文档库 最新最全的文档下载
当前位置:文档库 › 基于转角模态曲率的损伤识别研究

基于转角模态曲率的损伤识别研究

基于转角模态曲率的损伤识别研究
基于转角模态曲率的损伤识别研究

基于曲率模态的拱板结构损伤识别

第29卷第5期暨南大学学报(自然科学版) V ol .29 N o .52008年10月Jou rnal of J inan U niversity (N atural Science ) O ct . 2008   [收稿日期] 2008-05-06 [基金项目] 广东省科技攻关项目(2006B12401008);广东省高校自然科学重点研究项目(05Z003) [作者简介] 赵 俊(1983-),男,博士生,研究方向:结构损伤检测和加固;E 2mail:zhaojunjick@https://www.wendangku.net/doc/f517032581.html,.通讯作者:马宏伟 基于曲率模态的拱板结构损伤识别 赵 俊1 , 程良彦2 , 马宏伟 2 (1.暨南大学信息技术研究所,广州市盛通建设工程质量检测有限公司,广东广州510075;2.暨南大学理工学院,“重大工程灾害与控制”教育部重点实验室,广东广州510632) [摘 要] 以两边铰支的圆弧形拱板为研究对象,通过有限元数值模拟计算得到拱损伤前后的第一阶模态参数, 然后运用中心差分法近似求得拱板面内两方向的径向位移模态曲率和转角位移的二阶导数,并用于拱板的损伤检测研究.结果表明:当布置有足够数量的振型测点时,拱板损伤前后径向位移两方向模态曲率差之和与转角位移两方向二阶导数差之和均可有效地用于拱板损伤的探测和定位,并大致判断其损伤程度. [关键词] 曲率模态; 拱板; 无损检测; 数值模拟 [中图分类号] O235 [文献标识码] A [文章编号] 1000-9965(2008)05-0470-08 The damage detecti on i n the arch ba si n g on the changes i n curva ture m ode shape Z HAO Jun 1 ,CHE N L iang 2yan 2 ,MA Hong 2wei 2 (1.I nf or mati on Technol ogy Research I nstitute,J inan University,Guangzhou Shengt ong Quality Testing of Constructi on Company,Guangzhou 510075,China; 2.College of Science &Engineering,J inan University,The Key Laborat ory of D isaster Forecast and Contr ol in Engineering,M inistry of Educati on of China,Guangzhou 510632,China ) [Abstract] Taking a circular arch si m p ly supported al ong its t w o edges as an object of study,a study on the da mage detecti on of the arch ismade based on its dis p lace ment eigenpara meters and r otati on eigen 2para meters ,which are derived fr om calculated modal para meters of the arch before and after its da mage .Analytical results show that the de mage,including its l ocati on and extent,can be or can app r oxi m ately be detected fr o m both the changes of curvature mode shapes and the second 2order derivative of r otati on chan 2ges due t o the de mage,p r ovided that the number of points f or measuring the mode shapes of the arch is large enough . [Key words] curvature mode; arch; non 2destructive detecti on; numerical si m ulati on 近几十年来,拱板结构被广泛地应用在桥梁、大型建筑物顶棚及大坝等重要公共建筑物结构中,这些结构通常都集中在人口比较密集的城市里,故其出现损伤而造成的破坏力就很大,所以对拱板结构 进行损伤检测及其准确定位尤为重要,但目前国内外学者对拱板损伤检测的研究还很少. 通常来说,结构的损伤一定会引起结构某些物理特性的改变(如刚度、质量和阻尼),通过这些物

模态参数识别方法的比较研究

模态参数识别方法的比较研究 发表时间:2017-09-07T14:07:39.937Z 来源:《防护工程》2017年第9期作者:安鹏强[导读] 本文将频域法、时域法和整体识别法识别模态参数的应用范围、存在的优缺点进行对比、分析和说明。 航天长征化学工程股份有限公司兰州分公司甘肃兰州 730050 摘要:本文将频域法、时域法和整体识别法识别模态参数的应用范围、存在的优缺点进行对比、分析和说明,对模态参数识别的研究方向具有指导意义。 关键词:模态参数识别;频域法;时域法;整体识别法 引言 多自由度线性振动系统的微分方程可以表达为[1]: [M]{x ?(t)}+[C]{x ?(t)}+[K]{x(t)}={f(t)} 通过将试验采集的系统输入与输出信号用于参数识别的方法中,进而对系统的模态质量、模态阻尼、模态刚度、模态固有频率及模态振型进行识别,这一过程称为结构的模态参数识别。本文将对模态参数识别的频域法、时域法及整体识别法三者的应用范围、存在的优缺点进行对比、分析和说明。 1频域法 模态参数识别的频域法是结合傅里叶变换理论[1]形成的,这种方法是从实测数据的频响函数曲线上对测试结构的模态参数进行估计。图解法[1]是最早的频域模态参数识别方法,随之,又陆续发展了导纳圆拟合法[2]、最小二乘迭代法[2]、有理式多项式法[2]等多种频域模态参数识别方法。 频域法的优点是直观、简便,噪声影响小,模态定阶问题易于解决。频域法识别模态参数的思路是首先借助实测频响函数曲线对模态参数进行粗略的估计,进而将初步观测的模态估计值作为一些频域识别法的最初输入值,通过反复的迭代获取最终的模态参数。频域识别方法对于实测频响函数的分布容易控制,其输人数据是主观人为的。频域中参数识别方法识别结果的精准度,取决于测试试验中获得的频响函数质量的好坏。判断实测频响函数的质量,就要看其曲线的光滑[2]和曲线的饱满程度[2],曲线越光滑越饱满的实测频响函数,用其进行参数识别时,识别精度越高。 2时域法 模态参数识别的时域法的研究与应用比频域法晚,时域法可以克服频域法的一些缺陷。时域模态参数识别的技术优点在于无需获得激励力即可进行参数的识别[3-7]。对于一些大型的工程结构如大坝、桥梁等,获取激励荷载不太容易,但容易测得他们在风、地脉动等环境激励下的响应数据,把这些响应数据用于时域中一些参数识别的方法上,即可对测试结构的模态参数进行识别。 时域法的优点不仅在于其无需激励设备、减少测试费用而且可以避免由信号截断而造成对识别精度的影响,并且可实现对大型工程结构的在线参数识别,真实地反映结构的动力特性。但是由于响应信号中含有大量的噪声,这会使得所识别的模态中含有虚假模态。目前,对于如何剔除噪声模态、优化识别过程中的一些参数问题、以及怎样更稳定、可靠地进行模态定阶等成为时域法研究中的重要课题。目前常用的判定模态真假的方法是稳定图方法[8],该方法的基本思想在于不同阶次的系统模型会对虚假模态的影响比较大,在稳定图中出现次数最多的模态可认为是系统的真实模态。 3整体识别法 结构模态参数识别的单输入单输出类型是针对单个响应点的数据进行相应的计算,从而得到该测点对应的模态频率、阻尼比和振型系数等动力参数,但是对于有多个测点的试验,若要用单输入单输出类型的识别方法对多自由度结构进行参数识别,则需要对各个测点单独计算来识别各个测点对应的模态参数,通过对各个测点分别计算处理,得到每一个测点数据所识别的模态参数,然后求取所有测点响应识别的算术平均值来作为整体结构最终的识别结果。理论上讲,用每个测点数据识别的结果应该是一样的,但实际测试实验中,因测试实验中测点布置位置的不同、测试中其他因素及识别方法上的不完善会使得各个测点的识别结果不同、识别精度不同及错误的识别结果等现象。因此,对于多测点的测试试验,用单输入单输出类型的识别方法进行参数识别不仅会因多次重复导致计算工作量复杂累赘而且识别结果的正确性及精度无法保证。 整体识别的方法避免了单输入单输出类型的一些不足之处。该方法通过将结构上的所有测点的实测数据同时进行识别计算,所识别得到的结果作为结构整体的模态参数,每阶模态的固有频率和阻尼比是唯一的,减小了随机误差,提高了识别进度,并且使得计算工作量大大减少。 4三种识别方法的比较分析 (1)频域内的模态参数识别方法方便、快捷,但在实际运用中人为的主观选择性对识别结果的影响较大; (2)基于环境激励的时域模态参数的识别方法具有测试试验的花费较少、测试相对安全,并且识别精度较高。因此,基于环境激励的时域模态参数的识别方法已成为科研工作者研究的热点问题。 (3)对于多测点的测试试验,用频域和时域的单输入单输出类型识别模态参数不仅会因多次重复导致计算工作量复杂累赘而且识别结果的正确性及精度无法保证。整体识别法将所有测点的数据同时进行处理计算,得到结构的整体识别结果。整体识别方法通过对所有测点数据同时进行识别计算,减小了随机误差,提高了识别进度,使得计算工作量大大减少。 (4)对比时域和频域识别方法对虚假模态的剔除,可以看出,频域中的剔除虚假模态主要依据模态频率在频幅曲线图上会出现峰值的原理,利用该峰值处的幅值角是否为0°或180°来剔除虚假模态;相对频域剔除虚假模态的方法来说,时域中的剔除虚假模态的方法有定量的精度判别指标。总体看来,时域识别方法无法判别是否已将系统的所有模态进行识别且对于阻尼比的确定还有待研究。参考文献 [1] 曹树谦,张德文,萧龙翔. 振动结构模态分析-理论、实验与应用[M]. 天津大学出版社,2001. [2] 王济,胡晓. Matlab在振动信号处理中的应用[M]. 水利水电出版社,2006.

各种模态分析方法总结与比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率围各阶主要模态的特性,就可能预言结构在此频段在外部或部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 二、各模态分析方法的总结

(一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带围,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2ωλωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计算机存,因此在当前小型二通道或四通道傅立叶分析仪中,都把这种方法做成置选项。然而随着计算机的发展,存不断扩大,计算速度越来越快,在大多数实际应用中,单自由度方法已经让位给更加复杂的多自由度方法。 1、峰值检测 峰值检测是一种单自由度方法,它是频域中的模态模型为根据对系统极点进行局部估计(固有频率和阻尼)。峰值检测方法基于这样的事实:在固有频率附近,频响函数通过自己的极值,此时其实部为零(同相部分最

柔度差曲率,损伤识别

第26卷第2期 V ol.26 No.2 工 程 力 学 2009年 2 月 Feb. 2009 ENGINEERING MECHANICS 188 ——————————————— 收稿日期:2007-10-26;修改日期:2008-04-21 基金项目:国家自然科学基金项目(50678013);中国博士后科学基金项目(20060390387) 作者简介:*李永梅(1971―),女,河北邢台人,副教授,博士后,主要从事结构工程研究(E-mail: liym@https://www.wendangku.net/doc/f517032581.html,); 周锡元(1938―),男,江苏无锡人,研究员,主要从事地震工程研究(E-mail: zhouxy@https://www.wendangku.net/doc/f517032581.html,); 高向宇(1959―),男,北京人,教授,博士,主要从事结构工程减震研究(E-mail: gaoxy@https://www.wendangku.net/doc/f517032581.html,) 文章编号:1000-4750(2009)02-0188-08 基于柔度差曲率矩阵的结构损伤识别方法 * 李永梅1,2,周锡元1,3,高向宇1 (1. 北京工业大学建筑工程学院,北京 100124;2. 北京工业大学城市与工程安全减灾省部共建教育部重点实验室,北京 100124; 3. 工程抗震与结构诊治北京市重点实验室,北京 100124) 摘 要:柔度是较频率和位移模态更敏感的结构损伤标示量。提出利用结构损伤前、后的柔度矩阵,先后对柔度矩阵差的列、行进行两次差分,求得柔度差曲率矩阵(δ Flexibility Curvature Matrix),并以其对角元素作为检测结构损伤指标(δ FCMD)的新方法。该方法仅需低阶模态参数即可进行损伤检测,不论对简支梁、悬臂梁、固支梁,或多跨连续梁,单一位置损伤、支撑处损伤、轻微损伤,还是多种损伤共存,均具有损伤定位的能力、并能定性反映损伤程度。通过与已有的柔度差、柔度变化率、均匀荷载面曲率差等柔度指标的数值模拟分析研究,显示了该指标检测损伤的有效性和优越性。 关键词:结构;损伤识别;柔度;曲率;柔度差曲率矩阵 中图分类号:O327; TU311.3; TB123 文献标识码:A DETECTION INDICTOR OF STRUCTURAL NONDESTRUCTIVE DAMAGE BASED ON CURVATURE-FLEXIBILITY-DIFFERENCE MATRIX * LI Yong-mei 1,2 , ZHOU Xi-yuan 1,3 , GAO Xiang-yu 1 (1. College of Civil Engineering and Architecture, Beijing University of Technology, Beijing 100124, China; 2. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education of China, Beijing University of Technology, Beijing 100124, China; 3. Beijing Key Laboratory of Earthquake Engineering Structural Retrofit, Beijing 100124, China) Abstract: For structural damage, the flexibility is more sensitive than its frequency or mode. The curvature difference matrix in flexibility is presented as a new index of nondestructive damage detection, derived from the change in structural flexibilities calculated before damaging and after damaging by means of difference calculation twice, firstly to columns, and then to rows. Therefore a new indicator called δFlexibility Curvature Matrix Diagonal (δ FCMD) is constructed through principal diagonal elements based on the curvature difference matrix in flexibility. Numerical simulation examples indicate that the damage location and severity in structures, with single damage, multiple ones, lighter ones and ones at the supports, can be detected efficiently for cantilever beams, fixed supported beams, simply supported beams, continuous beams and so on by δFCMD through only a few of the lower order modes. Compared to the aforementioned flexibility indicators and δ FCMD, such as the change in flexibility, the rate in flexibility, the curvature change in uniform load surface (ULSC), the effectiveness and advantage of δ FCMD, etc are shown. Key words: structure; nondestructive damage detection; flexibility; curvature; δ flexibility curvature matrix 近年来,各类结构的无损探伤检测一直是土木工程研究的热门课题。由于结构的高阶模态往往难 以获得,这就使得基于刚度矩阵的方法难以应用于工程实践中。与之相反,由于柔度矩阵可以比较精

模态分析与参数识别

模态分析方法在发动机曲轴上的应用研究 xx (xx大学 xxxxxxxx学院 , 山西太原 030051) 摘要:综述模态分析在研究结构动力特性中的应用,介绍模态分析的两大方法:数值模态分析与试验模态分析。并着重介绍目前的研究热点一一工作模态分析。通过发动机曲轴的模态分析这一具体的实例,综述了运行模态分析国内外研究现状,指出了其关键技术、存在问题以及研究发展方向。 关键词:模态分析数值模态试验模态工作模态 Abstract :Sums up methods of model analysis applied on the research of configuration dynamic;al characteristio. It introduces two methods of model analysis: numerical value model analysis and experimentation model analysis. Then it stresses the hotspot-working model analysis.Some key techniques, unsolved problems and research directions of OMA were also discussed. Key words:Model analysis Numerical value model analysis Experimentation model analysis Working model analysis 1、引言 1.1模态分析的基本概念 物体按照某一阶固有频率振动时,物体上各个点偏离平衡位置的位移是满足一定的比例关系的,可以用一个向量表示,这个就称之为模态。模态这个概念一般是在振动领域所用,你可以初步的理解为振动状态,我们都知道每个物体都具有自己的固有频率,在外力的激励作用下,物体会表现出不同的振动特性。 一阶模态是外力的激励频率与物体固有频率相等的时候出现的,此时物体的振动形态叫做一阶振型或主振型;二阶模态是外力的激励频率是物体固有频率的两倍时候出现,此时的振动外形叫做二阶振型,以依次类推。

模态参数识别频域法

振动模态分析理论与应用 模态参数识别频域法 当系统阻尼为比例阻尼或小阻尼时,阻尼矩阵经模态坐标变换后可以对角化,模态参数为实数,频响函数可按实模态展开。若在p 点激励,在l 点测量,则频响函数可表示为对于粘性阻尼有 ∑ 1 2 ωω ξ2ωω1 )ω(N i i i i lp lp j D H =+= 对于结构阻尼有 ∑ 1 2ωω 1 )ω(N i i i lp lp jg D H =+= 以上两式即为实模态参数识别的基本公式 6.1 实模态识别图解法 6.1.1 共振法 这是一种经典的模态分析方法,其基本思想是:当激励频率在系统某阶固有频率r ω附近时, 该阶模态导纳便起主导作用,其余各阶模态导纳的影响可忽略不计。即 )ω(≈)ω(lpr lp H H 此时,整个系统等效于一个单自由度系统。利用幅频特性和相频特性,便可确定系统的模态参数(参看图6-1)。 在待测结构上选择l 个测试点,求其中某点P 对所有各点的位移导纳。点数l 一般应等于或大于拟选的模态数N (自由度数)。则p 点对任意点l 的位移导纳可作如下处理: 当激振频率在r 阶固有频率附近时有 () () 2 22 2∞ 1 2 ωωξ4ωω1≈ ωω ξ2ωω1 )ω(∑ ++==r r i r lp i i i i i lp lp j D j D H 因此,测得的幅频曲线)ω(lp H 的第r 个峰值位置(共振频率点),便可近似确定r 阶固有频率r ω。由r ω两侧半功率带宽,可以确定r 阶模态阻尼比)ω2/Δω(ξr r =。由r ω处位移

有 ()r r lp r lp D H ξ2)ω(= 所以 ()()r lp r r lp H D ωξ2= 由因为 ()r pr lr r lp k D φ φ= 故在令pr φ的值等于1(振型中各元素具有确定的比例,其绝对值可认为地指定,不妨取第r 阶振型第p 个元素pr φ的值等于1)时,由原点导纳曲线的峰值可得r 阶模态刚度为 ) ω(ξ21 r pp r r H k = 此外,当r ωω=时,l 个导纳的幅值分别为 r r pr r r p k H ξ2φφ|)ω(|11= r r pr r r p k H ξ2φφ|)ω(|22= r r pr lr r lp k H ξ2φφ|)ω(|= 写成矩阵形式 = lr r r r r pr r lp r p r p k H H H φφφξ2φ| )ω(|| )ω(||)ω(|2121 因此,第r 阶振型为 {}±±±==| )ω(||)ω(|| )ω(|φφ φφ2121r lp r p r p lr r r r H H H 为表示振型的几何形状,上试中各导纳幅值应考虑其相位,可用正负号表示同相或反相,对 于实模态,其振型向量的各分量都是实数,且只有大小和正负之差。因此,系统作固有振动时,各坐标点同时达到极值,同时通过平衡位置。用共振法确定模态参数,方法简单直观。但由于忽略了相邻模态的影响,识别出的模态精度不高,特别是识别振型和阻尼时,可能引起较大的误差。另外当各阶模态耦合较密时可能识别不出单个模态。因此这种方法一般只用于对模态的初步分析。 6.1.2分量分析法 分量分析法的思想是利用导纳的实频和虚频特性识别出系统的模态参数。其优点是能考虑其余模态的影响。

实验模态分析与参数识别报告

2015 年春季学期研究生课程考核 (读书报告、研究报告) 考核科目:实验模态分析 学生所在院(系): 学生所在学科: 学生姓名: 学号: 学生类别: 考核结果阅卷人

实验模态分析与参数识别报告 模态分析可分为实验模态分析与工作模态分析等。模态分析的最终目标是识别出系统的模态参数,为结构系统的振动分析、振动故障诊断和预报、结构动力特性的优化设计提供依据。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。 1、模态分析原理 模态分析的过程是将线性时不变系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,坐标变换的变换矩阵为振型矩阵,其每列即为各阶振型。 []{}[]{}[]{}{}()M X C X K X F t ++= (1) 其中:[]M —质量矩阵,[]K —刚度矩阵,[]C —粘性阻尼矩阵,{}()F t —激励力的列阵。 振动模态是弹性结构固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内,各阶主要模态的特性,就可能预知结构在此频段内,在外部或内部各种振源作用下实际振动响应,而且一旦通过模态分析知道模态参数并给予验证,就可以把这些参数用于设计过程,优化系统动态特性,或者研究把该结构连接到其他结构上时所产生的影响。 方程(1)经傅氏变换,可得频域内的振动方程: [][][]{}{}2()()()M j C K X F w w w w -++= (2) 对应于固有频率1ω的固有振型或模态向量以幅值最大点为参考点的表达式为:{}{}11max 1()()X X w w w =。它们亦即简谐自由振动的主振型,满足以下关系式: [][]{}2()0i K M w j -= (3) 此代数方程组的系数行列式等于零,即为特征方程式;[]M ,[]K 为实数对称矩阵,[] M 正定,[]K 为非负定,其特征值20ω和对应的特征向量为实数。 主振型矩阵[]{}{}{}1 2,,,,n j j j j 轾=臌为实模态矩阵。根据振型的正交性: [][][][]1T M M j j =,[][][][]1T K K j j =;系统阻尼为比例阻尼时, [][][][]1T C C j j =。

环境振动下模态参数识别方法综述

环境振动下模态参数识别方法综述 摘要:模态分析是研究结构动力特性的一种近代方法,是系统识别方法在工程振动领域中的应用。环境振动是一种天然的激励方式,环境振动下结构模态参数识别就是直接利用自然环境激励,仅根据系统的响应进行模态参数识别的方法。与传统模态识别方法相比,具有显著的优点。本文主要是做了环境振动下模态识别方法的一个综述报告。 关键词:环境振动模态识别综述 Abstract: The modal analysis is the study of structural dynamic characteristics of a modern method that is vibration system identification methods in engineering applications in the field. Ambient vibration is a natural way of incentives, under ambient vibration modal parameter identification is the direct use of the natural environment, incentives, based only on the response of the system for modal parameter identification method. With the traditional modal identification methods, has significant advantages. This paper is a summary report of the environmental vibration modal identification method. Keywords: Ambient vibration ;modal parameters ;Review 随着我国交通运输事业的发展,各种形式的大、中型桥梁不断涌现,由于大型桥梁结构具有结构尺大、造型复杂、不易人工激励、容易受到环境影响、自振频率较低等特点,传统模态参数识别技术在应用上的局限性越来越突出。传统的振动试验采用重振动器或落锤激励桥梁,需要投入大量人力和试验设备,激励成本增高,难度大,而且对于桥梁这样的大型复杂结构,激励(输入)往往很难测得,也不适合长期监测的实验模态分析。 环境振动是指振幅很小的环境地面运动。系由天然的和(或)人为的原因所造成,例如风、海浪、交通干扰或机械振动等,受激结构的振幅较小,但响应涵盖频率丰富。系统或者结构的模态参数包括:模态频率、模态阻尼、模态振型等。模态参数识别是系统识别的一部分,通过模态参数的识别可以了解系统或结构的动力学特性,这些动力特性可以作为结构有限元模型修正、故障诊断、结构实时监测的评定标准和基础。环境振动下的模态参数识别就是利用自然环境激励,根据结构的动力响应来进行模态参数识别的方法。 1 环境振动下模态参数识别的优点 传统的模态识别方法利用结构的输入和输出信号识别结构的模态参数。对于工作中的大型结构,无论是对其实施外部激励还是测试外部激励都十分困难。而环境振动方法仅仅利用被测试的输出数据识别结构的时间序列分析法模态参数。用环境振动对结构进行模态参数识别,具有明显的优点:

模态参数辨识方法——综述

模态参数辨识方法综述 摘要:本文对模态分析和模态参数识别进行了综述,对当前识别方法的原理、识别精度及适用条件进行阐述和比较,提出环境激励下模态参数识别方法需解决的关键问题及模态分析在缺陷检测和结构优化中作用。 关键词:模态分析模态参数识别模态分析与缺陷检测结构工作模态 0引言 模态分析是将线性时不变系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,坐标变换的变换矩阵为振型矩阵,其每列即为各阶振型。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。振动模态是弹性结构固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内,各阶主要模态的特性,就可能预知结构在此频段内,在外部或内部各种振源作用下实际振动响应,而且一旦通过模态分析知道模态参数并给予验证,就可以把这些参数用于(重)设计过程,优化系统动态特性,或者研究把该结构连接到其他结构上时所产生的影响。模态分析的最终目标是识别出系统的模态参数,为结构系统的振动分析、振动故障诊断和预报、结构动力特性的优化设计提供依据。 解析模态分析可用有限元计算实现,而实验模态分析则是对结构进行可测可控的动力学激励,由激振力和响应的信号求得系统的频响函数矩阵,再在频域或转到时域采用多种识别方法求出模态参数,得到结构固有的动态特性,这些特性包括固有频率、振型和阻尼比等。有限元法是当前分析机械结构模态的主要方法,很多学者研究了单裂缝和多裂缝缺陷对不同结构动态特性的影响,但这些研究仅局限于出现缺陷结构的当前状态,考虑到缺陷在机械结构使用过程中的扩展,提出了模态分析与缺陷扩展理论相结合的方法分析缺陷的发展趋势,便于机械结构剩余寿命的评估,使已达到设计寿命的结构在失效前仍然发挥其功能,节约了经济成本。 一般模态识别方法是基于实验室条件下的频率响应函数进行的参数识别方法,它要求同时测得结构上的激励和响应信号。但是,在许多工程实际应用中,工作条件和实验室条件相差很大,对一些大型结构无法施加激励或施加激励费用很昂贵,因此要求识别结构在工作条件下的模态参数。工作模态参数识别方法与传统模态参数识别方法相比有如下特点:一、仅

相关文档