文档库 最新最全的文档下载
当前位置:文档库 › 常速度梯度射线追踪与二维层速度反演

常速度梯度射线追踪与二维层速度反演

常速度梯度射线追踪与二维层速度反演
常速度梯度射线追踪与二维层速度反演

地表温度反演实验报告

遥感原理与及应用 地表温度反演实验报告 专业:地理信息系统 班级: XXXXXXXX 姓名: XXX 学号: XXXXXX 成绩: 指导教师: XXX 2014年12月17日 一. 实验目的 1. 根据实际需要,学会在网上(如中国科学院遥

感与数字地球研究所数据共享网)下载研究区内的遥感数据; 2. 掌握在ENVI中实现简单的地表温度反演的原理与步骤。 二. 实验任务 1. 在中国科学院遥感与数字地球研究所数据共享网上订购并下载覆盖郫县的TM影像; 2. 在ENVI中实现简单的地表温度反演算法。 三. 实验数据 在中国科学院遥感与数字地球研究所数据共享网上下载的覆盖郫县地区的TM影像。

四. 实验原理 图1 TM 影像地表温度反演流程 1. 地表温度(Land Surface Temperature)反演公 式为: 2 1(1)K LST K In R ε=+, 其中,R m DN d =?+,2111607.76K W m sr m μ---=???,21260.56K K =。 2. 根据TM 辐射定标原理,热红外波段表观辐亮 度可以进一步写作: max min 6min 255L L R DN L -=?+, 其中LmaxBand6=15.303 , LminBand6=1.238。 3. 地表比辐射率ε为同温度下地表辐射能与黑体 辐射能的比率,其可以表示为: 1.0090.047(In )(0)NDVI NDVI ε=+>,

其中,4343 TM TM NDVI TM TM -=+,当0NDVI <=时(如水体)地表比辐射率取常数1。 五. 实验步骤 1. TM 数据下载 数 据查询和下载网址https://www.wendangku.net/doc/f017060156.html,/query.html ,界面如图2 所示。 图2 中国科学院遥感与数字地球研究所数据共享 网址界面

地球物理反演复习资料

复习 第一章 一、什么是正问题?(概念、特点)适定性问题的一般特点。 正问题:给定一个问题,寻找答案 适定性问题的特点:解一定存在;解的唯一性;问题发生一些小的变动仅导致问题的解发生 小的变动(解稳定性) 第二章 二、什么是数字正演模拟?什么是物理正演?各自的特点(优缺点)? 数字模拟:利用计算机建立地质模型并模拟其地震波传播响应的一种方法 物理模拟:在实验室内将野外的地质构造和地质体按照一定的模拟相似比制作成物理模型, 并用超声波或激光超声波等方法对野外地震勘探方法进行模拟的一种地震模拟方法。 各自特点:物理模拟:拟结果的真实性,不受计算方法、假设条件的限制;震源和检波器的 尺度,参数变化困难。(真实、可靠、费用高) 数字模拟:简单、运算快、费用低 三、地震正演的应用(5个应用) 地震波理论研究(声波介质、弹性介质、各向异性介质和双相介质中弹性波传播理论研究)、复杂构造研究(盐下构造成象)、特殊沉积现象研究(河道砂预测)、裂缝带检测、井间地震研究、油藏动态监测 四、数字正演有哪些算法? 有限差分法、有限元法、虚谱法 第三章 五、直接反演的分类(两类),每一类的概念,不同的计算方法(相位、波阻抗) 以及其公式; 道积分反演:利用叠后地震资料计算地层相对波阻抗(速度)的直接反演方法。 计算: 递推反演:基于反射系数递推计算地层波阻抗(速度)的地震反演方法称为递推反演。 计算: 六、稀疏脉冲反演的概念,基本假设条件,适用范围,主要步骤,如何获得低 频信息(测井、叠加速度) 稀疏脉冲反演:基于稀疏脉冲反褶积基础上的递推反演方法。 基本假设:地层的强反射系数是稀疏分布的,即地层反射系数由一系列迭加于高斯背景上的 强轴组成。 ?=t dt t r t 0)(20e Z )(Z ∏ =-++=j i r r i i Z 11101j Z

4702运动快慢的描述速度典型例题

运动快慢的描述、速度典型例题 [例1]一列火车沿平直轨道运行,先以10m/s的速度匀速行驶15min,随即改以15m/s的速度匀速行驶10min,最后在5min内又前进1000m而停止.则该火车在前25min 及整个30min内的平均速度各为多大?它通过最后2000m的平均速度是多大? [分析]根据匀速直线运动的规律,算出所求时间内的位移或通过所求位移需要的时间,即可由平均速度公式算出平均速度. [解答]火车在开始的15min和接着的10min内的位移分别为: s1=v1t1=10×15×60m=9×103m s2=v2t2=15×10×60m=9×103m 所以火车在前25min和整个30min内的平均速度分别为: 因火车通过最后2000m的前一半位移以v2=15m/s匀速运动,经历时间为: 所以最后2000m内的平均速度为:

[说明]由计算可知,变速运动的物体在不同时间内(或不同位移上)的平均速度一般都不相等. [例2]某物体的位移图象如图所示.若规定向东为位移的正方向,试求:物体在OA、AB、BC、CD、DE各阶段的速度. [分析]物体在t=0开始从原点出发东行作匀速直线运动,历时2s;接着的第3s~5s内静止;第6s内继续向东作匀速直线运动;第7s~8s匀速反向西行,至第8s末回到出发点;在第9s~ 12s内从原点西行作匀速直线运动. [解]由s-t图得各阶段的速度如下: AB段:v2=0; [说明]从图中可知,经t=12s后,物体位于原点向西4m处,即在这12s内物体的位移为-4m.而在这12s内物体的路程为(12+12+4)m=28m.由此可见,物体不是作单向匀速直线运动时,位移的大小与路程不等. [例3]图1所示为四个运动物体的位移图象,试比较它们的运动情况.

最短路径法射线追踪的MATLAB实现

最短路径法射线追踪的MATLAB 实现 李志辉 刘争平 (西南交通大学土木工程学院 成都 610031) 摘 要:本文探讨了在MA TLAB 环境中实现最短路径射线追踪的方法和步骤,并通过数值模拟演示了所编程序在射线追踪正演计算中的应用。 关键词:最短路径法 射线追踪 MATLAB 数值模拟 利用地震初至波确定近地表介质结构,在矿产资源的勘探开发及工程建设中有重要作用。地震射线追踪方法是研究地震波传播的有效工具,目前常用的方法主要有有限差分解程函方程法和最小路径法。最短路径方法起源于网络理论,首次由Nakanishi 和Yamaguchi 应用域地震射线追踪中。Moser 以及Klimes 和Kvasnicha 对最短路径方法进行了详细研究。通过科技人员的不断研究,最短路径方法目前已发展较为成熟,其基本算法的计算程序也较为固定。 被称作是第四代计算机语言的MA TLAB 语言,利用其丰富的函数资源把编程人员从繁琐的程序代码中解放出来。MA TLAB 用更直观的、符合人们思维习惯的代码,为用户提供了直观、简洁的程序开发环境。本文介绍运用Matlab 实现最短路径法的方法和步骤,便于科研院校教学中讲授、演示和理解最短路径方法及其应用。 1 最短路径法射线追踪方法原理 最短路径法的基础是Fermat 原理及图论中的最短路径理论。其基本思路是,对实际介质进行离散化,将这个介质剖分成一系列小单元,在单元边界上设置若干节点,并将彼此向量的节点相连构成一个网络。网络中,速度场分布在离散的节点上。相邻节点之间的旅行时为他们之间欧氏距离与其平均慢度之积。将波阵面看成式由有限个离散点次级源组成,对于某个次级源(即某个网格节点),选取与其所有相邻的点(邻域点)组成计算网格点;由一个源点出发,计算出从源点到计算网格点的透射走时、射线路径、和射线长度;然后把除震源之外的所有网格点相继当作次级源,选取该节点相应的计算网格点,计算出从次级源点到计算网格点的透射走时、射线路径、和射线长度;将每次计算出来的走时加上从震源到次级源的走时,作为震源点到该网格节点的走时,记录下相应的射线路径位置及射线长度。 图1 离散化模型(星点表示震源或次级震源,空心点为对应计算网格点) 根据Fermat 原理逐步计算最小走时及射线方向。设Ω为已知走时点q 的集合,p 为与其相邻的未知走时点,tq 分别和p 点的最小走时,tqp 为q 至p 最小走时。r 为p 的次级源位置,则 )}(min :{qp q P t t t q r q +==Ω ∈ 根据Huygens 原理,q 只需遍历Q 的边界(即波前点),当所有波前邻点的最小走时都求出时,这些点又成为新的波前点。应用网络理论中的最短路径算法,可以同时求出从震源点传至所有节点之间的连线近似地震射线路径。 2 最短路径法射线追踪基本算法步骤 把网格上的所有节点分成集合p 和q ,p 为已知最小旅行时的结点总数集合,q 为未知最小旅行时的节点的集合。若节点总数为n ,经过n 次迭代后可为求出所有节点的最小旅行时。过程如下: 1) 初始时 q 集合包含所有节点,除震源s 的旅行时已知为ts =0外,其余所有节点的旅行时均为ti =(i 属于Q 但不 等于s )。P 集合为空集。 2) 在Q 中找一个旅行时最小的节点i ,它的旅行时为ti ; 3) 确定与节点i 相连的所有节点的集合V ; 4) 求节点j (j 属于V 且j 不属于P )与节点i 连线的旅行时dtij ; 5) 求节点j ()的新旅行时tj (取原有旅行时tj 与tj +dtij 的最小值); 6) 将i 点从Q 集合转到P 集合; 7) 若P 集合中的节点个数小于总节点数N ,转2,否则结束旅行时追踪; 8) 从接收点开始倒推出各道从源点道接收点的射线路径,只要每个节点记下使它形成最小旅行时的前一个节点号,

landsat 遥感影像地表温度反演教程

基于辐射传输方程的Landsat数据地表温度反演教程 一、数据准备 Landsa 8遥感影像数据一景,本教程以重庆市2015年7月26日的=行列号为(128,049)影像(LC8LGN00)为例。 同时需提前查询影像的基本信息(详见下表) 标识日期采集时间中心经度中心纬度LC8LGN002016/7/263:26:56 ………………………… 二、地表温度反演的总体流程 三、具体步骤 1、辐射定标 地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射定标。 (1)热红外数据辐射定标

选择Radiometric Correction/Radiometric Calibration。在File Selection对话框中, 选择数据LC8LGN02_MTL_Thermal,单击Spectral Subset选择Thermal Infrared1(),打开Radiometric Calibration面板。 Scale factor 不能改变,否则后续 计算会报错。保持默认1即可。 (2)多光谱数据辐射定标 选择要校正的多光谱数据“LC8LGN02_MTL_MultiSpectral” 进行辐射定标。 因为后续需要对多光谱数据进行大气校正,可直接单击Apply Flaash Settings, 如下图。

注意与热红外数据辐射定标是的差 别,设置后Scale factor值为。 2、大气校正 本教程选择Flaash 校正法。FLAASH Atmospheric Correction,双击此工具,打开辐射定标的数据,进行相关的参数设置进行大气校正。 注意:如果在多光谱数据辐射定标时Scale factor值忘记设置,可在本步骤中打开辐射定标数时设置single scale faceor 值为,若已设置,则默认值为1即可。 1)Input Radiance Image:打开辐射定标结果数据; 2)设置输出反射率的路径,由于定标时候; 3)设置输出FLAASH校正文件的路径,最优状态:路径所在磁盘空间足够大; 4)中心点经纬度Scene Center Location:自动获取; 5)选择传感器类型:Landsat-8 OLI;其对应的传感器高度以及影像数据的分辨 率自动读取; 6) 设置研究区域的地面高程数据;

向心力向心加速度·典型例题解析

向心力向心加速度·典型例题解析 【例1】如图37-1所示,一个大轮通过皮带拉着小轮转动,皮带和两轮之间无相对滑动,大轮的半径是小轮半径的2倍,大轮上的一点S离转动轴的 距离是半径的1/3.当大轮边缘上的P点的向心加速度是0.12m/s2时,大轮上的S点和小轮边缘上的Q点的向心加速度各为多大? 解析:P点和S点在同一个转动轮子上,其角速度相等,即ωP=ωS.由向心加速度公式a=rω2可知:a s/a p=r s/r p,∴a s=r s/r p·a p=1/3×0.12m/s2=0.04m/s2. 由于皮带传动时不打滑,Q点和P点都在由皮带传动的两个轮子边缘,这两点的线速度的大小相等,即v Q=v P.由向心加速度公式a=v2/r可知:a Q/a P =r P/r Q,∴a Q=r P/r Q×a P=2/1×0.12m/s2=0.24 m/s2. 点拨:解决这类问题的关键是抓住相同量,找出已知量、待求量和相同量之间的关系,即可求解. 【问题讨论】(1)在已知a p的情况下,为什么求解a s时要用公式a=rω2、求解a Q时,要用公式a=v2/r? (2)回忆一下初中电学中学过的导体的电阻消耗的电功率与电阻的关系 式:P=I2R和P=U2/R,你能找出电学中的电功率P与电阻R的关系及这里的 向心加速度a与圆周半径r的关系之间的相似之处吗? 【例2】如图37-2所示,一圆盘可绕一通过圆盘中心O且垂直于盘面的竖直轴转动,在圆盘上放置一个木块,当圆盘匀角速转动时,木块随圆盘一起运动,那么

[ ] A.木块受到圆盘对它的摩擦力,方向背离圆盘中心 B.木块受到圆盘对它的摩擦力,方向指向圆盘中心 C.因为木块随圆盘一起运动,所以木块受到圆盘对它的摩擦力,方向与木块的运动方向相同 D.因为摩擦力总是阻碍物体的运动,所以木块所受到圆盘对它的摩擦力的方向与木块的运动方向相反 解析:从静摩擦力总是阻碍物体间的相对运动的趋势来分析:由于圆盘转动时,以转动的圆盘为参照物,物体的运动趋势是沿半径向外,背离圆心的,所以盘面对木块的静摩擦力方向沿半径指向圆心. 从做匀速圆周运动的物体必须受到一个向心力的角度来分析:木块随圆盘一起做匀速圆周运动,它必须受到沿半径指向圆心的合力.由于木块所受的重力和盘面的支持力都在竖直方向上,只有来自盘面的静摩擦力提供指向圆心的向心力,因而盘面对木块的静摩擦力方向必沿半径指向圆心.所以,正确选项为B. 点拨:1.向心力是按效果命名的,它可以是重力、或弹力、或摩擦力,也可以是这些力的合力或分力所提供. 2.静摩擦力是由物体的受力情况和运动情况决定的. 【问题讨论】有的同学认为,做圆周运动的物体有沿切线方向飞出的趋势,静摩擦力的方向应该与物体的运动趋势方向相反.因而应该选取的正确答案为D.你认为他的说法对吗?为什么? 【例3】如图37-3所示,在光滑水平桌面上有一光滑小孔O;一根轻绳穿过小孔,一端连接质量为m=1kg的小球A,另一端连接质量为M=4kg 的重物B. (1)当小球A沿半径r=0.1m的圆周做匀速圆周运动,其角速度为ω= 10rad/s时,物体B对地面的压力为多大? (2)当A球的角速度为多大时,B物体处于将要离开、而尚未离开地面的临界状态?(g=10m/s2)

landsat 遥感影像地表温度反演 教程(大气校正法)

基于辐射传输方程的Landsat数据地表温度反演教 程 一、数据准备 Landsa 8遥感影像数据一景,本教程以重庆市2015年7月26日的=行列号为(128,049)影像(LC81280402016208LGN00)为例。 同时需提前查询影像的基本信息(详见下表) 标识日期采集时 间 中心经度中心纬度 LC81280402016208LGN002016/7/263:26:56106.1128830.30647…………………………注:基本信息在影像头文件中均可查询到,采集时间为格林尼治时间。 二、地表温度反演的总体流程

三、具体步骤 1、辐射定标 地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射定标。 (1)热红外数据辐射定标 选择Radiometric Correction/Radiometric Calibration。在File Selection对话框中,选择数据LC81230322013132LGN02_MTL_Thermal,单击Spectral Subset选择Thermal Infrared1(10.9),打开Radiometric Calibration面板。

Scale factor 不能改变,否则后续计算会报错。保持默认1即可。 Scale factor 不能改变,否则后续计算会报错。保持默认1即可。 (2)多光谱数据辐射定标 选择要校正的多光谱数 据“LC81230322013132LGN02_MTL_MultiSpectral” 进行辐射定标。 因为后续需要对多光谱数据进行大气校正,可直接单击Apply Flaash Settings,如下图。

波阻抗反演

波阻抗反演通常指利用叠后地震资料进行反演的一种技术,它将地震资料、测井数据、地质解释相结合,充分利用测井资料具有较高的垂向分辨率和地震剖面有较好的横向连续性的特点,将地震剖面“转换”成波阻抗剖面,不仅便于解释人员将地震资料与测井资料连接对比,而且能有效地对地层物性参数的变化进行研究,从而得到物性参数在空间的分布规律,指导油气的勘探开发,地震反演的方法主要有两种,一种是叠前反演,一种是叠后反演,叠前反演主要有旅行时反演和振幅反演,叠后反演主要分为振幅反演和波场反演。而我们这里所说到的波阻抗反演属叠后振幅反演,主要有递归反演、稀疏脉冲反演和基于模型的反演这三种方法。 二、波阻抗反演方法介绍 1、波阻抗反演的基本假设前提 1、波阻抗反演的基本假设前提 目前我们常用的波阻抗反演软件所用方法基本都是基于褶积模型的基础上建立的,因此要求资料都要满足褶积模型的假设前提,基本可概括为下面的四个方面: (1)、地震模型 假设地层是水平层状介质,地震波为平面波法向入射,其地震剖面为正入射剖面,并且假设地震道为地震子波与地层反射系数的褶积。 (2)、反射系数序列 在普通递归反演中,假设反射系数为完全随机的序列,而在稀疏脉冲反演中,假设反射系数为由一系列大的反射系数叠加在高斯分布的小反射系数的背景上构成的。 (3)、地震子波 假设反射系数剖面中的每一道都可以看作是地下反射率与一个零相位子波的褶积。实际情况下往往需要对地震剖面进行相位校正处理 (4)、噪音分量 通常假设波阻抗反演输入的地震数据其振幅信息反映了地下波阻抗变化情况,地震剖面没有多次波和绕射波的噪音分量。因此,在资料处理时可以考虑的处理流程是反褶积、噪音剔除,尤其是多次波,处理的最终目标是得到真振幅剖面。类似二维滤波和多道混波这样可以改变地震振幅和特征的处理模块应当避免使用。 有许多反演技术都存在两个问题:一是多解性,即存在多个反演结果与地震数据相吻合;另一个问题是地震数据的带限问题。 2、递归反演 基本原理:递归反演是基于反射系数的计算公式而得到的,当和地震子波褶积时,反射系数的带限非常严重,低频分量和高频分量都损失了。低频分量的损失是递归反演面临的最严重的问题,因此如何补充低频分量是个很重要的问题,通常可以得到低频分量的方法主要有两种:直接从测井资料中得到,或从速度分析如叠加速度等的分析中得到。

(完整版)平抛运动的典型例题

平抛运动典型例题 专题一:平抛运动轨迹问题——认准参考系 1、从水平匀速飞行的直升机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说法正确的是( C )A.从飞机上看,物体静止 B.从飞机上看,物体始终在飞机的后方 C.从地面上看,物体做平抛运动 D.从地面上看,物体做自由落体运动 专题二:平抛运动运动性质的理解——匀变速曲线运动(a→) 2、把物体以一定速度水平抛出。不计空气阻力,g取10,那么在落地前的任意一秒内( BD ) A.物体的末速度大小一定等于初速度大小的10倍 B.物质的末速度大小一定比初速度大10 C.物体的位移比前一秒多10m D.物体下落的高度一定比前一秒多10m 专题三:平抛运动“撞球”问题——判断两球运动的时间是否相同(h是否相同);类比追击问题,利用撞上时水平位移、竖直位移相等的关系进行解决 3、在同一水平直线上的两位置分别沿同方向抛出小两小球和,其运动轨迹如图所示,不计空气阻力.要使两球在空中相遇,则必须( C ) A.甲先抛出球B.先抛出球 C.同时抛出两球D.使两球质量相等 4、如图所示,甲乙两球位于同一竖直线上的不同位置,甲比乙高h,将甲乙两球分别以v1.v2的速度沿同一水平方 向抛出,不计空气阻力,下列条件中有可能使乙球击中甲球的是( D ) A.同时抛出,且v1< v2B.甲后抛出,且v1> v2 C.甲先抛出,且v1> v2D.甲先抛出,且v1< v2

专题四:平抛运动的基本计算题类型——关键在于对公式、结论的熟练掌握程度;建立等量关系 ①基本公式、结论的掌握 5、一个物体从某一确定的高度以v0 的初速度水平抛出,已知它落地时的速度为v1,那么它的运动时间是( D ) A . B . C . D . 6、作平抛运动的物体,在水平方向通过的最大距离取决于( C ) A.物体所受的重力和抛出点的高度 B.物体所受的重力和初速度 C.物体的初速度和抛出点的高度 D.物体所受的重力、高度和初速度 7、如图所示,一物体自倾角为的固定斜面顶端沿水平方向抛出后落在斜面上。物体与斜面接触时速度与水平方向的夹角 满足 ( D ) A.tan φ=sin θ B. tan φ=cos θ C. tan φ=tan θ D. tan φ=2tan θ 8、将物体在h =20m 高处以初速度v 0=10m/s 水平抛出,不计空气阻力(g 取10m/s 2 ),求: (1)物体的水平射程——————————————————20m (2)物体落地时速度大小————————————————m 510 ②建立等量关系解题

城市环境下射线追踪加速算法

城市环境下射线追踪加速算法 在三维城市建设的过程中,为了使得城市环境更具有真实感,往往需要为城市环境模拟一太阳光源,实现因为光照而引起的三维场景下的各种表现特征。研究在三维场景下的光线(射线)传播路径具有重要的应用价值,在广播数字电视、城市移动多媒体、移动通讯等领域,信号的传播都是利用电磁波实行的,而光本身也是一种电磁波,它们传播的方式一致。所以研究射线追踪技术,便能够将其引入到上述领域中展开应用。首先通过射线追踪技术找到发出的信号到达信号接收端的路径,然后结合信号在发射、路径传播过程中的电波传播特征,从而得到信号最终到达信号接收端的信号强度,实现基于射线追踪技术的电波传播预测,为广播数字电视、城市移动多媒体、移动通讯等领域的覆盖规划提供决策支持。本文在三维城区环境下,研究射线追踪技术的理论方法,即,某一光源(信号发射源)发出一条光线(射线)后,通过直射、反射、绕射等最终到达地面的光线(射线)传播路径。 1射线追踪介绍 射线跟踪方法的理论基础是几何光学(GeometricalOptics,GO)理论,即,光在空间中以射线的方式实行传播,在遇到障碍物时,遵循光的反射定律会产生反射现象,射线追踪即模拟光在空间中的反射路径。对于空间障碍物边缘发射的绕射,则引入几何绕射理论和一致性绕射理论,模拟信号在遇到障碍物时发生的绕射情况。图1为信号经过直射、反射、衍射(绕射)后到达信号接收端的示意图。因为从一个信号发射端会发出无数条射线,而且当遇到障碍物时,每条射线又会在障碍物表面发生反射、绕射等显现,所以在三维空间中找到所有射线的计算量巨大,甚至是计算机不可承受的。本文在充分研究传统射线追踪算法的基础上,提出基于城市布局分区、降维、加速多镜法的射线追踪技术,提升射线追踪算法的计算效率。 2.1分区加速算法

打靶法进行射线追踪实验

《地震走时成像方法及技术》实验一打靶法进行射线追踪实验 专业名称:地球物理学 学生姓名: 学生学号: 指导老师:白超英 提交日期:2016-12-6

一.试验目的; 一维线性增加模型中会用打靶法进行射线追踪; 二.试验设备; 计算机,射线路径转换软件,正演模型软件 三.试验内容及要求; 1、构建包含速度异常体的井间模型,计算并绘制: 1)单炮走时场及射线路径; 2)模型和射线分布图。 注意:由于是井间模型,震源和检波器应位于井内(检波器可位于地表,即VSP); 模型速度范围2-4km/s 为宜; 模型尺度:横向100-800m左右,纵向400m-2000m左右; 2、构建一速度随深度线性增加的模型,同样绘制: 1)单炮走时场及射线路径; 2)模型和射线分布图。 注意:震源和检波器均位于地表; 模型速度范围4-8km/s 为宜; 模型尺度:横向100-200km左右,纵向40-90km左右; 3、构建均匀模型,分析对比解析解和数值解的绝对误差和相对误差(图4)。 解析解直接由距离除以速度得到; 绝对误差= 解析解- 数值解 相对误差= 绝对误差/ 解析解* 100% 四.试验结果; 1.所选模型:水平层状,线性速度增加深地震测深模型 2.模型参数:以地面作为X轴,井间为Z轴,震源为(0,0),检波器在x=40的井间;第一层速度为v1= 3.8km/h,增加速度为0.2km/h.

图1 均匀线性增加多层介质单炮走时场及射线路径(真实情况z 轴应倒转) 计算走时 理论走时 绝对误差 相对误差 图2 走时误差分析(真实情况z 轴应倒转) 五.结果分析; 经测试,对于水平层状,线性速度增加深地震测深模型,打靶法能较好地追踪射线得到一个较准确的走时场模型。 X/distance (km ) Z /d e p t h (k m )

叶面积指数遥感反演

冬小麦叶面积指数(LAI)的遥感反演 ——经验模型和物理模型方法 李淑敏 2010/12/13

?第一部分.基础知识 ?第二部分.遥感反演LAI 的方法 ?第三部分.研究实例 本次课程主要内容 叶面积指数LAI 、遥感反演 经验模型反演方法、物理模型反演方法 几何光学模型、辐射传输模型 PROSAIL 模型 硕士论文——―基于MODIS/ASTER 的区域冬小麦叶面 积指数PROSAIL 模型反演研究” BRDF 模型PROSPECT 模型、SAIL 模型

叶面积指数leaf area index ?定义:单位土地面积上植被叶片总面积。 叶片总面积/占地面积 ?陆地生态系统的一个十分重要的参数: 农作物产量预估和病虫害评价; 反映作物生长发育的动态特征和健康状况。 ?叶面积指数越大,表明单位土地面积上的叶面积越大。 那么,叶面积指数越大越好吗?? ?以冬小麦为例了解叶面积指数变化情况

图为不同群体叶面积指数消长模型(彭永欣等,1992)1—过大群体;2—高产群体;3—过小群体. 低增缓增快 增衰减LAI 消长动态分为四个时期 1. 低速增长期,叶片总数较多,但叶面积较小,总叶面积增速较低; 2. 缓慢增长期,单叶面积渐次增加,但低温条件,出叶周期延长; 3. 快速增长期,气温回升,植株生长快速,至孕穗期LAI 达峰值; 4. 衰减期,植株生殖生长,叶片消亡叶面积衰减,至成熟期LAI 为0。一个生长期内冬小麦叶面积指数变化

叶面积指数获取方法 ?实测方法 长宽法、称重法这些方法均需要消耗一定的人力进行实物测量。 借助有关测量工具例如LAI-2000、LAI-2200、LI-3100C、LI-3000、AccuPAR等,此方法仍需实地进行测量。 仅能获得地面有限点的LAI值,对于推广获取大范围LAI存在很大局限性,不能满足植被生态和作物长势监测需求 ?遥感反演方法由于遥感数据具有覆盖范围广、时间与空间分辨率高、花费相对较少等优点。 可以用定量遥感方法反演区域LAI ?作物生长模型模拟LAI

平抛运动典型例题 (2)

平抛运动典型例题 1、平抛运动中,(除时间以外)所有物理量均由高度与初速度两方面决定。 v水平抛出,抛出点离地面的高度为h,阻力不计,求:(1)小球在例1、一小球以初速度 o 空中飞行的时间;(2)落地时速度;(3)水平射程;(4)小球的位移。 2、从同时经历两个运动的角度求平抛运动的水平速度 求解一个平抛运动的水平速度的时候,我们首先想到的方法,就应该是从竖直方向上的自由落体运动中求出时间,然后,根据水平方向做匀速直线运动,求出速度。 例2、如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过x=5m 的壕沟,沟面对面比A处低h=1.25m,摩托车的速度至少要有多大? 3、平抛运动“撞球”问题——判断两球运动的时间是否相同(h是否相同);类比追击问题,利用撞上时水平位移、竖直位移相等的关系进行解决 例3、在同一水平直线上的两位置分别沿同方向抛出小两小球和,其 运动轨迹如图所示,不计空气阻力.要使两球在空中相遇,则必须 A.甲先抛出球 B.先抛出球 C.同时抛出两球 D.使两球质量相等 例4、如图所示,甲乙两球位于同一竖直线上的不同位置,甲比乙 高h,将甲乙两球分别以v1.v2的速度沿同一水平方向抛出,不 计空气阻力,下列条件中有可能使乙球击中甲球的是( D ) A.同时抛出,且v1< v2 B.甲后抛出,且v1> v2 C.甲先抛出,且v1> v2 D.甲先抛出,且v1< v2 4、平抛运动轨迹问题——认准参考系 例5、从水平匀速飞行的直升机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说法正确的是() A.从飞机上看,物体静止B.从飞机上看,物体始终在飞机的后方C.从地面上看,物体做平抛运动D.从地面上看,物体做自由落体运动5、平抛运动运动性质的理解——匀变速曲线运动(a→) 例6、把物体以一定速度水平抛出。不计空气阻力,g取10,那么在落地前的任意一秒内() A.物体的末速度大小一定等于初速度大小的10倍 B.物质的末速度大小一定比初速度大10 C.物体的位移比前一秒多10m D.物体下落的高度一定比前一秒多10m 6、平抛运动的基本计算题类型——关键在于对公式、结论的熟练掌握程度;建立等量关系

华为:射线追踪技术为网络规划导航

华为:射线追踪技术为网络规划导航 更新时间:2006-8-8 10:08:31 【关键字】华为 传播模型是影响无线网络规划准确性关键因素,射线追踪是用来在城市和室内场景中进行准确的传播预测的一种技术。本文简要介绍了射线追踪模型的原理和商用情况,给出了射线追踪模型的适用范围,并以香港网络规划项目为例给出了射线追踪模型与传统经验模型的对比。 射线追踪技术 在移动通信网络规划中,传播预测的结果影响网络规划过程中预测小区半径、容量、覆盖、干扰等指标,因而对规划结果的准确性有决定性的影响。在第三代移动通信中,由于CDMA系统的自干扰特性,准确地预测干扰显得尤为重要。因此,一直以来,精确的传播预测方法和传播模型是移动通信和网络规划研究的关键课题。 电波传播的研究方法分为两类,一类是对大量测试数据进行研究,得到电波传播的统计特性,这类传播模型称为统计模型或经验性传播模型。一类是对电波的传播特性进行理论分析,得到电波传播的特性,这类传播模型被称为理论模型或确定性模型。在实际情况中,也有不少模型综合使用两种研究方法,可以称之为半经验性模型。 更加准确的确定性研究方法是射线追踪技术。射线追踪技术是光学的射线技术在电磁计算领域中的应用,能够准确地考虑到电磁波的各种传播途径,包括直射、反射、绕射、透射等,能够考虑到影响电波传播的各种因素,从而针对不同的具体场景做准确的预测。射线追踪技术在上世纪九十年代以来被广泛地研究,受到众多移动通信运营商和设备制造商的重视,并且出现了较为成熟的商用模型软件。 商用模型介绍 射线追踪技术必须成为能够在规划软件中调用的软件模块才能够在网络规划项目中 使用。目前几种商用的射线追踪模型都是由单独的软件开发商开发的,可以集成在多种网络规划软件中。 Volcano是由法国Siradel公司开发的包含了射线追踪技术的传播模型。在该模型中,传播场景根据天线高度和电波的主要传播方式定义为三种,即发射天线高于周围建筑物的宏蜂窝(Macrocell)场景,发射天线低于周围建筑物的微蜂窝(Microcell)场景和发射天线介于两者之间的Mini蜂窝(Minicell)场景。其中的宏蜂窝场景模型是一种传统的垂直面模式传播模型,用刀刃绕射算法(Deygout方法)计算垂直剖面上的绕射损耗。后两种场景模型则是射线追踪模型,采用了垂直面模式和二维发射射线算法射线追踪技术的混合方法,但是采用不同的射线追踪算法。 WinProp是德国AWE公司开发的传播模型软件,其中包含了可以应用于城区、室内和坑道场景的射线追踪算法。WinProp的射线追踪算法有两种,即标准射线追踪

Landsat8 TIRS 地表温度反演

热红外遥感(Infrared Remote Sensing)是指传感器工作波段限于红外波段范围之内的遥感。即利用星载或机载传感器收集、记录地物的热红外信息,并利用这种热红外信息来识别地物和反演地表参数如温度、湿度和热惯量等。目前有很多的卫星携带了热红外传感器,包括ASTER、AVHRR、MODIS、TM/ETM+/ TIRS等。 目前,地表温度反演算法主要有以下三种:大气校正法(也称为辐射传输方程:Radiative Transfer Equation——RTE)、单通道算法和分裂窗算法。 本实例是基于大气校正法,利用Landsat8 TIRS反演地表温度。 基本原理:首先估计大气对地表热辐射的影响, 然后把这部分大气影响从卫星传感器所观测到的热辐射总量中减去, 从而得到地表热辐射强度, 再把这一热辐射强度转化为相应的地表温度。 具体实现为:卫星传感器接收到的热红外辐射亮度值Lλ由三部分组成:大气向上辐射亮度L↑,地面的真实辐射亮度经过大气层之后到达卫星传感器的能量;大气向下辐射到达地面后反射的能量。卫星传感器接收到的热红外辐射亮度值Lλ的表达式可写为(辐射传输方程): Lλ = [εB(T S) + (1-ε)L↓]τ+ L↑(1.1) 式中,ε为地表比辐射率,T S为地表真实温度(K),B(T S)为黑体热辐射亮度,τ为大气在热红外波段的透过率。则温度为T的黑体在热红外波段的辐射亮度B(T S)为: B(T S) = [Lλ - L↑- τ(1-ε)L↓]/τε(1.2) T s可以用普朗克公式的函数获取。

T S = K2/ln(K1/ B(T S)+ 1) (1.3) 对于TM,K1 =607.76 W/(m2*μm*sr),K2 =1260.56K。 对于ETM+,K1=666.09 W/(m2*μm*sr),K2 =1282.71K。 对于TIRS Band10,K1= 774.89 W/(m2*μm*sr),K2 = 1321.08K。 从上可知此类算法需要2个参数:大气剖面参数和地表比辐射率。大气剖面参数在NASA提供的网站(https://www.wendangku.net/doc/f017060156.html,/)中,输入成影时间以及中心经纬度可以获取大气剖面参数。适用于只有一个热红外波段的数据,如Landsat TM /ETM+/TIRS数据。 主要内容就是使用BandMath工具计算公式(1.2)和公式(1.3),处理流程如下图所示。

堆石料弹塑性本构模型参数反演方法研究

堆石料弹塑性本构模型参数反演方法研究 筑坝堆石料的本构模型及其参数是合理计算面板堆石坝施工、运行及地震过程中应力与变形的重要基础。目前主要通过级配缩尺后的室内三轴试验确定模型参数,但缩尺效应对参数的影响规律尚不清楚。 一些学者结合室内三轴试验成果,根据大坝施工期变形监测数据进行筑坝材料参数的反演。但由于土石坝施工期、地震反应过程及震后沉降计算分别采用不同的本构模型且模型参数之间的相关性缺乏统计资料,反演得到的模型参数仅能进行所反演问题的验证分析。 如:根据施工期沉降监测反演得到的邓肯EB模型、南水模型或清华K-G模型参数仅能进行大坝的施工填筑及蓄水过程模拟。近年来,随着堆石料本构理论的发展,一些学者开始尝试在弹塑性理论框架内建立能够反应堆石料在静、动力及循环荷载作用下变形与强度特性的弹塑性本构模型。 随着监测手段的不断发展和完善,高土石坝在施工过程中基本能够获取详实、可靠的位移监测数据,结合静、动力统一的弹塑性本构模型,根据施工期监测数据反演堆石料模型参数,进而预测地震荷载作用下大坝的动力响应,对于高土石坝 抗震设计方法和安全评价具有一定的理论意义和工程价值。本文反演分析采用改进的广义塑性模型,该模型将初始孔隙比作为模型输入参数,同时考虑了筑坝堆 石料颗粒破碎,可以描述不同密度的堆石料在单调和循环荷载条件下的变形与强度特性,包括剪胀、剪缩、颗粒破碎、循环滞回、循环密实及循环残余变形,采用一套参数即可完成大坝施工、蓄水及地震反应全过程分析,并直接得到地震残余变形。 论文针对堆石料弹塑性本构模型参数反演方法,开展了下列工作:(1)首先通

过有限元敏感性分析确定待反演参数,进而通过粒子群算法和人工蜂群算法等启发式智能优化算法随机产生待反演的本构模型参数向量,代入到有限元模型中进行计算,并根据计算得到大坝竣工期典型测点沉降与实际测得沉降之间的误差不断优化待反演参数,直至达到设定的收敛准则,然后确定优化后堆石料的模型参数。(2)采用拉丁超立方抽样对敏感参数进行抽样并进行有限元分析,得到敏感参数与大坝典型测点沉降之间的关系样本,通过神经网络建立敏感参数与大坝典型测点沉降的响应面,进而进行敏感参数的反演分析。 该方法降低了有限元数值分析的工作量。(3)针对紫坪铺面板堆石坝施工填筑过程现场监测结果,根据上述方法得到的堆石料参数进行了汶川地震震害模拟,并与实际震害结果进行对比分析。 结果表明:通过反演分析得到的弹塑性模型参数能够较好的模拟紫平铺大坝地震沉降变形。

波前构建法三维射线追踪

*本文受到国家自然科学基金(40474041)、CNPC 中青年创新基金(04E7040)、中原油田博士后科研工作站和CNPC 物探重点实验室中国石油大学(华东)研究室资助。 作者简介:孙小东,1980年生,博士研究生;2002年毕业于中国石油大学资源系物探专业;长期从事地震波传播、射线追踪和偏移成像方面的研究。地址:(257061)山东省东营市北二路271号。电话:(0546)8391423。E -m ail:w anliliu yun@https://www.wendangku.net/doc/f017060156.html, 波前构建法三维射线追踪* 孙小东 李振春 栗宝鹃 滕厚华 (中国石油大学地球资源与信息学院) 孙小东等.波前构建法三维射线追踪.天然气工业,2007,27(增刊A):275-277. 摘 要 在许多三维深度域成像方法中,都要涉及到旅行时和射线路径的计算。将四面体网格化模型和三维波前构建法(WF)射线追踪技术结合使用,实现了旅行时和射线路径的准确快速计算。WF 法射线追踪过程中可以保证稳定合理的射线密度,克服了常规射线追踪方法存在阴影区的问题。该方法在三维复杂构造如盐下成像方面有独特的优势 。在复杂模型中,采用笛卡尔网格表达射线和波前不够准确,因此只能对网格进行细化和过度平滑,这必然导致射线追踪的精度和内存的开销。四面体网格在表达复杂模型时更加准确有效,而且不需太多的网格数目,从而提高了射线追踪的精度和效率。对三维凹陷模型的射线追踪结果验证了该方法的正确性,目前W F 射线追踪方法在Kirchhoff 偏移中的应用正在研究中。 主题词 三维 地质勘探 偏移成像 射线跟综法 模型 二维W F 射线追踪首先由Vinje 等人提出。Chilco at 和Hildebr and 等人将二维算法推广到了三维。W F 方法在三角网格化模型里面追踪射线,使得描述波前、内插新的射线和计算射线参数变得简单高效。相对于常规笛卡尔网格化模型,A lbert in 和W igg ins 提出的四面体网格化模型(包括模型中三角网格化界面)以及Stanko vic 和A lbertin 提出的四面体网格化模型中射线追踪的算法都显示出了WF 方法的优越性[1-3]。利用四面体网格可以对复杂模型做精细描述而且不需太多的网格数目,从而能节省内存开销和提高计算效率。W F 射线追踪可以在计算过程中对每一时间步长得到的波前进行分析,通过插入一些新的射线的办法保持追踪过程中合理的射线密度,从而克服了常规射线追踪存在阴影区的问题。 对于许多三维地震深度成像方法,比如K irchhoff 叠前和叠后偏移与反演、偏移速度分析和层析成像等,都需要做旅行时和射线路径的计算。因此对旅行时和射线路径的快速计算有着重要的意义[4-7]。以下对四面体网格化模型的建造和WF 射线追踪算法的具体实现过程作详细的论述。 一、实现方法 1.三维模型的四面体网格化描述 对地质模型的描述不只是用在射线追踪中,其他处理方法(如偏移、层析等)也需要对模型做准确描述以得到最终的高质量的成像效果。 对模型的描述包含两个方面即层和界面。层是物性参数(如速度)连续的介质,层与层之 间是界面,是介质的物性参数不连续的分界面。众所周知,单纯形是建立描述模型最有效的手段,比如在一维情况下的线段、在二维情况下的三角形、在三维情况下的四面体等都是最基本的元素。在这里,用三角形网格来描述界面和波前,用四面体网格来描述界面之间的区域。 利用四面体网格描述速度参数不连续的介质较为准确。但是对于速度参数连续的介质,利用四面体网格不如利用笛卡尔网格效率高,而且计算射线路径与界面的交点比较麻烦。因此采用了四面体网格和笛卡尔网格相结合的办法来描述三维模型。速度参数不连续的 2.界面的三角网格化描述 面最有效的剖分方式如下:我们先用一个3个函数来表达界面,x (u,v)、y (u,v)和z (u,v ),其中有两个参数u 和v 。对x 、y 和z 的离散化要考虑到界面的起伏程度。对于起伏变化剧烈的地方,应加密采样才能准确地表达出界面的形态。连接所有的节点便得到了用许多三角网格描述出来的界面。在图1中,一个盐丘就是以这样的方式来参数化表示的。可以看到,网格的大小疏密与界面的起伏变化程度有关,无论是陡倾角还是缓倾角的地方都得到了准确地描述。 图1 由3个函数定义的盐丘界面图 另外,做运动学射线追踪时,需要知道界面上每一三角网格单元的法线方向,它是界面坐标的线性函数。在网格化模型时计算并存储这些信息可以避免以后在射线追踪过程中的重复计算,加快射线追踪的速度。 3.三角网格化界面的平滑 对界面三角网格化后,还需要做平滑,这在射线追踪中 275 第27卷 增刊A 天 然 气 工 业 综 合 研 究

定量遥感_地表温度反演

遥感数字影像处理 作品名称:黄河三角洲地表温度反演 +学号: 小组成绩:

一、概述 1、作业背景: 地表温度是很多环境模型的一个重要参数,在大气与地表的能量与物质交换,天气预报,全球洋流循环,气候变化等研究领域有重要的应用。利用热红外遥感可以得到大围的地表温度面状信息,与传统的地表温度测量方式相比,具有快速、便捷、测量围大、信息连续等特点,因此利用热红外遥感数据反演地面温度得到了广泛的应用 2、作业意义: 黄河三角洲是黄河携带大量泥沙在渤海凹陷处沉积形成的冲积平原,位处黄河入处的黄河三角洲自然保护区正是以保护河口湿地生态系统和珍稀、濒危鸟类为主的湿地类型保护区。以利津为顶点,北到徒骇河口,南到小清河口,呈扇状三角形,面积5,450平方公里。地面平坦,在海拔10公尺以下。向东撒开的扇状地形,海拔高程低于15米,面积达5450平方公里。三角洲属,温带季风性气候。四季分明,光照充足,区自然资源丰富。 黄河口湿地生态旅游区占地23万亩,都处在黄河三角洲之,地貌以芦苇沼泽,湿地为主,其次为河口滩地,带翅碱蓬盐滩湿地,灌丛疏林湿地以及人工槐林湿地等。集自然景观与人文景观为一体,既有沧海桑田的神奇与壮阔,又有黄龙入海的壮观和长河落日的静美,是人们休闲、度假、观光科普的最佳场所。 二、数据介绍 数据来自地理空间数据云,Landsat 4-5 TM(陆地卫星4、5号,1982年发射后运行至今,携带有TM传感器)的相关遥感影像作为研究数据,研究黄河三角洲温度分布状况。 实验数据:2010年9月11号黄河三角洲图像(中心经度:118.8878w,中心纬度:37.4815n) 三、基本概念及技术流程图 3.1、基本概念:

相关文档
相关文档 最新文档