文档库 最新最全的文档下载
当前位置:文档库 › 载流线圈的磁场分布

载流线圈的磁场分布

载流线圈的磁场分布
载流线圈的磁场分布

实验报告

课程名称:工程电磁场原理 指导老师: 成绩:__________________ 实验名称:载流线圈的场分布 实验类型:实践、仿真 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得

实验一:球形载流线圈的场分布与自感

一、实验目的和要求

1.研究球形载流线圈(磁通球)的典型磁场分布及其自感参数;

2.掌握感应电势法测量磁场的方法;

3.在理论分析与实验研究相结合的基础上,力求深化对磁场边值问题、自感参数和磁场测量方法等知识点的理解。

二、实验内容和原理

(1) 球形载流线圈(磁通球)的磁场分析

如图1-1所示,当在z 向具有均匀的匝数密度分布的球形线圈中通以正弦电流i 时,可等效看作为流经球表面层的面电流密度K 的分布。显然,其等效原则在于载流安匝不变,即如设沿球表面的线匝密度分布为W ′,则在与元长度d z 对应的球面弧元d R θ上,应有

()d d N W R θi=z i 2R ??' ???

因在球面上,θcos R z =,所以

()d d cos sin d z R R θθθ==

代入上式,可知对应于球面上线匝密度分布W ′,应有

2sin d sin d 2N R

R N

W R R

θθθθ?'=

=

即沿球表面,该载流线圈的线匝密度分布W ′正比于θsin ,呈正弦分布。因此,本实验模拟的在球表面上

等效的面电流密度K 的分布为

sin N

i 2R

K e φθ=

?? 由上式可见,面电流密度K 周向分布,且其值正比于θsin 。

因为,在由球面上面电流密度K 所界定的球内外轴对称场域中,没有自由电流的分布, 所以, 可采用标量磁位?m 为待求场量,列出待求的边值问题如下:

上式中泛定方程为拉普拉斯方程,定解条件由球表面处的辅助边界条件、标量磁位的参考点,以及离该磁通球无限远处磁场衰减为零的物理条件所组成。

通过求解球坐标系下这一边值问题,可得标量磁位?m1和?m2的解答,然后,最终得磁通球内外磁场强度为 (1-1)

()()3

2m 22c o s s i n 6r N i R -

r >R R r θ?θθ??

=?=+ ???

H e e (1-2) 基于标量磁位或磁场强度的解答,即可描绘出磁通球内外的磁场线分布,如图1-3所示。

()()

()()

()()

2m12m2t1t212n

n1n20102m102

m2

,0,0sin 200

r r r r r r r R r r R N H H H H K i r R R B B H H r R θθ?θ?θθμμ??=→∞

→∞

???=??????

?-=-===???

??=→==?

??=??=-?=??

H 泛定方程:BC:()()1m1cos sin 3r Ni

- - r

θ?θθ=?=

H e

e 图1-3 场图(H 线分布)

由上述理论分析和场图可见,这一典型磁场分布的特点是:

ⅰ)球内H 1为均匀场,其取向与磁通球的对称轴(z 轴)一致,即

()11cos -sin 33r z z Ni Ni H R R θθθ===H e e e e (1-3)

ⅱ)球外H 2等同于球心处一个磁偶极子的磁场。

(2)球形载流线圈自感系数L 的分析计算

在已知磁通球的磁场分布的情况下,显然就不难算出其自感系数L 。现首先分析如图1-4所示位于球表面周向一匝线圈中所交链的磁通φ,即

()2

01d πsin H R φμθ??'=?=??

?S

B S

然后,便可分析对应于球表面上由弧元d R θ'所界定的线匝d W 所交链的磁通链d ψ

d d sin d 2N W R R ψφφθθ??

''=?=?? ???

这样,总磁通链 ψ 就可由全部线匝覆盖的范围,即θ'由0到 π 的积分求得

d Li ψψ==?

最终得该磁通球自感系数L 的理论计算值为

R N L 029

2

μπ=

(1-4) 在实验研究中,磁通球自感系数L 的实测值可通过测量相应的电压、电流来确定。显然,如果外施电源频率足够高,则任何电感线圈电阻在入端阻抗中所起的作用可被忽略。此时,其入端电压和电流之间的相位差约等于90°,即可看成一个纯电感线圈。这样,由实测入端电压峰值与电流峰值之比值,即可获得感抗ωL 的实测值,由此便得L 的实测值。

(3)感应电势法测磁感应强度

若把一个很小的测试线圈放置在由交变电流激磁的时变磁场中,则根据法拉第电磁感应定律,该测试线圈中的感应电动势

d d

e t

ψ

=-

(1-5) 式中,ψ为与测试线圈交链的磁通链。

如果测试线圈的轴线与磁场方向相一致,且磁场由正弦交变电流激励,那末,对应于式(1-5)的有效值关系为

12πE fN ωψφ==

由于测试线圈所占据的空间范围很小,故测试线圈内的磁场可近似认为是均匀的,因此有Φ=BS =μ0HS ,从而,被测处的磁感应强度

(1-6)

式中,N 1 为测试线圈的匝数;

1

2πE B fSN =

E 为测试线圈中感应电势的有效值(V ); B 为被测处磁感应强度的有效值(T );

f 为正弦交变电流的频率,本实验采用5 kHz 的交流;

S 为测试线圈的等效截面积(m 2)。(关于S 的计算方法参阅附录1)。 (4)霍耳效应法测磁感应强度

霍耳元件被制备成一块矩形(b ×l )半导体薄片,如图1-5所示。当在它的对应侧通以电流I ,并置于外磁场B 中时,在其另一对应侧上将呈现霍耳电压V h ,这一物理现象称为霍耳效应。霍耳电压为

()

h h l b

R V IBf d

=

(1-7)

式中,R h 为霍耳常数,取决于半导体材料的特性; d 是半导体薄片的厚度; f (l /b )是霍耳元件的形状系数。

由式(1-7)可见,在R h 、d 、I 、f (l /b )等参数值一定时,V h ∝ B (B n )。根据这一原理制成的霍尔效应高斯计,通过安装在探棒端头上的霍尔片,即可直接测得霍尔片所在位置的磁感应强度的平均值(T 或Gs ,1T=104 Gs )。本实验采用5070型高斯计,它既可测量时变磁场,也可测量恒定磁场(该高斯计使用方法简介参阅附录2)。

应指出,在正弦交流激励的时变磁场中,霍尔效应高斯计的磁感应强度平均值读数与由感应电势法测量并计算得出的磁感应强度的有效值之间的关系为

av 09π

B B .B =

≈ (1-8) 三、主要仪器设备

附录1

图1-5 霍尔效应示意图

测试线圈的轴向剖面图如图1-6所示。由于线圈本身的尺寸很小,故线圈内的磁场分布可近似认为是均匀

的。图中半径为r ,厚度为d r 的薄圆筒状线匝所包围的轴向磁通为

220ππΦB r H r μ==

故与该薄筒状线匝所交链的磁通链为

()

21021d d πb r

N H r b R R ψμ=

-

式中

()

121d b r

N b R R -是薄筒状线圈对应的匝数。将上式取积分,就可求出

测试线圈的磁通链

()2

1

222

1010112221ππd d 3

R R N H N H r r R R R R R R μμψ=ψ==++-??

因此,测试线圈的等效截面积为

()22

1122π3

S R R R R =

++

四、操作方法和实验步骤

(1) 测量磁通球轴线上磁感应强度B 的分布

ⅰ) 沿磁通球轴线方向上下调节磁通球实验装置中的测试线圈,在5 kHz 正弦交变电流(I = 1 A )激励情况下,每移动1 cm 由毫伏表读出测试线圈中感应电势的有效值E ,然后,应用式(1-6)计算磁感应强度B ;

ⅱ) 在上述激磁情况下,应用5070型高斯计及其探棒,通过调节探棒端头表面位置,使之有最大霍耳电压的输出(即高斯计相应的读数最大),此时,探针面应与磁场线正交。由此可以由高斯计直接读出磁通球北极(r = R ,θ=0)处磁感应强度B av 。 (2) 探测磁通球外部磁场的分布

ⅰ) 在5 kHz 正弦交变电流(I = 1 A )激励情况下,继续探测磁通球外部磁场的分布。测试表明,磁场分布如同图1-3所示:磁场正交于北极表面;在赤道(r = R ,θ=π/2)处,磁场呈切向分布;磁通球外B 的分布等同于球心处一个磁偶极子的磁场;

ⅱ) 在直流(I = 1 A )激励情况下,应用高斯计重复以上探测磁通球外部磁场分布的实测过程,并定量读出磁通球北极(r = R ,θ=0)处磁感应强度B 。 (3) 磁通球自感系数L 的实测值

本实验在电源激励频率为f=5 kHz 正弦交变电流(I = 0.5A )激励情况下,近似地将磁通球看作为一个纯电感线圈。因此,通过应用示波器分别读出该磁通球的激磁电压u (t )和电流i (t )的峰值 [本实验中,i (t )的波形可由串接在激磁回路中的0.5 Ω 无感电阻上的电压测得],即可算出其电感实测的近似值L 。

应指出,以上电压峰值读数的基值可由示波器设定,而电流峰值读数的依据既可来自于数字电流表的有效值读数,也可来自于0.5 Ω无感电阻上的电压降。 (4) 观察电压、电流间的相位关系

应用示波器观察磁通球的激磁电压u (t )和电流i (t )间的相位关系;

图1-6 测试线圈的截面示意图

五、实验数据记录和处理

(1)磁通球轴线上磁感应强度B的分布

正弦激磁电流I=1A,f=5kHz

(i)感应电势法测磁感应强度B

(ii)霍尔效应法的磁感应强度B

计算磁感应强度

1)磁通球自感系数L的分析

正弦激磁电流I=0.5A,f=5KHz

2)电压、电流间的相位关系

六、实验结果与分析(必填)

磁通球轴线上磁感应强度的分布曲线图如下:

由表格中所测数据和所制作的曲线图课题看出,任意测试线圈测量时得到的数据均小于理论值,且相对误差比较大。这可能是由于数据测量误差所致。电表所测得的感应电势存在误差,正弦电流在实验过程中也不能保持1A不变。在由感应电动势推到磁感应强度的过程中,在式轴线上磁感应强度的理论计算中,均作了近似处理,这也是引起误差的一个原因

在用高斯计测量磁通球的磁感应强度时,在北极处,由高斯计测量得到的磁感应强度大于由感应电势测出的磁感应强度,且大于理论值。这可能是由于高斯计自身存在问题,高斯计在测量时,按照操作在交流时并不能调整到0Gs的位置,后续数据均在读数基础上减去初值得到,由此可能带来了数据的误差。直流情况下,在北极,直流电流下测得的值比交流时小,而在赤道附近,直流测得的值比交流大,可能是交流电流在实验过程中有变化,而且高斯计在使用过程中可能没有使得磁场线与霍尔片完全垂直,这样可能带来了误差。

计算磁通球的等效电感过程中,测量得到的电感值与实际值误差明显过大。实验中示波器的读数不精确可能是较大的误差来源。实验装置的电阻由两个反向缠绕的线圈构成,测量其两端电压来间接得到电阻,由于线圈的老化可能也带来了误差。输入信号在测量过程中受到的干扰也可能引起数据的不准确。

观察电压电流相位关系时,由电阻两端电压相位来代表总体电路的电流相位,从波形图可以看出,电压(图中幅值较大的波形)相位约超前于电流相位(图中幅值较小的波形)84°。实验中可以把磁通球看做电感元件,而电感元件的电压超前电流90°,实验结果与理论值符合良好。

七、讨论、心得

在实验过程中体会到了电磁场的乐趣。加深了对理论知识的认识,不是简单的计算麦克斯韦方程,而是在实验中动手测量,在理论计算的过程中也加深了对麦克斯韦方程组的认识。此外对边值问题的认识也加深了。

磁场对载流导体作用

§3。3 磁场对载流导体的作用 3.3.1、安培力 一段通电直导线置于匀磁场中,通电导线长L ,电流强度为I ,磁场的磁感应强度为B ,电流I 和磁感强度B 间的夹角为θ,那么该导线受到的安培力为θsin ?=BIL F 电流方向与磁场方向平行时, 0=θ,或 180=θ,F=0,电流方向与磁场方向垂直时, 90=θ,安培力最大,F=BIL 。 安培力方向由左手定则判断,它一定垂直于B 、L 所决定的平面。 当一段导电导线是任意弯曲的曲线时,如图3-3-1所示可以用连接导线两端的直线段的长度l 作为弯曲导线的等效长度,那么弯曲导线缩手的安培力为 θsin BIL F = 3.3.2、安培的定义 如图3-3-2所示,两相距为a 的平行长直导线分别载有电流1I 和2I 。 载流导线1在导线2处所产生的磁感应强度为 a I B πμ21 021= ,方向如图示。 导线2上长为2L ?的线段所受的安培力为: 2sin 21222π B L I F ?=? = 2 2 1021222L a I I B L I ?= ?πμ 其方向在导线1、2所决定的平面内且垂直指向导线1,导线2单位长度上 P B 图3-3-1 图3-3-2

所受的力 a I I L F πμ22 1022=?? 同理可证,导线λ上单位长度导线所受力也为a I I L F πμ22 101 1=??。方向垂直指向2,两条导线间是吸引力。也可证明,若两导线内电流方向相反,则为排斥力。 国际单位制中,电流强度的单位安培规定为基本单位。安培的定义规定为:放在真空中的两条无限长直平行导线,通有相等的稳恒电流,当两导线相距1米,每一导线每米长度上受力为27 10-?牛顿时,各导线上的电流的电流强度为1安培。 3.3.3、安培力矩 如图3-3-3所示,设在磁感应强度为B 的均匀磁场中,有一刚性长方形平面载流线图,边长分别为L 1和L 2,电流强度为I , 线框平面的法线n 与B 之间的夹角为θ,则 各边受力情况如下: 2BIL f ab = 方向指向读者 2BIL f cd = 方向背向读者 θ θπ cos )2 sin( 11BIL BIL f bc =-= 方向向下 θ θπ cos )2 sin( 11BIL BIL f da =+= 方向向上 bc f 和da f 大小相等,方向相反且在一条直线上,互相抵消。 图3-3-3

第九节 磁场对载流线圈的作用

10-7 磁场对载流线圈的作用 一、磁场作用于载流线圈的磁力矩 下面用安培定律来研究磁场对载流线圈的作用。 如下图所示,在磁感强度为B 的均匀磁场中,有一刚性矩形载流线圈MNOP ,它的边长分别为1l 和2l ,电流为I ,流向自M P O N M →→→→,设线圈平面的单位正法向矢量n e 的方 向与磁感强度B 方向之间的夹角为θ,即线圈平面与B 之间夹角为φ() 2/π=+θφ,并且MN 边及OP 边均 与B 垂直。 由安培定律知磁场对导线NO 段和PM 般作用力大小相等,方向相反,并且在同一直线上,所以对整个线圈来讲,它们的合力及合力矩都为零。导线MN 和OP 段受磁场力大小则分别为 21BIl F = 2 2BIl F = 这两个力大小相等,方向亦相反,但不在同一直线上,对线圈要产生磁力矩φ cos 11l F M =。 由于 θ φ-=2/π,所以 θ φsin cos =,则有 θ θsin sin 1211l BIl l F M ==

或 θsin BIS M =(10-17a ) 式中 2 1l l S =为矩形线圈的面积,磁矩 n e m IS =,此处 n e 为线圈平面的正法向矢量. 所以上 式用矢量表示则为 B m B e M ?=?=n IS (10-17b ) 如果线圈不只一匝,而是N 匝,那么线圈所受的磁力矩应为 B e M ?=n NIS (10-17c ) 讨论: 载流线圈在均匀磁场中的运动问题 (1)当载流线圈的 n e 方向与磁感强度B 的方向相同(即?=0θ),亦即磁通量为正向极大 时,M=0,磁力矩为零,此时线圈处于平衡状态[图(a)]。 (2) 当载流线圈的 n e 方向与磁感强度B 的方向相垂直(即?=90θ),亦即磁通量为零时, M=NBIS ,磁力矩最大[图(b)] (3)当载流线圈的 n e 方向与磁感强度B 的方向相反(即?=180θ)时,M=0,这时也没有磁 力矩作用在线圈上[图(c)],不过,在这种情况下,只要线圈稍稍偏过一个微小角度,它就会在磁力作用下离开这个位置,而稳定在?=0θ时的平衡状态,总之,磁场对载流线圈作用的磁力矩, 总是要使线圈转到它的 n e 方 向与磁场方向相一致的稳定 平衡位置(M10-8)。 (4)式(10-17)虽然是从矩形线圈推导出来的,但可以证明它对任意形状的平面线圈都是成立的。

实验3.09磁场分布

实验3.9 磁场分布测量 磁场的测量有许多方法,常用的有电磁感应法,半导体(霍耳效应)探测法和核磁共振法。本实验使用的是电磁感应法测量磁场,它是以简单的线圈作为测量元件,利用电磁感应原理直接测量亥姆霍兹(Helmholtz )线圈产生的磁场。值得一提的是本实验所使用的亥姆霍兹线圈在物理研究中有许多用处,如产生磁共振,消除地磁的影响等,获1997年诺贝尔物理奖的实验中,就有若干对这种线圈,因此熟悉这种线圈产生的磁场是很有意义的。 3.9.1实验目的 1.学习电磁感应法测磁场的原理; 2.学习用探测线圈测量载流线圈的磁场的方法; 3.验证矢量叠加的原理; 4.了解亥姆霍兹线圈磁场的特点。 3.9.2实验原理 3.9.2.1电磁感应法测磁场 当导线中通有变化电流时,其周围空间必然产生变化磁场。处在变化磁场中的闭合回路,由于通过它的磁通量发生变化,回路中将有感应电动势产生。通过测量此感应电动势的大小就可以计算出磁场的量值。这就是感应法测磁场的实质。 因为磁场是一矢量场,所以测量磁场的任务,就是要测出场中各点的磁感应强度的大小和方向。 为叙述简单起见,先假定有一个均匀的交变磁场,其量值随时间t 按正弦规律变化 t B B m i ωsin = 式中B m 为磁感应强度的峰值,其有效值记作B ,ω为角频率。再假设置于此磁场中的探测线圈T (线圈面积为S ,共有N 匝)的法线n 与B m 之间的夹角为θ,如图3.9.1所示,则通过T 的总磁通φi 为 θωφcos sin t NSB N m i i =?=B S 由于磁场是交变的,因此在线圈中会出现感 应电动势,其值为 θωωφ cos cos t B NS dt d e m i -=-= (3.9.1) 如果把T 的两条引线与一个交流数字电压表连接,交流数字电压表的读数U 表示被测量值的有效值(rms ),当其内阻远大于探测线圈的电阻时有 θωcos rms B NS e U == (3.9.2) 从(3.9.2)式可知,当N ,S ,ω,B 一定时,角θ越小,交流数字电压表读数越大。当θ =0时,交流数字电压表的示值达最大值U max ,(3.9.2)式成为 ω NS U B max = (3.9.3) 测量时,把探测线圈放在待测点,用手不断转动它的方位,直到数字电压表的示值达到最大为止。把所得读数U max 代入(3.9.3)式就可算出该点的磁场值。 图3.9.1感应法测磁场原理图

高中物理竞赛教程:3.3《磁场对载流导体的作用》

§3.3 磁场对载流导体的作用 3.3.1、安培力 一段通电直导线置于匀磁场中,通电导线长L ,电流强度为I ,磁场的磁感应强度为B ,电流I 和磁感强度B 间的夹角为θ,那么该导线受到的安培力为θsin ?=BIL F 电流方向与磁场方向平行 时,ο0=θ,或ο 180=θ,F=0,电流方向与磁场方向垂直 时,ο 90=θ,安培力最大,F=BIL 。 安培力方向由左手定则判断,它一定垂直于B 、L 所决定的平面。 当一段导电导线是任意弯曲的曲线时,如图3-3-1所示可以用连接导线两端的直线段的长度l 作为弯曲导线的等效长度,那么弯曲导线缩手的安培力为 θsin BIL F = 3.3.2、安培的定义 如图3-3-2所示,两相距为a 的平行长直导线分别载有电流1I 和2I 。 载流导线1在导线2处所产生的磁感应强度为 a I B πμ21 021= ,方向如图示。 导线2上长为2L ?的线段所受的安培力为: 2sin 21222π B L I F ?=? =2 21021222L a I I B L I ?=?πμ 其方向在导线1、2所决定的平面内且垂直指向导线1,导线2单位长度上所受的力 a I I L F πμ22 1022=?? P B 图3-3-1 图3-3-2

同理可证,导线 上单位长度导线所受力也为a I I L F πμ22 101 1=??。方向垂直指向2,两条导线间是吸引力。也可证明,若两导线内电流方向相反,则为排斥力。 国际单位制中,电流强度的单位安培规定为基本单位。安培的定义规定为:放在真空中的两条无限长直平行导线,通有相等的稳恒电流,当两导线相距1米,每一导线每米长度上受力为27 10-?牛顿时,各导线上的电流的电流强度为1安培。 3.3.3、安培力矩 如图3-3-3所示,设在磁感应强度为B 的均匀磁场中,有一刚性长方形平面载流线图,边长分别为L 1和L 2,电流强度为I ,线框平 面的法线n ρ与B ρ 之间的夹角为θ,则各边受力情况如下: 2BIL f ab = 方向指向读者 2BIL f cd = 方向背向读者 θ θπ cos )2 sin( 11BIL BIL f bc =-= 方向 向下 θ θπ cos )2 sin( 11BIL BIL f da =+= 方向向上 bc f 和da f 大小相等,方向相反且在一条直线上,互 相抵消。 ab f 和cd f 大小相等,指向相反,但力作用线不在同 一直线上,形成一力偶,力臂从(b)中可看出为 θ θπ sin )2cos(11L L =- 故作用在线圈上的力矩为: 1 L 2 L a d c I I n ab f cd f b B θ 图3-3-3 θ ab f cd f n 图3-3-4

载流圆线圈周围磁场分布

载流圆线圈周围磁场分布 孟雨 孟雨物理工程学院11级物理学类三班 Email:1240123245@https://www.wendangku.net/doc/fe12232842.html, 摘要:本文第一次在直角坐标系中直接从磁感应强度的计算公式毕奥-萨伐尔定律出发,精确求解了圆电流空间任一点磁场分布。并通过数值模拟,给出了圆电流周围磁场的空间分布情况。 关键词:载流圆线圈、椭圆积分、磁感应强度、数值模拟 0.引言 圆电流的磁场分布是电磁学中一个重要而典型的问题,不少学者进行求解此方面问题时一般采用矢势方法,而即使采用最为基本的毕奥-萨伐尔定律求解时,求解的也是简化后的磁场在固定平面内的分布,而非整个三维空间内的分布。究其原因,在于积分的复杂性。即使求解磁场在平面内的分布,也涉及复杂的椭圆积分,因此对于磁场在三维空间任意处的分布,很多学者避而不答。本文仅采用最为基本的毕奥-萨伐尔定律,通过一系列变量替换直接在直角系给出了磁场分布的级数形式解。 本文与已发文章《闭合载流导线周围磁感应强度的空间分布》5【】(物理学刊27期)、《一个重要公式在电磁学中的应用》6【】(物理学刊29期)同属姊妹篇。第一篇文章提出了解决 该问题的一般方法,并推广到任意形状的闭合载流线圈,同时作为例子计算了过垂直载流圆线圈环面中心直线上的磁感应强度。第二篇文章是对第一篇文章的进一步探索,运用椭圆积分精确求解了载流圆线圈在其所在整个平面的强度分布情况。本文是前两篇文章的更深一步探索,最终精确求解了载流圆线圈在空间任意处的分布情况。通过这三篇文章,希望给大家带来的不仅仅是问题的答案,更为重要的是将作者一步步探索问题的过程呈献给大家,希望能给大家未来的学习和研究带来帮助。 1.载流圆线圈磁感应强度 这里直接引用文章【5】、【6】中的结果:

亥姆霍兹线圈实验报告

亥姆霍兹线圈实验报告 【实验原理】 1.载流圆线圈与亥姆霍兹线圈的磁场 (1)载流圆线圈磁场 一半径为R,通以电流I的圆线圈,轴线上磁场的公式为 (1-1) 式中N0为圆线圈的匝数,X为轴上某一点到圆心O的距离。 它的磁场分布图如图1-1所示。 (2)亥姆霍兹线圈 所谓亥姆霍兹线圈为两个相同线圈彼此平行且共轴,使线圈上通以同方向电流I,理论计算证明:线圈间距a等于线圈半径R时,两线圈合磁场在轴上(两线圈圆心连线)附近较大范围内是均匀的,如图1-2所示。 2.霍尔效应法测磁场 (1)霍尔效应法测量原理 将通有电流I的导体置于磁场中,则在垂直于电流I和磁场B方向上将产生一个附加电位差,这一现象是霍尔于1879年首先发现,故称霍尔效应。电位差U H称为霍尔电压。 如图3-1所示N型半导体,若在MN两端加上电压U,则有电流I沿X轴方向流动(有速度为V运动的电子),此时在Z轴方向加以强度为B的磁场后,运动着的电子受洛伦兹力F B的作用而偏移、聚集在S平面;同时随着电子的向S平面(下平面)偏移和聚集,在P平面(上平面)出现等量的正电荷,结果在上下平面之间形成一个电场E H(此电场称之为霍尔电场)。这个电场反过来阻止电子继续向下偏移。当电子受到的洛伦兹力和霍尔电场的反作用力这二种达到平衡时,就不能向下偏移。此时在上下平面(S、P平面)间形成一个稳定的电压U H(霍尔电压)。 (2)霍尔系数、霍尔灵敏度、霍尔电压 设材料的长度为l,宽为b,厚为d,载流子浓度为n,载流子速度v,则与通过材料的电流I有如下关系: I=nevbd 霍尔电压 U H=IB/ned=R H IB/d=K H IB 式中霍尔系数R H=1/ne,单位为m3/c;霍尔灵敏度K H=R H/d,单位为mV/mA

磁场分布

§3.3 磁场分布 【预习重点】 1.毕奥-萨伐尔定律、载流圆线圈在轴线上某点的磁感应强度公式。 2.亥姆霍兹线圈的组成及其磁场分布的特点。 3.霍尔效应、霍尔传感器原理。 【实验目的】 1.测亥姆霍兹线圈在轴线上的磁场分布。 2.测载流圆线圈在轴线上的磁场分布,验证磁场叠加原理。 3.比较两载流圆线圈距离不同时轴线上磁场分布情况。 【实验原理】 一、圆线圈 载流圆线圈在轴线(通过圆心并与线圈平面垂直的直线)上磁场情况如图1。根据毕奥萨伐尔定律,轴线上某点的磁感应强度B 为 I N x R B ?+?= 2 /322 2 0) (2μ (3.3.1) 式中I 为通过线圈的电流强度,N 为线圈匝数,R 线圈平均半径,x 为圆心到该点的距离,0μ为真空磁导率。而圆心处的磁感应强度0B 为 I N R B ?= 20 0μ (3.3.2) 轴线外的磁场分布情况较复杂,这里简 略。

二、亥姆霍兹线圈 亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈,每一线圈N 匝,两线圈内的电流方向一致,大小相同,线圈之间距离d 正好等于圆形线圈的平均半径R 。其轴线上磁场分布情况如图3.3.2所示,虚线为单线圈在轴线上的磁场分布情况。这种线圈的特点是能在其公共轴线中点附近产生较广的均匀磁场区,故在生产和科研中有较大的实用价值,也常用于弱磁场的计量标准。 设x 为亥姆霍兹线圈中轴线上某点离中心点O 处的距离,则亥姆霍兹线圈轴线上任一点的磁感应强度大小B ′为 3/23/222222 01222R R B N I R R x R x μ??????????????′=???++++??? ???????????????????????? (3.3.3) 而在亥姆霍兹线圈轴线上中心O 处磁感应强度大小′ 0B 为 003/285N I B μ??′= (3.3.4) 三、双线圈 若线圈间距d 不等于R 。设x 为双线圈中轴线上某点离中心点O 处的距离,则双线圈轴 线上任一点的磁感应强度大小B ′′为 3/23/222222 01222d d B N I R R x R x μ??????????????′′=???++++??????????????????????????? (3.3.5) 四、霍尔效应、霍尔传感器 1.霍尔效应 霍尔效应是具有载流子的导体(或半导体)同时处在电场和磁场中而产生电势的一种现象。如图3.3.3(带正电的载流子)所示,把一块宽为b ,厚为d 的导电板放在磁感应强度为B 的磁场中,并在导电板中通以纵向电流I ,此时在板的横向两侧面A ,A ′之间就呈现出一定的电势差,这一现象称为霍尔效应,所产生的电势差U H 称霍尔电压。霍尔效应的数学表达式为: U H =R H d IB R H 是由半导体本身载流子迁移率决定的物理常数,称为霍尔系数。霍尔效应可以用洛伦兹力来解释。详见附页。 2.霍尔传感器 近年来,在科研和工业中,集成霍尔传感器被广泛应用于磁场测量,它测量灵敏度高,体积小,易于在磁场中移动和定位。本实验用SS95A 型集成霍尔传感器测量载流圆线圈磁场分布,其工作原理也基于霍尔效应,即U H =R H d IB =K H IB K H =R H /d K H 称为霍尔元件灵敏度,B 为磁感应强度,I 为流过霍尔元件的电流强度。理论上B 为零时,

圆线圈和亥姆霍兹线圈的磁场

圆线圈和亥姆霍兹线圈的磁场 磁场测量是磁测量中最基本的内容,最常用的测量方法有三种;感应法、核磁共振法和霍尔效应法。本实验要求学生用霍尔效应法测量载流亥姆霍兹线圈的磁感应强度沿轴线的分布。 〔实验目的〕 1.掌握弱磁场测量原理及如何用集成霍尔传感器测量磁场的方法。 2.验证磁场迭加原理。 3.学习亥姆霍兹线圈产生均匀磁场的特性。 〔实验原理〕 一、圆线圈 载流圆线圈在轴线(通过圆心并与线圈平面垂直的直线)上磁场情况如图3.14.1所示。 根据毕奥-萨伐尔定律,轴线上某点的磁感应强度B 为 I N x R R B ?+?= 2 /322 2 0) (2μ (3.14.1) 式中I 为通过线圈的电流强度,N 为线圈匝数,R 线圈平均半径,x 为圆心到该点的距离,0μ为真空磁导率。而圆心处的磁感应强度0B 为 I N R B ?= 20 0μ (3.14.2) 轴线外的磁场分布情况较复杂,这里简略。 二、亥姆霍兹线圈 亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈,每一线圈N 匝,两线圈内的电流方向一致,大小相同,线圈之间距离d 正好等于圆形线圈的平均半径R 。其轴线上磁场分布情况如图3.14.2所示,虚线为单线圈在轴线上的磁场分布情况。这种线圈的特点是能在其公共轴线中点附近产生较广的均匀磁场区,故

在生产和科研中有较大的实用价值,也常用于弱磁场的计量标准。 设x 为亥姆霍兹线圈中轴线上某点离中心点O 处的距离,则亥姆霍兹线圈轴线上任一点的磁感应强度大小B '为 3/23/22222201222R R B N I R R x R x μ--????????????'=???++++-?????? ? ????????????????? (3.14.3) 在亥姆霍兹线圈轴线上中心O 处磁感应 强度大小'0B 为 003/285N I B R μ??'= (3.14.4) 三、双线圈 若线圈间距d 不等于R 。设x 为双线圈中轴线上某点离中心点O 处的距离,则双线圈轴线上任一点的磁感应强度大小B ''为 3/23/22222201222d d B N I R R x R x μ--????????????''=???++++-?????? ? ????????????????? (3.14.5) 四、霍尔传感器 1.霍尔传感器 近年来,在科研和工业中,集成霍尔传感器被广泛应用于磁场测量,它测量灵敏度高,体积小,易于在磁场中移动和定位。本实验用SS95A 型集成霍尔传感器测量载流圆线圈磁场分布,其工作原理也基于霍尔效应。 本实验采用的SS95A 型集成霍尔传感器由霍尔元件、放大器和薄膜电阻剩 余电压补偿器组成,测量时输出信号大,剩余电压的影响已被消除。一般的霍尔元件有四根引线,两根为输入霍尔元件电流的―电流输入端‖;另两根为霍尔元件的―霍尔电压输出端‖。本实验在设计安装时,传感器、圆线圈的工作回路相互独立,并且传感器的工作电流已设定为标准工作电流(定值)。即K H I =K (常数) 则有:KB U H =,其中K 为常数。这样U H 与B 建立简单的正比对应关系,由U H 值可得出B 的示值。

磁场对载流体的作用

磁场对载流导体的作用 3.3.1、安培力 一段通电直导线置于匀磁场中,通电导线长L ,电流强度为I ,磁场的磁感应强度为B ,电流I 和磁感强度B 间的夹角为θ,那么该导线受到的安培力为θsin ?=BIL F 电流方向与磁场方向平行时,ο 0=θ,或ο 180=θ,F=0,电流方向与磁场方向垂直时,ο 90=θ,安培力最大,F=BIL 。 安培力方向由左手定则判断,它一定垂直于B 、L 所决定的平面。 当一段导电导线是任意弯曲的曲线时,如图3-3-1所示可以用连接导线两端的直线段的长度l 作为弯曲导线的等效长度,那么弯曲导线缩手的安培力为 θsin BIL F = 3.3.2、安培的定义 如图3-3-2所示,两相距为a 的平行长直导线分别载有电流1I 和2I 。 载流导线1在导线2处所产生的磁感应强度为 a I B πμ21 021= ,方向如图示。 导线2上长为2L ?的线段所受的安培力为: 2sin 21222π B L I F ?=? = 2 2 1021222L a I I B L I ?= ?πμ 其方向在导线1、2所决定的平面内且垂直指向导线1,导线2单位长度上所受的力 P B 图3-3-1 图3-3-2

a I I L F πμ22 1022=?? 同理可证,导线λ上单位长度导线所受力也为a I I L F πμ22 101 1=??。方向垂直指向2,两条导线间是吸引力。也可证明,若两导线内电流方向相反,则为排斥力。 国际单位制中,电流强度的单位安培规定为基本单位。安培的定义规定为:放在真空中的两条无限长直平行导线,通有相等的稳恒电流,当两导线相距1米,每一导线每米长度上受力为27 10-?牛顿时,各导线上的电流的电流强度为1安培。 3.3.3、安培力矩 如图3-3-3所示,设在磁感应强度为B 的均匀磁场中,有一刚性长方形平面载流线图,边长分别为L 1和L 2,电流强度为I , 线框平面的法线n ρ与B ρ 之间的夹角为θ,则 各边受力情况如下: 2BIL f ab = 方向指向读者 2BIL f cd = 方向背向读者 θ θπ cos )2 sin( 11BIL BIL f bc =-= 方向向下 θ θπ cos )2 sin( 11BIL BIL f da =+= 方向向上 bc f 和da f 大小相等,方向相反且在一条直线上,互相抵消。 图3-3-3

球形载流线圈的场分布与自感

实验报告 课程名称: 工程电磁场与波 指导老师:___________________成绩:___________________ 实验名称: 球形载流线圈的场分布与自感 实验类型:___________________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验目的: 1、研究球形载流线圈(磁通球)的典型磁场分布及其自感参数; 2、掌握工程上测量磁场的两种基本方法——感应电势法和霍尔效应法。 3、在理论分析与实验研究相结合的基础上,力求深化对磁场边值问题、自感参数和磁场测量方法等知识点的理解,熟悉霍尔效应的高斯计的证明。 实验原理: 球形载流线圈(磁通球)的磁场分析: 在的轴方向具有均匀匝数密度分布的球形线圈中,通以正弦交流电流,可以证得球表面上等效的面 电流密度的分布为 由上式可知,面电流密度周向分布,且值正比与。 有边值问题 通过以上方程可以解得磁通球内外的磁场强度为 , , 由上述解可以看到球内为均匀场

球外等同于球心处一个辞偶极子的磁场。 球形载流线圈自感系数的计算: 易知磁通量为 则总磁链为磁通在全部线匝内的积分,可以求的 最终由自感定义式可以极端的自感系数的理论计算值为 在实验中,我们选取交流电的频率足够大,那么自感线圈的感抗就会远大于自感线圈的电阻,可以近似认为其没有电阻。这样,由实测输入端电压峰峰值与电流的比值,就可以获得感抗的的实测值,由 此便得的实测值。 感应电势法测磁感应强度: 若把一个很小的探测线圈放置在由交变电流激磁的时变磁场中,则根据法拉第电磁感应定律,该探测线圈中的感应电动势 如果探测线圈的轴线与磁场方向相一致,且磁场由正弦交变电流激励,对应于上式)的有效值关系为 由于探测线圈所占据的空间范围很小,故该线圈内的磁场可近似认为是均匀的,因此有从 而,被测处的磁感应强度 其中为测试线圈的等效截面积,具体为,且实验中, 。 霍耳效应测磁感应强度 霍耳元件被制备成一块矩形()半导体薄片。当在它的对应侧通以电流,并置于外磁场中时,在其另一对应侧上将呈现霍耳电压,这一物理现象称为霍耳效应。霍耳电压为 在正弦交流激励的时变磁场中,霍耳效应高斯计的磁感应强度平均值读数与由感应电势法测量并计算得出的磁感应强度的有效值之间的关系为

磁场对载流矩形线圈的作用

河北经济管理学校教案 序号:1 编号:JL/JW/7.5.1.03 11.17授课主题磁场对载流矩形线圈的作用 教学目的1. 电磁转矩的产生 2. 电磁转矩的表达式 3. 霍尔效应 教学重点、难 点重点: 1. 电磁转矩的公式 2. 霍尔效应 教学准备教材、教案、板书、PPT 教学过程设计与时间分配 一、课堂导入与提问(10min) 二、讲授新课(25min) 1.电磁转矩的产生 2.电磁转矩的表达式 3.电动机旋转的基本原理 4.霍尔效应 三、计算举例(30min) 四、课堂小结(15min) 五、布置作业(10min) 河北经济管理学校教案

教案内容 1、 课堂导入与提问(10min) 复习上节课内容,回顾磁场对载流导体的作用,思考:磁场对载流矩形线圈又有什么作用 二、讲授新课(25min) 1.电磁转矩的产生 如课本P92图2-22所示,将一矩形线圈abcd放在匀强磁场中,线圈的上下两边ad和bc所受的磁场力大小相等,方向相反,在一条直线上彼此平衡;而作用在线圈两个侧边ab和cd上的磁场力虽然大小相等,方向相反,但不在一条直线上,产生了力矩,称为电磁转矩 2.电磁转矩的表达式 经推导得出电磁转矩的表达式为:M=NBIScosα 上式中B——均匀磁场的磁感应强度,单位为特(T) I——线圈中的电流,单位为安(A) S——线圈的面积,单位为平方米(㎡) N——线圈的匝数 α——线圈平面与磁力线的夹角,单位为度(°) M——电磁转矩,单位为牛’米(N’M) 当线圈平面与磁力线平行时,力臂最大,线圈受电磁转矩最大;当线圈平面与磁力线垂直时,力臂为零,线圈受电磁转矩也为零 3.电动机旋转的基本原理 磁场对通电矩形线圈的作用力是电动机旋转的基本原理 4.霍尔效应 金属或半导体薄片置于磁场中,当有电流流过时,在垂直于电流和磁场的方向上将产生电动势,这种物理现象称为霍尔效应 3、 计算举例(30min) 课本P93自我测评第二题 4、 课堂小结(15min)

第二十一讲:§6.5磁场对运动电荷和载流导线的作用(一、二、三)

第二十一讲:§6.5磁场对运动电荷和载流导线的作用(一、二、三) 一、洛伦磁力:运动电荷在磁场中所受的力 1、表达式:q m ?=υ 满足右手螺旋关系 2、讨论:①0 q ,m 与 ?υ 同向; ②0 q ,m 与 ?υ 反向; 洛伦磁力与速度垂直,因而不做功。它不能改变运动电荷的速度大小,只能改变速度方向,使其运动方向发生改变。 二、带电粒子在磁场中的运动 设有一均匀磁场,磁感应强度B ,带电粒子以初速度0进入磁场,根据牛顿定律,有 dt d m q m υυ=?= (6-30) 1、0//B 由(6-30)式,0=m F ,带电粒子在磁场 不受力的作用,将作匀速直线运动。 2、0┴B 此时,带电粒子在磁场中作匀速圆周运动 如图所示: ①回旋半径:R m B q F m 200υυ== qB m R 0υ=? ②回旋周期:qB m qB m R T πυυπυπ222000===

③回旋频率:m qB T f π21== 3、0与B 成任意夹角θ 此时,可将0υ分解为 θυυcos 0//= θυυs i n 0=⊥ ①回旋半径:R m B q F m 2⊥⊥==υυ qB m qB m R θυυsin 0==?⊥ ②回旋周期:qB m qB m R T πυυπυπ222===⊥⊥⊥ 结果同上 ③旋距:qB m T h πθ υυ2cos 0//== P222例题6-5 三、霍尔 在导体两侧出现电势差的现象,称为霍尔效应。霍尔效应是磁电效应的一种,即带电粒子在磁场和电场在运动所产生的效应。 1、霍尔电势差 21U U U H -= b BI U H ∝ b BI R U H H =? ⑴

测量磁场分布

测量磁场分布 摘 要:本文通过测量载流圆形线圈和亥姆霍兹线圈的轴向上的磁场分布,了解电磁感应 法测量磁场的原理和一般方法,并对场强叠加原理加以验证。 关键字:圆线圈 亥姆霍兹线圈 双线圈 磁场分布 电磁感应法 引言: 在工业、国防、科研中都需要对磁场进行测量,测量磁场的方法不少,如冲击电流计法、霍耳效应法、核磁共振法、天平法、电磁感应法等等。本实验介绍电磁感应法测磁场的方法,它具有测量原理简单、测量方法简便及测试灵敏度较高等优点。 实验目的: 1.了解用电磁感应法测交变磁场的原理和一般方法。 2.载流圆线圈在轴线上的磁场分布。 3.亥姆霍兹线圈在轴线上的磁场分布,验证磁场叠加原理。 4.较两载流圆线圈距离不同时轴线上磁场分布情况。 原理简述: 1.载流圆线圈轴线上磁场的分布 载流圆线圈在轴线(通过圆心并与线圈平面垂直的直 线)上磁场情况如图1。根据毕奥萨伐尔定律,轴线上某点的磁感应强度B 为: 2/3222 0)X R (2NIR B += μ 式中 μ为真空磁导率: , H/m 10470 -?=πμ N 为圆线 圈的匝数,式中I 为通过线圈的电流强度,N 为线圈匝数, R 为线圈平均半径,x 为圆心到该点的距离。 2.载流双线圈轴线上磁场的分布 磁场与电场一样满足叠加原理。总磁场的磁感应强度等于各个运动电荷或载流线段产生的磁场的磁感应强度的矢量和,这个结论称为磁场的叠加原理。 两个尺寸结构完全相同圆线圈彼此平行且共轴,通以方向一致,大小相同的电流I ,

其中一个固定,另一个可沿其共轴平行移动。若O 点为两线圈轴线中点,则两线圈在P 点产生的磁感应强度方向沿轴线向右。根据毕奥—萨伐尔定律和场强叠加原理,可求得轴线上P 点的磁感应强度大小为: 2 /3222 02/32220])X 2a (R [2NIR ])X 2a (R [2NIR B -++ ++=μμ 式中 , H/m 10470 -?=πμ N 为圆线圈的匝数,R 为内外 平均半径,a 为两线圈间距。 由上式可以看出,磁场分布与两线圈距离a 有关。由于对称性,场强在O 点的切线一定是水平的,即在x=0处 0dx dB =。而使O 点附近场强最均匀的条件是0)dx B d (0x 22==,即a=R 。这种间距等于半径的一对尺寸结 构完全相同的圆线圈叫做亥姆霍兹线圈。 当两线圈距离a 与半径R 相差越远时,磁场分布越不均匀:当aR 时,B 在O 点处有极大值。(如图 2所示) 3.用电磁感应法测磁场的原理 设均匀交变磁场为(由通交变电流的线圈产生):t sin B B m ω=,磁场中一探测线圈的磁通量为:Φ=NSBmcos θsin ωt ,式中:N为探测线圈的匝数,S 为该线圈的截面积,θ 为B 与线圈法线夹角。 则线圈产生的感应电动势为: t cos cos B NS t d d m ωθω-=- =εΦ t cos m ωε-= 式中θω=εcos B NS m m 是线圈法线和磁场成θ角时,感应电动势的幅值。当?=θ0时, m max B NS ω=ε,这时的感应电动势的幅值最大。 如果用数字万用表测量此时线圈的电动势示值(有效值)为U = 2m ax ε,则: ω= ωε= NS U 2NS B max max =fNS 2U π

载流线圈的磁场分布

实验报告 课程名称:工程电磁场原理 指导老师: 成绩:__________________ 实验名称:载流线圈的场分布 实验类型:实践、仿真 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验一:球形载流线圈的场分布与自感 一、实验目的和要求 1.研究球形载流线圈(磁通球)的典型磁场分布及其自感参数; 2.掌握感应电势法测量磁场的方法; 3.在理论分析与实验研究相结合的基础上,力求深化对磁场边值问题、自感参数和磁场测量方法等知识点的理解。 二、实验内容和原理 (1) 球形载流线圈(磁通球)的磁场分析 如图1-1所示,当在z 向具有均匀的匝数密度分布的球形线圈中通以正弦电流i 时,可等效看作为流经球表面层的面电流密度K 的分布。显然,其等效原则在于载流安匝不变,即如设沿球表面的线匝密度分布为W ′,则在与元长度d z 对应的球面弧元d R θ上,应有 ()d d N W R θi=z i 2R ??' ??? 因在球面上,θcos R z =,所以 ()d d cos sin d z R R θθθ== 代入上式,可知对应于球面上线匝密度分布W ′,应有

2sin d sin d 2N R R N W R R θθθθ?'= = 即沿球表面,该载流线圈的线匝密度分布W ′正比于θsin ,呈正弦分布。因此,本实验模拟的在球表面上 等效的面电流密度K 的分布为 sin N i 2R K e φθ= ?? 由上式可见,面电流密度K 周向分布,且其值正比于θsin 。 因为,在由球面上面电流密度K 所界定的球内外轴对称场域中,没有自由电流的分布, 所以, 可采用标量磁位?m 为待求场量,列出待求的边值问题如下: 上式中泛定方程为拉普拉斯方程,定解条件由球表面处的辅助边界条件、标量磁位的参考点,以及离该磁通球无限远处磁场衰减为零的物理条件所组成。 通过求解球坐标系下这一边值问题,可得标量磁位?m1和?m2的解答,然后,最终得磁通球内外磁场强度为 (1-1) 和 ()()3 2m 22c o s s i n 6r N i R - r >R R r θ?θθ?? =?=+ ??? H e e (1-2) 基于标量磁位或磁场强度的解答,即可描绘出磁通球内外的磁场线分布,如图1-3所示。 ()() ()() ()() 2m12m2t1t212n n1n20102m102 m2 ,0,0sin 200 r r r r r r r R r r R N H H H H K i r R R B B H H r R θθ?θ?θθμμ??=→∞ →∞ ???=?????? ?-=-===??? ??=→==? ??=??=-?=?? H 泛定方程:BC:()()1m1cos sin 3r Ni - - r

用霍尔法测直流圆线圈与亥姆霍兹线圈磁场讲义

用霍尔法测直流圆线圈与亥姆霍兹线圈磁场(FB511型霍尔法亥姆霍兹线圈磁场实验仪) 实 验 讲 义 浙江大学物理实验教学中心

用霍尔法测直流圆线圈与亥姆霍兹线圈磁场 在工业、国防、科研中都需要对磁场进行测量,测量磁场的方法有不少,如冲击电流计法、霍尔效应法、核磁共振法、天平法、电磁感应法等等,本实验介绍霍尔效应法测磁场的方法,它具有测量原理简单,测量方法简便及测试灵敏度较高等优点。 【实验目的】 1.了解用霍尔效应法测量磁场的原理,掌握511FB 型霍尔法亥姆霍兹线圈磁场实验仪的使用方法。 2.了解载流圆线圈的径向磁场分布情况。 3.测量载流圆线圈和亥姆霍兹线圈的轴线上的磁场分布。 4.两平行线圈的间距改变为R 2d 2/R d ==和时,测定其轴线上的磁场分布。 【实验原理】 1.载流圆线圈与亥姆霍兹线圈的磁场 (1)载流圆线圈磁场 一半径为R ,通以直流电流I 的圆线圈,其轴线上离圆线圈中心距离为X 米处的磁感应强度的表达式为: 2 /3222 00)X R (2R I N B +????μ= (1) 式中0N 为圆线圈的匝数,X 为轴上某一点到圆心O '的距离,,m /H 10470-?π=μ 磁场的分布图如图1所示,是一条单峰的关于Y 轴对称的曲线。 本实验取,m 100.0R ,A 400.0I ,400N 0===匝在圆心0X O ='处,可算得磁感应强度为 : T 100053.1B 3 -?= (2)亥姆霍兹线圈

两个完全相同的圆线圈彼此平行且共轴,通以同方向电流I ,线圈间距等于线圈半径R 时,从磁感应强度分布曲线可以看出,(理论计算也可以证明):两线圈合磁场在中心轴线上(两线圈圆心连线)附近较大范围内是均匀的,这样的一对线圈称为亥姆霍兹线圈,如图2所示。从分布曲线可以看出,在两线圈中心连线一段,出现一个平台,这说明该处是匀强磁场,这种匀强磁场在科学实验中应用十分广泛。比如,大家熟悉的显像管中的行偏转线圈和场偏转线圈就是根据实际情况经过适当变形的亥姆霍兹线圈。 2.利用霍尔效应测磁场的原理 霍尔元件的作用如 图3所示.若电流I 流过厚度为d 的矩形半导体薄片,且磁场B 垂 直作用于该半导体 , 由于洛伦兹力作用电流方向会发生改变,这一现象称为霍尔效应,在薄片两个横向面a 、b 之间产生的电势差称为霍尔电势。该电势同时垂直于电流I 及磁场B 方向。 霍尔电势差是这样产生的:当电流H I 通过霍尔元件(假设为P 型)时,空穴有一定的漂移速度v ,垂直磁场对运动 图3 电荷产生一个洛仑兹力 : )B v (q F B ??= (2) 式中q 为电子电荷,洛仑兹力使电荷产生横向的偏转,由于样品有边界,所以偏转的载流子将在边界积累起来,产生一个横向电场E ,直到电场对载流子的作用力E q F E ?=与磁场作用的洛仑兹力相抵消为止,即 E q )B v (q ?=?? (3) 这时电荷在样品中流动时不再偏转,霍尔电势差就是由这个电场建立起来的。 如果是N 型样品,则横向电场与前者相反,所以N 型样品和P 型样品的霍尔电势差有不同的符号,据此可以判断霍尔元件的导电类型。 设P 型样品的载流子浓度为p ,宽度为ω,厚度为d ,通过样品的电流: d v q p I H ?ω???= ,则空穴的速度:)d q p /(I v H ?ω??=代入(3)式有 d q p B I B v E H ?ω???=?= (4) 上式两边各乘以ω ,便得到 d B I R d q p B I E U H H H H ??=???= ω?= (5)

关于单个线圈的磁场分布的ansys命令流

一个关于单个线圈的磁场分布的ansys命令流 自己随便编的一个apdl程序,可以求解任意一个尺寸不是很大的线圈的磁场分布,当然中心磁场是可以得到的哦。使用时把apdl拷到txt文件中,文件名改为fuc_k,txt格式改成mac,放到ansys的工作目录里,打开ansys,在命令栏里输入fuc_k就可以啦。(部分ansys需要清除数据库,就是新建个ansysdb,然后输入)或者直接复制粘贴好了^^;有问题联系我为什么文档上传不让通过啊,因为简洁么?简单么?啊啊啊啊啊,实在懒得说明,要不是为了做那个新手任务,才懒得传呢,f_u_c_ku_sun of the beach /clear /title,lovrcj keyw,magnod,1 *ask,l,l,0.81 ! 高度 *ask,n,n,26124 ! 匝数 *ask,a2,a2,0.272 ! 外径 *ask,a1,a1,0.2 ! 内径 *ask,i,i,143 ! 电流 s=l*(a2-a1) j=n*i/s /prep7 ! 前处理 et,1,53 !单元属性 keyopt,1,3,1 et,2,110 keyopt,2,3,1 mp,murx,1,1 ! 材料属性 mp,murx,2,1 rectng,a1,a2,-l/2,l/2 ! 建模 rectng,0,1,-1,1 rectng,,1.5,-1.5,1.5 rectng,,2,-2,2 rectng,,2.5,-2.5,2.5 aovlap,all ! 叠分 numcmp,all aplot asel,,,,1 ! 赋予材料属性 aatt,2,,1 asel,,,,4 aatt,1,,2 mshape,0,2d asel,,,,1 ! 划分网格 aesi,all,0.005 amesh,all asel,,,,5 aesi,all,0.02 amesh,all asel,,,,2

15 磁场对电流的作用习题详解

习题四 1.如图4-1所示,abc 是弯成直角的导线,40cm ab =,30cm bc =,通以电流I ,并放在和均匀磁场B 垂直的平面内,则导线所受到磁场力为 [ ] (A )0.3IB ; (B )0.4IB ; (C )0.5IB ; (D )0.7IB 。 答案:C 解:由F Il B =?得ab F I ab B =?,方向垂直于ab ;bc F Ibc B =?,方向垂直于bc 。又由图中几何关系知ab bc F F ⊥,所以整个导线受力为 0.5F IB == 2.两个在同一平面内的同心圆线圈,大圆半径为R ,通有电流I 1,小圆半径为r ,通有电流I 2,电流方向如图4-2所示,且r R <<,那么,在小线圈从图示位置转到两线圈平面相互垂直位置的过程中,磁力矩所作的功A 为 [ ] (A )201 2 I I r R μπ-; (B )201 2 2I I r R μπ-; (C )201 2 I I r R μπ; (D )201 2 2I I r R μπ。 答案:B 解:因r R <<,所以大圆电流在小圆范围产生的磁场可看作是均匀的,且近似等于大圆电流在其圆心O 处产生的磁场,即 102I O I B R μ= ;小圆由平行位置转过90?时磁力矩做功为 12201 222 (0)2I O I A I I r B I r R μππ=?Φ=-=- 3.如图4-3所示,平行放置在同一平面内的载流长直导线,要使AB 导线受的安培力等于零,则x 的值为 [ ] (A )13a ; (B )23a ; (C )12a ; (D )3 4a 。 答案:A 解:导线AB 上长度为l 的一段受其左、右两导线的安培力分别为 010********,222()2() I I I I F IlB Il Il F IlB Il Il x x a x a x μμμμππππ======--. 令12F F =,得12()x a x =-,由此解得1 3 x a =。 4.如图4-4,匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是 [ ] I 1图4-2 图4-3 2 I 图 4-1 B b c F bc F

相关文档
相关文档 最新文档