文档库 最新最全的文档下载
当前位置:文档库 › 粒度分析实验

粒度分析实验

粒度分析实验
粒度分析实验

东北师范大学城市与环境科学学院实验报告学生学号:1251410002 学生姓名:艾尔肯·阿不力米提

激光筛分粒度仪实验报告

六.实验数据记录与处理 仪器型号:Easysizer20 样品名称: PTA 样品折射率: 1.65 分析模式: polydis. 样品编号: 1000 分 散介 质: 水 拟合残余: 0.04 超声时间: 15s 介质折射率: 1.33 遮 光 比: 20.0% 测试日期: 7/15/2015 分 散 剂: 甘油 截断下限: 0.10 测试时间: 10:09:48 AM 分散剂用量: 1 截断上限: 500.00 粒度特征参数 D(4,3) 8.50 μm D50 6.93 μm D(3,2) 1.03 μm S.S.A. 5.83 sq.m/c.c. D10 0.21 μm D25 3.45 μm D75 13.17 μm D90 18.69 μm 0.1 1 10 246810 微分分布曲线 累积分布曲线 粒径(μm ) 微分分布(%) 图1. PTA 试样粒度分布图 20 40 60 80 100 累积分布(%)

结果讨论从上述数据中可以得到,该试样的体积平均当量直径D(4,3)为8.50μm,面积平均当量直径D(3,2)为1.03μm,比表面积为5.83sq.m/c.c.,注意本仪器得到的比表面积不准确,详细的比表面积值需要通过比表面积分析仪得出,试样的中位径D50为6.93μm,D10为0.21μm,D25为3.45μm,D75为13.17微米,D90为18.69μm,粒径分布范围为0.11μm-28.22μm。同时该试样的微分分布曲线存在两个峰,分别在粒径为0.17μm和20.50μm,同时在0.94μm-1.04μm的范围内无粒径分布,两个峰的分布范围分别为0.11μm-0.94μm和1.04μm-18.69μm,分布范围窄,凭借这几点可以假想该试样是由两种粒径分布集中的相同物质按照不同的比例混合制备而成。 七.思考题 (1)超声分散的目的是要将试样充分的分散开来,但在操作过程中要防止颗粒的破碎和团聚现象的发生。操作时应当注意一下几点,第一,对于颗粒较细的物料,应当取用少量的物料,处理时间相对较长但不超过5min,时间过少,颗粒不能充分分散,时间过长颗粒将会发生团聚的现象,第二,对于颗粒较大的物料,可取用较多量的试样,处理时间不应太短,时间不应小于2min,处理时间短,同样不能使试样充分的分散开来,处理时间较长颗粒会由于相互碰撞而发生破碎,但颗粒较大的物料处理时间相对小颗粒,一般较短。 (2)激光粒度仪的工作原理示意图如下 本实验采用Easysizer20型激光粒度仪,它采用氦氖激光器,发射633nm波长的激光,透过显微物镜放大,通过真空,发生单缝衍射形成多束光源,通过准直镜后形成一系列平行光打在待测颗粒上,发生光的散射,由于颗粒越大,散射角越小,颗粒越小,散射角越大,就可以分辨颗粒的粒径大小。再通过傅里叶透镜聚焦到光电探测阵列器上,就可以得到不同光信号,通过模数转换就可以得到不同的电信号,从而起到分辨物料颗粒的效果。同时光电探测阵列器还可以探测光的强度,某一粒径的颗粒浓度大时,在光电探测阵列器上特定位置的光信号强度也大,转换为电信号,就可以得到相应的粒径的微分分布。这就是激光粒度仪测定物料颗粒大小和相应含量的原理。 (3)湿法分析的分散方法主要有加分散剂和超声分散 分散剂的原理是通过破坏溶液的表面张力,减少颗粒之间的团聚力,达到使颗粒相互分散的目的,常用的分散剂为酒精,当酒精的分散能力不能满足要求时,可以使用六偏磷酸钠。但要注意,分散剂不会与溶液,颗粒发生化学反应,以及产生溶解溶胀的现象。 超声分散是一种物理的分散手段,它不会在实验中引入其他的物质,防止产生一些不必要的影响,但同时它也有自己的局限性。它的分散能力有限,作用持续时间短,样品静置一段时间后便会发生沉淀和团聚。 (4)由于本实验采用Easysizer20型激光粒度仪,它的自动化程度高,设计合理,大大的避免了来自于环境温度,湿度变化的影响,同时也规避了大量的人为操作的影响,它自带清洗,调节溶液遮光度功能,极大的保证了实验的重现性。因此,在试验中,应当做好颗粒的分散,

粒度测试原理

分析了Cilas940L激光粒度仪的测试结果,并与沉降法、筛析法进行了比较.激光粒度仪测试结果的重复性较好,测量精度较高.对于玻璃珠样品,激光粒度仪和筛析法测试结果十分接近,对于天然沉积物,激光粒度仪测定的平均粒径偏粗,分选偏差.和沉降法相比,激光粒度仪测定的粘土组份(<8φ)的含量为沉降法的46.7%~70.5%,平均为60%,测定的平均粒径较沉降法偏粗,分选偏差.造成激光粒度仪与沉降法、筛析法之间差异的原因主要在于这些测试方法原理的不同和天然沉积物不规则的形状. 激光衍射法与比重计沉降法所测粒度参数的对比研究——以海滩泥沙为例 陈仕涛1,王建1,朱正坤2,娄英杰2 (1.南京师范大学地理科学学院,江苏南京210097; 2.江苏省交通规划设计院,江苏南京 210005) 摘要:用比重计沉降法和激光衍射法这两种方法,在相同条件下,对65个海滩泥沙样品分别进行了粒度分析。结果表明,激光衍射法的测试结果相对偏粗,二者的差异主要反映在>9Φ中和<4Φ这两个粒级范围内,上述差异对平均粒径、中值粒径、标准偏差、尖度、偏度等5个常用粒度参数的影响程度是不同的,经过线性相关性分析发现,二者的平均粒径和中值粒径的相关系数R较高,分别为0.9864,0.9763,F显著性检验和分析表明,其回归方程是有意义的,可作为换算公式使用,从而求得二者数据对比与换算途径。 关键词:激光粒度仪;比重计;粒度分析;相关性 1 引言 粒度分析,也叫颗粒分析,在许多领域有着广泛的应用。粒度测量的方法很多,比如传统的沉降法和随着激光技术的发展而产生的激光衍射法。沉降法之一的比重计法由于使用的仪器简单,在细颗粒样品的测量中曾广泛应用。激光衍射粒度分析法由于测量范围宽、所需样品量少、快速方便、重复性好等优点,使得用户越来越多,进而有取代其它粒度方法的趋势[1],不同的测试方法由于受原理中某些假设和仪器本身的限制,测量的数据往往各不相同[2],这就必然会导致相关数据及成果在对比与共享方面存在着客观上的困难。因此,定量分析这两

第一节 粒度组成分析试验

第一节粒度组成分析试验 一、实验目的 1.掌握筛分分析法测定物料的粒度组成的试验方法。 2.了解煤的粒度组成和各粒级产物的质量特性。 3.学习筛分数据的处理及分析方法,利用筛分试验结果绘制物料粒度特性曲线。 二、试验原理 在煤炭分选加工的过程中,筛分是一种最古老、应用最广泛的粒度组成分析方法。筛分试验是指按操作规定将原料煤通过规定的各种大小不同筛孔的筛子而分成各种不同的粒度级别,然后分别测定各粒级的数量(产率, )和质量(如水分、灰分、硫分、发热量等),它主要是根据物料是否通过筛子的筛孔来进行的。 筛分试验根据处理物料粒度的不同分为原煤筛分(大于0.5mm,采用大筛分的方法测定物料粒度组成)和粉煤筛分(小于0.5mm,采用标准套筛测定粉煤粒度组成)。 三、筛分试验 (一)原煤筛分试验 1.试验仪器设备 (1)称量设备:用最大称量为500kg(或200 kg)、100 kg、20 kg、10 kg、 和5 kg的台秤或案秤各一台。台秤或案秤最小刻度值应符合表9-1规定。每次过秤的物料质量不得少于台秤或案秤最大称量的1/5。例如用5kg秤称取煤样时,煤样量不得小于1kg。 表9-1 (2)筛子:筛子的孔径一定要符合标准。 煤样可按下列筛孔尺寸:100mm、50 mm、25 mm、13 mm、6 mm、3 mm、0.5 mm。 ①孔径为25mm及以上的用圆孔筛,筛板厚度约为1~3mm。圆孔筛的冲孔应呈正三角形排列。 ②孔径为25mm以下的采用金属丝编织的方孔筛。筛分前应进行检查,确保

筛孔无变形、无破损。 ③人工筛分时,筛框可用木材制做,规格为:筛面尺寸为650m m×450mm;筛框高度120~140mm;手把长250mm左右。 ④有条件的应采用经过检验的筛分机械进行筛分。 2.试验煤样 (1)筛分试验煤样采取方法应符合有关标准规定。 (2)筛分煤样总质量应根据粒度组成的历史资料和一些特殊要求确定。 一般为:设计选煤厂的煤样不少于10t,矿井生产煤样不少于5t,不做浮沉试验时不少于2.7t。选煤厂原料煤及其产品煤样按粒度上限确定:粒度上限为300mm不少于6t,粒度上限为100不少于2t,粒度上限为50mm不少于1t。 (3)13~0mm煤样可缩分到质量不小于100kg,其中3~0mm煤样可缩分到质量小于20kg。 (4)筛分煤样应是空气干燥状态。 (5)收到煤样后,筛分试验应当在3d之内进行。 3.试验步骤 (1)筛分程序:筛分操作一般从最大筛孔向最小筛孔进行。如煤样中大粒度含量不多,可先用13mm 或25mm筛孔的筛子筛分,然后对筛上物和筛下物,分别从大的筛孔向小的筛孔逐级进行筛分。各粒级产物应分别称量。 (2)筛分试验时往复摇动筛子,速度要均匀,移动距离为300mm左右,直到筛净为止。每次筛分新加入的煤量应保证筛分操作完毕时筛上煤粒能与筛面接触。 (3)如煤样潮湿又急需筛分,可按以下步骤进行: ①采取外在水分煤样,并称量煤样总质量。 ②用筛孔为13mm的筛子筛分,+13mm的煤样晾至空气干燥状态后,再用13mm筛子复筛。然后对+13mm 煤样称量并进行各粒级筛分和称量,-13mm 煤样掺入到-13mm 的湿煤样中。 ③-13mm 湿煤样,采取外在水分煤样,称量后缩取不少于100kg( 晾至空气干燥状态称量,然后进行13~0mm 各粒级的筛分并称量。 (4)为保证筛分试验结果的准确可靠,必要时,应检查各粒级是否筛净。检

纳米材料粒度分析(可编辑修改word版)

纳米材料粒度分析 一、实验原理 纳米颗粒材料(粒径<100nm)是纳米材料中最重要的一种,可广泛用于纳米复合材料 制备中的填料、光催化颗粒、电池电极材料、功能性分散液等。粒径(或粒度)是纳米颗粒材 料的一个非常重要的指标。测试颗粒粒径的方法有许多种,其中,电子显微镜法和激光光散射 法均可用纳米材料粒度的测试,电子显微镜法表征纳米材料比较直观,可观察到纳米颗粒的形态,但需要通过统计计数(一般需统计1000 个以上颗粒的粒径)方法来得到颗粒粒径,比较烦 琐费时,尤其是在纳米颗粒的粒径分布较宽时,统计得到的粒径及粒径分布误差将增大。激光 光散射法得到的纳米颗粒粒径具有较好的统计意义,制样简单,测试速度快,但激光光散射法 无法观察到颗粒形态,在测试非球形颗粒时测试误差也较大。因此,上述两种纳米材料的测试方 法各有优缺点。本实验选用激光光散射法测试纳米材料的粒径及粒径分布。所用仪器为Beckman-coulter N4 Plus 型激光粒度分析仪。 图1 为N4 Plus 型激光粒度分析仪的测量单元组成图,主要由HeNe 激光光源、聚焦透镜、 样品池、步进马达、光电倍增管(PMT)、脉冲放大器和鉴别器(PAD)、数字自相关器、6802 微处理器和计算机组成。 图1 N4 Plus 型激光粒度测试仪的测量单元组成图 N4 Plus 型激光粒度分析仪的测量原理主要基于颗粒的布朗(Brownian)运动和光子相关光 谱(Photon Correlation Spectroscopy, PCS)现象。在溶液中,粒子由热导致与溶剂分子发生随机碰 撞所产生的运动称为布朗运动,由于布朗运动,粒子在溶液中可发生扩散移动。在恒定温度及某 一浓度下,粒子的平移扩散系数与颗粒的粒径成反比,即符合Stokes-Einstein 方程: D =k B T 3πηd (1) 式中k B为玻尔兹曼常数(1.38×10-16erg/?K),T 为温度(?K),η为分散介质(或稀释剂)粘度(poise),d 为颗粒粒径(cm)。当激光束照射到溶液中的悬浮颗粒上时,由于颗粒的随机布朗运动,颗

高效液相色谱实验报告

高效液相色谱实验报告 一、实验目的 1了解液相色谱的发展历史及最新进展 2 学习液相色谱的基本构造及原理 3 掌握液相色谱的操作方法和分析方法,能够通过HPLC分离测定来对目标化合物的分析鉴定。 二、实验原理 液相色谱法采用液体作为流动相,利用物质在两相中的吸附或分配系数的微小差异达到分离的目的。当两相做相对移动时,被测物质在两相之间进行反复多次的质量交换,使溶质间微小的性质差异产生放大的效果,达到分离分析和测定的目的。液相色谱与气相色谱相比,最大的优点是可以分离不可挥发而具有一定溶解性的物质或受热后不稳定的物质,这类物质在已知化合物中占有相当大的比例,这也确定了液相色谱在应用领域中的地位。 高效液相色谱可分析低分子量、低沸点的有机化合物,更多适用于分析中、高分子量、高沸点及热稳定性差的有机化合物。80%的有机化合物都可以用高效液相色谱分析,目前以已经广泛应用于生物工程、制药工程、食品工业、环境检测、石油化工等行业。 三、高效液相色谱的分类 吸附色谱法、分配色谱法、空间排阻色谱法、离子交换色谱法、亲和色谱法、化学键合相色谱法 四、高效液相色谱仪的基本构造 高效液相色谱至少包括输液系统、进样器、分离柱、检测器和数据处理系统等几部分。 1 输液系统: 包括贮液及脱气装置、高压输液泵和梯度洗脱装置。贮液装置用于存贮足够量、符合HPLC要求的流动相。高效液相色谱柱填料颗粒比较小,通过柱子的流动相受到的流动阻力很大,因此需要高压泵输送流动相。 2 进样系统: 将待测的样品引入到色谱柱的装置。液相色谱进样装置需要满足重复性好、死体积小、保证柱中心进样、进样时引起的流量波动小、便于实现自动化等多项要求。进样系统包括取样、进样两项功能。 3 分离柱: 色谱柱是色谱仪的心脏、柱效高、选择性好、分析速度快是对色谱柱的一般要求。商品化的HPLC微粒填料,如硅胶和以硅胶为基质的键合相、氧化铝、有机聚合物微球(包括离子交换树脂)等的粒度通常在3μm、5μm、7μm、以及10μm。采用的固定相粒度甚至可以达到1μm,而制备色谱所采用的固定相粒度通常大于10μm。HPLC填充柱效的理论值可以达到50000/m~160000/m理论板,一般采用100-300mm的柱长可满足大多数样品的分析的需要。由于柱效内、外多种因素的影响,因此为使色谱柱达到其应有的效率。应尽量的减小系统的死体积。 4 检测系统: HPLC检测器分为通用型检测器和专用型检测器两类。通用型检测器可连续测量色谱柱流出物(包括流动相和样品组分)的全部特性变化。这类检测仪器包括示差折光检测器、介

细粒物颗粒度组成筛分分析实验报告

化学化工学院材料化学专业实验报告 实验名称:细粒物粒度组成筛分分析. 年级: 2015级材料化学日期:2017/10/25 姓名:汪钰博学号:222015316210016 同组人:向泽灵 一、预习部分 (一)振动筛的筛分方法: 1.1、重叠筛分法: 在由粗到细的筛分中,直线筛的筛面重叠起来,上层筛面的筛孔较大,以下各层逐渐减小,因为直线筛筛框两侧有间隙,会造成筛分精度的降低,这种筛分方法适合量大的物料的处理; 1.2、分层序列筛分法: 一般来说,多层设备的筛分是由粗到细的,最上面是最粗的筛网,往下递减,其设备检修方便,容易观察设备各层筛面的工作情况;而由细到粗的筛分中,筛面顺次是相反的,单轴设备,旋振筛各筛能沿整个筛面长度分别排出,其筛分效果很明显,每个层面互不影响的; 1.3、联合筛分法,又称混合筛分法:

在联合流程中,一部分筛面由粗到细排列,另一部分由细到粗排列;在实际生产中,圆振动筛通常用由粗到细或联合的筛分流程;圆振筛是根据筛分物料的特殊要求制定的,筛分精度和轨迹都很理想,最适用于筛分粗矿。 (二)筛分的定义及作用 2.1、定义 一、筛分是将粒子群按粒子的大小、比重、带电性以及磁性等粉体学性质进行分离的方法。 二、用带孔的筛面把粒度大小不同的混合物料分成各种粒度级别的作业叫做筛分。 2.2、作用 用筛孔尺寸不同的筛子将固体物料按所要求的颗粒大小分开的操作。常与粉碎相配合,使粉碎后的物料的颗粒大小可以近于相等,以保证合乎一定的要求或避免过分的粉碎。 一、筛分是利用筛子把粒度范围较宽的物料按粒度分为若于个级别的作业。分级是根据物料在介质(水或空气)中沉降速度的不同而分成不同的粒级的作业。筛分一般用于较粗的物料,即大于0。25毫米的物料。较细的物料,即小于0。2毫米的物料多用分级。但是近几年来,国内外正在应用细筛对磨矿产品进行分级,这种分级效率一般都比较高。

筛分粒径分布实验报告

筛分粒径分布实验报告 干筛法数据记录筛分分析结果可按下表的形式记录 数据处理 粉体的均匀度是表示粒度分布的参数,可由筛分结果按下式计算:仪器设备及原料:标准套筛一套,目数分别为:20,60,100,140;200g电子天平; 实验步骤及操作: 称取200g河沙; 在最下面垫一张报纸,对组合好的套筛进行人工的震荡,震荡的较为充分时,再进行逐级的筛分。最后,依次逐级由上到下取下筛子再震动,用手判断是否分筛干净。 筛完后,逐级称量并记录数据。 回收河沙,整理实验台。 三. 实验结果分析 实验结果记录表 粒度特性曲线 累积粒度特性曲线 从相应数据和图形可以得出如下结论: 1.实验称取200g河沙,但筛分完毕为194.9g。原因:逐级称取的时候洒落了一小部分,同时筛子上面残留有一部分,另外实验称取

的是每级筛子上面的沙子,还有比140目更小的则漏在报纸上没有称取算入计重。 2.筛分前式样重量与筛分后各粒级产物重量之和的差值为5.1g,为筛分样质量的2.55%,实验进行正确,无需重做。 3.从粒度特性曲线分析,可以得出其曲线近似呈正态分布。即两头少中间大的趋势,表明大颗粒和小颗粒的物料都相对较少。 4.从累积粒度特性曲线分析,可以得出目数小于60时图形比较平缓,表明粒径达的物料比较少;而在60-100目之间的图形斜率比较大,说明粒径在此、影响筛分效果的因素有哪些? 答:1.入筛原料性质的影响: (1)含水率:物料的含水率又称湿度或水分; (2)含泥量:如果物料含有易结团的混合物( 如粘土等); (3)粒度特性:影响筛分过程的粒度特性主要是指原料中含有对筛分过程有特定意义的各种粒级物料的含量。 (4)密度特性:当物料中所有颗粒都是同一密度时,一般对筛分没有影响。 2.筛子性能的影响: (1) 筛面运动形式; (2) 筛面结构参数;

实验2-纳米氧化铝粉体的制备及粒度分析

实验2 纳米氧化铝粉体的制备及粒度分析 一.实验目的 1.了解纳米材料的基本知识。 2.学习纳米氧化铝的制备。 3. 了解粒度分析的基本概念和原理。 4. 掌握马尔文激光粒度分析仪的使用。 二.实验原理 纳米氧化铝因其具有耐高温、耐腐蚀、比表面积大、反应活性高、烧结温度低,比普通氧化铝粉有着更优异的物化特性,在人工晶体、精细陶瓷、催化剂等方面得到广泛的应用。到目前为止纳米氧化铝粉末的制备方法众多,大致可分为气相法、固相法和液相化学反应法等,其中液相法制备Al2O3具有平均粒径小,分布范围窄、纯度高、活性高、设备简单、制备工艺影响因素可控等优点。 许多学者就纳米氧化铝的合成进行了广泛深入的研究。采用各种方法制备出纳米氧化铝粉体,但困扰纳米超细制备和应用的一个严重问题就是由于表面能造成的粉体的团聚,转相温度高而使颗粒明显长大,人们一般通过添加分散剂来克服团聚,因此对分散剂的合理选择,制备条件的有效控制及分散机理、分散效果的研究显得十分重要。 本实验以不同聚合度的聚乙二醇(PEG)为分散剂,采用沉淀法制备氢氧化铝胶体,胶体经800~1100℃高温煅烧2 h得到纳米氧化铝粉体,其在煅烧过程中经历Al(OH)3→AlOOH(勃姆石)→γ-Al2O3→δ-Al2O3→θ-Al2O3→α-Al2O3的相变过程,此方法能得到的最小平均粒径约为25 nm。 三.仪器与试剂 试剂:硫酸铝铵、浓氨水(25-28%)、聚乙二醇(PEG,聚合度n=200、600、2000、4000)、无水乙醇等,纯度均为AR级。 仪器:集热式恒温磁力搅拌器、40ml陶瓷坩埚、陶瓷研钵、500ml烧杯、真空水泵、布氏漏斗、抽滤瓶、马弗炉、50ml量筒、分析天平、空气塞、干燥箱、磁铁、容量瓶250ml、称量纸、滤纸、玻璃棒、钥匙、表面皿、分液漏斗。 Mastersizer 2000激光粒度仪。 四.实验步骤 1.查文献 《分散剂聚合度对纳米氧化铝粉体特性的影响》 2.样品的制备 将十二水合硫酸铝铵(M=453.33)配成0.2 mol/L的溶液(需加热溶解),分别取出100 ml加入3 g不同聚合度的聚乙二醇(PEG),恒温磁力搅拌(45±5 ℃)使PEG迅速溶解,保持水浴温度,用分液漏斗将25 ml氨水逐滴加入匀速搅拌的溶液中(10 min),形成白色胶状沉淀,氨水加完后,继续搅拌5 min,然后抽滤(抽滤时要防止滤纸穿破),用蒸馏水和无水乙醇分别洗涤1次,得到胶体样品。胶体经70~80℃烘干,再800~1100 ℃煅烧2h,得到α型氧化铝纳米粉体,研磨后保存。 查阅文献《粒度分析基本原理》。 五.结果与讨论 采用不同聚合度的PEG作分散剂,测氧化铝粉体的粒径分布曲线,曲线的峰宽反映体系中所含颗粒尺寸的均匀程度,峰宽越窄则粒子的粒度越均匀。 1.完成表1内容。

粒径分析基本原理

最大直径 特性: V=体积 W=重量 S=表面积 A=投影面积 R=沉降速度 高圆度 中圆度 低圆度 图1 有关粒度的难题 假设给你一只火柴盒和一把尺子,要求你告诉我它的大小。你可能回答火柴盒的大小是20×10×5 mm 。但是你若回答“火柴盒的大小是20 mm ”,这是不正确的,因为这仅仅是其大小的一个维度。你不可能用一个单独的数字来描述一只三维的火柴盒的大小。显然,对于复杂的形状,比如一颗砂粒或漆罐中的一粒颜料而言,情况变得更加困难。如果我是质量保证经理,我只想用一个数字来描述颗粒的大小-比如我必须知道从上一次生产起,颗粒的平均大小是增加了或是减少了。这就是粒度分析的一个基本问题-我们如何能够只用一个数字来描述一个三维物体呢? 图1显示了一些砂粒。它们的大小是多少? 等效球体 只有一种形状可以用一个数 字来描述,那就是球体。如果 我们说,一个球体的直径是 50μm ,这样的描述是完全正 确。然而,即使是对于立方体, 我们也不能以同样的方式做 到,因为50μm 可能是指一条边或者指一条对角线。对于火柴盒而言,它拥有许多可以用一个数字描述的特性。例如重 量是一个单一的数字,体积和表面积亦然。因此,如果我们有一种方法可以测量火柴盒 的重量,那么,我们可以把这个重量转化为球体的重量: 重量 = 4/3πr 3 ρ 而计算出与火柴盒重量相等球体的独特直径(2r )。这就是等效球体理论。我们测量颗粒的一些特性,并假设这指的是一个球体,由此得出一个唯一的数字(这个球体的直径)来描述颗粒。这样,可以保证我们不必以三个或更多数字来描述三维颗粒,虽然那样更加精确,但对于具体操作而言并不方便。 我们可以看出,取决于物体的形状,这将产生一些有趣的结果。我们可通过圆柱体等效球体的例子来说明这种情况(图2)。然而如果圆柱体改变了形状或大小,则体积/重量会发生变化。有了等效球体模型,我们至少可以说它变得更大了或更小了。 图2 100 × 20 μm 圆柱体的等效球 体直径 假设有一个直径D 1=20 μm (即r=10 μm ),高度为100 μm 的圆柱体。另有一个直径为D 2的与圆柱体有等效体积的球体。我们可以用以下方式计算这个直径D 2: 圆柱体的体积 = πr 2h = 10000π(μm 3 ) 球体的体积 = 33 4 X π 其中X 是等效体积半径。 33 V 6204V 3X .==∴π μm 5.197500430000X 3 3 ===π π μm 139D 2.=∴ 对于高100 μm ,直径20 μm 的圆柱体,体积等效球体直径约为40 μm 。下表指出了各种比率圆柱体的等效球直径。最后一行对应于典型的盘形大粘土颗粒。它看起来直径为20 μm ,但由于厚度只有 2 μm ,我们通常不考虑厚度。在测量颗粒体积的仪器上,我们可能得到的答案是半径约为5 μm 。因此,不同的方法可能给出有争议的答案!对于一个25 μm 的筛子而言,所有这些圆柱体看起来是相同大小的,可以说“所有材料都小于25 μm ”。然而对于激光光衍射而言,这些“圆柱体”看起来是不同的。 最小直径 粒度分析基本原理 作者: Alan Rawle 马尔文仪器有限公司Enigma Business Park, Grovewood Road, Malvern, Worcestershire, WR14 1XZ, UK (英国) 什么是颗粒? 这一问题的提出似乎十分愚蠢!但是,要想对各种粒度分析方法所得出的结果进行分析,这又是一个十分基本的问题。颗粒的分散过程和材料的形状使粒度分析比乍看起来要复杂得多。 棱角明显 有棱角 接近棱角 接近光滑 光滑

激光粒度仪实验报告

实验一LS230/VSM+激光粒度仪测定果汁饮料粒度 1实验目的 1.1了解激光粒度仪的基本操作; 1.2了解激光粒度仪测定的基本原理。 2实验原理 激光粒度分析仪的原理是基于激光的散射或衍射,颗粒的大小可直接通过散射角的大小表现出来,小颗粒对激光的散射角大,大颗粒对激光的散射角小,通过对颗粒角向散射光强的测量(不同颗粒散射的叠加),再运用矩阵反演分解角向散射光强即可获得样品的粒度分布。 激光粒度仪原理图如图1所示,来自固体激光器的一束窄光束经扩充系统扩充后,平行地照射在样品池中的被测颗粒群上,由颗粒群产生的衍射光或散射光经会聚透镜会聚后,利用光电探测器进行信号的光电转换,并通过信号放大、A/D 变换、数据采集送到计算机中,通过预先编制的优化程序,即可快速求出颗粒群的尺寸分布。 3实验试剂与仪器 3.1实验样品:果汁饮料。 3.2实验仪器:LS230/VSM+激光粒度仪。 4实验步骤 4.1按照粒度仪、计算机、打印机的顺序将电源打开,并使样品台里充满蒸馏水,开泵,仪器预热10分钟。

4.2进入LS230的操作程序,建立连接,再进行相应的参数设置: 启动Run-run cycle(运行信息) (1)选择measure offset(测量补偿),Alignment(光路校正),measure background(测量空白),loading(加样浓度),Start 1 run(开始测量(2)输入样品的基本信息,并将分析时间设为60秒,点击start(开始)。 如需要测量小于0.4μm以下的颗粒,选择Include PIDS,并将分析时 间改为90秒后,点击start(开始) (3)泵速的设定根据样品的大小来定,一般设在50,颗粒越大,泵速越高,反之亦然。 4.3在测量补偿,光路校正,测量空白的工作通过后,根据软件的提示,加入样品控制好浓度,Obscuratio n应稳定在8-12%:假如选择了PIDS,则要把PIDS 稳定在40-50%,待软件出现ok提示后,点击Done(完成)。 4.4分析结束后,排液,并加水清洗样品台,准备下一次分析。 4.5作平行试验,保存好结果,根据要求打印报告。 4.6退出程序,关电源,样品台里加满水,防止残余颗粒附着在镜片上。 5实验结果与讨论 5.1实验结果 由实验结果显示: 平均粒径:141.7μm

筛分粒径分布实验报告

筛分粒径分布实验报告 篇一:筛分分析-实验指导书 粒度分布通常是指某一粒径或某一粒径范围的颗粒在整个粉体中占多大的比例。它可用粒度分布表格、粒度分布图和函数形式表示颗粒群粒径的分布状态。颗粒的粒度、粒度分布及形状能显著影响粉末及其产品的性质和用途。例如.水泥的凝结时间、强度与其细度有关;陶瓷原料和坯釉料的粒度及粒度分布影响着许多工艺性能和理化性能;磨料的粒度及粒度分布决定其质量等级等。为了掌握生产线的工作情况和产品是否合格,在生产过程中必须按时取样并对产品进行粒度分布的检验,粉碎和分级也需要测量粒度。 粒度测定方法有多种,常用的有筛析法、沉降法、激光法、小孔通过法、吸附法等。本实验用筛析法测粉体粒度分布。筛析法是最简单的也是用得最早和应用最厂泛的粒度测定方法、利用筛析方法不仅可以测定粒度分布,而且通过绘制累积粒度特性曲线,还可得到累积产率50%时的平均粒度。 一、实验目的意义 本实验的目的: ①了解筛析法测物体粒度分布的原理和方法; ②根据筛分析数据绘制粒度累积分布曲线和频率分布曲线。 二、实验原理 筛析法是让粉体试样通过一系列不同筛孔的标准筛,将其分离成若

干个粒级,分别称重,求得以质量百分数表示的粒度分布。筛析法适用约20μm~100㎜之间的粒度分布测量。如采用电成形筛(微孔筛),其筛孔尺寸可小至5μm,甚至更小。 筛孔的大小习惯上用“目”表示,其含义是每英寸(2.54cm)长度上筛孔的数目。也有用l㎝长度上的孔数或1㎝筛面上的孔数表示的,还有的直接用筛孔的尺寸来表示。筛分法常使用标准套筛,标准筛的筛制按国际标准化组织(ISO)推荐的筛孔为1㎜的筛子作为基筛,也可采用泰勒筛,筛孔尺寸为0.074mm作为基筛。 筛析法有干法与湿法两种,测定粒度分布时,一般用干法筛分;湿法可避免很细的颗粒附着在筛孔上面堵塞筛孔。若试样含水较多,特别是颗粒较细的物料,若允许与水混合,颗粒凝聚性较强时最好使用湿法。此外,湿法不受物料温度和大气湿度的影响,还可以改善操作条件,精度比干法筛分高。所以,湿法与干法均被列为国家标准方法,用于测定水泥及生料的细度等。 筛析法除了常用的手筛分、机械筛分、湿法筛分外,还用空气喷射筛分、声筛法、淘筛法和自组筛等,其筛析结果往往采用频率分布和累积分布来表示颗粒的粒度分布。频率分布表示各个粒径相对应的颗粒百分含量(微分型);累积分布表示小于(或大于)某粒径的颗粒占全部颗粒的百分含量与该粒径的关系(积分型)。用表格或图形来直观表示颗粒粒径的频率分布和累积分布。 筛析法使用的设备简单,操作方便,但筛分结果受颗粒形状的影响较大,粒度分布的粒级较粗,测试下限超过38μm时,筛分时间长,

“颗粒粒径分析方法”汇总大全

“颗粒粒径分析方法”汇总大全 来源:材料人2016-08-05 一、相关概念: 1、粒度与粒径:颗粒的大小称为粒度,一般颗粒的大小又以直径表示,故也称为粒径。 2、粒度分布:用一定方法反映出一系列不同粒径区间颗粒分别占试样总量的百分比称为粒度分布。 3、等效粒径:由于实际颗粒的形状通常为非球形的,难以直接用直径表示其大小,因此在颗粒粒度测试领域,对非球形颗粒,通常以等效粒径(一般简称粒径)来表征颗粒的粒径。等效粒径是指当一个颗粒的某一物理特性与同质球形颗粒相同或相近时,就用该球形颗粒的直径代表这个实际颗粒的直径。其中,根据不同的原理,等效粒径又分为以下几类:等效体积径、等效筛分径、等效沉速径、等效投影面积径。需注意的是基于不同物理原理的各种测试方法,对等效粒径的定义不同,因此各种测试方法得到的测量结果之间无直接的对比性。 4、颗粒大小分级习惯术语:纳米颗粒(1-100 nm),亚微米颗粒(0.1-1 μm),微粒、微粉(1-100 μm),细粒、细粉(100-1000 μm),粗粒(大于1 mm)。 5、平均径:表示颗粒平均大小的数据。根据不同的仪器所测量的粒度分布,平均粒径分、体积平均径、面积平均径、长度平均径、数量平均径等。 6、D50:也叫中位径或中值粒径,这是一个表示粒度大小的典型值,该值准确地将总体划分为二等份,也就是说有50%的颗粒超过此值,有50%的颗粒低于此值。如果一个样品的D50=5 μm,说明在组成该样品的所有粒径的颗粒中,大于5 μm的颗粒占50%,小于5 μm的颗粒也占50%。 7、最频粒径:是频率分布曲线的最高点对应的粒径值。 8、D97:D97指一个样品的累计粒度分布数达到97%时所对应的粒径。它的物理意义是粒径小于它的的颗粒占97%。这是一个被广泛应用的表示粉体粗端粒度指标的数据。 二、粒度测试的基本方法及其分析 激光法 激光法是通过一台激光散射的方法来测量悬浮液,乳液和粉末样品颗粒分布的多用途仪器。纳米型和微米型激光料度仪还可以通过安装的软件来分析颗粒的形状。现在已经成为颗粒测试的主流。 1、优点:(1)适用性广,既可测粉末状的颗粒,也可测悬浮液和乳浊液中的颗粒;(2)测试范围宽,国际标准ISO 13320 - 1 Particle Size Analysis 2 Laser Diffraction Meth 2 ods 2 Part 1: General Principles中规定激光衍射散射法的应用范围为0.1~3000 μm;(3)准确性高,重复性好;(4)测试速度快;(5)可进行在线测量。 2、缺点:不宜测量粒度分布很窄的样品,分辨率相对较低。 激光散射技术分类: 1、静态光散射法(即时间平均散射):测量散射光的空间分布规律采用米氏理论。测试的有效下限只能达到50纳米,对于更小的颗粒则无能为力。纳米颗粒测试必须采用“动态光散射”技术。 2、动态光散射法:研究散射光在某固定空间位置的强度随度时间变化的规律。原理基于ISO 13321分析颗粒粒度标准方法,即利用运动着的颗粒所产生的动态的散射光,通过光子相关光谱分析法分析PCS颗粒粒径。 按仪器接受的散射信号可以分为衍射法、角散射法、全散射法、光子相关光谱法,光子交叉相关光谱法(PCCS)等。其中以激光为光源的激光衍射散射式粒度仪(习惯上简称此类仪器为激光粒度仪)发展最为成熟,在颗粒测量技术中已经得到了普遍的采用。 激光粒度分析仪:

粒度仪实验报告

实验一 ls230/vsm+激光粒度仪测定果汁饮料粒度 1实验目的 1.1了解激光粒度仪的基本操作; 1.2了解激光粒度仪测定的基本原理。 2实验原理 激光粒度分析仪的原理是基于激光的散射或衍射,颗粒的大小可直接通过散射角的大小 表现出来,小颗粒对激光的散射角大,大颗粒对激光的散射角小,通过对颗粒角向散射光强 的测量(不同颗粒散射的叠加),再运用矩阵反演分解角向散射光强即可获得样品的粒度分布。 激光粒度仪原理图如图1所示,来自固体激光器的一束窄光束经扩充系统扩充后,平行 地照射在样品池中的被测颗粒群上,由颗粒群产生的衍射光或散射光经会聚透镜会聚后,利 用光电探测器进行信号的光电转换,并通过信号放大、a/d变换、数据采集送到计算机中, 通过预先编制的优化程序,即可快速求出颗粒群的尺寸分布。 3实验试剂与仪器 3.1实验样品:果汁饮料。 3.2实验仪器:ls230/vsm+激光粒度仪。 4实验步骤 4.1按照粒度仪、计算机、打印机的顺序将电源打开,并使样品台里充满蒸馏水,开泵, 仪器预热10分钟。 4.2进入ls230的操作程序,建立连接,再进行相应的参数设置: 启动run-run cycle(运行信息) (1)选择measure offset(测量补偿),alignment(光路校正),measure background(测量空白),loading(加样浓度),start 1 run(开始测量 (2)输入样品的基本信息,并将分析时间设为60秒,点击start(开始)。 如需要测量小于0.4μm以下的颗粒,选择include pids,并将分析时 间改为90秒后,点击start(开始) (3)泵速的设定根据样品的大小来定,一般设在50,颗粒越大,泵速越高, 反之亦然。 4.3在测量补偿,光路校正,测量空白的工作通过后,根据软件的提示,加入样品控制 好浓度,obscuration应稳定在8-12%:假如选择了pids,则要把pids稳定在40-50%,待软 件出现ok提示后,点击done(完成)。 4.4分析结束后,排液,并加水清洗样品台,准备下一次分析。 4.5作平行试验,保存好结果,根据要求打印报告。 4.6退出程序,关电源,样品台里加满水,防止残余颗粒附着在镜片上。 5实验结果与讨论 5.1实验结果 由实验结果显示: 平均粒径:141.7μm 6思考题 6.1 ls230/vsm+激光粒度仪的技术特点 ls230/vsm+激光粒度仪的特点是测量的动态范围宽、测量速度快、操作方便,尤其适合 测量粒度分布范围宽的粉体和液体雾滴。 (1)双镜头专利技术:避免了更换镜头的麻烦,测量宽分布颗粒时,大、小颗粒的信息 在一次分析中都可得到,大大提高了分析精度。 (2)pids(偏振光强度差)专利技术:用三种方法改进了对小颗粒的测定:多波长(450nm,

粉体粒度及其分布测定

粉体粒度及其分布测定 一.实验目的 1.掌握粉体粒度测试的原理及方法; 2.了解影响粉体粒度测试结果的主要因素,掌握测试样品制备的步骤和注意要点; 3.学会对粉体粒度测试结果数据处理及分析。 二.实验原理 图1:微纳激光粒度分析仪工作原理框图 粉体粒度及其分布是粉体的重要性能之一,对材料的制备工艺、结构、性能均产生重要的影响,凡采用粉体原料来制备材料者,必须对粉体粒度及其分布进行测定。粉体粒度的测试方法有许多种:筛分法、显微镜法、沉降法和激光法等。 激光粒度测试是利用颗粒对激光产生衍射和散射的现象来测量颗粒群的粒度分布的,其基本原理为:激光经过透镜组扩束成具有一定直径的平行光,照射到测量样品池中的颗粒悬浮液时,产生衍射,经傅氏(傅立叶)透镜的聚焦作用,在透镜的焦平面上形成一中心圆斑和围绕圆斑的一系列同心圆环,圆环的直径随衍射角的大小即随颗粒的直径而变化,粒径越小,衍射角越大,圆环直径亦大;在透镜的后焦平面位置设有一多元光电探测器,能将颗粒群衍射的光通量接收下来,光--电转换信号再经模数转换,送至计算机处理,根据夫朗和费衍射原理关于任意角度下衍射光强度与颗粒直径的公式,进行复杂的计算,并运用最小二乘法原理处理数据,最后得到颗粒群的粒度分布。 激光粒度测试法具有适应广、速度快、操作方便、重复性好的优点,测量范围为:0.1—几百微米。但当粒径与所用光的波长相当时,夫朗和费衍射理论的运用有较大误差,需应用米氏理论来修正。 三.仪器设备 济南微纳颗粒技术有限公司Winner2000Z智能型激光粒度分析仪、微型计算机、打印机。 四.实验步骤 4.1测试前的准备工作 1.开启激光粒度分析仪,预热10~15分钟。启动计算机,并运行相对应的软件。 2.清洗循环系统。首先,进入控制系统的人工模式,不选择自动进水点击排水, 把与被测样品相匹配的分散介质加入样品桶,待管路及样品窗中都充满介质后, 再点击排水,关闭排水。其次,按下冲洗,洗完后,自动排出。按以上步骤反

粒度分析的基本原理

粒度分析的基本原理 (作者:Malvern 仪器有限公司Alan Rawle 博士,翻译:焉志东,整理:董青云) 什么叫颗粒? 颗粒其实就是微小的物体,是组成粉体的能独立存在的基本单元。这个问题似乎很简单,但是要真正了解各种粒度测试技术所得出的测试结果,明确颗粒的定义又是十分重要的。各种颗粒的复杂形状使得粒度分析比原本想象的要复杂得多。 (见图1略) 粒度测试复杂的原因 比如,我们用一把直尺量一个火柴盒的尺寸,你可以回答说这个火柴盒的尺寸是20×10×5mm 。但你不能说这个火柴盒是20mm 或10mm 或5mm ,因为这些只是它大小尺寸的一部分。可见,用单一的数值去描述一个三维的火柴盒的大小是不可能的。同样,对于一粒砂子或其它颗粒,由于其形状极其复杂,要描述他们的大小就更为困难了。比如对一个质保经理来说,想用一个数值来描述产品颗粒的大小及其变化情况,那么他就需要了解粉体经过一个处理过程后平均粒度是增大了还是减小了,了解这些有助于正确进行粒度测试工作。那么,怎样仅用一个数值描述一个三维颗粒的大小?这是粒度测试所面临的基本问题。 等效球体 只有一种形状的颗粒可以用一个数值来描述它的大小,那就是球型颗粒。如果我们说有一个50 u 的球体,仅此就可以确切地知道它的大小了。但对于其它形状的物体甚至立方体来说,就不能这样说了。对立方体来说,50u 可能仅指该立方体的一个边长度。对复杂形状的物体,也有很多特性可用一个数值来表示。如重量、体积、表面积等,这些都是表示一个物体大小的唯一的数值。如果我们有一种方法可测得火柴盒重量的话,我们就可以公式(1)把这一重量转化为一球体的重量。 重量= )1(r 3 4 3-----------------------ρ??π 由公式(1)可以计算出一个唯一的数(2r )作为与火柴盒等重的球体的直径,用这个直径来代表火柴盒的大小,这就是等效球体理论。也就是说,我们测量出粒子的某种特性并根据这种特性转换成相应的球体,就可以用一个唯一的数字(球体的直径)来描述该粒子的大小了。这使我们无须用三个或更多的数值去描述一个三维粒子的大小,尽管这种描述虽然较为准确,但对于达到一些管理的目的而言是不方便的。我们可以看到用等效法描述描述粒子的大小会产生了一些有趣的结果,就是结果依赖于物体的形状,见图2中圆柱的等效球体。如果此圆柱改变形状或大小,则体积/重量将发生变化,我们至少可以根据等效球体模型来判断出此圆柱是变大了还是变小了等等。如图2(略)。 假设有一直径D1=20um (半径r=10um ),高为100 um 的圆柱体。由此存在一个与该圆柱体积相等球体的直径D2。我们可以这样计算这一直径(D2): 圆柱体积V 1=)2()m (10000h r 3 2 ----------------μπ=??π

颗粒粒度分析实验一

颗粒粒度分析实验 一、实验目的和意义 颗粒污染物的粒径分布式选择颗粒物控制工艺和设备重要依据,通过本实验,使学生能够掌握颗粒物粒径分布测定的基本方法,绘制颗粒分布曲线。.颗粒分析的试验方法很多,本实验采用比重计法进行测定。比重计法适合用于分析粒径小于0.1mm的颗粒,对于粒径大于0.1mm的颗粒,可采用筛析法进行分析,当颗粒群中兼有上述两种粒组时,则应联合使用筛析法和比重计法。.本实验只作比重计法。 二、实验原理 对于粒径小于0.1mm的颗粒物样品经化学和物理方法处理成悬浮液定容后,根据斯托克斯(Stokes)定律及比重计浮泡在悬浮液中所处的平均有效深度,静置不同时间后,用比重计直接读出每升悬浮液中所含各级颗粒的质量,计算其百分含量。 三、仪器设备 1. 比重计 (1)甲种比重计刻度单位以20℃时1L悬液内以g表示所含颗粒质量。 (2)乙种比重计刻度单位以20℃时悬液的比重表示。 2.量筒两个,容积为1L。 3.天平,感量0.01g。

4.温度计。 5.搅拌器。 6.秒表。 7.煮沸设备:电热器,三角烧瓶及回流冷凝管。 8.化学药瓶:4%六偏磷酸钠(作分散剂)。 9.蒸馏水。 10.其他:烘箱、时钟、烧杯等。 四、实验方法和步骤 1.称取由试验室按备样要求准备好的小于0.1mm的烘干试样30g,称重准至0.01g,装入三角烧瓶中(装烧瓶时切勿使土粒散失)。 2.在盛有试样的三角烧瓶中注入约200mL蒸馏水,然后加入浓度为4%六偏磷酸钠(分散剂)10mL,将瓶稍摇荡后,放在电热器上,用冷凝管下端的橡皮塞塞紧瓶口,进行煮沸。煮沸进间从沸腾开始算起,不易分散的颗粒样一般需 1h左右,其他可酌量减少,但不是少于0.5h。 3.待悬浊液冷却后,却其倒入指定号码的量筒内,并应将烧瓶中剩留的悬液,分次用少量蒸馏水完全洗倒入量筒内。注水入量筒,使筒内悬液恰达1000mL,如在分析过程中发现仍有絮状下沉现象,可再加4%浓度的六偏磷酸钠约10mL 于悬液中加以分散。 4.将盛有悬液的量筒,置于平衡且便于测度的平台上(试验过程中不得挪用或碰撞)。准备好比重度、秒表、记录纸等,并先熟悉比重计划刻度的读法。然

SRT实验报告

白芨多糖微球的制备与质量控制 一、实验目的 本实验通过乳化交联法制备白芨微球,并设计单因素实验,分析水油比、白芨多糖浓度、交联剂浓度对白芨微球粒径的影响。同时测定制备的白芨微球大小、形态、悬浮性等性状,了解白芨血管栓塞剂的质量要求。 二、实验原理 白芨多糖是从白芨药材中经一定工艺提取所得的多糖,由葡萄糖和甘露糖(1∶4)以β糖苷键聚合而成一种甘葡聚糖,平均分子量在65000~150000 kDa,具有抗炎、促凝血、抗病毒、抗肿瘤、抗氧化等生物学活性,作为天然高分子材料,有功能缓释性、局部滞留性、自身降解性、无刺激性、无毒副作用、资源丰富、廉价易得等辅料的特性。 乳化化学交联法是利用带有氨基的高分子材料易和其他化合物相应的活性基团发生反应的特点,交联制备得微球。制备过程中往往先用乳化法把药物分散成w/o或o/w型乳浊液,再加入交联剂,由于交联剂中的醛基可以和该分子材料的氨基(或者羟基)发生胺醛缩合(或醇醛缩合)作用使微球固化。 三、实验材料 白芨多糖、无水乙二胺(500ml)、环氧氯丙烷(500ml)、液体石蜡(1000ml)、司盘85(100ml)、吐温80(100ml)、异丙醇(500ml)、丙酮(500ml)、石油醚(500ml)、浓硫酸、5%葡萄糖注射液、欧乃派克(碘海醇)、生理盐水、氯仿(500ml)、正丁醇(100ml)、蒸馏水 四、实验仪器 精密增力电动搅拌器、恒温水浴锅、真空干燥箱、冷冻干燥机、电子天平、超声波清洗器、分样筛、紫外分光光度计、温度计、西林瓶、烧杯等常用玻璃仪器。 五、实验步骤 1、白芨多糖的提取 1)浸泡:取多糖适量,用蒸馏水浸泡12小时 2)提取:采用超声波提取仪,在温度为35℃,提取40分钟 3)过滤:过滤提取液,除去多糖残渣 4)蒸发浓缩:将上步所得滤液用旋转蒸发仪蒸发浓缩 5)离心(除去蛋白质等杂质):取粗多糖溶液,氯仿—正丁醇(预先配置成体 积比为4:1的混合液)溶液,按4:1的比例置于具塞试管中,充分振摇30min 后,经离心机1000转离心1min,然后将水相与氯仿相分开。将水相再加入到相当于其体积1/4的氯仿—正丁醇溶液,重复上述过程,共计重复两次。 再将样品溶液与氯仿—正丁醇溶液体积比改为3:1、2:1、1:1,重复前面操作。 6)冷冻干燥:将上述所得的多糖液置于冷冻干燥机中冷冻干燥为多糖的粉末。 2、白芨微球的制作

相关文档