文档库 最新最全的文档下载
当前位置:文档库 › 气—气传热综合实验操作讲义

气—气传热综合实验操作讲义

气—气传热综合实验操作讲义
气—气传热综合实验操作讲义

深对其概念和影响因素的理解,并应用线性回归分析方法,确定关联式 Nu = A * Re * Pr

实验研究,测定其准数关联式 Nu = B * Re 中常数 B 、m 的值和强化比 Nu / Nu 0 ,了解强化

② 对α i 的实验数据进行线性回归,求关联式 Nu=ARe Pr 中常数 A 、m 的值。

② 对α i 的实验数据进行线性回归,求关联式 Nu=BRe 中常数 B 、m 的值。

气—气传热综合实验讲义

一、 实验目的:

1. 通过对空气—水蒸气简单套管换热器的实验研究,掌握对流传热系数 α i 的测定方法,加

m 0.4

中常数 A 、m 的值;

2. 通过对管程内部插有螺旋线圈和采用螺旋扁管为内管的空气—水蒸气强化套管换热器的

m

传热的基本理论和基本方式;

3. 了解套管换热器的管内压降 ?p 和 Nu 之间的关系;

二、 实验内容:

实验一:

① 测定 5~6 个不同流速下简单套管换热器的对流传热系数α i 。

m 0.4

③ 测定 5~6 个不同流速下简单套管换热器的管内压降 ?p 1。

实验二:

① 测定 5~6 个不同流速下强化套管换热器的对流传热系数α i 。

m

③ 测定 5~6 个不同流速下强化套管换热器的管内压降 ?p 2 。并在同一坐标系下绘制普通管

?p 1 ~Nu 与强化管 ?p 2 ~Nu 的关系曲线。比较实验结果。

④ 同一流量下,按实验一所得准数关联式求得 Nu 0,计算传热强化比 Nu/Nu 0。

三、 实验原理

实验一 普通套管换热器传热系数及其准数关联式的测定

1. 对流传热系数α i 的测定

对流传热系数α i 可以根据牛顿冷却定律,用实验来测定。

式中:α i —管内流体对流传热系数,W/(m ?℃);

S i —管内换热面积,m ;

t i1 + t i 2

V i ρ i

式中:Vi —冷流体在套管内的平均体积流量,m / h ;

ρi —冷流体的密度,kg /m 。

t i1 + t i 2

α i =

Q i

?t m ? S i

(2-1)

2

Q i —管内传热速率,W ; 2

?t mi —内管壁面温度与内管流体温度的平均温差,℃。

平均温差由下式确定:

?t mi = t w - ( ) (2-2)

2

式中:t i1,t i2—冷流体的入口、出口温度,℃;

t w —壁面平均温度,℃;

因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度 和壁面平均温度近似相等,用 t w 来表示。 管内换热面积:

S i = πd i L i (2-3)

式中:d i —内管管内径,m ;

L i —传热管测量段的实际长度,m ;

由热量衡算式:

Q i = W i c pi (t i 2 - t i1) (2-4)

其中质量流量由下式求得:

W i = (2-5)

3600

3

cp i —冷流体的定压比热,kJ / (kg·℃); 3

cp i 和 ρi 可根据定性温度 t m 查得, t m = 为冷流体进出口平均温度。t i1、t i2、

2

tw 、V i 可采取一定的测量手段得到。

2. 对流传热系数准数关联式的实验确定

Nu i = A Re i Pr in .

其中: Nu i = , Re i = i i i , Pr =

Nu i = A Re i Pr

(2-7)

比是影响传热效果和阻力系数的重要因素。科学家通过实验研究总结了形式为 Nu = B Re 的

流体在管内作强制湍流,处于被加热状态,准数关联式的形式为

m

(2-6)

λi

物性数据 λi 、cp i 、ρi 、μi 可根据定性温度 t m 查得。经过计算可知,对于管内被加热的

空气,

普兰特准数 Pri 变化不大,可以认为是常数,则关联式的形式简化为:

m 0.4

i

通过实验确定不同流量下的 Re i 与

Nu i ,然后用线性回归方法确定 A 和 m 的值。

实验二、强化套管换热器传热系数及其准数关联式及强化比的测定

强化传热又被学术界称为第二代传热技术,它能减小初设计的传热面积,以减小换热器 的体积和重量;提高现有换热器的换热能力;使换热器能在较低温差下工作;并且能够减少 换热器的阻力以减少换热器的动力消耗,更有效地利用能源和资金。强化传热的方法有多种, 本实验装置是采用在换热器内管插入螺旋线圈的方法来强化传热。

螺旋线圈的结构图如图 2-1 所示,螺旋线圈由直径 3mm 以下的铜丝和钢丝按一定节距绕 成。将金属螺旋线圈插入并固定在管内,即可构成一种强化传热管。在近壁区域,流体一面 由于螺旋线圈的作用而发生旋转,一面还周期性地受到线圈的螺旋金属丝的扰动,因而可以 使传热强化。由于绕制线圈的金属丝直径很细,流体旋流强度也较弱,所以阻力较小,有利

于节省能源。螺旋线圈是以线圈节距 H 与管内径 d 的比值为主要技术参数,且节距与管内径 m

经验公式,其中 B 和 m 的值因螺旋丝尺寸不同而不同。

图 2-1 螺旋线圈强化管内部结构

在本实验中,采用实验2-1 中的实验方法确定不同流量下的Re i与Nu i,用线性回归方法可确定 B 和m 的值。

单纯研究强化手段的强化效果(不考虑阻力的影响),可以用强化比的概念作为评判准则,它的形式是:Nu Nu0,其中Nu 是强化管的努塞尔准数,Nu0是普通管的努塞尔准数,显然,强化比Nu Nu0>1,而且它的值越大,强化效果越好。需要说明的是,如果评判强化方式的真正效果和经济效益,则必须考虑阻力因素,阻力系数随着换热系数的增加而增加,从而导

致换热性能的降低和能耗的增加,只有强化比高且阻力系数小的强化方式,才是最佳的强化

方法。

四、实验装置与流程

1.实验流程图及基本结构参数:

如图2-2 所示,实验装置的主体是两根平行的套管换热器,内管为紫铜材质,外管为不

锈钢管,两端用不锈钢法兰固定。实验的蒸汽发生釜为电加热釜,内有 2 根 2.5kW 螺旋形电

加热器,用200 伏电压加热(可由固态调压器调节)。空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热器。管程蒸汽由加热釜发生后自

然上升,经支路控制阀选择逆流进入换热器壳程,由另一端蒸汽出口自然喷出,达到逆流换

热的效果。

20

21 东

V t 0

= 23.8 *

图 2-2 空气-水蒸气传热综合实验装置流程图(A 型)

实验装置:

1—普通套管换热器;2—内插有螺旋线圈的强化套管换热器;

3—蒸汽发生器;4—旋涡气泵; 5—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀; 12、13—蒸汽放空口;14—传热系数分布实验套盒(本实验不使用); 15—紫铜管;16—加水口;17—放水口;18—液位计;

19—热点偶温度测量实验测试点接口;20—普通管测压口;21—强化管测压口 2. 实验的测量手段 1) 空气流量的测量

空气主管路由孔板与差压变送器和二次仪表组成空气流量计,孔板流量计为标准设计, 其流量计的计算式为:

式中: ?P —孔板流量计两端压差,KPa ;

t 0 —流量计处温度(本实验装置为空气入口温度),℃; ρ t 0 — t 0 温度下的空气密度,kg/m 3;

实验装置结构参数见下面说明:

V i = V t 0 ?

273 + t m

Vt0 —冷流体进入换热器时的体积流量,m / h ;

由于被测管段内温度的变化,还需对所测得体积流量进行进一步的校正:

(2-8)

273 + t 0

3

2) 温度的测量

实验中壁面温度是用铜-康铜热电偶测量的,温度与热电势的关系为:

T(℃)=1.2705+23.518×E(mv) (2-9) 冷流体进出口温度是用 Cu50 热电阻温度计测量得到的。

五、 注意事项

1. 由于采用热电偶测温,所以实验前要检查冰桶中是否有冰水混合物共存。检查热电偶的冷 端,是否全部浸没在冰水混合物中。

2. 检查蒸汽加热釜中的水位是否在正常范围内。特别是每个实验结束后,进行下一实验之前, 如果发现水位过低,应及时补给水量。

3. 必须保证蒸汽上升管线的畅通。即在给蒸汽加热釜电压之前,两蒸汽支路控制阀(见图 2-2) 之一必须全开。在转换支路时,应先开启需要的支路阀,再关闭另一侧,且开启和关闭控制 阀必须缓慢,防止管线截断或蒸汽压力过大突然喷出。

4. 必须保证空气管线的畅通。即在接通风机电源之前,三个空气支路控制阀之一和旁路调节 阀(见图 2-2 所示)必须全开。在转换支路时,应先关闭风机电源,然后开启和关闭控制阀。

5. 调节流量后,应至少稳定 5~10 分钟后读取实验数据。 6. 实验中保持上升蒸汽量的稳定,不应改变加热电压,且保证蒸汽放空口一直有蒸汽放出。

六、 实验报告

1. 实验一的原始数据表、数据结果表(换热量、传热系数、各准数以及重要的中间计算结 果)、准数关联式的回归过程、结果与具体的回归方差分析,并以其中一组数据的计算举例。 2. 实验二的原始数据表、数据整理表(换热量、传热系数、各准数、Nu 0 和强化比,还包括 重要的中间计算结果)、准数关联式的回归结果。

3. 在同一双对数坐标系中绘制实验一、实验二的 Nu~Re 的关系图。 4. 在同一坐标系中绘制实验一、实验二的东P~Nu 的关系图。

5. 对实验结果进行分析与讨论。

图 2-3

七、 实验步骤

传热实验仿真主要设备介绍图如下图 2-3 所示:

真 仿传热实验仿真设备介绍图

普通套管实验操作:

⑴ 检查水槽液位计,若发现水量较少,打开注水阀 VA102,补充水量至 2/3 处; ⑵ 打开连通阀 VA101,使水槽与蒸汽发生器相通; ⑶ 打开普通套管蒸汽开关阀 VA104,确保蒸汽管路畅通; ⑷ 打开电源总开关,启动蒸汽发生器开关,加热蒸气;

⑸ 等待若干秒,待水蒸气进入套管换热器外管,当蒸气排出口有恒量蒸汽排出时,标志实验 可以开始;

⑹ 打开漩涡风机旁路阀 VA106 至最大;

⑺ 打开普通套管空气开关阀 VA107,确保空气管路畅通; ⑻ 启动漩涡风机开关;

⑼ 通过调节漩涡风机旁路阀 VA106 的开度,调节流量所需值,待数值稳定后,到“实验数据

一”面板点击“普通套管数据记录”按钮,记录实验数据至“实验报表” ⑽ 按照阀门 VA106 开度由大到小的顺序,记录 5~6 组实验数据 强化套管实验操作: ⑾ 关闭风机电源;

⑿ 缓慢开启强化管道蒸汽开关阀 VA105,再关闭普通套管蒸汽开关阀 VA104,使强化管路蒸

汽畅通;待蒸气排出口有恒量蒸汽排出,标志强化套管传热实验可以开始;

⒀将漩涡风机旁通阀VA106 开至最大,接通漩涡风机开关;

⒁调节漩涡风机旁通阀VA106 的开度,调节流量至所需值,带数值稳定后,倒“实验数据二”

面板点击“强化套管数据记录”按钮,记录实验数据至“实验报表”

⒂按照阀门VA106 开度由大到小的顺序,记录5~6 组实验数据

⒃关闭蒸汽发生器加热电源,待蒸气放空口没有蒸汽逸出,将漩涡风机旁通阀VA106 至全开,并关闭漩涡气泵开关,关闭总电源开关

⒄实验结束

参数设置:

到“参数设置”面板,改变强化套管、普通套管的半径、长度、蒸汽温度,重复以上步骤;

八、思考题

1.下列属于传热基本形式有:

A. 间壁换热

B. 混合换热

C. 辐射

答案:C

2."热能"总是:

A. 由热能高的物体传向热能低的物体

B. 由温度高的物体传向温度低的物体

C. 由比热大的物体传向比热小的物体

答案:B

3.间壁换热时,壁温总是:

A. 接近温度高的流体

B. 接近温度低的流体

C. 接近传热系数大的流体

答案:C

4.在本实验中的管壁温度Tw 应接近蒸汽温度,还是空气温度?可能的原因是:

A. 接近空气温度,这是因为空气处于流动状态,即强制湍流状态,a(空气)↑

B. 接近蒸汽温度,这是因为蒸汽冷凝传热膜系数,a(蒸)>>a(空)。

C. 不偏向任何一边,因为蒸汽冷凝a 和空气温度a 均对壁温有影响。

答案:B

5.以空气为被加热介质的传热实验中,当空气流量Va 增大时,壁温如何变化?

A. 空气流量Va 增大时,壁温Tw 升高。

B. 空气流量Va 增大时,壁温Tw 降低。

C. 空气流量Va 增大时,壁温Tw 不变。

答案:B

6.下列诸温度中,哪个做为确定物性参数的定性温度?

A. 介质的入口温度

B. 介质的出口温度

C. 蒸汽温度

D. 介质入口和出口温度的平均值

E. 壁温

答案:D

7.管内介质的流速对传热膜系数a 有何影响?

A. 介质流速u 增加,传热膜系数a 增加

B. 介质流速u 增加,传热膜系数a 降低

C. 介质流速u 增加,传热膜系数a 不变

答案:A

8.管内介质流速的改变,出口温度如何变化?

A. 介质流速u 升高,出口温度t2 升高

B. 介质流速u 升高,出口温度t2 降低

C. 介质流速u 升高,出口温度t2 不变

答案:B

9.蒸汽压强的变化,对a 关联式有无影响?

A. 蒸汽压强P↑,a 值↑,对a 关联式有影响

B. 蒸汽压强P↑,a 值不变,对a 关联式无影响

C. 蒸汽压强P↑,a 值↓,对a 关联式有影响

答案:B

10.改变管内介质的流动方向,总传热系数K 如何变化?

A. 改变管内介质的流动方向,总传热系数K 值增加

B. 改变管内介质的流动方向,总传热系数K 值减小

C. 改变管内介质的流动方向,总传热系数K 值不变

答案:C

九、参考文献

[1] 冷士良. 化工单元过程及操作. 北京:化学工业出版社,2002

[2] 张金利等. 化工原理实验. 天津:天津大学出版社,2005

[3] 杨祖荣. 化工原理实验. 北京:化学工业出版社,2004 东方东

化工原理 传热综合实验报告 数据处理

化工原理 传热综合实验报告 数据处理 七、实验数据处理 1.蒸汽冷凝与冷空气之间总传热系数K 的测定,并比较冷空气以不同流速u 流过圆形直管时,总传热系数K 的变化。 实验时蒸汽压力:0.04MPa (表压力),查表得蒸汽温度T=109.4℃。实验装置所用紫铜管的规格162mm mm φ?、 1.2l m =,求得紫铜管的外表面积 200.010.060318576281.o S d l m m m ππ=??=??=。 根据2 4s s V V u A d π= =、0.012d m =,得到流速u ,见下表2: 表2 流速数据 取冷空气进、出口温度的算术平均值作为冷空气的平均温度,查得冷空气在不同温度下的比热容p c 、黏度μ、热传导系数λ、密度ρ,如下表3所示: 表3 查得的数据 t 进/℃ t 出/℃ t 平均/℃ ()p c J kg ????? ℃ Pa s μ? ()W m λ?????℃ ()3 kg m ρ-? 22.1 77.3 49.7 1005 0.0000196 0.0283 1.093 24.3 80.9 52.6 1005 0.0000197 0.02851 1.0831 26.3 82.7 54.5 1005 0.0000198 0.02865 1.0765 27.8 83 55.4 1005 0.0000198 0.02872 1.0765 29.9 83.6 56.75 1005 0.0000199 0.02879 1.0699 31.8 83.7 57.75 1005 0.00002 0.02886 1.0666 33.7 83.8 58.75 1005 0.0000200 0.02893 1.0633 35.6 84 59.8 1005 0.0000201 0.029 1.06 根据公式()()=V s p s p Q m c t t c t t ρ=--出进出进、 ()()ln m T t T t t T t T t ---?=--进出进出 , 求出Q 序号 ()31s V m h -? ()1u m s -? 1 2.5 6.140237107 2 5 12.28047421 3 7.5 18.42071132 4 10 24.56094843 5 12.5 30.70118553 6 15 36.84142264 7 17.5 42.98165975 8 20 49.12189685

传热实验实验报告-传热实验报告

传热实验 一、实验目的 1、了解换热器的结结构及用途。 2、学习换热器的操作方法。 3、了解传热系数的测定方法。 4、测定所给换热器的传热系数K。 5、学习应用传热学的概念和原理去分析和强化传热过程,并实验之。 二、实验原理 根据传热方程 Q=KA△ tm,只要测得传热速率 Q,冷热流体进出口温度和传 热面积 A,即可算出传热系数 K。在该实验中,利用加热空气和自来水通过列管 式换热器来测定 K, 只要测出空气的进出口温度、自来水进出口温度以及水和空 气的流量即可。Q 与自来水在工作过程中,如不考虑热量损失,则加热空气释放出的热量 1Q 得到的热量 Q 应相等,但实际上因热损失的存在,此两热量不等,实验中以 22为准。 三、实验流程和设备 实验装置由列管换热器、风机、空气电加热器、管路、转子流量计、温度计 等组成。空气走管程,水走壳程。列管式换热器的传热面积由管径、管数和管长 进行计算。 实验流程图: 空气进口水进口温度计 温度计列管式 转子流 换热器 转子流量计量计 风机温度计温度计 空气电 调节阀 加热器 传热系数K 测定实验流程图

四、实验步骤及操作要领 1、熟悉设备流程,掌握各阀门、转子流量计和温度计的作用。 2、实验开始时,先开水路,再开气路,最后再开加热器。 3、控制所需的气体和水的流量。 4、待系统稳定后,记录水的流量、进出口温度,记录空气的流量和进出 口温度,记录设备的有关参数。重复一次。 5、保持空气的流量不变,改变自来水的流量,重复第四步。 6、保持第 4 步水的流量,改变空气的流量,重复第四步。 7、实验结束后,关闭加热器、风机和自来水阀门。 五、实验数据记录和整理 1、设备参数和有关常数 换热流型错流;换热面积 0.4 ㎡ 2、实验数据记录 序号风机出口空气流量空气进口温空气出口温度℃水流量水进口温度℃水出口温度℃2 度℃L/h 压强 mHO 读数 m3/h 1 1.61611029.28018.921.9 2 1.61611029.48018.921.9 1 1.61611029.96018.922.4 2 1.61611029.96018.922.3 1 1.61611031.92019.024.8 2 1.61611032.02019.024.9 1 1.61111029.62019.123.0 2 1.61111029.62019.023.0 1 1.6611027.82019.021.3 2 1.6611027.82019.021.3 3、数据处理 空气流量水流量水的算术水的比热 传热速对数平均换热面传热系数K 的平均 序号平均温容 J/ m3/s kg/s率 J/s温度△ t m积 m2K W/m2K值 W/m2K 度℃( kg·℃) 10.00440.022220.404183278.86736.24790.419.2333 19.1717 20.00440.022220.404183278.86736.48160.419.1101

实验四气汽对流传热综合实验报告

化学实验教学中心 实验报告 化学测量与计算实验Ⅱ 实验名称:气-汽对流传热综合实验报告 学生姓名:学号: 院(系):年级:级班 指导教师:研究生助教: 实验日期: 2017.05.26 交报告日期: 2017.06.02

(二)强化管换热器传热系数、准数关联式及强化比的测定 强化传热又被学术界称为第二代传热技术,它能减小初设计的传热面积,以减小换热器的体积和重量;提高现有换热器的换热能力;使换热器能在较低温差下工作;并且能够减少换热器的阻力以减少换热器的动力消耗,更有效地利用能源和资金。强化传热的方法有多种,本实验装置是采用在换热器内管插入螺旋线圈的方法来强化传热的。 螺旋线圈的结构图如图1所示,螺旋线圈由直径 3mm以下的铜丝和钢丝按一定节距绕成。将金属螺旋 线圈插入并固定在管内,即可构成一种强化传热管。 在近壁区域,流体一面由于螺旋线圈的作用而发生旋 转,一面还周期性地受到线圈的螺旋金属丝的扰动,因而可以使传热强化。由于绕制线圈的金属丝直径很细,流体旋流强度也较弱,所以阻力较小,有利于节省能源。螺旋线圈是以线圈节距H与管内径d的比值技术参数,且长径比是影响传热效果和阻力系数的重要因素。科学家通过实验研究总结了形式为αα=Bααα的经验公式,其中B和m的值因螺旋丝尺寸不同而不同。 采用和光滑套管同样的实验方法确定不同流量下得Rei和αα,用线性回归方法可确定B和m的值。 单纯研究强化手段的强化效果(不考虑阻力的影响),可以用强化比的概念作为评 ?,其中αα是强化管的努塞尔准数,αα0是普通管判准则,它的形式是:αααα0 ?>1,而且它的值越大,强化效果越好。 的努塞尔准数,显然,强化比αααα0

导热系数实验报告

一、【实验目的】 用稳态法测定金属、空气、橡皮的导热系数。 二、【实验仪器】 导热系数测定仪、铜-康导热电偶、游标卡尺、数字毫伏表、台秤(公用)、杜瓦瓶、秒表、待测样品(橡胶盘、铝芯)、冰块 三、【实验原理】 1、良导体(金属、空气)导热系数的测定 根据傅里叶导热方程式,在物体内部,取两个垂直于热传导方向、彼此间相距为h 、温度分别为θ1、θ2的平行平面(设θ1>θ2),若平面面积均为S ,在t ?时间内通过面积S 的热量Q ?免租下述表达式: h S t Q ) (21θθλ-=?? (3-26-1) 式中, t Q ??为热流量;λ即为该物质的导热系数,λ在数值上等于相距单位长度的两平面的温度相差1个单位时,单位时间内通过单位面积的热量,其单位是)(K m W ?。 在支架上先放上圆铜盘P ,在P 的上面放上待测样品B ,再把带发热器的圆铜盘A 放在B 上,发热器通电后,热量从A 盘传到B 盘,再传到P 盘,由于A,P 都是良导体,其温度即可以代表B 盘上、下表面的温度θ1、θ2,θ1、θ2分别插入A 、P 盘边缘小孔的热电偶E 来测量。热电偶的冷端则浸在杜瓦瓶中的冰水混合物中,通过“传感器切换”开关G ,切换A 、P 盘中的热电偶与数字电压表的连接回路。由式(3-26-1)可以知道,单位时间内通过待测样品B 任一圆截面的热流量为 冰水混合物 电源 输入 调零 数字电压表 FD-TX-FPZ-II 导热系数电压表 T 2 T 1 220V 110V 导热系数测定仪 测1 测1 测2 测2 表 风扇 A B C 图4-9-1 稳态法测定导热系数实验装置

2 21)(B B R h t Q πθθλ-=?? (3-26-2) 式中,R B 为样品的半径,h B 为样品的厚度。当热传导达到稳定状态时,θ1和θ2的值不变, 遇事通过B 盘上表面的热流量与由铜盘P 向周围环境散热的速率相等,因此,可通过铜盘P 在稳定温度T 2的散热速率来求出热流量 t Q ??。实验中,在读得稳定时θ1和θ2后,即可将B 盘移去,而使A 盘的底面与铜盘P 直接接触。当铜盘P 的温度上升到高于稳定时的θ2值若干摄氏度后,在将A 移开,让P 自然冷却。观察其温度θ随时间t 变化情况,然后由此求出铜盘在θ2的冷却速率 2 θθθ=??t ,而2 θθθ=??t mc ,就是铜盘P 在温度为θ2时的散热速率。 2、不良导体(橡皮)的测定 导热系数是表征物质热传导性质的物理量。材料结构的变化与所含杂质的不同对材料导热系数数值都有明显的影响,因此材料的导热系数常常需要由实验去具体测定。 测量导热系数在这里我们用的是稳态法,在稳态法中,先利用热源对样品加热,样品内部的温差使热量从高温向低温处传导,样品内部各点的温度将随加热快慢和传热快慢的影响而变动;适当控制实验条件和实验参数可使加热和传热的过程达到平衡状态,则待测样品内部可能形成稳定的温度分布,根据这一温度分布就可以计算出导热系数。而在动态法中,最终在样品内部所形成的温度分布是随时间变化的,如呈周期性的变化,变化的周期和幅度亦受实验条件和加热快慢的影响,与导热系数的大小有关。 本实验应用稳态法测量不良导体(橡皮样品)的导热系数,学习用物体散热速率求传导速率的实验方法。 1898年C .H .Le e s .首先使用平板法测量不良导体的导热系数,这是一种稳态法,实验中,样品制成平板状,其上端面与一个稳定的均匀发热体充分接触,下端面与一均匀散热体相接触。由于平板样品的侧面积比平板平面小很多,可以认为热量只沿着上下方向垂直传递,横向由侧面散去的热量可以忽略不计,即可以认为,样品内只有在垂直样品平面的方向上有温度梯度,在同一平面内,各处的温度相同。 设稳态时,样品的上下平面温度分别为 12θθ,根据傅立叶传导方程,在t ?时间内通过 样品的热量Q ?满足下式:S h t Q B 21θθλ-=?? (1) 式中λ为样品的导热系数,B h 为样品的厚度,S 为样品的平面面积,实验中样品为圆盘状。设圆盘样品的直径为B d ,则半径为B R ,则由(1)式得: 2 21B B R h t Q πθθλ-=?? (2) 实验装置如图1所示、固定于底座的三个支架上,支撑着一个铜散热盘P ,散热盘P 可以借助底座内的风扇,达到稳定有效的散热。散热盘上安放面积相同的圆盘样品B ,样品B 上放置一个圆盘状加热盘C ,其面积也与样品B 的面积相同,加热盘C 是由单片机控制的自适应电加热,可以设定加热盘的温度。

对流传热实验实验报告

实验三 对流传热实验 一、实验目的 1.掌握套管对流传热系数i α的测定方法,加深对其概念和影响因素的理解,应用线性回归法,确定关联式4.0Pr Re m A Nu =中常数A 、m 的值; 2.掌握对流传热系数i α随雷诺准数的变化规律; 3.掌握列管传热系数Ko 的测定方法。 二、实验原理 ㈠ 套管换热器传热系数及其准数关联式的测定 ⒈ 对流传热系数i α的测定 在该传热实验中,冷水走内管,热水走外管。 对流传热系数i α可以根据牛顿冷却定律,用实验来测定 i i i S t Q ??= α (1) 式中:i α—管内流体对流传热系数,W/(m 2?℃); Q i —管内传热速率,W ; S i —管内换热面积,m 2; t ?—内壁面与流体间的温差,℃。 t ?由下式确定: 2 2 1t t T t w +- =? (2) 式中:t 1,t 2 —冷流体的入口、出口温度,℃; T w —壁面平均温度,℃; 因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,用t w 来表示。 管内换热面积: i i i L d S π= (3) 式中:d i —内管管内径,m ; L i —传热管测量段的实际长度,m 。

由热量衡算式: )(12t t Cp W Q m m i -= (4) 其中质量流量由下式求得: 3600 m m m V W ρ= (5) 式中:m V —冷流体在套管内的平均体积流量,m 3 / h ; m Cp —冷流体的定压比热,kJ / (kg ·℃); m ρ—冷流体的密度,kg /m 3。 m Cp 和m ρ可根据定性温度t m 查得,2 2 1t t t m +=为冷流体进出口平均温度。t 1,t 2, T w , m V 可采取一定的测量手段得到。 ⒉ 对流传热系数准数关联式的实验确定 流体在管内作强制湍流,被加热状态,准数关联式的形式为 n m A Nu Pr Re =. (6) 其中: i i i d Nu λα= , m m i m d u μρ=Re , m m m Cp λμ=Pr 物性数据m λ、m Cp 、m ρ、m μ可根据定性温度t m 查得。经过计算可知,对于管内被加热的空气,普兰特准数Pr 变化不大,可以认为是常数,则关联式的形式简化为: 4.0Pr Re m A Nu = (7) 这样通过实验确定不同流量下的Re 与Nu ,然后用线性回归方法确定A 和m 的值。 ㈡ 列管换热器传热系数的测定 管壳式换热器又称列管式换热器。是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。这种换热器结构较简单,操作可靠,可用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是目前应用最广的类型。由壳体、传热管束、管板、折流板(挡板)和管箱等部件组成。壳体多为圆筒形,

导热系数实验报告材料..

一、【实验目的】 用稳态法测定金属、空气、橡皮的导热系数。 二、【实验仪器】 导热系数测定仪、铜-康导热电偶、游标卡尺、数字毫伏表、台秤(公用)、杜瓦瓶、秒表、待测样品(橡胶盘、铝芯)、冰块 三、【实验原理】 1、良导体(金属、空气)导热系数的测定 根据傅里叶导热方程式,在物体内部,取两个垂直于热传导方向、彼此间相距为h 、温度分别为θ1、θ2的平行平面(设θ1>θ2),若平面面积均为S ,在t ?时间内通过面积S 的热量Q ?免租下述表达式: h S t Q ) (21θθλ-=?? (3-26-1) 式中, t Q ??为热流量;λ即为该物质的导热系数,λ在数值上等于相距单位长度的两平面的温度相差1个单位时,单位时间内通过单位面积的热量,其单位是)(K m W ?。 在支架上先放上圆铜盘P ,在P 的上面放上待测样品B ,再把带发热器的圆铜盘A 放在 冰水混合物 电源 输入 调零 数字电压表 FD-TX-FPZ-II 导热系数电压表 T 2 T 1 220V 110V 导热系数测定仪 测1 测1 测2 测2 表 风扇 A B C 图4-9-1 稳态法测定导热系数实验装置

B 上,发热器通电后,热量从A 盘传到B 盘,再传到P 盘,由于A,P 都是良导体,其温度即可以代表B 盘上、下表面的温度θ1、θ2,θ1、θ2分别插入A 、P 盘边缘小孔的热电偶E 来测量。热电偶的冷端则浸在杜瓦瓶中的冰水混合物中,通过“传感器切换”开关G ,切换A 、P 盘中的热电偶与数字电压表的连接回路。由式(3-26-1)可以知道,单位时间内通过待测样品B 任一圆截面的热流量为 2 21)(B B R h t Q πθθλ-=?? (3-26-2) 式中,R B 为样品的半径,h B 为样品的厚度。当热传导达到稳定状态时,θ1和θ2的值不变, 遇事通过B 盘上表面的热流量与由铜盘P 向周围环境散热的速率相等,因此,可通过铜盘P 在稳定温度T 2的散热速率来求出热流量 t Q ??。实验中,在读得稳定时θ1和θ2后,即可将B 盘移去,而使A 盘的底面与铜盘P 直接接触。当铜盘P 的温度上升到高于稳定时的θ2值若干摄氏度后,在将A 移开,让P 自然冷却。观察其温度θ随时间t 变化情况,然后由此求出铜盘在θ2的冷却速率 2 θθθ=??t ,而2 θθθ=??t mc ,就是铜盘P 在温度为θ2时的散热速率。 2、不良导体(橡皮)的测定 导热系数是表征物质热传导性质的物理量。材料结构的变化与所含杂质的不同对材料导热系数数值都有明显的影响,因此材料的导热系数常常需要由实验去具体测定。 测量导热系数在这里我们用的是稳态法,在稳态法中,先利用热源对样品加热,样品内部的温差使热量从高温向低温处传导,样品内部各点的温度将随加热快慢和传热快慢的影响而变动;适当控制实验条件和实验参数可使加热和传热的过程达到平衡状态,则待测样品内部可能形成稳定的温度分布,根据这一温度分布就可以计算出导热系数。而在动态法中,最终在样品内部所形成的温度分布是随时间变化的,如呈周期性的变化,变化的周期和幅度亦受实验条件和加热快慢的影响,与导热系数的大小有关。 本实验应用稳态法测量不良导体(橡皮样品)的导热系数,学习用物体散热速率求传导速率的实验方法。 1898年C .H .Le e s .首先使用平板法测量不良导体的导热系数,这是一种稳态法,实验中,样品制成平板状,其上端面与一个稳定的均匀发热体充分接触,下端面与一均匀散热体相接触。由于平板样品的侧面积比平板平面小很多,可以认为热量只沿着上下方向垂直传递,横向由侧面散去的热量可以忽略不计,即可以认为,样品内只有在垂直样品平面的方向上有温度梯度,在同一平面内,各处的温度相同。 设稳态时,样品的上下平面温度分别为 12θθ,根据傅立叶传导方程,在t ?时间内通过 样品的热量Q ?满足下式:S h t Q B 21θθλ-=?? (1) 式中λ为样品的导热系数,B h 为样品的厚度,S 为样品的平面面积,实验中样品为圆盘状。设圆盘样品的直径为B d ,则半径为B R ,则由(1)式得: 2 21B B R h t Q πθθλ-=?? (2)

传热膜系数实验报告

化工原理实验报告 实验三 传热膜系数测定实验 实验日期:2015年12月30日 班级: 学生姓名: 学号: 同组人: 报告摘要 本实验选用牛顿冷却定律作为对流传热实验的测试原理,通过建立不同体系的传热系统,即水蒸汽—空气传热系统、分别对普通管换热器和强化管换热器进行了强制对流传热实验研究。确定了在相应条件下冷流体对流传热膜系数的关联式。此实验方法可以测出蒸汽冷凝膜系数和管内对流传热系数。采用由风机、孔板流量计、蒸汽发生器等组成的自动化程度较高的装置,让空气走内管,蒸汽走环隙,用计算机在线采集与控制系统测量了孔板压降、进出口温度和两个壁温,计算了传热膜系数α,并通过作图确定了传热膜系数准数关系式中的系数A 和指数m (n 取0.4),得到了半经验关联式。实验还通过在内管中加入混合器的办法强化了传热,并重新测定了α、A 和m 。 二、 目的及任务 1.掌握传热膜系数α及传热系数K 的测定方法; 2.通过实验掌握确定传热膜系数准数关系式中的系数A 和指数m 的方法; 3.了解工程上强化传热的措施。 三、基本原理 对流传热的核心问题是求算传热膜系数α,当流体无相变时对流传热准数关 系式的一般形式为:p n m Gr A Nu Pr Re 对于强制湍流而言。Gr 数可忽略,即

n m A Nu Pr Re = 本实验中,可用图解法和最小二乘法计算上述准数关系式中的指数m 、n 和系数A 。 用图解法对多变量方程进行关联时,要对不同变量Re 和Pr 分别回归。本实验可简化上式,即取n=0.4(流体被加热)。这样,上式即变为单变量方程,在两边取对数,得到直线方程为 Re lg lg Pr lg 4.0m A Nu += 在双对数坐标中作图,求出直线斜率,即为方程的指数m 。在直线上任取一点函数值带入方程中,则可得系数A ,即 m Nu A Re Pr 4.0= 用图解法,根据实验点确定直线位置有一定人为性。而用最小二乘法回归,可得到最佳关联结果。应用计算机辅助手段,对多变量方程进行一次回归,就能的道道A 、m 、n 。 对于方程的关联,首先要有Nu 、Re 、Pr 的数据组。其特征数定义式分别为 μρ du = Re , λμ Cp = Pr , λαd Nu = 实验中改变空气的流量,以改变Re 值。根据定性温度(空气进、出口温度的算数平均值)计算对应的Pr 值。同时,由牛顿冷却定律,求出不同流速下的传热膜系数值,进而求得Nu 值。 牛顿冷却定律为 Q=αA △t m 式中α——传热膜系数,W/(m 2.℃);

气—气传热综合实验操作讲义

深对其概念和影响因素的理解,并应用线性回归分析方法,确定关联式 Nu = A * Re * Pr 实验研究,测定其准数关联式 Nu = B * Re 中常数 B 、m 的值和强化比 Nu / Nu 0 ,了解强化 ② 对α i 的实验数据进行线性回归,求关联式 Nu=ARe Pr 中常数 A 、m 的值。 ② 对α i 的实验数据进行线性回归,求关联式 Nu=BRe 中常数 B 、m 的值。 气—气传热综合实验讲义 一、 实验目的: 1. 通过对空气—水蒸气简单套管换热器的实验研究,掌握对流传热系数 α i 的测定方法,加 m 0.4 中常数 A 、m 的值; 2. 通过对管程内部插有螺旋线圈和采用螺旋扁管为内管的空气—水蒸气强化套管换热器的 m 传热的基本理论和基本方式; 3. 了解套管换热器的管内压降 ?p 和 Nu 之间的关系; 二、 实验内容: 实验一: ① 测定 5~6 个不同流速下简单套管换热器的对流传热系数α i 。 m 0.4 ③ 测定 5~6 个不同流速下简单套管换热器的管内压降 ?p 1。 实验二: ① 测定 5~6 个不同流速下强化套管换热器的对流传热系数α i 。 m ③ 测定 5~6 个不同流速下强化套管换热器的管内压降 ?p 2 。并在同一坐标系下绘制普通管 ?p 1 ~Nu 与强化管 ?p 2 ~Nu 的关系曲线。比较实验结果。 ④ 同一流量下,按实验一所得准数关联式求得 Nu 0,计算传热强化比 Nu/Nu 0。 三、 实验原理 实验一 普通套管换热器传热系数及其准数关联式的测定 1. 对流传热系数α i 的测定 对流传热系数α i 可以根据牛顿冷却定律,用实验来测定。

套管换热器传热实验实验报告数据处理

套管换热器传热实验实验报告数据处理 我们组做的是实验I : 1, Q=m s1c 1 △t 1 求K 得先求Q Q=m s 1C 1△t 1 ,其中,C 1=所以得先求m s 1 , C 1, △t 1, ◇ 1m s1 =V s1 ρ 要得求V s1,V s1=u 1A ,V s1 =C 0A 0ρρρ/o (2)-gR C 0为空流系数,C 0=0.855,A 0为空口面积,A 0的计算方法如下:A 0 =π4 d 02 , d 0=20.32 mm,故 A 0= π4 ×(20.32 1000 )2=3.243293×10-4 m 2 R 为压计差读数 A=π4 d 2 ,d 为内管内径=20mm , 用内插法求解空气密度 ρ 值 这样求得m s 1, ◇ 2 C 1 的求法为先查表的相近温度下空气的C 值,然后用内插法求得对应平均温 度对应的的C 1值 ◇ 3 求△t 1= t △ t 1 ,= t = t 1 + t 2 2 t 1 为进口温度 t 2 为出口温度 进口温度t 1的求解方法 由热电偶中的电位Vt ,按照公式求[]2 000000402.00394645.0t t V E t t ++=得

Et ,再由852.4901004.810608.1105574.15 43-??+?=---t E t 求得t 1值 出口温度t 2的求解方法 由热电偶中的电位Vt ,按照公式[]2 000000402.00394645.0t t V E t t ++=求得 Et ,再由852.49010 04.810608.1105574.15 43-??+?=---t E t 求得t 2值 由以上步骤求出 Q 2 ,由Q=KA △t m 求出K 值 K= Q A △t m Q 由第一步已经求出,A 为内管内径对应的面积,A=2π rL ,r=17.8mm=0.0178 m, A=2×3.14×0.0178×1.224=0.13682362 m 2 3 ,求Re ,Nu 流体无相变强制湍流经圆形直管与管壁稳定对流传热时,对流传热准数关联式的函数关系为: (,,)l Nu f Re Pr d = 对于空气,在实验范围内,Pr 准数基本上为一常数;当管长与管径的比值大于50 时,其值对 Nu 的影响很小;则 Nu 仅为 Re 的函数,故上述函数关系一般可以处理成: m Nu aRe = 式中,a 和 m 为待定常数。 Re=du ρ μ d=2×0.0178 m =0.0356 m , u=Vs/(π×0.01782 )μ 和ρ用内插法,先查表 的相近温度的μ,ρ,再用线性关系计算求得。 测量空气一侧管壁的中区壁温T W ,由热电偶按前面公式求得;由下式可以计算空气与管壁

导热系数测量实验报告

导热系数测量实验报告 篇一:导热系数实验报告 实验用稳态平板法测定不良导体的导热系数实验报告 一、实验目的. (1)用稳态平板法测定不良导体的导热系数. (2)利用物体的散热速率求传热速率. 二、实验器材. 实验装置、红外灯、调压器、杜瓦瓶、数字式电压表. 三、实验原理. 导热是物体相互接触时,由高温部分向低温部分传播热量的过程.当温度的变化只是沿着一个方向(设z方向)进行时,热传导的基本公式可写为 dT dQ=?λ ????????? ---------------------------------------------() 它表示在dt时间内通过dS面积的

热量dQλ为导热系数,它的大小由物体????dT 本身的物理性质决定,单位为W????1????1,它是表征物质导热性能大小的物理量,式中符号表示热量传递向着温度降低的方向进行. 在图中,B为待测物,它的上下表面分别和上下铜、铝盘接触,热量由高温铝盘通过待测物B向低温铜盘传递.若B很薄,则通过B侧面向周围环境的散热量可以忽略不计,视热量只沿着垂直待测板B的方向传递.那么在稳定导热(即温度场中各点的温度不随时间而变)的情况下,在?t时间内,通过面积为S、厚度为L的匀质圆板的热量为??? ?????? ---------------------------------------------()式中,???为匀质圆板两板面的恒定温差,若把()式写成 ?Q=?λ ??????

=?λ?? ---------------------------------------------()的形式,那么???便为待测物的导热速率,只要知道了导热速率,由()式即可求出λ. 实验中,使上铝盘A和下铜盘P分别达到恒定温度??1、??2,并设??1>??2,即热量由上而下传递,通过下铜盘P向周围散热.因为??1和??2不变,所以,通过B的热量就等于C向周围散发的热量,即B的导热速率等于C 的散热速率.因此,只要求出了C在温度??2时的散热速率,就求出了B的导热速率???. 因为P的上表面和B的下表面接触,所以C的散热面积只有下表面面积和侧面积之和,设为????,而实验中冷却曲线是C全部裸露于空气中测出来的,即在P的上下表面和侧面积都散热的情况下记录的.设其全部表面积为??全,根据散热速率与散热面积成正比的关系可得??? ?????? ???

化工原理实验传热实验报告

传热膜系数测定实验(第四组) 一、实验目的 1、了解套管换热器的结构和壁温的测量方法 2、了解影响给热系数的因素和强化传热的途径 3、体会计算机采集与控制软件对提高实验效率的作用 4、学会给热系数的实验测定和数据处理方法 二、实验内容 1、测定空气在圆管内作强制湍流时的给热系数α1 2、测定加入静态混合器后空气的强制湍流给热系数α1’ 3、回归α1和α1’联式4 .0Pr Re ??=a A Nu 中的参数A 、a *4、测定两个条件下铜管内空气的能量损失 二、实验原理 间壁式传热过程是由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热三个传热过程所组成。由于过程复杂,影响因素多,机理不清楚,所以采用量纲分析法来确定给热系数。 1)寻找影响因素 物性:ρ,μ ,λ,c p 设备特征尺寸:l 操作:u ,βgΔT 则:α=f (ρ,μ,λ,c p ,l ,u ,βgΔT ) 2)量纲分析 ρ[ML -3],μ[ML -1 T -1],λ[ML T -3 Q -1],c p [L 2 T -2 Q -1],l [L] ,u [LT -1], βg ΔT [L T -2], α[MT -3 Q -1]] 3)选基本变量(独立,含M ,L ,T ,Q-热力学温度) ρ,l ,μ, λ 4)无量纲化非基本变量 α:Nu =αl/λ u: Re =ρlu/μ c p : Pr =c p μ/λ βgΔT : Gr =βgΔT l 3ρ2/μ2 5)原函数无量纲化 ??? ? ???=223,,μρβλμμρλαtl g c lu F l p 6)实验 Nu =ARe a Pr b Gr c 强制对流圆管内表面加热:Nu =ARe a 圆管传热基本方程: m t A K t T t T t T t T A K Q ???=-----?=111 22112211 1ln ) ()( 热量衡算方程: )()(12322111t t c q T T c q Q p m p m -=-= 圆管传热牛顿冷却定律: 2 2112211 22211221121 1ln ) ()(ln )()(w w w w w w w w T T T T T T T T A t t t t t t t t A Q -----?=-----?=αα 圆筒壁传导热流量:)] /()ln[)()()/ln(11221122121 2w w w w w w w w t T t T t T t T A A A A Q -----?-?=δλ 空气流量由孔板流量测量:54 .02.26P q v ??= [m 3h -1,kPa] 空气的定性温度:t=(t 1+t 2)/2 [℃]

传热实验实验报告

一、 实验名称: 传热实验 二、实验目的: 1.熟悉套管换热器的结构; 2.测定出K 、α,整理出e R N -u 的关系式,求出m A 、. 三、实验原理: 本实验有套管换热器4套,列管式换热器4套,首先介绍套管换热器。 套管换热器管间进饱和蒸汽,冷凝放热以加热管内的空气,实验设备如图2-2-5-1(1)所示。 传热方式为:冷凝—传导—对流 1、传热系数可用下式计算: ]/[2m k m W t A q K m ???= (1) 传热实验

图2-2-5-1(1) 套管换热器示意图 式中:q ——传热速率[W] A ——传热面积[m 2] △t m —传热平均温差[K] ○ 1传热速率q 用下式计算: ])[(12W t t C V q p S -=ρ (2) 式中:3600/h S V V =——空气流量[m 3/s] V h ——空气流量[m 3/h] ρ——空气密度[kg/m 3 ],以下式计算: ]/)[273(4645.031 m kg t R p P a ++=ρ (3) Pa ——大气压[mmHg] Rp ——空气流量计前表压[mmHg] t 1——空气进换热器前的温度[℃] Cp ——空气比热[K kg J ?/],查表或用下式计算: ]/[04.01009K kg J t C m p ?+= (4) t m =(t 1+t 2)/2——空气进出换热器温度的平均值(℃) t 2——空气出口温度[℃] ②传热平均面积A m :

][2m L d A m m π= (5) 式中:d m =传热管平均直径[m] L —传热管有效长度[m ] ③传热平均温度差△t m 用逆流对数平均温差计算: T ←——T t 1——→t 2 )(),(2211t T t t T t -=?-=? 2 1 2 1ln t t t t t m ???-?= ? (6) 式中:T ——蒸汽温度[℃] 2、传热膜系数(给热系数)及其关联式 空气在圆形直管内作强制湍流时的传热膜系数可用下面准数关联式表示: n r m e P AR Nu = (7) 式中:N u ——努塞尔特准数 R e ——雷诺准数 P r ——普兰特准数 A ——系数,经验值为0.023

【20170424】传热综合实验讲义(学生版)-jidx要点

7.4 传热综合实验(20170424版本) 7.4.1实验目的与要求 1.通过实验,加深对传热理论的理解,提高研究和解决传热实际问题的能力; 2.通过对空气—水蒸气简单套管换热器的实验研究,掌握对流传热系数i α的测定方法,加深对其概念和影响因素的理解。 3.通过对管程内部插有螺旋线圈的空气—水蒸气强化套管换热器的实验研究, 掌握对流传热系数i α的测定方法,加深对其概念和影响因素的理解。 4.学会并应用线性回归分析方法,确定传热管关联式4 .0Pr Re m A Nu =中的常数A 和m 的数值,强化管关联式4.00Pr Re m B Nu =中B 和m 数值。 5.根据计算出的Nu 、Nu 0求出强化比Nu/Nu 0,比较强化传热的效果,加深理解强化传热的基本理论和方式。 6.通过变换列管换热器换热面积实验测取数据计算总传热系数K ,加深对其概念和影响因素的理解。 7.认识套管换热器(光滑、强化)、列管换热器的结构及操作方法,测定并比较不同换热器的性能。 7.4.2实验原理 在工业生产中,间壁换热是经常使用的换热方式。热流体借助于传热壁面,将热量传递给冷热体,以满足生产工艺的要求。影响换热器传热速率的参数有传热面积、平均温度差和传热系数三要素。为了合理选用或设计换热器,应对其性能有充分的了解。除了查阅文献外,换热器性能实测是重要的途径之一。传热系数是度量换热器性能的重要指标。为了提高能量的利用率,提高换热器的传热系数以强化传热过程,在生产实践中是经常遇到的问题。 冷热液体间的传热过程是由热流体对壁面的对流传热、间壁的热传导、以及壁面对冷流体的对流传热这三个传热子过程组成。如7.4-1所示。在忽略了换热 管内外两侧的污垢热阻后,以冷流体一侧传热面积为基准的传热系数计算式为: o o i m i i A A A A K αλδα+ += 11 (7.4-1) 式中:K ——以冷流体一侧传热面积为基准的总传热系数,)/(2℃?m W ; 图7.4-1 间壁式传热过程示意图

传热实验报告

传热膜系数测定实验 实验日期:2010/12/9 班级: 姓名: 学号: 同组人: 实验装置:

一.报告摘要 本实验以套管式换热器为研究对象,并用常压下100℃的水蒸汽冷凝空气来测定传热膜系数,通过实验掌握传热膜系数及传热系数的测定方法,并确定传热膜系数准数关系式中的系数及分析影响传热膜系数的因素。 关键词:传热膜系数α,传热系数K ,努赛尔数Nu ,雷诺数Re ,普朗特准数Pr 二.目的及任务 1. 掌握传热膜系数α及传热系数K 的测定方法; 2. 通过实验掌握确定传热膜系数准数关系式中的系数A 和指数m 的方法; 3. 通过实验提高对准数关系式的理解,并分析影响α的因素。 三.基本原理 对流传热的核心问题是求算传热系数α,当流体无相变时对流传热准数关系式的一般形式为 p n m Gr A Nu Pr Re = 对于强制湍流而言,Gr 数可忽略,即 n m A Nu Pr Re = 本实验中,可用图解法和最小二乘法计算上述准数关系式中的指数m 和系数A 。 用图解法对多变量方程进行关联时,要对不同变量Re 和Pr 分别回归。本实验可简化上式,即取n=0.4。在两边取对数,得到直线方程为 Re lg lg Pr lg 4.0m A Nu += 在双对数坐标中作图,求出直线斜率,即为方程的指数m 。在直线上任取一点函数值代入方程中,则可得到系数A ,即 m Nu A Re Pr 4.0= 用图解法,根据实验点确定直线位置有一定的人为性。而用最小二乘法回归,可以得到最佳关联结果。应用计算机辅助手段,对多变量方程进行一次回归,就能同时得到A,m,n 。 对于方程的关联,首先要有Nu,Re,Pr 的数据组。其特征数定义式分别为 λ αλ μ μ ρ d Nu Cp du = = = ,Pr ,Re 实验中改变空气的流量,以改变Re 值。根据定性温度计算对应的Pr 值。同时,由牛顿冷却定律,求出不同流速下的传热膜系数值,进而求得Nu 的值。 牛顿冷却定律为 m t A Q ?=α 式中α——传热膜系数,W/(m 2·℃); Q ——传热量,W ; A ——总传热面积,m 2;

换热器综合实验报告

实验四换热器综合实验报告 一、实验原理 换热器为冷热流体进行热量交换的设备。本次实验所用的均是间壁式换热器,热量通过 固体壁面由热流体传递给冷流体,包括:套管式换热器、板式换热器和管壳式换热器。针对上述三种换热器进行其性能的测试。其中,对套管式换热器、板式换热器和管壳式换热器可以进行顺流和逆流两种方式的性能测试。换热器性能实验的内容主要为测定换热器的总传热系数,对数传热温差和热平衡温度等,并就不同换热器,不同两种流动方式,不同工况的传热情况和性能进行比较和分析。 传热过程中传递的热量正比于冷、热流体间的温差及传热面积,即Q = KAΔT (1) 式中:A—传热面积,m2 (1)套管式换热器:0.45m2 (2)板式换热器:0.65m2 (3)管壳式换热器:1.05m2 电加热器:6kV ΔT—冷热流体间的平均温差,℃ K—换热器的传热系数,W/(m·℃) Q—冷热流体间单位时间交换的热量,W.冷热流体间的平均温差ΔT 常采用对数平均温差。对于工业上常用的顺流和逆流换热器,对数平均温差由下式计算 除了顺流和逆流按公式(2)计算平均温差以外,其他流动形式的对数平均温差,都可 以由假想的逆流工况对数平均温差乘上一个修正系数得到。修正系数的值可以由各种传热学书上或换热器手册上查得。 换热器实验的主要任务是测定传热系数K。实验时,由恒温热水箱中出来的热水经水泵

和转子流量计后进入实验换热器内管。在热水进出换热器处分别用热电阻测量水温。从换热 器内管出来的已被冷却的热水仍然回到热水箱中,经再加热供循环使用。冷却水由冷水箱经 水泵、转子流量计后进入换热器套管,在套管中被加热后的冷却水排向外界,一般不再循环 使用。套管外包有保温层,以尽量减少向外界的散热损失。冷却水进出口温度用热电阻测量。 通常希望冷热侧热平衡误差小于3%。 实验中待各项温度达到稳定工况时,测出冷、热流体进出口的温度和冷、热流体的流量, 就可以由下式计算通过换热面的总传热量 根据计算得到的传热量、对数平均温差及已知的换热面积,便可由公式(1)计算出传热系数K 。 换热器类型 方式 热进温度 热出温度 冷进温度 冷出温度 热流体流量 冷流体流量 板式 顺流 57.1 43.5 22.8 31.8 78 72 逆流 56.5 35.9 23.1 33.1 76 72 套管式 顺流 57.6 40.7 22.5 31.6 72 78 逆流 56.8 35.2 22.1 33 72 64 管壳式 顺流 57.1 40.5 22.5 31.3 76 72 逆流 57.2 41.1 22.6 32 74 65 计算传热系数K 和换热器效率 TA Q K ?=

对流传热实验实验报告

实验三 对流传热实验 一、实验目的 1.掌握套管对流传热系数i α的测定方法,加深对其概念和影响因素的理解,应用线性回归法,确定关联式4.0Pr Re m A Nu =中常数A 、m 的值; 2.掌握对流传热系数i α随雷诺准数的变化规律; 3.掌握列管传热系数Ko 的测定方法。 二、实验原理 ㈠ 套管换热器传热系数及其准数关联式的测定 ⒈ 对流传热系数i α的测定 在该传热实验中,冷水走内管,热水走外管。 对流传热系数i α可以根据牛顿冷却定律,用实验来测定 i i i S t Q ??= α (1) * 式中:i α—管内流体对流传热系数,W/(m 2?℃); Q i —管内传热速率,W ; S i —管内换热面积,m 2; t ?—内壁面与流体间的温差,℃。 t ?由下式确定: 2 2 1t t T t w +- =? (2) 式中:t 1,t 2 —冷流体的入口、出口温度,℃; T w —壁面平均温度,℃; 因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,用t w 来表示。 管内换热面积: i i i L d S π= (3) 式中:d i —内管管内径,m ;

L i —传热管测量段的实际长度,m 。 、 由热量衡算式: )(12t t Cp W Q m m i -= (4) 其中质量流量由下式求得: 3600 m m m V W ρ= (5) 式中:m V —冷流体在套管内的平均体积流量,m 3 / h ; m Cp —冷流体的定压比热,kJ / (kg ·℃); m ρ—冷流体的密度,kg /m 3。 m Cp 和m ρ可根据定性温度t m 查得,2 2 1t t t m += 为冷流体进出口平均温度。t 1,t 2, T w , m V 可采取一定的测量手段得到。 ⒉ 对流传热系数准数关联式的实验确定 流体在管内作强制湍流,被加热状态,准数关联式的形式为 n m A Nu Pr Re =. (6) ~ 其中: i i i d Nu λα= , m m i m d u μρ=Re , m m m Cp λμ=Pr 物性数据m λ、m Cp 、m ρ、m μ可根据定性温度t m 查得。经过计算可知,对于管内被加热的空气,普兰特准数Pr 变化不大,可以认为是常数,则关联式的形式简化为: 4.0Pr Re m A Nu = (7) 这样通过实验确定不同流量下的Re 与Nu ,然后用线性回归方法确定A 和m 的值。 ㈡ 列管换热器传热系数的测定 管壳式换热器又称列管式换热器。是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。这种换热器结构较简单,操作可靠,可用各种结构材料(主要

相关文档
相关文档 最新文档