文档库 最新最全的文档下载
当前位置:文档库 › 2014年前二次函数压轴题分类研究doc

2014年前二次函数压轴题分类研究doc

2014年前二次函数压轴题分类研究doc
2014年前二次函数压轴题分类研究doc

认识美丽的抛物线,解决关键的压轴题

(面积,特殊三角形,特殊角,因动点产生相似,存在平行四边形,图形变换)

引言:抛物线是初中数学中很重要的一个知识点,也是学好高中数学的基础。不但如此,它更是一根轴,能够把初中数学很多重要的知识点带动起来。

【基本知识点】

一、熟悉抛物线的性质

1.抛物线是轴对称图形。对称轴为直线x = -b/2a,顶点坐标 ( -b/2a ,(4ac-b2)/4a )

2.a、b、c的几何含义。

a的符号确定抛物线的开口方向,|a|的大小确定抛物线的开口程度;a与b 的符号共同确定对称轴的位置;c的符号确定抛物线与y轴交点的位置。

3.抛物线与X轴的交点。

Δ= b2-4ac>0时,抛物线与x轴有2个交点。

Δ= b2-4ac=0时,抛物线与x轴有1个交点。

Δ= b2-4ac<0时,抛物线与x轴没有交点。

4.抛物线的增减性。

当a>0时,在对称轴的左侧y随x的增大而减小,在x= -b/2a处取得最小值f(-b/2a)=4ac-b2/4a,在对称轴的右侧y随x的增大而增大。

当a<0时,在对称轴的左侧y随x的增大而增大,在x= -b/2a处取得最大值f(-b/2a)=4ac-b2/4a,在对称轴的右侧y随x的增大而减小。

二、了解抛物线解析式的求法

1、已知三点坐标,选择一般式y=ax2+bx+c

已知抛物线过A(1,-4)、B(2,-3)、C(4,5),求其解析式

2、已知顶点坐标,选择顶点式

已知抛物线y=ax2-2ax+b的最低点纵坐标是-9,且过点(-2,0)

3、已知交点坐标,选择交点式

已知抛物线过A(1,0)、B(3,0)、C(0,6),求其解析式

抛物线与面积:

常向线段长方向转化

1. 已知抛物线的顶点C (2,它与x 轴两交点A 、B 的横坐标是方程x 2-4x+3=0的两

根,求ΔABC 的面积。

2. 已知二次函数y=

x 2+3x+2的图像与x 轴交于A 、B 两点,与y 轴交于D 点,顶点为C ,

求四边形ACBD 的面积。

3. 抛物线562

-+-=x x y 与x 轴交点为A ,B ,(A 在B 左侧)顶点为C.与Y 轴交于点D.

(1)求△ABC 的面积。

(2)

例:如图,抛物线

边),与y 轴交与点C 。P (4,5)在抛物线上。 (1)、求S △ABC ;

(2)

(3)

(4)、抛物线上是否存在点Q,使S △PQA =S △PQB ?

点评:这种类型的题主要考察面积的转化方法、全等相似的运用、数形结合思

想、解析法的思想、分类讨论思想。 想一想:

1.阅读材料:如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可得出一种计算三角形面积的新方法:ah S ABC 2

1

=

?,即三角形面积等于水平宽与铅垂高乘积的一半. 解答下列问题:

如图12-2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式;

(2)点P 是抛物线(在第一象限内)上的一个动点,连结PA ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S ?;

(3)是否存在一点P ,使S △PAB =

8

9

S △CAB ,若存在,求出P 点的坐标;若不存在,请

x

C

O

y A

B

D

1 1

说明理由.

2.已知抛物线y =ax 2+4ax +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB

(2)连接AC 、BC ,若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求

S

与m 之间的函数关系式,并写出自变量m 的取值范围;

巩固练习:

1.如图:已知抛物线y=x 2

-2x+3与直线y=2x 相交于A 、B ,抛物线与y 轴相交于C 点,求ΔABC 的面积。

2.如图所示,已知抛物线2

1y x =-与x 轴交于A 、B 两点,与y 轴交于点C . (1))求A 、B 、C 三点的坐标.

(2)过A 作AP ∥CB 交抛物线于点P ,求四边形ACBP 的面积.

3.抛物线c bx x y ++-=2与x 轴交与A(1,0),B(-3,0)两点,顶点为D,交Y 轴于C. (1)求该抛物线的解析式与△ABC 的面积。

(2))若E 为抛物线B 、C 两点间图象上的一个动点(不与A 、B 重合),过E 作EF 与X 轴垂直,交BC 于F ,设E 点横坐标为x.EF 的长度为L ,求L 关于X 的函数关系式?关写出X 的取值范围?E 运动到什么位置时,使三角形BCE 的面积最大?

二次函数中的特殊三角形问题 一、知识准备:

抛物线与直线形的结合表现形式之一是,以抛物线为载体,探讨是否存在一些点,使其能构成某些特殊三角形,有以下常见的基本形式: (1)抛物线上的点能否构成等腰三角形; (2)抛物线上的点能否构成直角三角形; (3)抛物线上的点能否构成相似三角形;

解决这类问题的基本思路:假设存在,数形结合,分类归纳,逐一考察。 常用方法:坐标法,解析法. 二、例题精析

㈠【抛物线上的点能否构成等腰三角形】

1.如图,直线33+=x y 交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交x 轴于另一点C (3,0). ⑴ 求抛物线的解析式;

⑵ 在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.

2.如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.

(1)写出A B C ,,三点的坐标并求抛物线的解析式;

(2)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说

明理由.

㈡【抛物线上的点能否构成直角三角形】

1.如图,已知一次函数y=0.5x+2的图象与x 轴交于点A ,与二次函数y=ax 2

+bx+c 的图象交

于y 轴上的一点B ,二次函数y=ax 2

+bx+c 的图象与x 轴只有唯一的交点C ,且OC=2.

(1)求二次函数y=ax 2

+bx+c 的解析式;

(2)设一次函数y=0.5x+2的图象与二次函数y=ax 2

+bx+c 的图象的另一交点为D ,已知P 为x 轴上的一个动点,且△PBD 为直角三角形,求点P 的坐标.

2.在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,点C为(-1,0).如图所示,B点在抛物线y=12x2+12x-2图象上,过点B作BD⊥x轴,垂足为D,且B点横坐标为-3.

(1)求证:△BDC≌△COA;

(2)求BC所在直线的函数关系式;

(3)抛物线的对称轴上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.

3.在平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(-3,0)、B(1,0),过顶点C作CH⊥x轴于点H.

(1)求此抛物线的解析式;

(2)在y轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D 的坐标;若不存在,说明理由;

4..如图,抛物线c bx x y ++-=2与x 轴交与A(1,0),B(-3,0)两点,顶点为D 。交Y 轴于C

(1)求该抛物线的解析式。

(2)在抛物线第二象限图象上是否存在一点M ,使△MBC 是以∠BMC 为直角的直角三角形,若存在,求出点P 的坐标。若没有,请说明理由

(三)【抛物线上的点能否构成等腰直角三角形】

1.如图,在OAB △中,90B ∠=,30BOA ∠=,4OA =,将OAB △绕点O 按逆时针方向旋转至OA B ''△,C 点的坐标为(0,4).

(1)求过C ,A ',A 三点的抛物线2

y ax bx c =++的解析式;

(2)在(1)中的抛物线上是否存在点P ,使以O A P ,,为顶点的三角形是等腰直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由。

1. 已知二次函数y=1

2

x2-4x+ (m2+2),设抛物线顶点为A,与x轴交于B、C两点,问是否

存在实数m,使△ABC为等腰直角三角形,如果存在求m;若不存在说明理由。

(四)【抛物线上的点能否构成相似三角形】

1.如图,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0).

(1)求直线BD和抛物线的解析式.

(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.

2.如图1,已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B。

⑴求抛物线的解析式;

(2)连接OA、AB,在x轴下方的抛物线上是否存在点P,使得△OBP与△OAB相似?若存在,求出P点的坐标;若不存在,说明理由。

函数中因动点产生的相似三角形问题

函数中因动点产生的相似三角形问题一般有三个解题途径:

①求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。

②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。

③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。

典型问题分析:

1.如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.

(1)求抛物线的解析式;

(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的

值及点D的坐标;

(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P坐标.

2.如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B的坐

标为(3.

(1)求抛物线的函数解析式及点A的坐标;

(2)在抛物线上求点P,使S△POA=2S△AOB;

(3)在抛物线上是否存在点Q,使△AQO与△AOB相似?如果存在,请求出Q点的坐标;如果不存在,请说明理由.

3.如图,已知抛物线的方程:

1

(2)()

4

y x x m

=-+-.(m>0)与x轴相交于点B、C,与y

轴相交于点E,且点B在点C的左侧, 抛物线过点M(2,2).

(1)求实数m的值;

(2)求△BCE的面积;

(3)在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;

(4)在第四象限内,抛物线上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE 相似?求点F的坐标.

4.如图,已知二次函数

1

(2)()

48

y x ax b

=++的图象过点A(﹣4,3),B(4,4).

(1)求二次函数的解析式:

(2)求证:△ACB是直角三角形;

(3)若点P在第二象限,且是抛物线上的一动点,过点P作PH垂直x轴于点H,是否存在以P、H、D为顶点的三角形与△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.

5.如图,直线AB交x轴于点B(4,0),交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°.

(1)直接写出直线AB的解析式;

(2)求点D的坐标;

(3)若点P是线段MB上的动点,过点P作x轴的垂线,交AB于点F,交过O、D、B三点的抛物线于点E.是否存在点P,使△BPF与△FCE相似?若存在,请求出点P的坐标;若不存在,请说明理由.

抛物线与特殊图形之平行四边形

一、已知三个定点,再找一个定点构成平行四边形(平面内有三个点满足).

1.已知抛物线b ax ax y ++-=22与x 轴的一个交点为A (-1,0),与y 轴的正半轴交于点C . ⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标;

⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式;

⑶坐标平面内是否存在点M ,平行四边形?若存在,请求出点

中考二次函数压轴题经典题型

中考二次函数压轴题经典题型 1、如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB上的一点P,使矩形PNDM 有最大面积,求矩形PNDM的面积最大值? 2、如图,二次函数的图象经过点D(0, 3 9 7 ),且顶点C的横坐标为4,该图象在x 轴上截得的线段AB的长为6. ⑴求二次函数的解析式; ⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标; ⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由. 3.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(1 2 , 5 2 )和B(4,m),点P是线段AB 上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C. (1)求抛物线的解析式; (2)是否存在这样的P点,使线段PC的长有最大值,若存在,求出这个最大值;若不存在,请说明理由; (3)求△PAC为直角三角形时点P的坐标.

4、如图,二次函数y=a+bx的图象经过点A(2,4)与B(6,0). (1)求a,b的值; (2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB 的面积S关于点C的横坐标x的函数表达式,并求S的最大值。 5、如图1,对称轴x=为直线的抛物线经过B(2,0)、C(0,4)两点,抛物线与轴的另一交点为A.(1)求抛物线的解析式; (2)若点P为第一象限内抛物线上一点,设四边形COBP的面积为S,求S的最大值; (3)如图2,若M是线段BC上一动点,在轴上是否存在这样有点Q,使△MQC为等腰三角形且△MQB 为直角三角形?若存在,求出Q点坐标;若不存在,请说明理由.

2020年中考复习之提高篇——二次函数压轴题(包含答案)

2020年中考复习之提高篇——二次函数压轴题(含答案) 1.(2019抚顺)(12分)如图1,在平面直角坐标系中,一次函数334 y x =-+的图象与x 轴交于点A ,与y 轴交于B 点,抛物线2y x bx c =-++经过A ,B 两点,在第一象限的抛物线上取一点D ,过点D 作DC x ⊥轴于点C ,交直线AB 于点E . (1)求抛物线的函数表达式 (2)是否存在点D ,使得BDE ?和ACE ?相似?若存在,请求出点D 的坐标,若不存在,请说明理由; (3)如图2,F 是第一象限内抛物线上的动点 (不与点D 重合),点G 是线段AB 上的动点.连接DF ,FG ,当四边形DEGF 是平行四边形且周长最大时,请直接写出点G 的坐标.

2(2019沈阳)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B 两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点. (1)求直线DE和抛物线的表达式; (2)在y轴上取点F(0,1),连接PF,PB,当四边形OBPF面积是7时,求点P的坐标; (3)在(2)的条件下,当点P在抛物线对称轴的右侧时,直线DE上存在两点M,N(点M在点N的上方),且MN=2√2,动点Q从点P出发,沿P→M→N→A的路线运动到终点A,当点Q的运动路程最短时,请直接写出此时点N的坐标.

3(2018年辽宁本溪).如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D,连接BD,点是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE. (1)求抛物线的解析式,并写出顶点D的坐标; (2)如果P点的坐标为(x,y),△PBE的面积为s,求S与x的函数关系式,写出自变量x的取值范围,并求出S的最大值; (3)在(2)的条件下,当S取得最大值时,过点P作x的垂线,垂足为F,连接EF,把△PEF 沿直线EF折叠,点P的对应点为P′,请直接写出P′点坐标,并判断点P′是否在该抛物线上.

中考数学中二次函数压轴题分类总结

中考数学中二次函数压 轴题分类总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

二次函数的压轴题分类复习 一、抛物线关于三角形面积问题 例题 二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,4-). (1)求出图象与x 轴的交点A ,B 的坐标; (2)在二次函数的图象上是否存在点P ,使MAB PAB S S ??=4 5 ,若存在,求出P 点的坐标;若不存在,请说明理由; (3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围. 练习: 1. 如图.平面直角坐标系xOy 中,点A 的坐标为(-2,2),点B 的坐标为(6,6),抛物线经过A 、O 、B 三点,线段AB 交y 轴与点E . (1)求点E 的坐标; (2)求抛物线的函数解析式; (3)点F 为线段OB 上的一个动点(不与O 、B 重合),直线EF 与抛物线交与M 、N 两点(点N 在y 轴右侧),连结ON 、BN ,当点F 在线段OB 上运动时,求?BON 的面积的最大值,并求 出此时点N 的坐标; 2. 如图,已知抛物线42 12++-=x x y 交x 轴的正半轴于点A ,交y 轴于点B . (1)求A 、B 两点的坐标,并求直线AB 的解析式; (2)设),(y x P (0>x )是直线x y =上的一点,Q 是OP 的中点(O 是原点),以PQ 为对角线作 正方形PEQF .若正方形PEQF 与直线AB 有公共点,求x 的取值范围; (3)在(2)的条件下,记正方形PEQF 与△OAB 公共部分的面积为S ,求S 关于x 的函数解析式,并探究S 的最大值. y x O B N A M E F B y

精选中考二次函数压轴题[附答案解析]

精选中考二次函数压轴题(含答案) 1.如图,二次函数c x y +-=2 21的图象经过点D ??? ? ?-29,3,与x 轴交于A 、B 两点. ⑴求c 的值; ⑵如图①,设点C 为该二次函数的图象在x 轴上方的一点,直线AC 将四边形ABCD 的面积二等分,试证明线段BD 被直线AC 平分,并求此时直线AC 的函数解析式; ⑶设点P 、Q 为该二次函数的图象在x 轴上方的两个动点,试猜想:是否存在这样的点P 、Q ,使△AQP ≌△ABP ?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用) 2.(2010福建福州)如图,在△ABC 中,∠C =45°,BC =10,高AD =8,矩形EFPQ 的一边QP 在BC 边上,E 、F 两点分别在AB 、AC 上,AD 交EF 于点H . (1)求证:AH AD =EF BC ; (2)设EF =x ,当x 为何值时,矩形EFPQ 的面积最大?并求其最大值; (3)当矩形EFPQ 的面积最大时,该矩形EFPQ 以每秒1个单位的速度沿射线QC 匀速运动(当点Q 与点C 重合时停止运动),设运动时间为t 秒,矩形EFFQ 与△ABC 重叠部分的面积为S ,求S 与t 的函数关系式. 3.(2010福建福州)如图1,在平面直角坐标系中,点B 在直线y =2x 上,过点B 作x 轴的垂线,垂足为A ,OA =5.若抛物线y =16 x 2+bx +c 过O 、A 两点. (1)求该抛物线的解析式; (2)若A 点关于直线y =2x 的对称点为C ,判断点C 是否在该抛物线上,并说明理由; (3)如图2,在(2)的条件下,⊙O 1是以BC 为直径的圆.过原点O 作⊙O 1的切线OP ,P 为切点(点P 与点C 不重合).抛物线上是否存在点Q ,使得以PQ 为直径的圆与⊙O 1相切?若存在,求出点Q 的横坐标;若不存在,请说明理由 4.(2010江苏无锡)如图,矩形ABCD 的顶点A 、B 的坐标分别为(-4,0)和(2,0),BC =23.设直线AC (第2(图1) (图

二次函数压轴题专题分类训练

中考二次函数压轴题专题分类训练 题型一:面积问题 【例1】如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式; (2)求△CAB 的铅垂高CD 及S △CAB ; (3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S △PAB = 8 9 S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由. 【变式练习】 1.如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB . (1)求点B 的坐标; (2)求经过A 、O 、B 三点的抛物线的解析式; (3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小若存在,求出点C 的坐标;若不存在,请说明理由. (4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由. 2.如图,抛物线y = ax 2 + bx + 4与x 轴的两个交点分别为A (-4,0)、B (2,0),与y 轴交 图2

于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G . (1)求抛物线的函数解析式,并写出顶点D 的坐标; (2)在直线EF 上求一点H ,使△CDH 的周长最小,并求出最小周长; (3)若点K 在x 轴上方的抛物线上运动,当K 运动到什么位置时, △EFK 的面积最大并求出最大面积. 3.如图,已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、B 、C (1,0)三点. (1)求抛物线的解析式; (2)若点D 的坐标为(-1,0),在直线3+-=x y 上有一点P ,使ΔABO 与ΔADP 相似,求出点P 的坐标; (3)在(2)的条件下,在x 轴下方的抛物线上,是否存在点E ,使ΔADE 的面积等于四边形APCE 的面积如果存在,请求出点E 的坐标;如果不存在,请说明理由. C E D G A x y O B F

二次函数压轴题(相似类)

二次函数压轴题(相似类) 1.如图,在平面直角坐标系中,抛物线y=ax2+x+c(a≠0)与x轴交于A、B两点(点A在点B的右侧),与y 轴交于点C,点A的坐标为(4,0),抛物线的对称轴是直线x=. (1)求抛物线的解析式; (2)M为第一象限内的抛物线上的一个点,过点M作MG⊥x轴于点G,交AC于点H,当线段CM=CH时,求点M的坐标; (3)在(2)的条件下,将线段MG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段MG与抛物线交于点N,在线段GA上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请求出点P的坐标;如果不存在,请说明理由. 2.如图,顶点为C(﹣1,1)的抛物线经过点D(﹣5,﹣3),且与x轴交于点A、B两点(点B在点A的右侧).(1)求抛物线的解析式; (2)抛物线上存在点Q,使得S△OAQ=,求点Q的坐标; (3)点M在抛物线上,点N在x轴上,且∠MNA=∠OCD,是否存在点M,使得△AMN与△OCD相似?若存在,直接写出点M的坐标;若不存在,说明理由. 3.如图,在平面直角坐标系中,顶点为A(1,﹣1)的抛物线经过点B(5,3),且与x轴交于C,D两点(点C 在点D的左侧). (1)求抛物线的解析式;(2)求点O到直线AB的距离; (3)点M在第二象限内的抛物线上,点N在x轴上,且∠MND=∠OAB,当△DMN与△OAB相似时,请你直接写出点M的坐标. 4.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B,M(m,0)为x轴上一动点,点M在线段OA上运动且不与O,A重合,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N. (1)求点B的坐标和抛物线的解析式; (2)在运动过程中,若点P为线段MN的中点,求m的值; (3)在运动过程中,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标; 5. 如图,已知抛物线y=﹣+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知B点的坐标为B(8,0). (1)求抛物线的解析式及其对称轴方程; (2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由; (3)M为抛物线上BC之间的一点,N为线段BC上的一点,若MN∥y轴,求MN的最大值; (4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

二次函数压轴题专题及答案

2016年中考数学冲刺复习资料:二次函数压轴题 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M 的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m 的值;若不存在,说明理由. 考点:二次函数综合题. 专题:压轴题;数形结合. 分析: (1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式.(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长. (3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有:

, 解得; 故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M 点的坐标. 考点:二次函数综合题.. 专题:压轴题;转化思想. 分析:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.

中考二次函数压轴题专题分类训练

中考二次函数压轴题专题分类训练 题型一:面积问题 【例1】(2009湖南益阳)如图2,抛物线顶点坐标为点C (1,4),交x轴于点A (3,0),交 y 轴于点B . (1)求抛物线和直线AB 的解析式; (2)求△CAB 的铅垂高CD 及S △CAB ; (3)设点P是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S△PAB = 8 9 S △C AB,若存在,求出P 点的坐标;若不存在,请说明理由. 【变式练习】 1.(2009广东省深圳市)如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段O A绕原点O顺时针旋转120°,得到线段OB . (1)求点B 的坐标; (2)求经过A 、O 、B三点的抛物线的解析式; (3)在(2)中抛物线的对称轴上是否存在点C ,使△B OC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由. (4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由. 图2

2.(2010绵阳)如图,抛物线y = a x2 + bx + 4与x 轴的两个交点分别为A (-4,0)、 B(2,0),与y 轴交于点C,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y轴分别交于F 、G . (1)求抛物线的函数解析式,并写出顶点D的坐标; (2)在直线EF 上求一点H,使△CDH 的周长最小,并求出最小周长; (3)若点K 在x轴上方的抛物线上运动,当K 运动到什么位置时, △EFK 的面积最大?并求出最大面积. 3.(2012铜仁)如图,已知:直线3+-=x y 交x 轴于点A,交y 轴于点B,抛物线y=ax 2 +b x+c经过A、B 、C (1,0)三点. (1)求抛物线的解析式; (2)若点D 的坐标为(-1,0),在直线3+-=x y 上有一点P,使ΔABO 与ΔADP 相似,求出点P 的坐标; (3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使ΔADE 的面积等于四边形APC E的面积?如果存在,请求出点E 的坐标;如果不存在,请说明理由 . C E D G A x y O B F

中考数学二次函数压轴题(含答案)

中考数学二次函数压轴题(含答案) 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 解答:

解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA?OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有: ,解得:即M(2,﹣3). 过M点作MN⊥x轴于N, S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.

2018年二次函数压轴题题型归纳

2018二次函数压轴题题型归纳 一、二次函数常考点汇总 1、两点间的距离公式:AB y A y B X A X B 2、中点坐标:线段AB的中点C的坐标为:X B ,匕尘 22 直线y k1x b1k1 0 )与y k2x b2 ( k2 0) 的位置关系: (1) 两直线平行k[ k?.且b[b2(2)两直线相交 (3) 两直线重合k[ k?.且b[b2(4)两直线垂直k? 1 3、一元二次方程有整数根问题,解题步骤如 下: ①用和参数的其他要求确定参数的取值范围; ②解方程,求出方程的根;(两种形式:分式、二次根式) ③分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式例:关于x 的一元二次方程x2—2 m 1 x m2= 0有两个整数根,m v5且m为整数,求m的值。4、二次函数与x轴的交点为整数点问题。(方法同上) 例:若抛物线y mx2 3m 1 x 3与x轴交于两个不同的整数点,且m为正整数,试确定此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x的方程mx2 3(m 1)x 2m 3 0 (m为实数),求证:无论m为何值,方程总有一个固定的根。 解:当m 0时,x 1 ; 2 3 m 1 i 小3 当m 0 时,m3 0,x ,捲 2 、X2 1 ; 2m m 综上所述:无论m为何值,方程总有一个固定的根是1。 6函数过固定点问题,举例如下: 已知抛物线y x2 mx m 2 (m是常数),求证:不论m为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m的方程y x2 2 m 1 x ; ??? y X 2 0,解得:y 1;^抛物线总经过一个固定的点(1,—1)o 1 x 0 x 1 (题目要求等价于:关于m的方程y x2 2 m 1 x不论m为何值,方程恒成立) 小结:关于x的方程ax b有无数解 a 0 '' b 0

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

二次函数压轴题分类精选---取值范围

1.已知二次函数y=x2+bx﹣4的图象与y轴的交点为C,与x轴正半轴的交点为A,且tan∠ACO= (1)求二次函数的解析式; (2)P为二次函数图象的顶点,Q为其对称轴上的一点,QC平分∠PQO,求Q点坐标; (3)是否存在实数x1、x2(x1<x2),当x1≤x≤x2时,y的取值范围为≤y≤?若存在,直接写出x1,x2的值;若不存在,说明理由. 【分析】(1)首先根据tan∠ACO=,求出OA的值,即可判断出A点的坐标;然后把A点的坐标代入y=x2+bx﹣4,求出b的值,即可判断出二次函数的解析式.(2)首先根据Q为抛物线对称轴上的一点,设点Q的坐标为(﹣,n);然后根据∠OQC=∠CQP、∠CQP=∠OCQ,可得∠OQC=∠OCQ,所以OQ=OC,据此求出n 的值,进而判断出Q点坐标即可. (3)根据题意,分3种情况:①当x1≤x2≤﹣时;②当x1≤﹣≤x2时;③当﹣ <x1≤x2时;然后根据二次函数的最值的求法,求出满足题意的实数x1、x2(x1<x2),使得当x1≤x≤x2时,y的取值范围为≤y≤即可. 【解答】解:(1)如图1,连接AC,

, ∵二次函数y=x2+bx﹣4的图象与y轴的交点为C,∴C点的坐标为(0,﹣4), ∵tan∠ACO=, ∴, 又∵OC=4, ∴OA=1, ∴A点的坐标为(1,0), 把A(1,0)代入y=x2+bx﹣4, 可得0=1+b﹣4, 解得b=3, ∴二次函数的解析式是:y=x2+3x﹣4. (2)如图2,

, ∵y=x2+3x﹣4, ∴抛物线的对称轴是:x=﹣, ∵Q为抛物线对称轴上的一点, ∴设点Q的坐标为(﹣,n), ∵抛物线的对称轴平行于y轴, ∴∠CQP=∠OCQ, 又∵∠OQC=∠CQP, ∴∠OQC=∠OCQ, ∴OQ=OC, ∴, ∴, 解得n=±, ∴Q点坐标是(﹣,)或(﹣,﹣). (3)①当x1≤x2≤﹣时,二次函数y=x2+3x﹣4单调递减,∵y的取值范围为≤y≤,

人教版中考数学压轴题型24道:二次函数专题含答案解析

人教版中考数学压轴题24道:二次函数专题 1.如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴另一交点为A.点P以每秒个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M. (1)求抛物线的解析式; (2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当=时,求t的值; (3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值. 2.如图,抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点.(1)求抛物线的函数表达式; (2)如图1,P为抛物线上在第二象限内的一点,若△PAC面积为3,求点P的坐标; (3)如图2,D为抛物线的顶点,在线段AD上是否存在点M,使得以M,A,O为顶点的三角形与△ABC相似?若存在,求点M的坐标;若不存在,请说明理由. 3.如图1,在平面直角坐标系中,直线y=﹣5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B. (1)求抛物线解析式及B点坐标; (2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积; (3)如图2,若P点是半径为2的⊙B上一动点,连接PC、PA,当点P运动到某一位

置时,PC+PA 的值最小,请求出这个最小值,并说明理由. 4.已知函数y =(n 为常数) (1)当n =5, ①点P (4,b )在此函数图象上,求b 的值; ②求此函数的最大值.(2)已知线段AB 的两个端点坐标分别为A (2,2)、B (4,2),当此函数的图象与线段 AB 只有一个交点时,直接写出n 的取值范围. (3)当此函数图象上有4个点到x 轴的距离等于 4,求n 的取值范围. 5.在平面直角坐标系 xOy 中(如图),已知抛物线 y =x 2 ﹣2x ,其顶点为A . (1)写出这条抛物线的开口方向、顶点A 的坐标,并说明它的变化情况; (2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点” . ①试求抛物线y =x 2 ﹣2x 的“不动点”的坐标; ②平移抛物线y =x 2﹣2x ,使所得新抛物线的顶点 B 是该抛物线的“不动点”,其对称轴 与x 轴交于点C ,且四边形OABC 是梯形,求新抛物线的表达式.

中考二次函数压轴试题分类汇编及答案(1)

中考二次函数压轴题分类汇编 一.极值问题 1.二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0). (1)求二次函数的表达式; (2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值; (3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标. 分析:(1)首先求得A、B的坐标,然后利用待定系数法即可求得二次函数的解析式; (2)设M的横坐标是x,则根据M和N所在函数的解析式,即可利用x表示出M、N的坐标,利用x表示出MN的长,利用二次函数的性质求解; (3)BM与NC互相垂直平分,即四边形BCMN是菱形,则BC=MC,据此即可列方程,求得x的值,从而得到N的坐标. 解:(1)由题设可知A(0,1),B(﹣3,), 根据题意得:,解得:, 则二次函数的解析式是:y=﹣﹣x+1; (2)设N(x,﹣x2﹣x+1),则M、P点的坐标分别是(x,﹣x+1),(x,0). ∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+, 则当x=﹣时,MN的最大值为; (3)连接MN、BN、BM与NC互相垂直平分, 即四边形BCMN是菱形,由于BC∥MN,即MN=BC,且BC=MC, 即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解得:x=1, 故当N(﹣1,4)时,MN和NC互相垂直平分.

点评:本题是待定系数法求二次函数的解析式,以及二次函数的性质、菱形的判定的综合应用,利用 二次函数的性质可以解决实际问题中求最大值或最小值问题. 2.如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0)(1)求该抛物线的解析式. (2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值. (3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标. 考点:二次函数综合题. 分析:(1)利用待定系数法求出抛物线的解析式; (2)首先求出△PCE面积的表达式,然后利用二次函数的性质求出其最大值; (3)△OMD为等腰三角形,可能有三种情形,需要分类讨论. 解答:解:(1)把点C(0,﹣4),B(2,0)分别代入y=x2+bx+c中, 得, 解得 ∴该抛物线的解析式为y=x2+x﹣4. (2)令y=0,即x2+x﹣4=0,解得x 1=﹣4,x 2 =2, ∴A(﹣4,0),S △ABC =ABOC=12. 设P点坐标为(x,0),则PB=2﹣x. ∵PE∥AC, ∴∠BPE=∠BAC,∠BEP=∠BCA, ∴△PBE∽△ABC, ∴,即, 化简得:S △PBE =(2﹣x)2.

全国中考二次函数压轴题集锦

1.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点. (1)求抛物线的解析式; (2)点E是直角△ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E、F的坐标; (3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由. 2.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D. (1)求二次函数的表达式; (2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积. 3.如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1,0)、B(4,0)、C(0,2)三点. (1)求该二次函数的解析式; (2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标; (3)点P是该二次函数图象上位于第一象限上的一动点,连接PA分别交BC、y轴于点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1﹣S2的最大值. 4.如图1,已知二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象过点O(0,0)和点A

2019年中考二次函数压轴题整理

中考数学冲刺复习资料:二次函数压轴题 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 平行四边形类 3.如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.

(1)分别求出直线AB和这条抛物线的解析式. (2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积. (3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由. 4.如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O. (1)一抛物线经过点A′、B′、B,求该抛物线的解析式; (2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由. (3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出四边形PB′A′B 的两条性质. 5.如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上. (1)求抛物线顶点A的坐标; (2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;

(完整版)2018二次函数压轴题题型归纳

一、二次函数常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:??? ??++22 B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ;∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解????==0 b a

(完整)二次函数压轴题类型方法总结,推荐文档

二次函数压轴题总结:(凡解析几何问题,均是以几何性质探路,代数书写竣工。) 已知、 y=322--x x (以下几种分类的函数解析式就是这个) 1、和最小,差最大 在对称轴上找一点P ,使得PB+PC 的和最小,求出P 点坐标 在对称轴上找一点P ,使得PB-PC 的差最大,求出P 点坐标 解决方案:识别模型,A 、若为过河问题模型,根据“异侧和最小,同侧差最大,根据问题同侧异侧相互转化”;B 、若有绝对值符号或不隶属于过河问题,可将问题形式平方,构建函数,转化为求函数最值问题(若表达式中含有根式等形式,可考虑用换元法求最值)。 2、求面积最大 连接AC,在第四象限抛物线上找一点P ,使得ACP ?面积最大,求出P 坐标 解决方案:熟悉基本图形的面积公式【或根据拼图思想,采用割补法求面积(注意不重不漏)。】,根据问题,灵活选择面积公式,务必使表达式简单,变量的最值好求,讲变量的最值问题转化为:”定值+变量的最值“ 3、讨论直角三角 连接AC,在对称轴上找一点P ,使得ACP ?为直角三角形,求出P 坐标 或者在抛物线上求点P ,使△ACP 是以AC 为直角边的直角三角形. 解决方案:此类问题是分类讨论思想能力的考察,由于直角三角形的”直角边“”和“斜边”不确定而展开讨论。在不忘三角形满足三边关系的条件下,勿忘“等腰直角三角形”。 4、讨论等腰三角 连接AC,在对称轴上找一点P ,使得ACP ?为等腰三角形,求出P 坐标 解决方案:分析同上4,在能组成△的大前提下,根据谁作为腰,谁作为底边展开讨论。 5、讨论平行四边形 1、点E 在抛物线的对称轴上,点F 在抛物线上,且以B ,A ,F ,E 四点为顶点的四 边形为平行四边形,求点F 的坐标 解决方案:从平行四边形的性质入手,已知三点求另外一点,分析其位置情况(分别以3点中任一已知两点的线段为平行四边形的边或其对角线来展开所有的情况的讨论)。 6、相似三角形 问抛物线上是否存在一动点D ,使得△ABD ∽△ABC 。 解决方案:从边的关系找相似(勿忘全等△)或从角的关系找相似,建立数量关系,解方程并验证是否合符题意。 7、与圆有关的问题【关系:由不在同一直线上的三点可确定唯一一个圆(三角形外接圆)且在直角坐标系中,三个不同的点可确定一条唯一的抛物线】:判断点与圆的位置关系;判断圆与直线的位置关系;判断圆与圆的位置关系; 解决方案:抓住圆的必要条件:圆心和半径,根据圆的性质,涉及到根与系数的关系(中点问题--->圆心有关)勿忘韦达定理。 A 、直线和圆的位置关系 B 、圆换圆的位置关系 1.五种位置关系及判定与性质:(重点:相切) d>R d=R dR+r d=R+r R-r

二次函数压轴题(带详细答案)

二次函数压轴题强化训练(带详细答案) 一.解答题(共30小题) 1.(2016?深圳模拟)已知:如图,在平面直角坐标系xOy中,直线与x轴、y 轴的交点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C. (1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式; (2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由; (3)设抛物线的对称轴与直线BC的交点为T,Q为线段BT上一点,直接写出|QA﹣QO|的取值范围. 2.(2015?枣庄)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4, m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式; (2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由; (3)求△PAC为直角三角形时点P的坐标.

3.(2007?玉溪)如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在y轴上. (1)求m的值及这个二次函数的关系式; (2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围; (3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由. 4.(2013?凉山州)如图,抛物线y=ax2﹣2ax+c(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G. (1)求抛物线的解析式; (2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长; (3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM 的形状;若不存在,请说明理由. 5.(2009?綦江县)如图,已知抛物线y=a(x﹣1)2+3(a≠0)经过点A(﹣2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连接BC. (1)求该抛物线的解析式; (2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问当t为何值时,四边形DAOP分别为平行四边形,直角梯形,等腰梯形?

相关文档
相关文档 最新文档