文档库 最新最全的文档下载
当前位置:文档库 › 高中物理动量知识点专题 含答案

高中物理动量知识点专题 含答案

高中物理动量知识点专题 含答案
高中物理动量知识点专题 含答案

高中物理动量知识点专题

一、冲量与动量、动量与动能概念专题

●1.冲量I :I =Ft ,有大小有方向(恒力的冲量沿F 的方向),是矢量.两个冲量相同必定是大小相等方向相同,讲冲量必须明确是哪个力的冲量,单位是N ·s .

●2.动量p :p =mv ,有大小有方向(沿v 的方向)是矢量,两个动量相同必定是大小相等方向相同,单位是kg ·m/s .

●3.动量与动能(E k =

12

mv 2)的关系是: p 2=2m E k .动量与动能的最大区别是动量是矢量,动能是标量.

【例题】A 、B 两车与水平地面的动摩擦因数相同,则下列哪些说法正确?

A .若两车动量相同,质量大的滑行时间长;

B .若两车动能相同,质量大的滑行时间长;

C .若两车质量相同,动能大的滑行时间长;

D .若两车质量相同,动量大的滑行距离长.

【分析】根据动量定理F ·t =mv t -mv 0得mg ·t =p ∴t =P mg μ∝1m

——A 不正确;根据 t =221==k k mE E p mg mg g m μμμ∝1m

——B 不正确;根据 t =2=k mE p mg mg μμ∝k E ——C 正确;根据动能定理F 合·s cos =2201122

-t mv mv 得 mgs =E k =2

2p m , ∴s =222p m g μ∝p 2——D 正确. 训练题

(1)如图5—1所示,两个质量相等的物体在同一高度沿倾角不同的两个光滑斜面由静止自由滑下,到达

斜面底端的过程中,两个物体具有的物理量相同的是:

A .重力的冲量;

B .弹力的冲量;

C .合力的冲量;

D .刚到达底端时的动量;

E .刚到达底端时动量的水平分量;

F .以上几个量都不同.

1.F 分析:物体沿斜面作匀加速直线运动,由位移公式,得θsin h =21g sin ·t 2 t 2∝θ2sin 1 不同,则t 不同.又I G =mgt I N =N t 所以I G 、I N 方向相同,大小不同,选项A 、B 错误;根据机械能守恒定律,物体到达底端的速度大小相等,但方向不同;所以刚到达底端时的动量大小相等但方向不同,其水平分量方向相同但大小不等,选项D 、E 错误;又根据动量定理I 合=ΔP =mv -0可知合力的冲量大小相等,但方向不同,选项C 错误.

(2)对于任何一个固定质量的物体,下面几句陈述中正确的是:

A .物体的动量发生变化,其动能必变化;

B .物体的动量发生变化,其动能不一定变化;

C .物体的动能发生变化,其动量不一定变化;

D .物体的动能变化,其动量必有变化.

2.BD 分析:动量和动能的关系是P 2=2mE k ,两者最大区别是动量是矢量,动能是标量.质量一定的物体,其动量变化可能速度大小、方向都变化或速度大小不变方向变化或速度大小变化方向不变.只要速度大小不变,动能就不变.反之,动能变化则意味着速度大小变化,意味着动量变化.

(8)A 车质量是B 车质量的2倍,两车以相同的初动量在水平面上开始滑行,如果动摩擦因数相同,并以S A 、S B 和t A 、t B 分别表示滑行的最远距离和所用的时间,则

A .S A =S

B ,t A =t B ; B .S A >S B ,t A >t B ;

C .S A <S B ,t A <t B ;

D .S A >S B ,t A <t B .

8.C 分析:由mv =mgt 知t A =t B /2, 由Fs =21mv 2=m

p 22知s A /s B =1/2 二、动量定理专题

●1.动量定理表示式:F Δt =Δp .式中:(1)F Δt 指的是合外力的冲量;(2)Δp 指的是动量的增量,不要理解为是动量,它的方向可以跟动量方向相同(同一直线动量增大)也可以跟动量方向相反(同一直线动量减小)甚至可以跟动量成任何角度,但Δp 一定跟合外力冲量I 方向相同;

(3)冲量大小描述的是动量变化的多少,不是动量多少,冲量方向描述的是

动量变化的方向,不一定与动量的方向相同或相反.

●2.牛顿第二定律的另一种表达形式:据F =ma 得F =m 0'-=ΔΔΔv v p t t

,即是作用力F 等于物体动量的变化率Δp /Δt ,两者大小相等,方向相同.

●3.变力的冲量:不能用Ft 直接求解,如果用动量定理Ft =Δp 来求解,只要知道物体的始末状态,就能求出I ,简捷多了.

注意:若F 是变量时,它的冲量不能写成Ft ,而只能用I 表示.

●4.曲线运动中物体动量的变化:曲线运动中速度方向往往都不在同一直线上,如用Δp =mv ′-mv 0来求动量的变化量,是矢量运算,比较麻烦,而用动量定理I =Δp 来解,只要知道I ,便可求出Δp ,简捷多了.

*【例题1】质量为0.4kg 的小球沿光滑水平面以5m/s 的速度冲向墙壁,又以4m/s 的速度被反向弹回(如图5—2),球跟墙的作用时间为0.05s ,求:(1)小球动量的增量;

(2)球受到的平均冲力.

【分析】根据动量定理Ft =mv 2-mv 1,由于式中F 、v 1、v 2都是矢量,而现在v 2与v 1反向,如规定v 1的方向为正方向,那么v 1=5m/s ,v 2=-4m/s ,所以:(1)动量的增量 Δp =mv 2-mv 1=0.4×(-4-5)kg ·m/s =-3.6kg ·m/s . 负号表示动量增量与初动量方向相反.(2)F =

21 3.60.05--=mv mv t N =-72N .冲力大小为72N ,冲力的方向与初速反向.

【例题2】以速度v 0平抛出一个质量为1lg 的物体,若在抛出3s 后它未与地面及其它物体相碰,求它在3s 内动量的变化.

【分析】不要因为求动量的变化,就急于求初、未动量而求其差值,这样不但求动量比较麻烦,而且动量是矢量,求矢量的差也是麻烦的.但平抛出去的物体只受重力,所求动量的变化应等于重力的冲量,重力是恒量,其冲量容易求出.即:Δp =Ft =1×10×3kg ·m/s =30kg ·m/s .

总结与提高 若速度方向变而求动量的变化量,则用ΔP =Ft 求;若力是变力而求冲量,则用I =mv t -mv 0求.

训练题

(2)某质点受外力作用,若作用前后的动量分别为p 、p ′,动量变化为Δp ,速度变化为Δv ,动能变化量为ΔE k ,则:

A .p =-p ′是不可能的;

B .Δp 垂直于p 是可能的;

C .Δp 垂直于Δv 是可能的;

D .Δp ≠0,Δ

E k =0是可能的.

2.BD 提示:对B 选项,ΔP 方向即为合力F 合的方向,P 的方向即为速度v 的方向,在匀速圆周运动中,F 合⊥v (即ΔP ⊥P );对C 选项,ΔP 的方向就是Δv 的方向,∵ ΔP =m Δv ,故C 选项错.

(4)在空间某一点以大小相同的速度分别竖直上抛,竖直下抛,水平抛出质量相等的小球,若空气阻力不计,经过t 秒:(设小球均未落地)

A .作上抛运动小球动量变化最小;

B .作下抛运动小球动量变化最大;

C .三小球动量变化大小相等;

D .作平抛运动小球动量变化最小.

4.C 提示:由动量定理得:mgt =Δp ,当t 相同时,Δp 相等,选项C 对.

(8)若风速加倍,作用在建筑物上的风力大约是原来的:

A .2倍;

B .4倍;

C .6倍;

D .8倍.

8.B 提示:设风以速度v 碰到建筑物,后以速度v 反弹,在t 时间内到达墙的风的质量为m ,由动量定理得: Ft =mv -m (-v )=2m v , 当v 变为2v 时,在相同时间t 内到达墙上的风的质量为2m ,有: F ′t =2m ·2v -2m(-2v )=8m v , ∴ F ′=4F ,故选项B 对.

(9)质量为0.5kg 的小球从1.25m 高处自由下落,打到水泥地上又反弹竖直向上升到0.8m 高处时速度减为零.若球与水泥地面接触时间为0.2s ,求小球对水泥地面的平均冲击力.(g 取10m/s ,不计空气阻力)

9.解:小球碰地前的速度 v 1=12gh =251102.??=5m/s 小球反弹的速度 v 2=22gh =80102.??=4m/s

以向上为正方向,由动量定理: (F -mg )t =mv 2-mv 1 ∴ F =0.5×(4+5)/0.2+0.5×10=27.5N 方向向上.

四、动量守恒条件专题

●1.外力:所研究系统之外的物体对研究系统内物体的作用力.

●2.内力:所研究系统内物体间的相互作用力.

●3.系统动量守恒条件:系统不受外力或所受外力合力为零(不管物体是否相互作用).系统不受外力或所受外力合力为零,说明合外力的冲量为零,故系统总动量守恒.当系统存在相互作用的内力时,由牛顿第三定律得知相互作用的内力产生的冲量,大小相等方向相反,使得系统内相互作用的物体的动量改变量大小相等方向相反,系统总动量保持不变.也就是说内力只能改变系统内各物体的动量而不能改变整个系统的总动量.

训练题

(2)如图5—7所示的装置中,木块B 与水平桌面间的接触是光滑的,子弹A 沿水平方向射入木块后留在木块内,将弹簧压缩到最短,现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中

A .动量守恒、机械能守恒;

B .动量不守恒,机械能不守恒;

C .动量守恒、机械能不守恒;

D .动量不守恒,机械能守恒.

2.B 解:过程一:子弹打入木板过程(Δt 很小),子弹与木板组成的系统动量守恒,但机械能不守恒(∵ 子弹在打入木块过程有热能产生); 过程二:木块(含子弹)压缩弹簧,对三者组成的系统机械能守恒,但动量不守恒(∵ 对系统:F 合≠0),所以全程动量、机械能均不守恒.

(3)光滑水平面上A 、B 两小车中有一弹簧(如图5—8),用手抓住小车并将弹簧压缩后使小车处于静止状态,将两小车及弹簧看作系统,下面的说法正确的是:

A.先放B车后放A车,(手保持不动),则系统的动量不守恒而机械能守恒;

B,先放A车,后放B车,则系统的动量守恒而机械能不守恒;

C.先放A车,后用手推动B车,则系统的动量不守恒,机械能也不守恒;

D.若同时放开两手,则A、B两车的总动量为零.

3.ACD 提示:对A选项:先放B车时,A、B车及弹簧三者组成的系统合外力F合≠0,∴动量不守恒,但由于按A车的手不动,故手不做功,此系统机械能守恒.对C选项:F合≠0,且F合又对系统做功(机械能增加),∴动量及机械能均不守恒.

五、动量守恒定律各种不同表达式的含义及其应用专题

●1.p=p′(系统相互作用前总动量p等于相互作用后总动量p′)

●2.Δp=0(系统总动量增量为零).

●3.Δp1=-Δp2(相互作用两个物体组成的系统,两物体动量增量大小相等方向相反).

●4.m1v1+m2v2=m1v1′+m2v2′(相互作用两个物体组成系统,前动量和等于后动量和)

●5.以上各式的运算都属矢量运算,高中阶段只限于讨论一维情况(物体相互作用前、后的速度方向都在同一直线上),可用正、负表示方向.处理时首先规定一个正方向,和规定正方向相同的为正,反之为负,这样就转化为代数运算式,但所有的动量都必须相对于同一参照系.【例题】质量m1=10g的小球在光滑的水平桌面上以v1=30cm/s的速率向右运动,恰遇上质量m2=50g 的小球以v2=10cm/s的速率向左运动,碰撞后,小球m2恰好停止,那么碰撞后小球m1的速度是多大?方向如何?

【分析与解答】设v1的方向即向右为正方向,则各速度的正负号为:v1=30cm/s,v2=-10cm/s,v2′=0,据m1v1′+m2v2′=m1v1+m2v2有10v1′=10×30+50×(-10).

解得v1′=-20(cm/s),负号表示碰撞后,m1的方向与v1的方向相反,即向左.

总结提高解此类题一定要规定正方向.正确找出初末态动量.

训练题

(3)一只小船静止在湖面上,一个人从小船的一端走到另一端(不计水的阻力),以下说法中正确的是:

A.人在小船上行走,人对船作用的冲量比船对人作用的冲量小,所以人向前运动得快,船后退得慢;

B.人在船上行走时,人的质量比船小,它们所受冲量的大小是相等的,所以人向前运动得快,船后退得慢;

C.当人停止走动时,因船的惯性大,所以船将会继续后退;

D.当人停止走动时,因总动量任何时刻都守恒,所以船也停止后退.

3.BD 分析:对A:人对船的作用力和船对人的作用力等大反向,作用时间相等,所以两冲量大小相等;选项A错.对C:人在船上走的过程,对人和船构成的系统,总动量守恒,所以人停则船停;选项C 错.

(6)一辆总质量为M的列车,在平直轨道上以速度v匀速行驶,突然后一节质量为m的车厢脱钩,假设列车受到的阻力与质量成正比,牵引力不变,则当后一节车厢刚好静止的瞬间,前面列车的速度为多大?6.解:列车在平直轨道匀速行驶,说明列车受到合外力为零.后一节车厢脱钩后,系统所受合外力仍然为零,系统动量守恒.根据动量守恒定律有:

Mv=(M-m)v′v′=Mv/(M-m)

六、平均动量守恒专题

若系统在全过程中动量守恒(包括单方向动量守恒),则这一系统在全过程中的平均动量也必定守恒.如果系统是由两个物体组成,且相互作用前均静止、相互作用后均发生运动,则由0=m 11v -m 22v 得推论: m 1s 1=m 2s 2,使用时应明确s 1、s 2必须是相对同一参照物位移的大小.

【例题】一个质量为M ,底面长为b 的三角形劈静止于光滑的水平桌面上,(如图5—16所示)有一质量为m 的小球由斜面顶部无初速滑到底部时,劈移动的距离为多少?

【分析和解答】劈和小球组成的系统在整个运动过程中都不受水平方向外力.所以系统在水平方向平均动量守恒.劈和小球在整个过程中发生的水平位移如图5—15所示,由图见劈的位移为s ,小球的水平位移为(b -s ).则由m 1s 1=m 2s 2得:Ms =m (b -s ),∴s =mb /(M +m )

总结提高 用m 1s 1=m 2s 2来解题,关键是判明动量是否守恒、初速是否为零(若初速不为零,则此式不成立),其次是画出各物体的对地位移草图,找出各长度间的关系式.

训练题

(2)静止在水面的船长为l ,质量为M ,一个质量为m 的人站在船头,当此人由船头走到船尾时,不计水的阻力,船移动的距离为多少?

2.解:如图,设船移动的距离为s 船,人移动的距离为s 人. Ms 船=ms 人 s 人+s 船=l 解得s 船

=ml /(M +m )

(4)气球质量为200kg ,载有质量为50kg 的人,静止在空中距地面20m 的地方,气球下悬一根质量可忽略不计的绳子,此人想从气球上沿绳慢慢下滑至安全到达地面,则这根绳长至少为多长?

4、解:如图,设气球产生的位移为s 球,气球产生的位移为s 人,

m 人s 人=m 球s 球

50×20=200×s 球

s 球=5m

所以绳长至少为:

l =s 人+s 球=20+5=25m

七、多个物体组成的系统动量守恒专题

有时应用整体动量守恒,有时只应用某部分物体动量守恒,有时分过程多次应用动量守恒,有时抓住初、末状态动量守恒即可,要善于选择系统、善于选择过程来研究.

【例题】两只小船平行逆向航行,航线邻近,当它们头尾相齐时,由每一只船上各投质量m =50kg 的麻袋到对面一只船上去,结果载重较小的一只船停了下来,另一只船则以v =8.5m/s 的速度向原方向航行,设两只船及船上的载重量各为m 1=500kg 及m 2=1000kg ,问在交换麻袋前两只船的速率为多少?(水的阻力不计).

【分析】选取小船和从大船投过的麻袋为系统,如图5—18,并以小船的速度为正方向,根据动量守恒定律有:(m 1-m )v 1-mv 2=0, 即450v 1-50v 2=0……(1). 选取大船和从小船投过的麻袋为系统有:

-(-m2-m)v2+mv1=-m2v,即-950v2+50v1=-1000×8.5……(2).选取四个物体为系统有:m1v1-m2v2=-m2v,即500v1-1000v2=-1000×8.5……(3).联立(1)(2)(3)式中的任意两式解得:v1=1(m/s),v2=9(m/s).

训练题

(1)质量m=100kg的小船静止在静水面上,船两端载着m甲=40kg,m乙=60kg的游泳者,在同一水平线上甲朝左乙朝右同时以相对于岸3m/s的速度跃入水中,如图5—19所示,则小船的运动方向和速率为:

A.向左,小于1m/s;B.向左,大于1m/s;C.向右,大于1m/s;D.向右,小于1m/s.1.A 解:对甲、乙两人及船构成的系统总动量守恒,取向右为正方向,则根据动量守恒定律得0=m m乙v乙+mv,0=40×(-3)+60×3+100×v, v=-0.6m/s 负号表示方向向左

甲v甲+

(3)A、B两船的质量均为M,都静止在平静的湖面上,现A船中质量为M/2的人,以对地的水平速率v从A船跳到B船,再从B船跳到A船……经n次跳跃后,人停在B船上;不计水的阻力,则:A.A、B两船速度大小之比为2∶3;B.A、B(包括人)两动量大小之比1∶1;

C.A、B(包括人)两船的动能之比3∶2;D.以上答案都不对.

3.BC 分析:不管人跳几次,只关心初状态:人在A船上,系统(包括A、B船和人)总动量为零;末状态人在B船上.整过程动量守恒,根据动量守恒定律得 0=Mv1+(M+M/2)v B v A/v B=3/2

(4)小车放在光滑地面上,A、B两人站在车的两头,A在车的左端,B在车的右端,这两人同时开始相向行走,发现小车向左运动,分析小车运动的原因,可能是:(如图5—20所示)

A.A、B质量相等,A比B的速率大;B.A、B质量相等,A比B的速率小;

C.A、B速率相等,A比B的质量大;D.A、B速率相等,A比B的质量小.

4.AC 分析:对A、B两人及车构成的系统动量守恒,取向左为正方向.

m B v B-m A v A+m车v车=0,m A v A=m B v B+m车v车 ,所以m A v A>m B v B

(7)如图5—21,在光滑水平面上有两个并排放置的木块A和B,已知m A=500g,m B=300g,一质量为80g 的小铜块C以25m/s的水平初速开始,在A表面滑动,由于C与A、B间有摩擦,铜块C最后停在B上,B 和C一起以2.5m/s的速度共同前进,求:

①木块A的最后速度v A′;②C在离开A时速度v′c.

7.解:①因为水平面光滑、C在A、B面上滑动的整个过程,A、B、C系统总动量守恒.木块C离开A滑上B时,木块A的速度为最后速度,则m C v C=M A v A+(m B+m C)v′BC, 代入数据可得v′A=2.1m/s, ②对C在A上滑动的过程,A、B、C系统总动量守恒,A、B速度相等.则m C v C=(m A+m B)v′A+m C v′C 代入数据可得v′C=4m/s

九、用动量守恒定律进行动态分析专题

【例题】甲、乙两个小孩各乘一辆冰车在水平冰面上游戏.甲和他的冰车的总质量共为M=30kg,乙和他的冰车的总质量也是30kg,游戏时,甲推着一质量为m=15kg的箱子,和他一起以大小为v0=2m/s的速度滑行.乙以同样大小的速度迎面滑来.为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处时乙迅速把它抓住.若不计冰面的摩擦力,求:甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞.

【分析和解答】甲把箱子推出后,甲的运动有三种可能,一是继续向前,方向不变;一是静止;一是倒退,方向改变.按题意,要求甲推箱子给乙避免与乙相撞的最起码速度,是上述的第一种情况,即要求推箱子后,动量的变化不是很大,达到避免相撞的条件便可以,所以对甲和箱的系统由动量守恒定律可得:(取v0方向为正方向) (M+m)v0=mv+Mv1即(30+15)×2=15v+30v1……(1) v为箱子相对地速度,v1为甲相对地速度.乙抓住箱子后,避免与甲相遇,则乙必须倒退,与甲运动方向相同,对乙和箱的系统得:mv-Mv0=(M+m)v2即15v-30×2=(30+15)v2……(2) v2为乙抓住箱子后,一起相对地的后退速度.甲、乙两冰车避免相撞的条件是:v2≥v1;当甲、乙同步前进时,甲推箱子的速度为最小.v2=v1……(3) 联立(1)(2)(3)式代入数据解得:v=5.2m/s

训练题

(1)如图5—26所示,水平面上A、B两物体间用线系住,将一根弹簧挤紧,A、B两物体质量之比为2∶1,它们与水平面间的动摩擦因数之比为1∶2.现将线烧断,A、B物体从静止被弹开,则:

A.弹簧在弹开过程中(到停止之前),A、B两物体速度大小之比总是1∶2;

B.弹簧刚恢复原长时,两物体速度达最大;C.两物体速度同时达到最大;D.两物体同时停止运动.

分析:由于A、B受水平地面的摩擦力等大反向,整个过程系统动量守恒,则0=m A v A-m B v B v A/v B=m B/m A=1/2

选项A、C、D正确.当A或B受合外力等于零,加速度为零时,速度达到最大,此时弹簧尚未恢复原长,选项B错误.

(2)如图5—27所示,光滑水平面有质量相等的A、B两物体,B上装有一轻质弹簧,B原来处于静止状态,A以速度v正对B滑行,当弹簧压缩到最短时:

A.A的速度减小到零;B.是A和B以相同的速度运动时刻;C.是B开始运动时;D.是B 达到最大速度时.

2.B 分析:当A碰上弹簧后,A受弹簧推力作用而减速,B受弹簧推力作用而加速;当两者速度相等时,A、B之间无相对运动,弹簧被压缩到最短.然后A受弹簧推力作用继续减速,B受弹簧推力作用继续加速,当弹簧恢复原长时,A减速至零,B加速至最大.或用动量守恒定律分析,m A v+0=m A v′A+m B v′B v′v′B增大;当v′A减至零时,v′B增加至最大为v.

A减小,

(5)如图5—29所示,甲车质量m1=20kg,车上有质量M=50kg的人.甲车(连人)从足够长的光滑斜坡上高h=0.45m由静止开始向下运动,到达光滑水平面上,恰遇m2=50kg的乙车以速度v0=1.8m/s迎面驶来.为避免两车相撞,甲车上的人以水平速度v′(相对于地面)跳到乙车上,求v′的可取值的范围.(g

取10m/s 2)

5.解:甲车滑到水平面时速度为 v 甲=gh 2=450102.??=3(m/s)向右;

取向右为正方向,设人从甲车跳到乙车后,甲、乙的速度为v ′甲,v ′乙(均向右), 当v ′甲=v ′乙时,两车不相碰,由动量守恒定律, 对人和甲车有:(20+50)v 甲=20v ′甲+50v ′,对人和乙车有:50v ′-50v 0=(50+50)v ′乙 解得 v ′=3.8m/s

当v ″甲=-v ″乙 时两车不相碰,同理有: (20+50)v

甲=50v ″+20v ″甲 50v ″-50v 0=(50+50)v ″乙 解得v ″=4.8m/s ,

故v ′的范围:3.8m/s ≤v ′≤4.8m/s

(6)如图5—30所示,一个质量为m 的玩具蛙,蹲在质量为M 的小车的细杆上,小车放在光滑的水平桌面上,若车长为l ,细杆高为h ,且位于小车的中点,试求:当玩具蛙最小以多大的水平速度v 跳出时,才能落到桌面上?(要求写出必要文字,方程式及结果)

6.解:取向右为正方向,系统m ,M 动量守恒:0=mv -MV ,蛙在空中运动时间:t =h g /2 蛙在t 内相对车的水平距离:l /2=(v +V )t , 解得:v =

h

g m M Ml 2)(2+. 十、爆炸、碰撞和反冲专题

●1.碰撞过程是指:作用时间很短,作用力大.碰撞过程两物体产生的位移可忽略. ●2.爆炸、碰撞和反冲动量近似守恒:有时尽管合外力不为零,但是内力都远大于外力,且作用时间又非常短,所以合外力产生的冲量跟内力产生冲量比较都可忽略,总动量近似守恒. ●3.三种碰撞的特点:

(1)弹性碰撞——碰撞结束后,形变全部消失,末态动能没有损失.所以,不仅动量守恒,而且初、末动能相等,即

m 1v 1+m 2v 2=m 1v '1+m 2v '2

2

2221122112211112222

''+=+m v m v m v m v (2)一般碰撞——碰撞结束后,形变部分消失,动能有部分损失.所以,

动量守恒,而初、末动能不相等,即 m 1v 1+m 2v 2=m 1v '1+m 2v '2

2

222

1122112211112222

''+=+m v m v m v m v +ΔE K 减 (3)完全非弹性碰撞——碰撞结束后,两物体合二为一,以同一速度运动;形变完全保留,动能损失最大.所以,动量守恒,而初、末动能不相等,即 m 1v 1+m 2v 2=(m 1+m 2)v

2

22112212111()222

+=m v m v m +m v +ΔE k max ●4.“一动一静”弹性正碰的基本规律

如图5—32所示,一个动量为m 1v 1的小球,与一个静止的质量为m 2的小球发生弹性正碰,这种最典型的碰撞,具有一系列应用广泛的重要规律

(1)动量守恒,初、末动能相等,即

(2)根据①②式,碰撞结束时,主动球(m 1)与被动球(m 2)的速度分别为

(3)判定碰撞后的速度方向

当m 1>m 2时;v ′1>0,v ′2>0——两球均沿初速v 1方向运动.

当m 1=m 2时;v ′1=0,v ′2=v 1——两球交换速度,主动球停下,被动球以v 1开始运动. 当m 1<m 2时;v ′1<0,v ′2>0——主动球反弹,被动球沿v 1方向运动.

●5.“一动一静”完全非弹性碰撞的基本计算关系

如图5—33所示,在光滑水平面上,有一块静止的质量为M 的木块,一颗初动量为mv 0的子弹,水平射入木块,并深入木块d ,且冲击过程中阻力f 恒定.

(1)碰撞后共同速度(v )

根据动量守恒,共同速度为v =0mv m+M

……① (2)木块的冲击位移(s) 设平均阻力为f ,分别以子弹,木块为研究对象,根据动能定理,有 fs =

12Mv 2………②,f (s +d )=12m 20v -12mv 2……③ 由①、②和③式可得 s =+m m M

d <d 在物体可视为质点时:d =0,s =0——这就是两质点碰撞瞬时,它们的位置变化不计的原因 (3)冲击时间(t )

以子弹为研究对象,根据子弹相对木块作末速为零的匀减速直线运动,相对位移d =12v 0t ,所以冲击时间为 t =

02d v (4)产生的热能Q

在认为损失的动能全部转化为热能的条件下 Q =ΔE K =f ·s 相=fd =12

m 20v ()+M M m 【例题1】质量相等的A 、B 两球在光滑水平面上沿同一直线、同一方向运动,A 球的动量是7kg ·m/s ,B 球的动量是5kg ·m/s ,当A 球追上B 球时发生碰撞,则碰撞后A 、B 两球的动量可能值是:

A .p A =6kg ·m/s ,p

B =6kg ·m/s ; B .p A =3kg ·m/s ,p B =9kg ·m/s ;

C .p A =-2kg ·m/s ,p B =14kg ·m/s ;

D .p A =-4kg ·m/s ,p B =17kg ·m/s .

【分析】从碰撞前后动量守恒p 1+p 2=p 1′+p 2′验证,A 、B 、C 三种情况皆有可能,从总动能只有守恒或减少:

221222+p p m m ≥221222''+p p m m

来看,答案只有A 可能. 【例题2】锤的质量是m 1,桩的质量为m 2,锤打桩的速率为一定值.为了使锤每一次打击后桩更多地进入土地,我们要求m 1m 2.假设锤打到桩上后,锤不反弹,试用力学规律分析说明为什么打桩时要求m 1m 2.

【分析】两个阶段,第一阶段锤与桩发生完全非弹性碰撞,即碰后二者具有相同的速度,第二阶段二者一起克服泥土的阻力而做功,桩向下前进一段.我们希望第一阶段中的机械能损失尽可能小,以便使锤的动能中的绝大部分都用来克服阻力做功,从而提高打桩的效率.设锤每次打桩时的速度都是v ,发生完全非

弹性碰撞后的共同速度是v ′. 则 m 1v =(m 1+m 2)v ′.非弹性碰撞后二者的动能为 E k =12

(m 1+m 2)v ′2=211212+m m m v 2.当m 1m 2时,E K ≈12

m 1v 2,即当m 1m 2时碰撞过程中系统的机械能损失很小.

训练题

(1)甲、乙两个小球在同一光滑水平轨道上,质量分别是m 甲和m 乙.甲球以一定的初动能E k 0向右运动,乙球原来静止.某时刻两个球发生完全非弹性碰撞(即碰撞后两球粘合在一定),下面说法中正确的是:

A .m 甲与m 乙的比值越大,甲球和乙球组成的系统机械能的减少量就越小;

B .m 甲与m 乙的比值越小,甲球和乙球组成的系统机械能的减少量就越小;

C .m 甲与m 乙的值相等,甲球和乙球组成的系统机械能的减少量最小;

D .m 甲与m 乙的值相等,甲球和乙球组成的系统机械能的减少量最大.

1.A 提示:由动量守恒有:mv 0=(M +m )v ,由能量守恒有:ΔE =21mv 02-2

1(M +m )v 2,,ΔE =21mv 02m M M +=21mv 02·M

m +11,∴ 越大,ΔE 越小,故选项A 对. (2)半径相等的两个小球甲和乙,在光滑水平面上沿同一直线相向运动.若甲球的质量大于乙球的质量,碰撞前两球的动能相等,则碰撞后两球的运动状态可能是:

A .甲球的速度为零而乙球的速度不为零;

B .乙球的速度为零而甲球的速度不为零;

C .两球的速度均不为零;

D .两球的速度方向均与原方向相反,两球的动能不变.

2.提示:不知道是哪一种碰撞. ∵ m 甲>m 乙,E k 相同,∴ 由P 2=2mE k 知P 甲>P 乙,故系统总动量的方向与甲的初速相同.

对A 选项,当球反弹时可保证P 总与A 球的初速相同,∴ 可能出现; 对B 选项,∵ P 甲>P 乙,∴ 碰后乙球不可能静止;对C 选项,可保证动量守恒和能量守恒成立; 对D 选项,碰后系统总动量的方向与碰前总动量方向相反,违反了动量守恒定律.

(3)质量为1kg 的小球以4m/s 的速度与质量为2kg 的静止小球正碰.关于碰后的速度v 1′与v 2′,下面哪些是可能的:

A .v 1′=v 2′=4/3m/s ;

B .v 1′=-1m/s ,v 2′=2.5m/s ;

C .v 1′=1m/s ,v 2′=3m/s ;

D .v 1′=-4m/s ,v 2′=4m/s .

3.提示:必须同时满足:m 1v 1=m 1v ′+m 2v ′2和

21m 1v 12≥21m 1v ′21+2

1m 2v ′22这两个条件.∴ 选项A 、B 正确.

(5)在质量为M 的小车中挂有一单摆,摆球的质量为m 0.小车(和单摆)以恒定的速度v 沿光滑水平地面运动,与位于正对面的质量为m 的静止木块发生碰撞,碰撞的时间极短.在此碰撞过程中,下列哪个或哪些说法是可能发生的?

A .小车、木块、摆球的速度都发生变化,分别变为v 1、v 2、v 3,满足(M +m 0)v =Mv 1+mv 2+mv 3;

B .摆球的速度不变,小车和木块的速度变为v 1和v 2,满足Mv =Mv 1+mv 2;

C .摆球的速度不变,小车和木块的速度都变为v ′,满足 Mv =(M +m )v ′;

D .小车和摆球的速度都变为v 1,木块的速度变为v 2,满足(M +m 0)v =(M +m 0)v 1+mv 2.

5.BC 提示:摆球并不参预小车碰木块的过程,因此小车和木块组成的系统动量守恒,摆球速度不变.

(9)如图5—38所示,质量为m 的子弹以速度v 从正下方向上击穿一个质量为M 的木球,击穿后木球上升高度为H ,求击穿木球后子弹能上升多高?

9.解:子弹击穿木块的过程系统动量守恒,设子弹击穿木块后速度为v 1,则

mv =M gH 2+mv 1 v 1=v -gH m M

2

子弹能上升的高度h =g v 22

1=2

22)2(gm gH M m v - (11)一个连同装备总质量为M =100kg 的宇航员,在距离飞船s =45m 处与飞船处于相对静止状态,宇航员背着装有质量m 0=0.5kg 氧气的贮气筒,筒有个可以使氧气以v =50m/s 的速度喷出的喷嘴,宇航员必须向着返回飞船的相反方向放出氧气,才能回到飞船,同时又必须保留一部分氧气供途中呼吸用.宇航员的耗氧率为Q =2.5×10-4kg/s .不考虑喷出氧气对设备及宇航员总质量的影响,则:

①瞬时喷出多少氧气,宇航员才能安全返回飞船?

②为了使总耗氧量最低,应一次喷出多少氧气?返回时间又是多少?

11.提示:①设瞬间喷出m (kg)氧气,宇航员速率为v 1,宇航员刚好全返回,由动量守恒:

0=mv -Mv 1 ∴ mv =Mv 1

匀速运动:t =1

v s m 0=Qt +m 由以上三式解之:m =0.05kg 或0.45kg ;故要回到飞船时还剩有氧气,则要:

0.05kg ≤m ≤0.45kg

②为了总耗氧量最低,设喷出m (kg)氧气,

则总耗氧:Δm =Qt +m t =s /v 1 mv =Mv 1

故t =m v

sM , ∴ Δm =m v

QsM +m =m 210252.-?+m (讨论Δm 随喷出气体m 的变化规律,求Δm 的极小值)

故:当m =m

2

10252.-?时,Δm 有极小值. 则:m =0.15kg 返回时间:t =

m v

sM =600(s)

高中物理动量定理解题技巧讲解及练习题(含答案)及解析

高中物理动量定理解题技巧讲解及练习题(含答案)及解析 一、高考物理精讲专题动量定理 1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量的I 大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小. 【答案】(1)100m (2)1800N s ?(3)3 900 N 【解析】 (1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即 2202v v aL -= 可解得:2201002v v L m a -== (2)根据动量定理可知合外力的冲量等于动量的该变量所以 01800B I mv N s =-=? (3)小球在最低点的受力如图所示 由牛顿第二定律可得:2C v N mg m R -= 从B 运动到C 由动能定理可知: 221122 C B mgh mv mv =-

解得;3900N N = 故本题答案是:(1)100L m = (2)1800I N s =? (3)3900N N = 点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小. 2.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求: (i )C 与A 碰撞前的速度大小 (ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是 32 mv 0. 【解析】 【分析】 【详解】 试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3? 0m m v mv -+= 解得:10 v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得: 012 3(3)mv mv m m v =+- 在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032 CA I mv =- 即A 、C 碰过程中C 对A 的冲量大小为032 mv . 方向为负. 考点:动量守恒定律 【名师点睛】 本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择. 3.如图所示,一光滑水平轨道上静止一质量为M =3kg 的小球B .一质量为m =1kg 的小

高中物理动量定理动量守恒定律习题带答案

动量练习 ;类型一:弹簧问题 1、一轻质弹簧,两端连接两滑块A和B,已知m A=0.99kg ,m B=3kg,放在光滑水平桌面上,开始时弹簧处于原长。现滑块A被水平飞来的质量为m c=10g,速度为400m/s的子弹击中,且没有穿出,如图所示,试求: (1)子弹击中A的瞬间A和B的速度 (2)以后运动过程中弹簧的最大弹性势能 类型二:板块问题 2. (18分) 如图所示,质量为20kg的平板小车的左端 放有质量为10kg的小铁块,它与车之间的动摩擦因数 为0.5。开始时,车以速度6m/s向左在光滑的水平面上运动,铁块以速度6m/s向右运动,小车足够长。(g=10m/s2)求: (1) 小车与铁块共同运动的速度大小和方向。 (2)系统产生的内能是多少? (3)小铁块在小车上滑动的时间 3矩形滑块由不同材料的上下两层粘合在一起组成,将其放在光滑 的水平面上,如图所示,质量为m的子弹以速度v水平射向滑块.若射向上层滑块,子弹刚好不射出;若射向下层滑块,则子弹整个儿刚好嵌入滑块,由上述两种情况相比较()A A.子弹嵌入两滑块的过程中对滑块的冲量一样多 B.子弹嵌入上层滑块的过程中对滑块做的功较多 C.子弹嵌入下层滑块的过程中对滑块做的功较多 D.子弹嵌入上层滑块的过程中系统产生的热量较多 类型三:圆周运动 4.(18分)质量为m的A球和质量为3m的B球分别用长为L的细线a和b悬挂在天花板下方,两球恰好相互接触,.用细线c水平拉起A,使a偏离竖直方向θ= 60°,静止在如图8所示的位置.b能承受的最大拉力F m=3.5mg,剪断c,让A自由摆动下落,重力加速度为g. ①求A与B发生碰撞前瞬间的速度大小. ②若A与B发生弹性碰撞,求碰后瞬间B的速度大小. ③A与B发生弹性碰撞后,分析判断b是否会被拉断? 5、半径为R的圆桶固定在小车上,有一光滑小球静止在圆桶的最 低点,如图38所示,小车以速度v向右匀速运动,当小车遇到障 碍物突然停止时,小球在圆桶中上升的高度可能是()ACD A.等于v2/2g B.大于 B A b a c h θ 图8

高中物理动量守恒定律解题技巧及练习题

高中物理动量守恒定律解题技巧及练习题 一、高考物理精讲专题动量守恒定律 1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求: (1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2 014 mv ;(2) 0mv 【解析】 【详解】 解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以 2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速 度相等,有:2 12 v v = 而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:0 12 v v = ,20 v v = 所以第一次碰撞中的机械能损失为:2 2 22012011 11222 2 24 E m v m v mv mv ?=--=g g g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-= 2.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量M 2=2 kg ,问:甲车至少以多大的水平速度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上) 【答案】25m/s 【解析】试题分析:要使两车恰好不相撞,则两车速度相等. 以M 1、M 2、m 组成的系统为研究对象,水平方向动量守恒: ()20120M v M m M v +=++共,解得5m /s v =共 以小球与乙车组成的系统,水平方向动量守恒: ()202M v mv m M v -=+共,解得

高中物理动量守恒定律练习题及答案及解析

高中物理动量守恒定律练习题及答案及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,但不粘连,它们到达最低点后又一起向上运动,并恰好回到O 点(A 、B 均视为质点),重力加速度为g .求: (1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能; (3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆弧轨道与斜面相切 于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,则v 至少为多大时物块A 能沿圆弧轨道运动到Q 点.(计算结果可用根式表示) 【答案】20132v gx =01 4 P E mgx =0(2043)v gx =+【解析】 试题分析:(1)A 与B 球碰撞前后,A 球的速度分别是v 1和v 2,因A 球滑下过程中,机械能守恒,有: mg (3x 0)sin30°= 1 2 mv 12 解得:103v gx = 又因A 与B 球碰撞过程中,动量守恒,有:mv 1=2mv 2…② 联立①②得:21011 322 v v gx == (2)碰后,A 、B 和弹簧组成的系统在运动过程中,机械能守恒. 则有:E P + 1 2 ?2mv 22=0+2mg?x 0sin30° 解得:E P =2mg?x 0sin30°? 1 2?2mv 22=mgx 0?34 mgx 0=14mgx 0…③ (3)设物块在最高点C 的速度是v C ,

高中物理专题汇编动量定理(一)

高中物理专题汇编动量定理(一) 一、高考物理精讲专题动量定理 1.北京将在2022年举办冬季奥运会,滑雪运动将速度与技巧完美地结合在一起,一直深受广大观众的欢迎。一质量为60kg 的运动员在高度为80h m =,倾角为30θ=?的斜坡顶端,从静止开始沿直线滑到斜面底端。下滑过程运动员可以看作质点,收起滑雪杖,忽略摩擦阻力和空气阻力,g 取210/m s ,问: (1)运动员到达斜坡底端时的速率v ; (2)运动员刚到斜面底端时,重力的瞬时功率; (3)从坡顶滑到坡底的过程中,运动员受到的重力的沖量。 【答案】(1)40/m s (2)41.210W ?(3)34.810N s ?? 方向为竖直向下 【解析】 【分析】 (1)根据牛顿第二定律或机械能守恒定律都可以求出到达底端的速度的大小; (2)根据功率公式进行求解即可; (3)根据速度与时间关系求出时间,然后根据冲量公式进行求解即可; 【详解】 (1)滑雪者由斜面顶端滑到底端过程中,系统机械能守恒:212 mgh mv = 到达底端时的速率为:40/v m s =; (2)滑雪者由滑到斜面底端时重力的瞬时功率为:4 sin 30 1.210G P mg v W =???=?; (3)滑雪者由斜面顶端滑到底端过程中,做匀加速直线运动 根据牛顿第二定律0sin 30mg ma =,可以得到:2 sin 305/a g m s =?= 根据速度与时间关系可以得到:0 8v t s a -= = 则重力的冲量为:3 4.810G I mgt N s ==??,方向为竖直向下。 【点睛】 本题关键根据牛顿第二定律求解加速度,然后根据运动学公式求解末速度,注意瞬时功率的求法。 2.如图所示,用0.5kg 的铁睡把钉子钉进木头里去,打击时铁锤的速度v =4.0m/s ,如果打击后铁锤的速度变为0,打击的作用时间是0.01s (取g =10m/s 2),那么:

最新高中物理动量定理专题训练答案

最新高中物理动量定理专题训练答案 一、高考物理精讲专题动量定理 1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求: (1)两小球碰前A 的速度; (2)球碰撞后B ,C 的速度大小; (3)小球B 运动到最高点C 时对轨道的压力; 【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上 【解析】 【分析】 【详解】 (1)选向右为正,碰前对小球A 的运动由动量定理可得: –μ Mg t =M v – M v 0 解得:v =2m /s (2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒: A B Mv Mv mv =+ 222111222 A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s (3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒: 2211 222 B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R '+= 解得:F N =4N 由牛顿第三定律知,F N '=F N =4N 小球对轨道的压力的大小为3N ,方向竖直向上. 2.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停

高中物理动量定理解题技巧(超强)及练习题(含答案)

高中物理动量定理解题技巧(超强)及练习题(含答案) 一、高考物理精讲专题动量定理 1.如图所示,一质量m 1=0.45kg 的平顶小车静止在光滑的水平轨道上.车顶右端放一质量m 2=0.4 kg 的小物体,小物体可视为质点.现有一质量m 0=0.05 kg 的子弹以水平速度v 0=100 m/s 射中小车左端,并留在车中,已知子弹与车相互作用时间极短,小物体与车间的动摩擦因数为μ=0.5,最终小物体以5 m/s 的速度离开小车.g 取10 m/s 2.求: (1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小. (2)小车的长度. 【答案】(1)4.5N s ? (2)5.5m 【解析】 ①子弹进入小车的过程中,子弹与小车组成的系统动量守恒,有: 0011()o m v m m v =+,可解得110/v m s =; 对子弹由动量定理有:10I mv mv -=-, 4.5I N s =? (或kgm/s); ②三物体组成的系统动量守恒,由动量守恒定律有: 0110122()()m m v m m v m v +=++; 设小车长为L ,由能量守恒有:22220110122111()()222 m gL m m v m m v m v μ= +-+- 联立并代入数值得L =5.5m ; 点睛:子弹击中小车过程子弹与小车组成的系统动量守恒,由动量守恒定律可以求出小车的速度,根据动量定理可求子弹对小车的冲量;对子弹、物块、小车组成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律可以求出小车的长度. 2.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m =1.0kg 、可视为质点的物体,以v 0=6.0m/s 的初速度沿斜面上滑。已知sin37o=0.60,cos37o=0.80,重力加速度g 取10m/s 2,不计空气阻力。求: (1)物体沿斜面向上运动的加速度大小; (2)物体在沿斜面运动的过程中,物体克服重力所做功的最大值; (3)物体在沿斜面向上运动至返回到斜面底端的过程中,重力的冲量。 【答案】(1)6.0m/s 2(2)18J (3)20N· s ,方向竖直向下。 【解析】 【详解】

高中物理动量定理试题经典及解析

高中物理动量定理试题经典及解析 一、高考物理精讲专题动量定理 1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。 【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】 (1)设运动过程中摩擦阻力做的总功为W ,则 W =-kmgL -2kmgL =-3kmgL 即整个过程中摩擦阻力所做的总功为-3kmgL 。 (2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得 mv 1=2mv 2 22101122 kmgL mv mv -= - 2 21(2)0(2)2 k m gL m v -=- 由以上各式得 010v kgL = 所以人给第一辆车水平冲量的大小 010I mv m kgL == 2.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。(忽略发射底座高度,不计空气阻力,g 取10m/s 2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力) (2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略

高中物理动量习题集

动量和冲量 一.选择题1 1、关于冲量和动量,下列说法正确的是() A.冲量是反映力的作用时间累积效果的物理量 B.动量是描述物体运动状态的物理量 C.冲量是物理量变化的原因 D.冲量方向与动量方向一致 2、质量为m的物体放在水平桌面上,用一个水平推力F推物体而物体始终不动,那么在时间t内,力F推物体的冲量应是() A.v B.Ft C.mgt D.无法判断 3、古有“守株待兔”寓言,设兔子头受到大小等于自身体重的打击力时即可致死,并设兔子与树桩作用时间为0.2s,则被撞死的兔子其奔跑的速度可能(2 g=)() 10m/s A.1m/s B.1.5m/s C.2m/s D.2.5m/s 4、某物体受到一2N·s的冲量作用,则() A.物体原来的动量方向一定与这个冲量的方向相反 B.物体的末动量一定是负值 C.物体的动量一定减少 D.物体的动量增量一定与规定的正方向相反 5、下列说法正确的是() A.物体的动量方向与速度方向总是一致的 B.物体的动量方向与受力方向总是一致的 C.物体的动量方向与受的冲量方向总是一致的 D.冲量方向总是和力的方向一致 参考答案: 1、ABC 2、B 3、C 4、D 5、AD 一.选择题2 1.有关物体的动量,下列说法正确的是() A.某一物体的动量改变,一定是速度大小改变 B.某一物体的动量改变,一定是速度方向改变 C.某一物体的运动速度改变,其动量一定改变 D.物体的运动状态改变,其动量一定改变 2.关于物体的动量,下列说法中正确的是() A.物体的动量越大,其惯性越大 B.同一物体的动量越大,其速度一定越大 C.物体的动量越大,其动量的变化也越大 D.动量的方向一定沿着物体的运动方向 3.下列说法中正确的是() A.速度大的物体,它的动量一定也大 B.动量大的物体,它的速度一定也大 C.匀速圆周运动物体的速度大小不变,它的动量保持不变 D.匀速圆周运动物体的动量作周期性变化 4.有一物体开始自东向西运动,动量大小为10/ ?,由于某种作用,后来自西向东运动,动量 kg m s

高中物理动量定理试题经典及解析(1)

高中物理动量定理试题经典及解析(1) 一、高考物理精讲专题动量定理 1.北京将在2022年举办冬季奥运会,滑雪运动将速度与技巧完美地结合在一起,一直深受广大观众的欢迎。一质量为60kg 的运动员在高度为80h m =,倾角为30θ=?的斜坡顶端,从静止开始沿直线滑到斜面底端。下滑过程运动员可以看作质点,收起滑雪杖,忽略摩擦阻力和空气阻力,g 取210/m s ,问: (1)运动员到达斜坡底端时的速率v ; (2)运动员刚到斜面底端时,重力的瞬时功率; (3)从坡顶滑到坡底的过程中,运动员受到的重力的沖量。 【答案】(1)40/m s (2)41.210W ?(3)34.810N s ?? 方向为竖直向下 【解析】 【分析】 (1)根据牛顿第二定律或机械能守恒定律都可以求出到达底端的速度的大小; (2)根据功率公式进行求解即可; (3)根据速度与时间关系求出时间,然后根据冲量公式进行求解即可; 【详解】 (1)滑雪者由斜面顶端滑到底端过程中,系统机械能守恒:212 mgh mv = 到达底端时的速率为:40/v m s =; (2)滑雪者由滑到斜面底端时重力的瞬时功率为:4 sin 30 1.210G P mg v W =???=?; (3)滑雪者由斜面顶端滑到底端过程中,做匀加速直线运动 根据牛顿第二定律0sin 30mg ma =,可以得到:2 sin 305/a g m s =?= 根据速度与时间关系可以得到:0 8v t s a -= = 则重力的冲量为:3 4.810G I mgt N s ==??,方向为竖直向下。 【点睛】 本题关键根据牛顿第二定律求解加速度,然后根据运动学公式求解末速度,注意瞬时功率的求法。 2.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5 m 的位置B 处是一面墙,如图所示.物块以v 0=8m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以5m/s 的速度反向运动直至静止.g 取10 m/s 2.

高中物理动量定理解题技巧讲解及练习题(含答案)

高中物理动量定理解题技巧讲解及练习题(含答案) 一、高考物理精讲专题动量定理 1.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。(忽略发射底座高度,不计空气阻力,g 取10m/s 2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力) (2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略不计),测得前后两块质量之比为1:4,且炸裂时有大小为E =9000J 的化学能全部转化为了动能,则两块落地点间的距离是多少? 【答案】(1)1550N ;(2)900m 【解析】 【分析】 【详解】 (1)设发射时燃烧的火药对礼花弹的平均作用力为F ,设礼花弹上升时间为t ,则: 212 h gt = 解得 6s t = 对礼花弹从发射到抛到最高点,由动量定理 00()0Ft mg t t -+= 其中 00.2s t = 解得 1550N F = (2)设在最高点爆炸后两块质量分别为m 1、m 2,对应的水平速度大小分别为v 1、v 2,则: 在最高点爆炸,由动量守恒定律得 1122m v m v = 由能量守恒定律得 2211221122E m v m v = + 其中 121 4m m = 12m m m =+ 联立解得 1120m/s v =

230m/s v = 之后两物块做平抛运动,则 竖直方向有 212 h gt = 水平方向有 12s v t v t =+ 由以上各式联立解得 s=900m 2.在距地面20m 高处,某人以20m/s 的速度水平抛出一质量为1kg 的物体,不计空气阻力(g 取10m /s 2)。求 (1)物体从抛出到落到地面过程重力的冲量; (2)落地时物体的动量。 【答案】(1)20N ?s ,方向竖直向下(2 )m/s ?, 与水平方向的夹角为45° 【解析】 【详解】 (1)物体做平抛运动,则有: 212 h gt = 解得: t =2s 则物体从抛出到落到地面过程重力的冲量 I=mgt =1×10×2=20N?s 方向竖直向下。 (2)在竖直方向,根据动量定理得 I=p y -0。 可得,物体落地时竖直方向的分动量 p y =20kg?m/s 物体落地时水平方向的分动量 p x =mv 0=1×20=20kg?m/s 故落地时物体的动量 m/s p = =? 设落地时动量与水平方向的夹角为θ,则 1y x p tan p θ= = θ=45°

高中物理动量守恒定律练习题及答案

高中物理动量守恒定律练习题及答案 一、高考物理精讲专题动量守恒定律 1.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求: (1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ; (2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1; (3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值. 【答案】(1)2 4.610N F N -=? (2)1 1.25B T = (3)127s 360 t π = ,001290143ββ==和 【解析】 【详解】 解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111 -22 m gl m v m v μ=- 解得:17m/s v = 碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v ' =+ 取向左为正方向,由题意11m/s v =-', 解得:24m/s v =

高中物理二轮复习 专项训练 物理动量定理

高中物理二轮复习 专项训练 物理动量定理 一、高考物理精讲专题动量定理 1.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5m 的位置B 处是一面墙,如图所示,物块以v 0=9m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以6m/s 的速度反向运动直至静止.g 取10m/s 2. (1)求物块与地面间的动摩擦因数μ; (2)若碰撞时间为0.05s ,求碰撞过程中墙面对物块平均作用力的大小F . 【答案】(1)0.32μ= (2)F =130N 【解析】 试题分析:(1)对A 到墙壁过程,运用动能定理得: , 代入数据解得:μ=0.32. (2)规定向左为正方向,对碰墙的过程运用动量定理得:F △t=mv′﹣mv , 代入数据解得:F=130N . 2.如图所示,一个质量为m 的物体,初速度为v 0,在水平合外力F (恒力)的作用下,经过一段时间t 后,速度变为v t 。 (1)请根据上述情境,利用牛顿第二定律推导动量定理,并写出动量定理表达式中等号两边物理量的物理意义。 (2)快递公司用密封性好、充满气体的塑料袋包裹易碎品,如图所示。请运用所学物理知识分析说明这样做的道理。 【答案】详情见解析 【解析】 【详解】 (1)根据牛顿第二定律F ma =,加速度定义0i v v a t -=解得 0=-i Ft mv mv 即动量定理, Ft 表示物体所受合力的冲量,mv t -mv 0表示物体动量的变化 (2)快递物品在运送途中难免出现磕碰现象,根据动量定理 0=-i Ft mv mv 在动量变化相等的情况下,作用时间越长,作用力越小。充满气体的塑料袋富有弹性,在

高中物理动量定理专题(问题详解)-word

动量和动量定理的应用 知识点一——冲量(I) 要点诠释: 1.定义:力F和作用时间的乘积,叫做力的冲量。 2.公式: 3.单位: 4.方向:冲量是矢量,方向是由力F的方向决定。 5.注意: ①冲量是过程量,求冲量时一定要明确是哪一个力在哪一段时间内的冲量。 ②用公式求冲量,该力只能是恒力,无论是力的方向还是大小发生变化时,都不能用直接求出 1.推导: 设一个质量为的物体,初速度为,在合力F的作用下,经过一段时间,速度变为 则物体的加速度 由牛顿第二定律 可得, 即 (为末动量,P为初动量) 2.动量定理:物体所受合外力的冲量等于物体的动量变化。 3.公式: 或 4.注意事项: ①动量定理的表达式是矢量式,在应用时要注意规定正方向; ②式中F是指包含重力在内的合外力,可以是恒力也可以是变力。当合外力是变力时,F应该是合外力在这段时间内的平均值; ③研究对象是单个物体或者系统; ④不仅适用于宏观物体的低速运动,也适用与微观物体的高速运动。 5.应用: 在动量变化一定的条件下,力的作用时间越短,得到的作用力就越大,因此在需要增 大作用力时,可尽量缩短作用时间,如打击、碰撞等由于作用时间短,作用力都较大,如冲压工件; 在动量变化一定的条件下,力的作用时间越长,得到的作用力就越小,因此在需要减 小作用力时,可尽量延长作用时间,如利用海绵或弹簧的缓冲作用来延长作用时间,从而减小作用力,再如安全气囊等。 规律方法指导 1.动量定理和牛顿第二定律的比较 (1)动量定理反映的是力在时间上的积累效应的规律,而牛顿第二定律反映的是力的瞬时效应的规律 (2)由动量定理得到的,可以理解为牛顿第二定律的另一种表达形式, 即:物体所受的合外力等于物体动量的变化率。 (3)在解决碰撞、打击类问题时,由于力的变化规律较复杂,用动量定理处理这类问题更有其优越性。 4.应用动量定理解题的步骤 ①选取研究对象; ②确定所研究的物理过程及其始末状态; ③分析研究对象在所研究的物理过程中的受力情况; ④规定正方向,根据动量定理列式; ⑤解方程,统一单位,求得结果。 经典例题透析 类型一——对基本概念的理解 1.关于冲量,下列说法中正确的是() A.冲量是物体动量变化的原因 B.作用在静止的物体上力的冲量一定为零 C.动量越大的物体受到的冲量越大 D.冲量的方向就是物体合力的方向 思路点拨:此题考察的主要是对概念的理解 解析:力作用一段时间便有了冲量,而力作用一段时间后物体的运动状态发生了变化,物体的动量也发生了变化,因此说冲量使物体的动量发生了变化,A对;只要有力作用在物体上,

高中物理动量定理答题技巧及练习题(含答案)

高中物理动量定理答题技巧及练习题(含答案) 一、高考物理精讲专题动量定理 1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量的I 大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小. 【答案】(1)100m (2)1800N s ?(3)3 900 N 【解析】 (1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即 22 02v v aL -= 可解得:22 1002v v L m a -== (2)根据动量定理可知合外力的冲量等于动量的该变量所以 01800B I mv N s =-=? (3)小球在最低点的受力如图所示 由牛顿第二定律可得:2C v N mg m R -= 从B 运动到C 由动能定理可知: 221122 C B mgh mv mv = -

解得;3900N N = 故本题答案是:(1)100L m = (2)1800I N s =? (3)3900N N = 点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小. 2.如图1所示,水平面内的直角坐标系的第一象限有磁场分布,方向垂直于水平面向下,磁感应强度沿y 轴方向没有变化,与横坐标x 的关系如图2所示,图线是双曲线(坐标是渐近线);顶角θ=53°的光滑金属长导轨MON 固定在水平面内,ON 与x 轴重合,一根与ON 垂直的长导体棒在水平向右的外力作用下沿导轨MON 向右滑动,导体棒在滑动过程中始终保持与导轨良好接触,已知t =0时,导体棒位于顶角O 处;导体棒的质量为m =4kg ;OM 、ON 接触处O 点的接触电阻为R =0.5Ω,其余电阻不计,回路电动势E 与时间t 的关系如图3所示,图线是过原点的直线,求: (1)t =2s 时流过导体棒的电流强度的大小; (2)在1~2s 时间内导体棒所受安培力的冲量大小; (3)导体棒滑动过程中水平外力F (单位:N )与横坐标x (单位:m )的关系式. 【答案】(1)8A (2)8N s ?(3)32 639 F x =+【解析】 【分析】 【详解】 (1)根据E-t 图象中的图线是过原点的直线特点,可得到t =2s 时金属棒产生的感应电动势为 4V E = 由欧姆定律得 24A 8A 0.5 E I R = == (2)由图2可知,1(T m)x B =? 由图3可知,E 与时间成正比,有 E =2t (V ) 4E I t R = = 因θ=53°,可知任意t 时刻回路中导体棒有效切割长度43 x L =

选修1高中物理动量守恒定律单元测试题

选修1高中物理动量守恒定律单元测试题 一、动量守恒定律 选择题 1.质量为M 的小船在平静的水面上以速率0v 向前匀速行驶,一质量为m 的救生员站在船上相对小船静止,水的阻力不计。以下说法正确的是( ) A .若救生员以速率u 相对小船水平向后跳入水中,则跳离后小船的速率为() 00m v u v M ++ B .若救生员以速率u 相对小船水平向后跳入水中,则跳离后小船的速率为0m v u M m ++ C .若救生员以速率u 相对小船水平向前跳入水中,则跳离后小船的速率为0m v u M m ++ D .若救生员以速率u 相对小船水平向前跳入水中,则跳离后小船的速率为0m v u M m - + 2.如图所示,光滑的半圆槽置于光滑的地面上,且一定高度自由下落的小球m 恰能沿半圆槽的边缘的切线方向滑入原先静止的槽内,对此情况,以下说法正确的是( ) A .小球第一次离开槽时,将向右上方做斜抛运动 B .小球第一次离开槽时,将做竖直上抛运动 C .小球离开槽后,仍能落回槽内,而槽将做往复运动 D .槽一直向右运动 3.如图所示,质量10.3kg m =的小车静止在光滑的水平面上,车长 1.5m l =,现有质量 20.2kg m =可视为质点的物块,以水平向右的速度0v 从左端滑上小车,最后在车面上某处与 小车保持相对静止.物块与车面间的动摩擦因数0.5μ=,取2 g=10m/s ,则( ) A .物块滑上小车后,系统动量守恒和机械能守恒 B .增大物块与车面间的动摩擦因数,摩擦生热不变 C .若0 2.5m/s v =,则物块在车面上滑行的时间为0.24s D .若要保证物块不从小车右端滑出,则0v 不得大于5m/s 4.如图甲所示,一轻弹簧的两端与质量分别为99m 、200m 的两物块A 、B 相连接,并静止在光滑的水平面上,一颗质量为m 的子弹C 以速度v 0射入物块A 并留在A 中,以此刻为计时起点,两物块A (含子弹C )、B 的速度随时间变化的规律如图乙所示,从图象信息可得( )

高中物理动量定理专题训练答案(1)

高中物理动量定理专题训练答案(1) 一、高考物理精讲专题动量定理 1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量的I 大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小. 【答案】(1)100m (2)1800N s ?(3)3 900 N 【解析】 (1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即 2202v v aL -= 可解得:2201002v v L m a -== (2)根据动量定理可知合外力的冲量等于动量的该变量所以 01800B I mv N s =-=? (3)小球在最低点的受力如图所示 由牛顿第二定律可得:2C v N mg m R -= 从B 运动到C 由动能定理可知: 221122 C B mgh mv mv =-

解得;3900N N = 故本题答案是:(1)100L m = (2)1800I N s =? (3)3900N N = 点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小. 2.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰 撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求: (1)两小球碰前A 的速度; (2)球碰撞后B ,C 的速度大小; (3)小球B 运动到最高点C 时对轨道的压力; 【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上 【解析】 【分析】 【详解】 (1)选向右为正,碰前对小球A 的运动由动量定理可得: –μ Mg t =M v – M v 0 解得:v =2m /s (2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒: A B Mv Mv mv =+ 222111222 A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s (3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒: 2211222 B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R '+= 解得:F N =4N 由牛顿第三定律知,F N '=F N =4N 小球对轨道的压力的大小为3N ,方向竖直向上.

高中物理动量练习题解析

高中物理动量练习题 一、单选题 1、在光滑水平面上有两辆车,上面分别站着A、B两个人,人与车的质量总和相等,在A的手中拿有一个球,两车均保持静止状态.当A将手中球抛给B ,B接到后,又抛给A ,如此反复多次,最后球落在B的手中.则关于A、B速率的大小是() A、A、B两车速率相等 B、A车速率大 C、A车速率小 D、两车均保持静止状态 2、如图所示,放在光滑水平面上的矩形滑块是由不同材料的上下两层粘在一起组成的。质量为m的子弹以速度v水平射向滑块,若击中上层,则子弹刚好不穿出,如图(a)所示;若击中下层,则子弹嵌入其中,如图(b)所示,比较上述两种情况,以下说法不正确的是() A、两种情况下子弹和滑块的最终速度相同 B、两次子弹对滑块做的功一样多 C、两次系统产生的热量一样多 D、两次滑块对子弹的阻力一样大 3、如图所示,一内外侧均光滑的半圆柱槽置于光滑的水平面上.槽的左侧有一竖直墙壁.现让一小球(可认为质点)自左端槽口A点的正上方从静止开始下落,与半圆槽相切并从A点入槽内,且小球能从右侧槽口抛出,则下列说法正确的是() A、小球离开右侧槽口以后,将做竖直上抛运动 B、小球在槽内运动的全过程中,只有重力对小球做功 C、小球从右侧槽口抛出后,还能从右侧槽口落回槽内 D、小球在槽内运动的全过程中,小球与槽组成的系统水平方向上的动量守恒 4、质量为m的钢球从某一高处落下,落地的速度大小为v1,与地面碰撞后,竖直向上弹回,碰撞时间极短,离地速率为v2,则在碰撞过程中,地面对钢球冲量大小和方向为() A、向下,m(v1-v2) B、向下,m(v1+ v2) C、向上,m(v1-v2) D、向上,m(v1+ v2) 5、关于动量的概念,以下说法中正确的是( ) A、速度大的物体动量一定大 B、质量大的物体动量一定大 C、两个物体的质量相等,速度大小也相等,则它们的动量一定相等 D、两个物体的速度相等,那么质量大的物体动量一定大 6、(2015·重庆)高空作业须系安全带.如果质量为m的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h(可视为自由落体运动).此后经历时间 t安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为() A、 B、 C、 D、 7、在高台跳水中,运动员从高台向上跃起,在空中完成动作后,进入水中在浮力作用下做减速运动,速度减为 零后返回水面.设运动员在空中运动过程为Ⅰ,在进入水中做减速运动过程为Ⅱ.不计空气阻力和水的粘滞阻力, 则下述判断错误的是() A、在过程Ⅰ中,运动员受到的冲量等于动量的改变量 B、在过程Ⅰ中,运动员受到重力冲量的大小与过程Ⅱ中浮力冲量的大小相等 C、在过程Ⅰ中,每秒钟运动员动量的变化量相同 D、在过程Ⅰ和在过程Ⅱ中运动员动量变化的大小相等 8、物体沿粗糙的斜面上滑,到最高点后又滑回原处,则() A、上滑时重力的冲量比下滑时小 B、上滑时摩擦力冲量比下滑时大 C、支持力的冲量为0 D、整个过程中合外力的冲量为零 9、如图所示,光滑水平面上有大小相同的两个A、B小球在同一直线上运动.两球质量关系为m B=2m A,规 定向右为正方向,A、B两球的动量均为8kgm/S运动中两球发生碰撞,碰撞后A球的动量增量为﹣4kgm/S ,则 () A、右方为A球,碰撞后A、B两球的速度大小之比为2:3 B、右方为A球,碰撞后A、B两球的速度大小之比为1:6 C、左方为A球,碰撞后A、B两球的速度大小之比为2:3 D、左方为A球,碰撞后A、B两球的速度大小之比为1:6 10、两球相向运动,发生正碰,弹性碰撞后两球均静止,于是可以判定,在弹性碰撞以前两球() A、质量相等 B、速度大小相等 C、动量大小相等 D、以上都不能判定 11、如图所示在足够长的光滑水平面上有一静止的质量为M的斜面,斜面表面光滑、高度为h、倾角为θ。一 质量为m(m<M)的小物块以一定的初速度沿水平面向右运动,不计冲上斜面过程中机械能损失。如果斜面固定, 第25页共28页◎第26页共28页

相关文档
相关文档 最新文档