一段时间t(比如1个小时)内来到食堂就餐的学生数量肯定不会是一个常数(比如一直是200人),而应该符合某种随机规律:比如在1个小时内来200 个学生的概率是10%,来180个学生的概率是20%……一般认为,这种随机规律服从的就是泊松分布。 也就是在单位时间内有k个学生到达的概率为: 其中为单位时间内学生的期望到达数。 问题是“这个式子是怎么来的呢?”——我们知道泊松分布是二项分布满足某种条件的一个特殊形式,因此可以先从简单的二项分布入手,寻找两者之间的联系。

浅析二项分布、泊松分布和正态分布之间的关系

浅析二项分布、泊松分布和正态分布之间的关系 1预备知识 1.1二项分布 在同一条件下重复做n次独立试验,每次试验只可能有两种对立的结果:A和A之一,并设在同一次试验中A发生的 概率是P (A) = p,00是常数, 则称X服从参数为兄的泊松分布,记为X一‘(刃。 泊松分布的重要性质是它的数学期望和方差都等于参数兄。 1 .3正态分布 设连续型随机变量x的概率密度为: I(x) _ 1- e 一J27rs (x一月产 2,5' -00 < x < +00,其中PIC为 常数,口>0,则称溯及从参数为从口的正态分布或高斯分 布,记为X一N(u,a2)。 正态分布的概率密度中的两个参数产和a,分别就是该分 布的数学期望和方差。特别地,当,t=O,a2 =1时的正态分 布.称为标准正态分布,记为X一N(0,1),标准正态分布的 产 密度函数记为(Pkx) -了歹e2r‘,-0o < x <+00· 正态分布是自然界及工程技术中最常见的分布之一,大量的随机现象都是服从或近似服从正态分布的。文献【1]指出,

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法 目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质

命名原因 泊松分布实例 泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。

事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。 应用场景 在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例 泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。 观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示: 例如采用0.05J/㎡紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式: …… 是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/㎡照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此就意味着全部死亡的概率。 推导

第4章总体参数估计讲解

◎第4章参数估计 ※一、单一总体的参数估计※ ●(一)估计的含义 ●估计:人人都做过。如: ?上课时,你会估计一下老师提问你的概率有多大? ?当你去公司应聘时,会估计你被录用的可能性是多少??推销员年初时要估计今年超额完成任务的概率有多大?◎估计量:用来估计总体参数的样本统计量。如:算术平均数、中位数、标准差、方差等。 ●估计的可能性与科学性:数理统计证明,一个“优良”的样本统计量应具备以下特征: (1)、无偏性。样本估计量的期望值应等于总体参数。无系统偏差。 (2)、有效性。与离散度相联系。在多个无偏估计量中,方差最小的估计量最有效。 (3)、一致性。随着样本容量的增加,可以使估计量越来越靠近总体参数。 (4)、充分性。估计量能够充分利用有关信息,中位数和众数不具备这一点。 ※估计的类型包括:

1、 点估计:只有一个取值。 就 是总体平均数μ的点估计值。 2、区间估计:给出取值范围(值域)。见PPT ▲两种估计类型哪一种更科学? ※ 区间估计的优点在于:它在给出估计区间时, 还可以给予一个“可信程度”。例如:销售经理想 估计一下明年的出口总值,甲估计是53万美元,乙估计 是50—56万美元之间,并可以确切地说“有95%的把握”。 显然后者的可信程度大于前者。那么,50—56万美元之 间的范围是如何计算的?“有95%的把握”是什么意思? 【引例】:某食品进出口公司向东南亚出口一批花生制品,管 理人员从中抽取50包作为样本,计算其平均数为250克。另 外,合同规定总体标准差为6克。 如果问这批花生制品的平均重量,可用样本平均数作为总 体平均数的最佳估计量:250克。但这是远远不够的,在许多 时候,管理人员还想了解“这个估计值的平均误差是多少?” “总体平均数可能落入样本平均数上、下多大范围内?”“ 这 个估计值的可靠程度是多少?” 〖1〗由于n=50,根据中心极限定理可作图: n=50,σ=6 〖2〗抽样平均误差:8485.0506 ===n x σσ

二项分布与Poisson分布

二项分布与Poisson分布 二项分布和Poisson分布均是常见的离散型分布,在分类资料的统计推断中有非常广泛的应用。 一、二项分布的概念及应用条件 1. 二项分布的概念: 如某实验中小白鼠染毒后死亡概率P为0.8,则生存概率为=1-P=0.2,故 对一只小白鼠进行实验的结果为:死(概率为P)或生(概率为1-P) 对二只小白鼠(甲乙)进行实验的结果为:甲乙均死(概率为P2)、甲死乙生[概率为P(1-P)]、乙死甲生[概率为(1-P)P]或甲乙均生[概率为(1-P)2],概率相加得P2+P(1-P)+(1-P)P+(1-P)2=[P+(1-P)]2 依此类推,对n只小白鼠进行实验,所有可能结果的概率相加得P n+1 C P(1- n P)n-1+...+x C P x(1-P)n-x+...+(1-P)x=[P+(1-P)]n其中n为样本含量,即事件发生总数,x n 为某事件出现次数, x C P x(1-P)n-x为二项式通式,x n C=n!/x!(n-x)!, P为总体率。 n 因此,二项分布是说明结果只有两种情况的n次实验中发生某种结果为x次的概率分布。其概率密度为: P(x)= x C P x(1-P)n-x, x=0,1,...n。 n 2. 二项分布的应用条件: 医学领域有许多二分类记数资料都符合二项分布(传染病和遗传病除外),但应用时仍应注意考察是否满足以下应用条件:(1) 每次实验只有两类对立的结果;(2) n次事件相互独立;(3) 每次实验某类结果的发生的概率是一个常数。 3. 二项分布的累计概率 二项分布下最多发生k例阳性的概率为发生0例阳性、1例阳性、...、直至k 例阳性的概率之和。至少发生k例阳性的概率为发生k例阳性、k+1例阳性、...、直至n例阳性的概率之和。 4. 二项分布的图形 二项分布的图形有如下特征:(1)二项分布图形的形状取决于P 和n 的大小; (2) 当P=0.5时,无论n的大小,均为对称分布;(3) 当P<>0.5 ,n较小时为偏态分布,n较大时逼近正态分布。

泊松分布

泊松分布 如果我们要向一个石器时代的人解释什么是电话,我们一定会说:“电话是一种机器,两个距离很远的人可以通过它进行交谈”,而不 会说:“电话在 1876 年由贝尔发明,一台电话由以下几个部分构成……”——“泊松分布在 1876 年由泊松提出,泊松分布的公式是……”——所以我们要问的第一个问题是“泊松分布能拿来干嘛?” 泊松分布最常见的一个应用就是,它作为了排队论的一个输入。什 么是排队论?比如我们去每天食堂打饭,最头疼的一个问题就是排队,之所以要排队是因为食堂打饭的大叔有限,假设学校有 1000 个学生,而食堂恰好配了 1000 个大叔和打饭的窗口,那么就永远 不会有人排队。但是出于经营成本方面的考虑食堂通常不会这么干,因此如何控制窗口的数量并且保证学生不会因为排队时间太长而起 义是一门很高深的学问。 在一段时间 t(比如 1 个小时)内来到食堂就餐的学生数量肯定不 会是一个常数(比如一直是 200 人),而应该符合某种随机规律: 比如在 1 个小时内来 200 个学生的概率是 10%,来 180 个学生的 概率是20%……一般认为,这种随机规律服从的就是泊松分布。 也就是在单位时间内有 k 个学生到达的概率为:

[Math Processing Error] 其中[Math Processing Error]为单位时间内学生的期望到达数。 二项分布 问题是“这个式子是怎么来的呢?”——我们知道泊松分布是二项分 布满足某种条件的一个特殊形式,因此可以先从简单的二项分布入手,寻找两者之间的联系。 二项分布很容易理解,比如一个牛仔一枪打中靶子的概率是 p,如 果我们让他开 10 枪,如果每击中一次目标就得 1 分,问他一共能 得几分?虽然我们不能在牛仔射击前准确地预测出具体的得分 k, 但可以求出 k 的概率分布,比如 k = 9 的概率是 50%,k = 8 分的概率是30%……并且根据 k 的分布来判断他的枪法如何,这便是概率 统计的思想。 具体计算的方法就是求出“得 k 分”的概率。比如“得 9 分”可以是“射 失第 1 发,而命中其余的 9 发”,它的概率是 p 的 9 次方乘上 1 - p。X O O O O O O O O O O X O O O O O O O O O O X O O O O O O O ......

简单理解泊松分布

正确理解泊松分布 敛于泊松分布”,大部分的教科书上也都会给出这个收敛过程的数学推导,但是看懂它和真正理解还有很大距离。如果我们学习的意义是为了通过考试,那么我们大可停留在“只会做题”的阶段,因为试卷上不会出现“请发表一下你对泊松公式的看法”这样的题目,因为那样一来卷子就变得不容易批改。所以现在的大部分考试都会出一些客观题,比如到底是泊松分布还是肉松分布。而如果我们学习的目的是为了理解一样东西,那么我们就有必要停下来去思考一下诸如“为什么要有泊松分布?”、“泊松分布的物理意义是什么?”这样的“哲学”问题。 如果我们要向一个石器时代的人解释什么是电话,我们一定会说:“电话是一种机器,两个距离很远的人可以通过它进行交谈”,而不会说:“电话在1876年由贝尔发明,一台电话由几个部分构成……”(泊松分布在1876年由泊松提出,泊松分布的公式是……)所以我们问的第一个问题应该是“泊松分布能拿来干嘛?” 泊松分布最常见的一个应用就是,它作为了排队论的一个输入。什么是排队论?比如我们每天去食堂打饭,最头疼的一个问题就是排队,之所以要排队是因为食堂打饭的大叔有限,假设学校有1000个学生,而食堂恰好配了1000个大叔和打饭的窗口,那么就永远不会有人排队。但是出于经营成本方面的考虑食堂通常不会这么干,因此如何控制窗口的数量并且保证学生不会因为排队时间太长而起义是一门很高深的学问。 在一段时间t (比如1个小时)内来到食堂就餐的学生数量肯定不会是一个常数,(比如一直是200人),而应该符合某种随机规律:比如1个小时内来200个学生的概率是10%,来180个学生的概率是20%……一般认为,这种随机规律服从的就是泊松分布。 也就是在单位时间内有k 个学生到达的概率为: ,...1,0,! )(==-k k e k f k λλ 其中λ为单位时间内学生的期望到达人数。 问题是“这个式子是怎么来的呢?”——我们知道泊松分布是二项分布满足某种条件的一个特殊形式,因此可以先从简单的二项分布入手,寻找两者之间的联系。 二项分布很容易理解,比如一个牛仔一枪打中靶子的概率是p ,如果我们让他开10枪,如果每击中一次目标就得一分,问他一共能得几分?虽然我们不能在牛仔射击前准确地预测出具体的得分k ,但可以求出k 的概率分布,比如k=9的概率是50%,k=8的概率是30%……并且根据k 的分布来判断他的枪法如何,这便是概率统计的思想。 具体计算的方法就是求出“得k 分”的概率。比如“得9分”可以是“射失第一发,而命中其余的9发”,它的概率是p 的9次方乘上(1-p ),当然,可能情况不只这种,我们O 代表“命中”,“得9分”所有的可能的情况如下:

3-第7章统计学参数估计练习题(20200627170347)

第7章参数估计 练习题 一、填空题(共10题,每题2分,共计20分) 1 ?参数估计就是用_________ 去估计____________ 。 2?点估计就是用_____________ 的某个取值直接作为总体参数的 _____________ 。 3. ______________________ 区间估计是在的基础上,给出总体参数估计的一个区间范围,该区间 通常由样本统计量加减___________ 得到。 4. 如果将构造置信区间的步骤重复多次,置信区间中包含总体参数真值的次数所占的 比例称为___________ ,也成为_____________ 。 5. __________________________________________________________ 当样本量给定时,置信区间的宽度随着置信系数的增大而__________________________ ;当置信水 平固定时,置信区间的宽度随着样本量的增大而_____________ 。 6. 评价估计量的标准包含无偏性、 ___________ 和____________ 。 7. 在参数估计中,总是希望提高估计的可靠程度,但在一定的样本量下,要提高估计 的可靠程度,就会___________ 置信区间的宽度;如要缩小置信区间的宽度,又不降 低置信程度,就要____________ 样本量。 8. 估计总体均值置信区间时的估计误差受总体标准差、 ___________ 和___________ 的影响。 9?估计方差未知的正态总体均值置信区间用公式_____________ ;当样本容量大于等于30时,可以用近似公式__________ 。 10?估计正态总体方差的置信区间时,用___________ 分布,公式为___________ 。 二、选择题(共10题,每题1分,共计10分) 1 ?根据一个具体的样本求出的总体均值的95%勺置信区间()。 A. 以95%勺概率包含总体均值 B. 有5%勺可能性包含总体均值 C?一定包含总体均值

正态总体参数的区间估计

第19讲 正态总体参数的区间估计 教学目的:理解区间估计的概念,掌握各种条件下对一个正态总体的均值和方差进行 区间估计的方法。 教学重点:置信区间的确定。 教学难点:对置信区间的理解。 教学时数: 2学时。 教学过程: 第六章 参数估计 §6.3正态总体参数的区间估计 1. 区间估计的概念 我们已经讨论了参数的点估计,但是对于一个估计量,人们在测量或计算时,常不以得到近似值为满足,还需估计误差,即要求知道近似值的精确程度。因此,对于未知参数θ,除了求出它的点估计?θ外,我们还希望估计出一个范围,并希望知道这个范围包含参数θ真值的可信程度。 设?θ为未知参数θ的估计量,其误差小于某个正数ε的概率为1(01)αα-<<,即 ?{||}1P θθεα -<=- 或 αεθθεθ-=+<<-1)??(P 这表明,随机区间)?,?(εθεθ+-包含参数θ真值的概率(可信程度)为1α-,则这个区间)?,?(εθεθ+-就称为置信区间,1α-称为置信水平。 定义 设总体X 的分布中含有一个未知参数θ。若对于给定的概率1(01)αα-<<,存在两个统计量1112(,,,)n X X X θθ= 与2212(,,,)n X X X θθ= ,使得 12{}1P θθθα <<=-

则随机区间12(,)θθ称为参数θ的置信水平为1α-的置信区间,1θ称为置信下限,2θ称为置信上限,1α-称为置信水平。 注(1)置信区间的含义:若反复抽样多次(各次的样本容量相等,均为n ),每一组样本值确定一个区间12(,)θθ,每个这样的区间要么包含θ的真值,要么不包含θ的真值。按伯努利大数定理,在这么多的区间中,包含θ真值的约占100(1)%α-,不包含θ真值的约仅占100%α。例如:若0.01α=,反复抽样1000次,则得到的1000个区间中,不包含θ真值的约为10个。 (2)置信区间的长度表示估计结果的精确性,而置信水平表示估计结果的可靠性。对于置信水平为1α-的置信区间12(,)θθ,一方面置信水平1α-越大,估计的可靠性越高;另一方面区间12(,)θθ的长度(2)ε越小,估计的精确性越好。但这两方面通常是矛盾的,提高可靠性通常会使精确性下降(区间长度变大),而提高精确性通常会使可靠性下降(1α-变小),所以要找两方面的平衡点。 在学习区间估计方法之前,我们先介绍标准正态分布的α分位点概念。 设 () ~0,1X N ,若 z α 满足条件 { },01 P X z α αα>=<<,则称点z α为标准正态分布的α分位点。例如求0.01z 。按照α分位点定义,我们有 {}0.010.01P X z >=,则{}0.010.99P X z ≤=,即0.01()0.99z φ=。查表可得0.01 2.327z =. 又 由()x ?图形的对称性知1z z αα-=-。下面列出了几个常用的z α值: 2. 正态总体均值μ的区间估计 设已给定置信水平为1α-,总体()2~,X N μσ,12,,,n X X X 为一个样本,2 ,X S 分别是样本均值和样本方差。

相关文档
相关文档 最新文档