文档库 最新最全的文档下载
当前位置:文档库 › 果胶的提取与提取条件的研究

果胶的提取与提取条件的研究

果胶的提取与提取条件的研究
果胶的提取与提取条件的研究

果胶的提取与提取条件的研究

作者:阿地拉。阿不力米提指导老师:买迪尼亚提

摘要:果胶用途十分广泛,目前在国内外的销路很好,但是价格较高,食品用果胶约为30 万元/ 吨,工业用果胶为10 万元/ 吨左右,且当前我国果胶生产还处于开发阶段,所需果胶还主要依靠进口,所以开发新的提取资源,研究果胶生产工艺以降低果胶生产成本,是一项很有意义的工作。从韧皮纤维原料的蒸煮废液中提取果胶,不仅做到了废物再利用,增加了果胶的来源,而且还缓解了其对环境的污染负荷,降低制浆成本,取得经济效益。果胶结构在很大程度上取决于提取原料的种类和提取方法。结构中的部分羧基可被甲醇酯化,果胶的酯化度(DE) 可因提取原料的种类、生长和采割期及加工方法等的不同而有很大差别。因此,通过本实验对使用者提供果胶提取的最佳条件。

关键词:果胶;提取;D-半乳聚糖;乙醇;

前言:

1.果胶来源及含量

果胶存在于植物的细胞壁和细胞内层,为内部细胞的支撑物质。不同的蔬菜,水果口感有区别,主要是由它们含有的果胶含量已经果胶分子的差异决定的。柑橘、柠檬、柚子等果皮中约含30%果胶,是果胶的最丰富来源。按果胶的组成可有同质多糖和杂多糖两种类型:同质多糖型果胶如D-半乳聚糖、L-阿拉伯聚糖和D-半乳糖醛酸聚糖等;杂多糖果胶最常见,是由半乳糖醛酸聚糖、半乳聚糖和阿拉伯聚糖以不同比例组成,通常称为果胶酸。不同来源的果胶,其比例也各有差异。部分甲酯化的果胶酸称为果胶酯酸。天然果胶中约20%~60%的羧基被酯化,分子量为2万~4万。果胶的粗品为略带黄色的白色粉状物,溶于20份水中,形成粘稠的无味溶液,带负电。果胶广泛用于食品工业,适量的果胶能使冰淇淋、果酱和果汁凝胶化。在植物体中,果胶一般以不溶于水的原果胶形式存在。在果实成熟过程中,原果胶在果胶酶的作用下逐渐分解为可溶性果胶,最后分解成不溶于水的果胶酸。原料经酸、碱或果胶酶处理,在一定条件下分解,形成可溶性果胶,然后在果胶液中加入乙醇或多价金属盐类,使果胶沉淀析出、经漂洗、干燥、精制而形成产品。

果胶是一种天然线性高分子化合物,是植物特有的细胞壁组织,通常认为它主要是D一半乳糖醛酸的1一位和4一位碳经氧桥连接而成链状化合物,其相对分子质量一般在105一2XI护之间,但平均相对分子质量一般为 1.4火1护。果胶有特殊水果香味,无异味、无固定熔点和溶解度,具有良好的凝胶性和乳化稳定性,被广泛应用于食品工业,常用来作为糖果、果冻、果汁、罐头及各种饮料的胶凝剂、增稠剂、稳定剂及蛋黄乳化剂;另一方面, 果胶是人体七大营养素中水溶性膳食纤维的主要成分,具有良好的抗腹泻、抗癌、治疗糖尿病和减肥等多种作用,可用来制造轻泻剂、止血剂、毒性金属解毒剂、血浆代用品等,是医药和化妆品工业不可缺少的辅料。目前,我国生产果胶的品质很难适用于食品工业,仍大量依赖进口,因此,开发从农副产品中提取果胶的技术具有极高的经济效益和社会效益. 果胶作为一种重要商品,其提取工艺一直吸引着人们的广泛关注。从植物中提取果胶是一个由水不溶性果胶向水溶性果胶转化和水溶性果胶向液相转化的过程。目前,柑橘皮除少量药用外,大部分被作为垃圾丢弃,这样不仅造成

资源浪费,而且还造成环境污染。如何利用柑橘皮生产果胶,将其变废为宝,已成为学术界关注的热点。果胶具有良好的胶凝化和乳化稳定作用,已广泛用于食品、医药、日化及纺织行业。柚果皮富含果胶,其含量达6%左右,是制取果胶的理想原料。果胶分果胶液、果胶粉和低甲氧基果胶三种,其中尤以果胶粉的应用最为普遍。现介绍从柚皮中制取果胶粉和低甲氧基果胶的加工技术。近年来食品安全及品质问题越来越受到人们的关注,但我国目前还没有一套健全的危险性评估体系,这严重制约了我国的食品安全铅是工业生产中的一种重要原料,在自然界分布甚广,而且作为持久性污染物不会在自然界降解、消失,一般沉积在土壤和海洋中,造成食品中铅污染严重,如果长期食用铅污染的食品会对人的神经系统、骨髓造血机能、消化系统、生殖系统及人体其它功能都有明显毒害作用。

果胶质广泛地分布于植物的果实、叶、茎、种子和根中 ,是细胞壁的一种组成部分 ,主要存在于胞间层中 ,是细胞间的粘结物质;它也存在于细胞壁中 ,尤其是初生壁。在化学分类上果胶物质应属于碳水化合物的衍生物 ,是一种高分子聚合物 ,分子量在 50000~300000之间 ,伴随纤维素存在 ,构成相邻细胞中间层粘结物 ,把植物组织紧紧地粘结在一起 ,其基本组成单位是 D - 吡喃半乳糖醛酸 ,并以α 21 ,42苷键连接起来而成高分子化合物(即多聚半乳糖醛酸) ,其主链上还有其他糖 ,包括 L2阿拉伯糖、 D2半乳糖、 D2山梨糖、 L2鼠李糖。

[2]果胶物质通常以部分甲酯化状态存在 ,存在于植物体内的果胶物质一般有原果胶、果胶及果胶酸。这三种形式[3]。

不同植物种类和植物的不同部位 ,其果胶质含量不同:双子叶植物的初生壁和某些植物皮部(如麻、棉杆皮、桑皮、檀皮等)含果胶质较多;而针叶木及草类原料果胶质含量较少。通常单子叶植物的果胶含量仅为双子叶植物的 10 %。

果胶呈酸性 ,不溶于冷水 ,但与水或稀酸加热时则易溶解。含有果胶的溶液 ,加入乙醇后 ,即可生成沉淀。在食品工业中 ,现在用来提取果胶的原料主要有桔皮、苹果皮、山楂、向日葵盘、西瓜皮、甜菜渣等。作为造纸原材料 ,韧皮纤维果胶是粘结物质 ,果胶降解后纤维即可分散成浆。食品工业中 ,常用于制取果胶的原料其果胶含量见表 1。

从表 1 和表 2 的比较中可看出 ,虽然大部分造纸原料的果胶含量比食品工业原料的低 ,但是用于制浆的韧皮纤维 ,桑皮、雁皮、三桠、檀皮及光叶楮皮的果胶含量很高 ,甚至超过了一些食品工业原料 ,尤其是雁皮和光叶楮皮 ,达到了 12 %以上。而韧皮纤维制浆的过。程就是脱果胶的过程 ,因此 ,若能提取出其蒸煮废液中的果胶 ,将会有很大的经济效益。

表 1 食品工业原料果胶含量 %

柑桔皮苹果皮山楂向日葵盘向日葵梗西瓜皮甜菜渣

5~15 15~20 4 左右 17~25 6 左右 1. 5~2. 5 15~30

表 2 造纸原料果胶含量[ 4 ]%

云杉落叶松桦木杨木慈竹芦苇麦草稻草棉杆

1. 32 0. 99 1. 69 1. 76 0. 87 0. 25 0. 30 0. 21 3. 52

玉米杆蔗渣线麻苎棉桑皮雁皮三桠檀皮光叶楮杆芯光叶楮皮

0. 45 0. 26 2. 00 3. 41 8. 84 12. 84 8. 81 5. 60 1. 43 12. 75

2.果胶的用途及价格

果胶是白色或淡黄色的非晶形粉末 ,无味易溶于水 ,微酸性 ,具有良好的胶凝化和乳化稳定作用 ,在食品工业中可作为果浆、果冻、糖果、婴儿食品、冰淇

淋和果汁的稳定剂及蛋黄乳化剂和增稠剂 ,如在柑桔饮料中添加低甲氧基果胶和钙 ,可以使饮料保持长期稳定的混浊;在固形物含量低的凝胶食品中加入果胶后可提高凝胶强度;在医药工业中 ,果胶是铅、汞和钴等金属中毒的良好解毒剂和预防剂等 ,并可作为轻泻剂 ,代血浆、止血剂原料 ,并具有辅助治疗糖尿病 ,降低血糖胆固醇 ,及延长抗菌素的作用等生理功能;在纺织工业中可代替淀粉作润滑剂 ,而不需要其它辅助剂;在电子工业中可作清洗剂;在石油钻探中可作油水乳化剂等。

总之果胶用途十分广泛 ,目前在国内外的销路很好 ,但是价格较高 ,食品用果胶约为 30 万元/吨 ,工业用果胶为 10 万元/吨左右 ,且当前我国果胶生产还处于开发阶段 ,所需果胶还主要依靠进口 ,所以开发新的提取资源 ,研究果胶生产工艺以降低果胶生产成本 ,是一项很有意义的工作。从韧皮纤维原料的蒸煮废液中提取果胶 ,不仅做到了废物再利用 ,增加了果胶的来源 ,而且还缓解了其对环境的污染负荷 ,降低制浆成本 ,取得经济效益。

果胶的提取方法

1.果胶的提取

天然果胶质中的原果胶不溶于水 ,但可在酸、碱、盐等化学试剂作用下水解成水溶性果胶;果胶酸是水溶性的。果胶可分为水溶性和水不溶性两种 ,水不溶

性的果胶可溶于六偏磷酸钠溶液或盐酸溶液 ,依照酯化度的不同 ,酯化度大于50 %(甲氧基含量 > 7 %)称为高甲氧基果胶(HM - 果胶) ,低于 50 %(甲氧基含量< 7 %)称为低甲氧基果胶(LH - 果胶) 。随着甲氧基含量的增加 ,果胶溶解度减小。因此 ,果胶的提取就是一个把不溶性高酯果胶转化成可溶性低酯果胶和可溶性果胶向液相转移的过程[5]。果胶结构在很大程度上取决于提取原料的种类和提取方法。结构中的部分羧基可被甲醇酯化 ,果胶的酯化度(DE)可因提取原料的种类、生长和采割期及加工方法等的不同而有很大差别。例如 ,由柠檬等柑橘类外果皮和苹果渣所制得的是酯化度为 50 %~75 %的高酯果胶 ( HM) ,由向日葵盘所制得的为酯化度20 %~50 %的低酯果胶(LM) ,由甜菜渣所制得的则是

部分乙酰化的果胶[6]。高酯果胶在氨存在的条件下 ,可制得酰胺化果胶。目前 ,果胶的提取方法大致有 3 种:酸法、离子交换树脂法和微生物法[7]。其针对的原料都是食品工业原料 ,不过这些方法可以为从光叶楮皮这类韧皮纤维制浆黑液中提取果胶的研究提供参考。

1 .1酸法

酸提取法是一种最古老的工业果胶生产方法 ,其基本原理是将植物细胞中的非水溶性果胶在稀酸中转化成水溶性果胶 ,并萃取出来。常用的酸有盐酸、六偏磷酸、草酸等。经酸萃取后得到很稀的果胶水溶液 ,将果胶分离出来的方法有沉淀法、盐析法、电解沉淀法和胶体沉淀法等 ,但在工业生产中常采用醇沉淀法和盐析法。醇沉淀法的基本原理是利用果胶不溶于醇类溶剂的特点 ,加入大量醇 ,使果胶的水溶液中形成醇 - 水的混合剂以使果胶沉淀出来。醇沉淀法属于最早工业化的方法 ,但其生产成本高 ,成品质量低 ,且能耗大 ,规模化生产困难。盐析法是目前在经济上比较可行的提取果胶方法。盐析法提取果胶的基本原理是根据果胶中的游离羧基( - COOH)容易被钾、钠、铵等离子中和的这一特性 ,加氨水中和果胶 ,加盐沉淀果胶 ,从而会有不溶于水的果胶酸盐和少量的盐的氢氧化物沉淀以及其它杂质产生。经分离后 ,用酸和醇的混合液洗沉淀 ,酸与金

属离子发生置换反应生成果胶 ,而少量的盐的氢氧化物沉淀消失。生成的果胶不溶于乙醇而沉淀下来 ,氯酸盐等溶于醇的水溶液中 ,分离得果胶。

现在主要有铁盐法、铝盐法和混合盐析法。此外 ,还有铜盐法 ,有文献报道 ,以松树皮[7]及向日葵盘[9]为原料 ,利用 Cu+ +盐使果胶生成络合物沉淀析出 ,并使其溶解 ,然后除去 Cu+ +,再通过乙醇沉淀析出果胶。在这些盐析法中铝盐法比较早 ,有运用铝盐法从向日葵梗和杆芯、苹果渣、佛手瓜及仙人掌等原料中提取果胶的研究报道[10~14],和醇沉淀法相比 ,降低了成本及能耗 ,且果胶的酯化度比醇沉淀法高 ,凝胶强度大。但是铝盐法提取得到的果胶 ,果胶铝结合紧密 ,不易除去铝离子 ,灰分高。科学工作者在大量的实验研究基础上 ,又相继提出了铁盐法和混合盐析法等。其中铁盐法产率较高 ,质量稳定 ,凝胶强度大 ,并有研究表明[15],运用铁盐法从柑桔皮提取的果胶产品质量稳定 ,并省去传统乙醇法的浓缩步骤 ,简化了工艺 ,乙醇耗量可降低 50 % ,且得率高 ,但是这种方法的沉淀颜色太深 ,增加了脱色的难度。而混合盐析法采用铁、铝混合盐沉析果胶 ,通过从柑桔皮[16]及烟末[17]中提取果胶产品的实验中证明 ,混合盐析法提取出果胶较单一盐析法要好 ,得到的产品色泽好 ,产率高 ,所得到的沉淀性状好 ,易于分离 ,且色泽较浅 ,因此 ,混合盐析法在盐析法中是一种比较好的沉析果胶的方法。

1. 2 离子交换树脂法

→醇沉淀→分离→洗涤→干燥国内外关于用离子交换树脂法提取果胶的报道极少。据 Hang 等以柑桔皮为例 ,这种方法的基本步骤为:柑桔皮→浸泡→加入离子交换剂→调节 pH值→搅拌加热→分离介绍[17],加入 3 价离子交换树脂 ,可使柑桔皮果胶的提取得率高达 22 %~30 % ,胶凝度在130~300 之间 ,其中树脂主要为具有 - SO3H、-CO2H、- PO4H、- CO2、IxH3+、- SO3、- CO2、-PO3、等活性基团的交换树脂。有研究报道[19],以柑桔皮为原料 ,树脂采用聚苯乙烯型磺酸基阳离子交换树脂(732) ,用阳离子树脂交换法 ,进行了提取果胶的系统性实验 ,同时又对生产果胶的几种方法作了比较。发现离子交换法能提高果胶产率 ,增大胶凝力 ,改善产品的颜色。

1. 3 微生物法

微生物法就是引入菌种发酵 ,脱去果胶 ,再用乙醇沉淀。果胶酶在纺织工业、食品工业及造纸工业中运用极为广泛。近些年来许多科学家试图用果胶菌处理韧皮纤维 ,使之成浆用于造纸 ,并取得了一定的进展 ,这是因为在韧皮纤维中 ,果胶是粘结木质部的主要成分。日本小村良生的试验表明 ,菌解三桠皮 24h 内可成浆。文献[20]表明 ,用黑曲霉处理桑皮 ,提取果胶 ,成浆效果好 ,得率高。用黑曲霉处理大麻 ,可提高其可纺性 ,并降低污染。

1. 4 微波法

迄今为止果胶的提取方法主要是酸法、离子交换法和微生物法等。用传统的加热方法提取果胶需要高温和长时间加热 ,原料中的果胶不可避免地产生变性和分解破坏 ,且提取的果胶数量和质量也不理想。微波是频率在 0. 3~300GHz之间的电磁波 ,即波长在 100~0. 1cm 范围内的电磁波 ,用于天然成分的提取 ,选择性强 ,操作时间短 ,溶剂耗量小 ,受热均匀 ,不会破坏果胶长链结构 ,得率和质量都有所提高 ,并且能极大限度地保留分离组分的天然活性。21 世纪初,美国发表了用微波加热技术提取果胶的专利。在国内 ,一些科研工作者 ,以橘皮、柚皮、向日葵盘等为原料 ,采用微波法提取果胶 ,以降低成本 ,节约能耗 ,并保证果胶成品质量为目的 ,作了大量的探讨。以苹果渣为原料 ,微波法提取果胶的大致步骤为:苹果渣→加水混合→调节pH值→微波辐射→过

滤→硫酸铝沉淀→离心→盐酸溶解→酒精沉淀→中性酒精洗涤→压滤→

捻碎→干燥→果胶成品。

其成品与传统方法相比 ,提取时间短 ,微波辐射能大大加快组织的水解 ,使果胶的提取时间由传统法的90min缩短为 5. 5min ;得率高、微波法的最高得率达90. 5 % ,提高 5 个百分点;样品质量好、微波法提取的果胶除灰份稍高外 ,其黏均分子量 ,酯化度等指标都有所提高 ,具有良好的凝胶性能和增稠作用。并且微波法提取的果胶的酯化度均大于 70 % ,为高酯化度果胶。这种方法在生产上具有重大的现实意义。

结束语

果胶是在食品、医药和其它工业中应用的重要多糖之一 ,在国内市场需求量很大 ,销路很好 ,且生产果胶的生物资源丰富 ,具有极高的经济潜力。而我国的果胶生产尚处试验阶段 ,并且还未有从韧皮纤维原料的蒸煮废液中提取果胶的先例 ,故探索出先进的果胶提取工艺 ,以能从其废液中提取出果胶 ,具有重大的经济效益及社会效益。

参考文献

[1]徐文秀.果胶工艺的研究[J].安徽农学通报,2007 (12): 179-180.

[2]天津轻工业大学. 食品生物化学[M] . 北京:中国轻工业出版社.l994.

[3]杜继煜,白岚,白宝璋.果胶的化学组成与基本特性.农业与技术2002 ,22

(5) :72~76.

[4] 制浆造纸手册(第一分册) .北京:中国轻工业出版社,1987 :170~179.

[5]李于善,张争光,李啸,等.果胶的提取研究.三峡大学学报(自然科学

版) ,2002 ,24 (6) :571~573.

[6] 凌关庭.果胶的新进展.食品工业,1999 (3) :18~20.

[7] 赵伟良.铁盐沉淀法从柑橘皮中提取果胶. 化学世界,1995 (4)215~217.

[8]孙润仓,刘建朝,程义杰.用铜盐沉淀法从松树皮中提取果胶的试验.林产工

业,1989 (1) :30~31.

[9]刘建朝,孙锐.铜盐沉淀法从向日葵盘中提取果胶工艺方法试验.宁夏化

工,1989 (1) :52~54.

[10]曹端林,吴晓青,徐春彦,等.盐析法从向日葵秆的芯中提取果胶的工艺.化工

学院学报,2002 ,23 (2) :127~129.

[11]曹端林,王建龙.盐析法从鲜向日葵梗中提取果胶的工艺研究.精细化

工,1996 (13) :58~60.

[12]邓红,宋纪蓉,史红兵.盐析法从苹果渣中提取果胶的工艺条件研究.

学,2002 ,23 (3) :57~60.

[13]林曼斌,丁利君,曾彩霞,等.用盐析法从佛手瓜中提取果胶工艺条件的研究.

广州食品工业科技,2000 (2) :33~37.

[14] 肖志剑,李永华,常柏林.从仙人掌中分离提取果胶的研究.广州食品工业科

技,2001 ,17 (3) :4~6.

[15]吴志军,李杰兵,伍正清.用铁盐法从柑桔皮中提取果胶.湖南化工,1993

(4) :42~43.

[16]赵伟良,混合盐析法从柑桔皮中提取果胶. 精细化工,1995 (6) :55~57.

[17]李光水,刘启斌,虞新安.用混合盐析法从烟末中提取果胶的实验.烟草科

技,2001 (11) :18~20.

[18]武汉大学主编.分析化学.第二版.北京:高等教育出版社,1982 :159 ,576.

[19]赵伟良,戴春桃,伍昕.用离子交换法从桔皮中提取果胶.湖南教育学院学报,1991 ,9

(5) :153~160.

[20 ]徐辉,王传槐. 桑皮的微生物脱胶制浆. 南京林业大学学报,1990 ,14 (2) :54~5

新疆农业大学

专业文献综述

题目: 果胶的提取与提取条件的研究

姓名: 阿地拉.阿不力米提

学院: 化学工程学院

专业: 应用化学

班级: 应用化学071班

学号: 075131117

成绩:

指导教师: 买迪尼亚提职称:讲师

200 年12 月21 日

新疆农业大学教务处制

柑橘皮果胶的提取实验

实验果胶的提取 一、目的要求 1.学习从柑橘皮中提取果胶的方法。 2.进一步了解果胶质的有关知识。 二、实验原理 果胶物质广泛存在于植物中,主要分布于细胞壁之间的中胶层,尤其以果蔬中含量为多。不同的果蔬含果胶物质的量不同,山楂约为6.6%,柑橘约为0.7~1.5%,南瓜含量较多,约为7%~17%。在果蔬中,尤其是在未成熟的水果和果皮中,果胶多数以原果胶存在,原果胶不溶于水,用酸水解,生成可溶性果胶,再进行脱色、沉淀、干燥即得商品果胶。从柑橘皮中提取的果胶是高酯化度的果胶,在食品工业中常用来制作果酱、果冻等食品。 三、实验器材 恒温水浴、布氏漏斗、抽滤瓶、玻棒、尼龙布、表面皿、精密pH试纸、烧杯、电子天平、小刀、真空泵、 柑橘皮(新鲜)。 四、实验试剂 1.95%乙醇、无水乙醇。 2.0.2 mol/L盐酸溶液 3.6 mol/L氨水 4.活性炭 五、操作步骤 1.称取新鲜柑橘皮20 g(干品为8 g),用清水洗净后,放入250 mL烧杯中,加120 mL水,加热至90 ℃保温5~10 min,使酶失活。用水冲洗后切成3~5 mm大小的颗粒,用50 ℃左右的热水漂洗,直至水为无色,果皮无异味为止。每次漂洗都要把果皮用尼龙布挤干,再进行下一次漂洗。 2.将处理过的果皮粒放入烧杯中,加入0.2 mol/L的盐酸以浸没果皮为度,调溶液的pH 2.0~2.5之间。加热至90 ℃,在恒温水浴中保温40 min,保温期间要不断地搅动,趁热用垫有尼龙布(100目)的布氏漏斗抽滤,收集滤液。 3.在滤液中加入0.5%~1%的活性炭,加热至80 ℃,脱色20 min,趁热抽滤(如橘皮漂洗干净,滤液清沏,则可不脱色)。 4.滤液冷却后,用6 mol/L氨水调至pH 3~4,在不断搅拌下缓缓地加入95%酒精溶液,加入乙醇的量为原滤液体积的1.5倍(使其中酒精的质量分数达50%~60%)。酒精加入过程中即可看到絮状果胶物质析出,静置20 min后,用尼龙布(100目)过滤制得湿果胶。 5.将湿果胶转移于100 mL烧杯中,加入30 mL无水乙醇洗涤湿果胶,再用尼龙布过滤、挤压。将脱水的果胶放入表面皿中摊开,在60~70 ℃烘干。将烘干的果胶磨碎过筛,制得干果胶。

果胶的提取与果胶含量的测定

果胶的提取与果胶含量 的测定 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

果胶的提取与果胶含量的测定 一、引言 果胶广泛存在于水果和蔬菜中,如苹果中含量为—%(以湿品计),在蔬菜中以南瓜含量最多(达7%-17%)。果胶的基本结构是以α-1,4苷键连接的聚半乳糖醛酸,其中部分羧基被甲酯化,其余的羧基与钾、钠、铵离子结合成盐。在果蔬中,尤其是未成熟的水果和皮中,果胶多数以原果胶存在,原果胶通过金属离子桥(比如Ca2+)与多聚半乳糖醛酸中的游离羧基相结合。原果胶不溶于水,故用酸水解,生成可溶性的果胶,再进行提取、脱色、沉淀、干燥,即为商品果胶。从柑橘皮中提取的果胶是高酯化度的果胶(酯化度在70%以上)。在食品工业中常利用果胶制作果酱、果冻和糖果,在汁液类食品中作增稠剂、乳化剂。 二、实验材料、试剂与仪器 材料:桔皮,苹果等; 试剂:%HCL,95%乙醇(AR),精制乙醇,乙醚,LHCl,%咔唑乙醇溶液,半乳糖醛酸标准液,浓硫酸(优级纯) 仪器:分光光度计,50mL比色管,分析天平,水浴锅,回流冷凝器,烘箱等三、实验步骤 (一)果胶的提取 1、原料预处理:称取新鲜柑橘皮20g(或干样8g),用清水洗净后,放入250mL容量瓶中,加水120mL,加热至90℃保持5-10min,使酶失活。用水冲洗后切成3~5mm的颗粒,用50℃左右的热水漂洗,直至水为无色、果皮无异味为止(每次漂洗必须把果皮用尼龙布挤干,在进行下一次的漂洗)。 2、酸水解提取:将预处理过的果皮粒放入烧杯中,加约%HCL溶液,以浸没果皮为宜,调pH至~,加热至90℃煮45min,趁热用100目尼龙布或四层纱布过滤。 3、脱色:在滤液中加入~%的活性炭,于80℃加热20min,进行脱色和除异味,趁热抽滤(如抽滤困难可加入2%~4%的硅藻土作为助滤剂)。如果柑橘皮漂洗干净萃取液为清澈透明则不用脱色。

果胶实验方案

果胶提取 1方法 1.1原料制备称取10克冬青,切碎,放入烧杯中。在烧杯中加入蒸馏水,用水浴锅加热到90度,加热10分钟,以除去果胶酶。过滤,将滤液用蒸馏水多次洗涤,直到滤出液变得澄清,以出去色素。 1.2果胶提取把滤渣放入烧杯中,加入盐酸,调节PH至2,放到水浴锅中,100度加热1.5小时。过滤,得到的溶液就是果胶溶液,向其中加入等量的稍多的无水乙醇。即可得到湿果胶 2果胶提取的单因素实验, 2.1 提取温度对果胶提取率的影响, 在PH 2,加热时间1.5小时,料液比1:10的条件下。设置50℃60℃80℃100℃120℃做一组实验。 2.2PH对果胶提取率的影响 在温度100℃加热时间1.5小时,料液比1:10的条件下。设置PH 1 2 3 4 5做一组实验 2.3 提取时间对果胶提取率的影响 在温度100℃PH 2 ,料液比1:10的条件下。设置加热时间50min 60min 80min 100min 120min做一组实验。 2.4料液比对果胶提取率的影响 在温度100℃加热时间1.5小时,PH为2的条件下。设置料液比为1:6 1:8 1;10 1;12 1;14做一组实验。

3 实验目的 在单因素的基础上找出每个因素下的最优条件,为正交实验做准备。 4.果胶的干燥(四种方法) 1.果胶干燥大多采用喷雾干燥,即用压力式喷雾干燥,将浓缩液在进料温度150~160℃,出料温度220~230℃的条件下干燥,连续化操作中可不断得到粉末状产品。 2.将湿果胶转移于100 mL烧杯中,加入30 mL无水乙醇洗涤湿果胶,再用尼龙布过滤、挤压。将脱水的果胶放入表面皿中摊开,在60~70 ℃烘干。将烘干的果胶磨碎过筛,制得干果胶。 3.冷冻干燥。将湿果胶冷冻,然后在较高真空下将溶液蒸发而干燥的方法。 4.用布氏漏斗过滤得到果胶沉淀,把果胶移动于烧杯中用95%乙醇洗涤吸过滤。搓碎放于表面皿中在干燥器中过夜,用研钵研磨得到果胶粉,计算产率 5果胶的纯度检验 1.重量法

果胶含量的测定方法二

果胶的测定(方案一): 黄晓钰,刘邻渭等.食品化学综合实验[M].中国农业大学出版社. 2002.158~159 实验原理:果胶经水解,其产物——半乳糖醛酸可在强酸环境中与咔唑试剂产生缩合反应,生成紫红色化合物,其呈色深浅与半乳糖醛酸含量成正比,由此可进行比色定量 测定果胶。 实验试剂:1.化学纯无水乙醇或95%乙醇。 2.精制乙醇:取无水乙醇或95%乙醇1000ml,加入锌粉4g,硫酸(1:1)4ml, 至于衡温水浴中回流10h,用全玻璃仪器蒸馏,馏出液每1000ml加锌粉和氢 氧化钾各4g,并进行蒸馏。 3. 0.15%咔唑乙醇溶液:称取咔唑g,溶于精制乙醇并定容至100ml。 4.半乳糖醛酸标准溶液:先用水配置成浓度1 g/L的溶液,再配制成浓度分别为 (0、10mg/L、20 mg/L、30 mg/L、40 mg/L、50 mg/L、60 mg/L、70mg/L)的 系列半乳糖醛酸标准溶液。 5.优级纯浓硫酸。 操作方法:1样品处理: 总果胶提取:(鲜样)研磨新鲜样品50g,放入1000ml烧杯中,加入L HCl 400mL,放置沸水浴中加热1h,加热时应随时补充蒸发损失的水分。冷却后, 移入500ml容量瓶,定容摇匀,过滤,滤液待用。(干样)磨细的干燥样品 5g,置于250ml三角烧瓶,加入L HCL 150ml,装上冷凝器,与沸水浴中加热 回流1h,取出冷却甚至室温,用水定容至200ml,摇匀,过滤,滤液待用。 水溶性果胶提取:新鲜样品应尽量研磨碎,干燥的样品应磨细后过60目筛。 样品中存在有果胶酶时,为了顿化酶的活性,可以加入适量热的95%乙醇, 是样品溶液的乙醇最终浓度约为70%,然后于沸水浴中沸腾回流15min,使果 胶酶钝化,冷却过滤后,以95%乙醇洗涤多次,再用乙醚洗涤,以除去全部 糖类、脂类及色素,最后风干除去乙醚。 2果胶提取:水溶性果胶的提取:将样品研碎,新鲜样品标准称取30~50g,干 燥样品准确称取5~10g至于250ml烧杯,加入150ml水。加热至沸腾,并保 持此状态1h。加热过程随时填补蒸发损失的水分。取出冷却,将杯中物质移 入250ml容量瓶,用水洗涤烧杯,洗液并入容量瓶,最终定容至刻度,摇匀 过滤,记录滤液体积。 3标准曲线制作:取试管8支,各加入12ml浓硫酸,置冰水浴中冷却后,分别 将各种浓度的半乳糖醛酸2ml 徐徐各加入试管中,充分混匀后,再置冰水浴 中冷却,然后置沸水浴中加热10min,迅速冷却至室温,各加入1ml %咔唑试 剂,摇匀,与室温下静置30min,用0好使观众的溶液调仪器零点,在530nm 波长下测定各管溶液的A530nm值,以A为横坐标,半乳糖醛酸浓度为纵坐标 绘制标准曲线。 4测定:取果胶提取液用水稀释至适量浓度(含半乳糖醛酸10~70mg/L)。移 取12ml 冰水冷却的浓硫酸加入试管中,然后加入2ml 样品稀释液,充分混 合后,至于冰水冷却。取出后在沸水浴中加热10min,冷却至室温,加入1mL % 咔唑试剂,摇匀,于室温下静置30min,用空白试剂调零,在530nm波长下 测定A530nm值,与标样对照,求出样品果胶含量。 计算:

果胶酶实验报告

实验报告 果胶酶在果汁生产中的作用 一.实验目的 1.探究不同温度对果胶酶活性的影响; 2.探究不同 ph 对果胶酶活性的影响; 3.探究果胶酶的用量对果汁生产的影响。 二.实验原理 1.果胶酶的活性受温度影响。处于最适温度时,活性最高。果肉的出汁率、果汁的澄清 度与果胶酶的活性大小成正比。 2.果胶酶的活性受ph影响,处于最适ph,酶的活性最高,高于或低于此值活性均下 降。果肉的出汁率、果汁的澄清度与果胶酶的活性大小成正比。 3.在一定的条件下,随着酶浓度的增加,果汁的体积增加;当酶浓度达到某一数值后, 在增加酶的用量,果汁的体积不再改变,此值即是酶的最适用量。 三.实验材料与用具 苹果、果胶酶、盐酸溶液、榨汁机、电子天平、恒温水浴锅、烧杯、量筒、试管、漏斗、温度计、玻璃棒、滤纸、滴管、三脚架 四.实验步骤 (一)温度对果胶酶活性的影响 1.制备果汁选取一个中等大小的苹果( 约 200g) 洗净后,不去皮,切成小块,放入榨 汁机中,加入约 200ml 水,榨取 2min,制得苹果泥。量取一定体积的苹果泥, 不同条件下处理后,用滤纸进 行过滤即可得到果汁; 2.取9支试管编号并分别加入等量的果汁和果胶酶; 3.将9支试管分别放入30℃、35℃、40℃、45℃、50℃、55℃、60℃、65℃、70℃的水 浴锅中保温10分钟; 4.过滤果汁用量筒测量果汁的里量,并记录数据。 (二)ph 对果胶酶活性的影响 1.制备果汁; 2.取5支试管编号并分别加入等量的果汁和果胶酶; 3.将5支试管放入40℃恒温水浴锅中加热; 4.待试管内温度稳定后在5支试管分别加入ph分别为5、6、7、8、9的盐酸溶液; 5.恒温保持10min; 6.过滤果汁用量筒测量果汁的里量,并记录数据。 (三)果胶酶的用量对果汁生产的影响 1.配制不同浓度的果胶酶溶液准确称取纯的果胶酶1mg、2mg、3mg、4mg、5mg、6mg、 7mg、8mg、9mg,配制成相等体积的水溶液,取等量放入9支试管中,并编号1~ 9。; 2.在9支试管中加入等量的苹果汁; 3.将上述试管放入恒温水浴加热一段时间。 4.将不同浓度的果胶酶分别迅速与各试管的苹果泥混合,然后再放入恒温水箱中。 5.恒温水浴约20分钟 6.过滤后测量果汁的体积 四.实验结果 五.分析与结论篇二:果胶酶活性测定实验报告 一、实验设计 二、实验报告 篇三:果胶的实验报告

果胶的提取

从果皮中提取果胶 一、目的要求 1.学习从柑橘皮中提取果胶的方法。 2.进一步了解果胶质的有关知识。 二、实验原理 果胶物质广泛存在于植物中,主要分布于细胞壁之间的中胶层,尤其以果蔬中含量为多。不同的果蔬含果胶物质的量不同,山楂约为6.6%,柑橘约为0.7~1.5%,南瓜含量较多,约为7%~17%。在果蔬中,尤其是在未成熟的水果和果皮中,果胶多数以原果胶存在,原果胶不溶于水,用酸水解,生成可溶性果胶,再进行脱色、沉淀、干燥即得商品果胶。从柑橘皮中提取的果胶是高酯化度的果胶,在食品工业中常用来制作果酱、果冻等食品。 三、实验药品、仪器、装置 仪器:恒温水浴、布氏漏斗、抽滤瓶、玻棒、尼龙布、表面皿、精密pH试纸、烧杯、电子天平、小刀、真空泵、柑橘皮(新鲜)。 试剂:1.95%乙醇、无水乙醇。 2.0.2 mol/L盐酸溶液 3.6 mol/L氨水 4.活性炭 四、操作步骤 1.称取新鲜柑橘皮20 g(干品为8 g),用清水洗净后,放入250 mL烧杯中,加120 mL水,加热至90 ℃保温5~10 min,使酶失活。用水冲洗后切成3~5 mm大小的颗粒,用50 ℃左右的热水漂洗,直至水为无色,果皮无异味为止。每次漂洗都要把果皮用尼龙布挤干,再进行下一次漂洗。 2.将处理过的果皮粒放入烧杯中,加入0.2 mol/L的盐酸以浸没果皮为度,调溶液的pH 2.0~2.5之间。加热至90 ℃,在恒温水浴中保温40 min,保温期间要不断地搅动,趁热用垫有尼龙布(100目)的布氏漏斗抽滤,收集滤液。 3.在滤液中加入0.5%~1%的活性炭,加热至80 ℃,脱色20 min,趁热抽滤(如橘皮漂洗干净,滤液清沏,则可不脱色)。 4.滤液冷却后,用6 mol/L氨水调至pH 3~4,在不断搅拌下缓缓地加入95%酒精溶液,加入乙醇的量为原滤液体积的1.5倍(使其中酒精的质量分数达50%~60%)。酒精加入过程中即可看到絮状果胶物质析出,静置20 min后,用尼龙布(100目)过滤制得湿果胶。 5.将湿果胶转移于100 mL烧杯中,加入30 mL无水乙醇洗涤湿果胶,再用尼龙布过滤、挤压。将脱水的果胶放入表面皿中摊开,在60~70 ℃烘干。将烘干的果胶磨碎过筛,制得干果胶。 五、注意事项 1.脱色中如抽滤困难可加入2%~4%的硅藻土作助滤剂。 2.湿果胶用无水乙醇洗涤,可进行2次。 3.滤液可用分馏法回收酒精。 六、实验现象及结论记录表

果胶的提取

果胶的提取 一、目的要求 1.学习从柑橘皮中提取果胶的方法。 2.进一步了解果胶质的有关知识。 二、实验原理 果胶物质广泛存在于植物中,主要分布于细胞壁之间的中胶层,尤其以果蔬中含量为多。不同的果蔬含果胶物质的量不同,山楂约为6.6%,柑橘约为0.7~1.5%,南瓜含量较多,约为7%~17%。在果蔬中,尤其是在未成熟的水果和果皮中,果胶多数以原果胶存在,原果胶不溶于水,用酸水解,生成可溶性果胶,再进行脱色、沉淀、干燥即得商品果胶。从柑橘皮中提取的果胶是高酯化度的果胶,在食品工业中常用来制作果酱、果冻等食品。 三、实验器材 恒温水浴、布氏漏斗、抽滤瓶、玻棒、尼龙布、表面皿、精密pH试纸、烧杯、电子天平、小刀、真空泵。 柑橘皮(新鲜)。 四、实验试剂 1.95%乙醇、无水乙醇。 2.0.2 mol/L盐酸溶液 3.6 mol/L氨水 4.活性炭 五、操作步骤 1.称取新鲜柑橘皮20 g(干品为8 g),用清水洗净后,放入250 mL 烧杯中,加120 mL水,加热至90 ℃保温5~10 min,使酶失活。用水冲洗后切成3~5 mm大小的颗粒,用50 ℃左右的热水漂洗,直至水为无色,果皮无异味为止。每次漂洗都要把果皮用尼龙布挤干,再进行下一次漂洗。 2.将处理过的果皮粒放入烧杯中,加入0.2 mol/L的盐酸以浸没果皮为度,调溶液的pH 2.0~2.5之间。加热至90 ℃,在恒温水浴中保温40 min,保温期间要不断地搅动,趁热用垫有尼龙布(100目)的布氏漏斗抽滤,收集滤液。 3.在滤液中加入0.5%~1%的活性炭,加热至80 ℃,脱色20 min,趁热抽滤(如橘皮漂洗干净,滤液清沏,则可不脱色)。 4.滤液冷却后,用6 mol/L氨水调至pH 3~4,在不断搅拌下缓缓地加入95%酒精溶液,加入乙醇的量为原滤液体积的1.5倍(使其中酒精的质量分数达50%~60%)。酒精加入过程中即可看到絮状果胶物质析出,静置20 min 后,用尼龙布(100目)过滤制得湿果胶。 5.将湿果胶转移于100 mL烧杯中,加入30 mL无水乙醇洗涤湿果胶,

果胶提取实验报告1

桔皮中果胶提取技术的试验分析 【摘要】酸浸提法提取果胶具有快速、简便、易于控制、提取率较高等特点,用盐酸浸提、乙醇沉淀法进行了从桔皮中提取果胶的工艺试验。用单因素试验进行工艺参数的优化,其适合的工艺条件是:液料质量比为20;浸提液pH值为2;浸提温度为90℃。 关键词:桔皮果胶提取工艺工艺参 引言:果胶是一种亲水性植物胶,属于多糖类物质,广泛存在于高等植物的根、茎、叶、果的细胞壁中。通常人们所说的果胶系指原果胶、果胶和果胶酸的总称,是一种高分子聚合物,分子量介于20 000-400 000之间。其基本结构是D一吡喃半乳糖醛酸,以1,4甙链连接成的长链,其中部分半乳糖醛酸被甲醇酯化 [1]。 胶凝剂、增稠剂、稳定剂和乳化剂,随着功能性多糖的开发研究,果胶作为水溶性膳食纤维,越来越受到重视。应用必定会越来越广泛[2-4]。我国是柑桔的主要产地,柑桔皮中果胶含量可达10%~30%。从桔皮中提取果胶不仅有极大的工业价值,而且对综合开发、利用柑桔资源,提高原材料利用率,减少环境污染,有重要的实际意义[2,4,6]。果胶的提取一般有酸提取法、离子交换法、微生物法和微波加热处理法等方法[5-9],由于酸提取法具有快速、简便且提取率高的优点,国内外大多采用此法。果胶分离沉淀主要有乙醇沉淀法和盐析法。国内主要采用乙醇沉淀法,而国外多用盐析法或不经沉淀直接喷雾干燥。针对我国情况而言,对乙醇沉淀法已有大量研究,而本实验也是在总结

别人成果的基础上进行对比以及提取工艺条件的优化。 1材料与方法 1.1 材料 桔皮采用成熟新鲜、无病虫果害的晚熟蜜桔,人工取皮,在40℃下干燥,粉碎至1~3 mm,待用。 盐酸、乙醇、氢氧化钠、无水氯化钙、冰醋酸和甲基红,均为化学纯。1.2 果胶提取方法 果胶提取工艺为:原料→洗涤→失活→干燥→粉碎→酸提取→过滤→浓缩→冷却→乙醇沉淀→离心分离→干燥→称量→粉碎→果胶。 剔除腐烂变质、发黑的桔皮,用清水洗净后,放入烧杯中,加水,加热至90 ℃保温5~10 min,使酶失活,捞出桔皮,将桔皮在40 ℃下干燥,切碎。将20 g原料加入用HC1预先配制的、具有一定pH值和温度的酸溶液中,维持所需的温度达到一定的提取时间,并不断搅拌。趁热用布氏漏斗过滤得果胶提取液。将滤液用旋转蒸发仪在60-70 ℃下浓缩至原体积的1/3时为止。果胶浸提液冷却至常温后加入1倍体积的95 乙醇,搅拌、静置2 h,使果胶沉淀析出。用布氏漏斗过滤得粗果胶。在60-70 ℃干燥,粉碎即得果胶粉。随后进行提取物中果胶含量的测定和提取率的计算。 1.3 试验方法 单因素试验,分别研究不同液料质量比对果胶提取率的影响(浸 提液pH值3、温度80℃、浸提时间45 min);不同浸提液pH值对果胶提取率的影响(浸提液温度80℃、液料质量比10、浸提时间45 min);不

从果皮中提取果胶

从果皮中提取果胶 一、实验目的 1、学习从从果皮中提取果胶的基本原理和方法, 了解果胶的一般性质。 2、掌握提取有机物的原理和方法。 3、进一步熟悉萃取、蒸馏、升华等基本操作。 二、实验原理 果胶是一种高分子聚合物,存在于植物组织内,一般以原果胶、果胶酯酸和果胶酸3种形式存在于各种植物的果实、果皮以及根、茎、叶的组织之中。果胶为白色、浅黄色到黄色的粉末,有非常好的特殊水果香味,无异味,无固定熔点和溶解度,不溶于乙醇、甲醇等有机溶剂中。粉末果胶溶于20倍水中形成粘稠状透明胶体,胶体的等电点pH值为3.5。果胶的主要成分为多聚D—半乳糖醛酸,各醛酸单位间经a—1,4糖甙键联结,具体结构式如图1。 图1 果胶的结构式 在植物体中,果胶一般以不溶于水的原果胶形式存在。在果实成熟过程中,原果胶在果胶酶的作用下逐渐分解为可溶性果胶,最后分解成不溶于水的果胶酸。在生产果胶时,原料经酸、碱或果胶酶处理,在一定条件下分解,形成可溶性果胶,然后在果胶液中加入乙醇或多价金属盐类,使果胶沉淀析出,经漂洗、干燥、精制而形成产品。 三、主要仪器和药品 仪器:恒温水浴锅、真空干燥箱、布氏漏斗、抽滤瓶、玻棒、纱布、表面皿、精密pH试纸、烧杯、电子天平、小刀、小剪刀、真空泵、。 药品:干柑桔皮、稀盐酸、95%乙醇(分析纯)等。 四、实验内容 1、柑桔皮的预处理 称取干柑桔皮20g,将其浸泡在温水中(60~70℃)约30min,使其充分吸水软化,并除掉可溶性糖、有机酸、苦味和色素等;把柑桔皮沥干浸入沸水5min进行灭酶,防止果胶分解;然后用小剪刀将柑皮剪成2~3mm的颗粒;再将剪碎后的柑桔皮置于流水中漂洗,进一步除去色素、苦味和糖分等,漂洗至沥液近无色为止,最后甩干。 2、酸提取

从果皮中提取果胶

从果皮中提取果胶 、实验目的 1、 学习从从果皮中提取果胶的基本原理和方法 ,了解果胶的一般性质。 2、 掌握提取有机物的原理和方法。 3、 进一步熟悉萃取、蒸馏、升华等基本操作。 、实验原理 果胶是一种高分子聚合物,存在于植物组织内,一般以原果胶、果胶酯酸和果胶酸 种形式存在于各种植物的果实、果皮以及根、茎、叶的组织之中。果胶为白色、浅黄色到黄 色的粉末,有非常好的特殊水果香味,无异味,无固定熔点和溶解度,不溶于乙醇、甲醇等 有机溶剂中。粉末果胶溶于 20倍水中形成粘稠状透明胶体,胶体的等电点 pH 值为3.5。果 胶的主要成分为多聚 D —半乳糖醛酸,各醛酸单位间经a — 1, 4糖甙键联结,具体结构式如 图1。 coon 小 |\oii H A )II 'ri El O'JII 图1果胶的结构式 在植物体中,果胶一般以不溶于水的原果胶 形式存在。 在果实成熟过程中,原果胶在果 胶酶的作用下逐渐分解为可溶性果胶, 最后分解 成不溶于水的果胶酸。 在生产果胶时,原料 经酸、碱或果胶酶处理,在一定条件下分解, 形成可溶性果胶,然后在果胶液中加入乙醇或 多价金属盐类,使果胶沉淀析出,经漂洗、干燥、精制而形成产品。 三、主要仪器和药品 仪器:恒温水浴锅、真空干燥箱、布氏漏斗、抽滤瓶、玻棒、纱布、表面皿、精密 烧杯、电子天平、小刀、小剪刀、真空泵、。 药品:干柑桔皮、稀盐酸、95%乙醇(分析纯)等。 四、实验内容 1、 柑桔皮的预处理 称取干柑桔皮20g ,将其浸泡在温水中(60?70C )约30min ,使其充分吸水软化, 并除掉 可溶性糖、有机酸、苦味和色素等;把柑桔皮沥干浸入沸水 5min 进行灭酶,防止果胶分解; 然后用小剪刀将柑皮剪成 2?3mm 的颗粒;再将剪碎后的柑桔皮置于流水中漂洗,进一步 除去色素、苦味和糖分等,漂洗至沥液近无色为止,最后甩干。 2、 酸提取 Illi Oil pH 试纸、 (}

果胶及其在食品中的应用

果胶及其在食品中的应用 1.果胶的定义及概念 1825年,法国人Bracennot首次从胡萝卜肉根中提取出一种物质,能够形成凝胶,他将提取物质命名为“Pectin”,中文译为“果胶”。果胶是一种在所有较高等植物中都能发现的结构性多糖,它被广泛地应用于各类食品,如果冻、果酱、酸乳、酒类、糖果等。规模性工业生产中常用柑橘皮、苹果渣作为生产果胶的原料,它们是果汁生产的副产品。 自从第一次提取出果胶以来,人们一直致力于其的性质、结构、功能与应用的研究。目前,果胶因具有良好的凝胶、增稠、稳定等性能,而被广泛应用于食品、医药、化工、纺织等行业,对改善人们的生活发挥了积极的作用。 从水果中提取果胶

果胶粉末 2.果胶的结构 果胶是一种亲水性植物胶,广泛存在于高等植物的根、茎、叶、果的细胞壁中。长期以来,人们都以果胶的结构进行了不懈的研究。研究表明,果胶主要是通过α一1,4—糖苷键连接起来的半乳糖醛酸与鼠李糖、阿拉伯糖和半乳糖等其它中性糖相连结的长链聚合物[1],主要成分是D—半乳糖醛酸(D—galactuonicaid),其中部分半乳糖醛酸被甲醇酯化,此外,果胶还含有一些非糖成分如甲醇、乙酸和阿魏酸[2]。果胶相对分子质量在3万—18万之间,其部分分子式如下: 果胶的结构由主链和侧链两部分组成:主链是长而连续的,平滑的α一1,4—连续的D—半乳糖醛酸聚糖单元的直链形成的髙聚半乳糖醛酸(homogalacturonnan,HG)部分,侧链是由短的呈毛发状的鼠李糖半乳糖醛酸聚糖(rhammogalacturonan,RG)部分构成的。复杂的中性糖侧链连在鼠李糖半乳糖醛酸聚糖上[3]。化学结构式如下: 3.果胶的分类及其性能 酯化度是果胶分类的最基本指标,也是与果胶的各种应用性质密切相关的指标,比如胶凝性、增稠性、蛋白稳定性等。所以,只要一提到果胶,我们必须要讲到果胶的酯化度。

实验四 果胶的提取

实验四果胶的提取 一、引言 果胶广泛存在于水果和蔬菜中,如苹果中含量为0.7—1.5%(以湿品计),在蔬菜中以南瓜含量最多(达7%-17%)。果胶的基本结构是以α-1,4苷键连接的聚半乳糖醛酸,其中部分羧基被甲酯化,其余的羧基与钾、钠、铵离子结合成盐。 在果蔬中,尤其是未成熟的水果和皮中,果胶多数以原果胶存在,原果胶通过金属离子桥(比如Ca2+)与多聚半乳糖醛酸中的游离羧基相结合。原果胶不溶于水,故用酸水解,生成可溶性的果胶,再进行提取、脱色、沉淀、干燥,即为商品果胶。从柑橘皮中提取的果胶是高酯化度的果胶(酯化度在70%以上)。在食品工业中常利用果胶制作果酱、果冻和糖果,在汁液类食品中作增稠剂、乳化剂。 二、实验材料、试剂与仪器 材料:桔皮,苹果等; 试剂:0.25% HCL,95%乙醇(AR),精制乙醇,乙醚,0.05mol/L HCl,0.15%咔唑乙醇溶液,半乳糖醛酸标准液,浓硫酸(优级纯) 仪器:分光光度计,50mL比色管,分析天平,水浴锅,回流冷凝器,烘箱等 三、实验步骤 (一)果胶的提取 1、原料预处理:称取新鲜柑橘皮20g(或干样8g),用清水洗净后,放入250mL容量瓶中,加水120mL,加热至90℃保持5-10min,使酶失活。用水冲洗后切成3~5mm的颗粒,用50℃左右的热水漂洗,直至水为无色、果皮无异味为止(每次漂洗必须把果皮用尼龙布挤干,在进行下一次的漂洗)。 2、酸水解提取:将预处理过的果皮粒放入烧杯中,加约60mL 0.25% HCL 溶液,以浸没果皮为宜,调pH至2.0~2.5,加热至90℃煮45min,趁热用100目尼龙布或四层纱布过滤。 3、脱色:在滤液中加入0.5~1.0%的活性炭,于80℃加热20min,进行脱色和除异味,趁热抽滤(如抽滤困难可加入2%~4%的硅藻土作为助滤剂)。如果柑橘皮漂洗干净萃取液为清澈透明则不用脱色。 4、沉淀:待提取液冷却后,用稀氨水调pH至3~4。在不断搅拌下加入95%乙醇溶液,加入乙醇的量约为原体积的1.3倍,使酒精浓度达到50%~65%。 5、过滤、洗涤、烘干:用尼龙布过滤(滤液可用蒸馏法回收酒精),收集果胶,并用95%乙醇洗涤果胶2~3次,再于60~70℃干燥果胶,即为果胶产品。

果胶的提取与果胶含量的测定

果胶得提取与果胶含量得测定 一、引言 果胶广泛存在于水果与蔬菜中,如苹果中含量为0、7—1、5%(以湿品计),在蔬菜中以南瓜含量最多(达7%-17%)。果胶得基本结构就是以α-1,4苷键连接得聚半乳糖醛酸,其中部分羧基被甲酯化,其余得羧基与钾、钠、铵离子结合成盐. 在果蔬中,尤其就是未成熟得水果与皮中,果胶多数以原果胶存在,原果胶通过金属离子桥(比如Ca2+)与多聚半乳糖醛酸中得游离羧基相结合。原果胶不溶于水,故用酸水解,生成可溶性得果胶,再进行提取、脱色、沉淀、干燥,即为商品果胶.从柑橘皮中提取得果胶就是高酯化度得果胶(酯化度在70%以上).在食品工业中常利用果胶制作果酱、果冻与糖果,在汁液类食品中作增稠剂、乳化剂. 二、实验材料、试剂与仪器 材料:桔皮,苹果等; 试剂:0、25% HCL,95%乙醇(AR),精制乙醇,乙醚,0、05mol/L HCl,0、15%咔唑乙醇溶液,半乳糖醛酸标准液,浓硫酸(优级纯) 仪器:分光光度计,50mL比色管,分析天平,水浴锅,回流冷凝器,烘箱等三、实验步骤 (一)果胶得提取 1、原料预处理:称取新鲜柑橘皮20g(或干样8g),用清水洗净后,放入250mL容量瓶中,加水120mL,加热至90℃保持5-10min,使酶失活。用水冲洗后切成3~5mm得颗粒,用50℃左右得热水漂洗,直至水为无色、果皮无异味为止(每次漂洗必须把果皮用尼龙布挤干,在进行下一次得漂洗). 2、酸水解提取:将预处理过得果皮粒放入烧杯中,加约60mL0、25% HCL 溶液,以浸没果皮为宜,调pH至2、0~2、5,加热至90℃煮45min,趁热用100目尼龙布或四层纱布过滤。 3、脱色:在滤液中加入0、5~1、0%得活性炭,于80℃加热20min,进行脱色与除异味,趁热抽滤(如抽滤困难可加入2%~4%得硅藻土作为助滤剂)。

果胶的提取方法

果胶的提取方法 果胶分果胶液、果胶粉及低甲氧基果胶粉三种。果胶液为白色均匀浓稠液,不带果皮和果肉碎屑,含固体7~9%,果胶粉为淡黄色或浅灰色白色,溶于水,味微酸无异味,含水7~10%,胶凝力达100~150级(150级果胶意指1克果胶粉溶于水中,在pH3~3.4之间能使加入的150克砂糖完全凝固成果冻)。低甲氧基果胶粉为白色,溶于水,甲氧基含量为2.5~4.5%。 果胶用途很广,特别是在食品工业方面,除用作果酱、果冻等的增稠剂外,还是冰淇淋等的优良稳定剂,此外在制药、纺织等工业中也广泛应用。低甲氧基果胶除有果胶的种种用途外,还可以制成低糖、低热值的疗效果酱类食品,它的生产在食品工业上已日益受到重视。 一、果胶液的生产工艺 1.原料的选择:提取果胶的原料很多,如柑桔、柚子、柠檬、番石榴、苹果、梨、山渣等的果皮,果芯及榨汁后的果渣都是很好的原料。几种新鲜的果皮,果芯的果胶含量如下: 甜橙柠檬苹果梨桃 1.5~3% 2.5~5.5% l~1.8% 0.5~1.4% 0.56~1.25% 2.漂洗:原料中所含的成分,如糖甙、芳香物质、色素、酸类和盐类等在提取果胶前须漂洗干净,以免影响果胶的品质及胶凝力。柑桔类果皮首先提取精油,后经绞碎,再用蒸汽加热到95~98℃保持10分钟,以破坏果胶,避免果胶水解降低胶凝力。这种处理可与回收残余精油同时进行。 柑桔类果皮中含有柑皮苷、桔皮苷或柚皮苷,味较苦,必须用清水浸泡半小时,后加热至90℃保持5分钟,压去汁液,再用清水漂洗数次,这样才可除去大部分糖苷、色素及其他杂质,去除大部分苦味。 3.抽提:果胶的抽提包括原果胶的水解与果胶的溶出两个过程。在整个过程中要掌握温度、时间和酸度。酸度高,则需时较短;温度较低,则需时较长。温度较高或多次抽取才能提净果胶。抽提时,将绞碎的原料倒入抽提锅内,加水4倍,加亚硫酸调节pH值至1.8~2.7,后通入蒸汽,边搅拌边加热到95℃,保持45~60分钟,即可抽出大部分果胶。 4.抽提液的处理:将袖提物料通过压滤机过滤,并用高速(7000转/分)离心机分离杂质。然后迅速冷却到50℃左右;加入1~2%淀粉酶使抽提液中淀粉水解为糖。当酶作用终了时,即需加热到77℃,破坏酶的活力。接着加入0.3~0.5%活性炭在55~60℃下搅拌20~30分钟,使果胶脱色,再加入1~1.5%硅藻土,搅匀,后用压滤机滤清抽提液。 5.果胶液的浓缩与贮藏:将滤清的果胶液送入真空浓缩锅中,保持真空度667毫米汞柱以上,沸点50℃左右,浓缩至总固体达7~9%为止。浓缩毕,即将果胶液加热至70℃,装入玻璃瓶中,加盖密封,后置于70℃热水中加热杀菌30分钟,冷却后,送入仓库,或将果胶液装入木桶中,加0.2%亚硫酸氢钠搅拌匀,并密封贮藏。 二、果胶粉的生产工艺 果胶粉的生产除上述各工序外,还需除去果胶中的水分,制成粉未,加工的方法如

果胶的提取

实验一、果胶的提取及其果酱的制备 一、目的要求 1.学习从南瓜皮中提取果胶的方法。 2.进一步了解果胶质的有关知识。 3.了解果胶在食品工业中的用途。 4. 了解果胶的性质和提取原理。 二、实验原理 果胶物质广泛存在于植物中,主要分布于细胞壁之间的中胶层,尤其以果蔬中含量为多。不同的果蔬含果胶物质的量不同,山楂约为6.6%,柑橘约为0.7~1.5%,南瓜含量较多,约为7%~17%。在果蔬中,尤其是在未成熟的水果和果皮中,果胶多数以原果胶存在,原果胶不溶于水,用酸水解,生成可溶性果胶,再进行脱色、沉淀、干燥即得商品果胶。从南瓜皮中提取的果胶是高酯化度的果胶,在食品工业中常用来制作果酱、果冻等食品。 三、实验器材及材料 恒温水浴、布氏漏斗、抽滤瓶、玻棒、尼龙布、表面皿、精密pH试纸、烧杯、电子天平、小刀、真空泵、 南瓜皮(新鲜)。 四、实验试剂 95%乙醇、无水乙醇、0.2mol/L盐酸溶液、6mol/L氨水、活性炭 五、操作步骤 1.称取新鲜南瓜皮20g(干品为8 g),用清水洗净后,放入250 mL烧杯中,加120mL水,加热至90℃保温5~10 min,使酶失活。用水冲洗后切成3~5mm大小的颗粒,用50℃左右的热水漂洗,直至水为无色,南瓜皮无异味为止。每次漂洗都要把南瓜皮用尼龙布挤干,再进行下一次漂洗。 2.将处理过的南瓜皮粒放入烧杯中,加入0.2mol/L的盐酸以浸没南瓜皮为度(120ml左右),调溶液的pH2.0~2.5之间。加热至90℃,在恒温水浴中保温30 min,保温期间要不断地搅动,趁热用垫有尼龙布(100目)的布氏漏斗抽滤,收集滤液,量取体积。 3.在滤液中加入0.5%~1%的活性炭,加热至80℃,脱色20min,趁热抽滤(如南瓜皮漂洗干净,滤液清沏,则可不脱色,省略此步骤)。 4.滤液冷却后,用6mol/L氨水调至pH 3~4,在不断搅拌下缓缓地加入95%酒精溶液,加入乙醇的量为原滤液体积的1.5倍(使其中酒精的质量分数达50%~60%)。酒精加入过程中即可看到絮状果胶物质析出,静置20min后,用尼龙布(100目)过滤制得湿果胶(或4000转/分,10分钟)。 5.将湿果胶转移于100mL烧杯中,加入30mL无水乙醇洗涤湿果胶,再用尼龙布过滤、挤压。将脱水的果胶放入表面皿中摊开,在60~70℃烘干。将烘干的果胶磨碎过筛,制得干果胶。 6.柠檬酸果酱的制备

果胶的测定

韩雅珊.1992(2002)?.食品化学实验指导[M].中国农业大学出版社 果胶的测定: 一、实验原理 本实验采用钙离子螯合剂和果胶酶提取水果中的总果胶物质,然后用分光光度法测定总果胶物质,先用乙醇处理样品,使果胶沉淀,再用乙醇溶液洗涤沉淀,除去可溶性糖类、脂肪、色素等物质,从残渣中提得果胶物质。采用NaOH溶液将果胶物质皂化,生成果胶酸钠,再经乙酸酸化使之生成果胶酸,再加入果胶酶使之水解。 分光光度法测定是以果胶分子的基本结构单位——半乳糖醛酸和咔唑的反应为基础的。果胶经水解生成半乳糖醛酸,在强酸中与咔唑发生缩合反应,生成紫红色化合物,其呈色强度与半乳糖醛酸含量成正比,测定的结果可用脱水半乳糖醛酸(AUA)。 二、实验仪器与试剂 仪器:玻璃器皿烧杯、试管、玻棒、胶头滴管、容量瓶、PH计、分光光度计 试剂:①果胶酶提取液:1份果胶酶试剂和10份水在一起搅拌1h,然后离心除去沉淀,上清液即为果胶酶提取液;②1%EDTA溶液(乙二胺四乙酸);③醋酸溶液(1份醋酸+2份水);④浓硫酸;⑤95%乙醇;⑥精制乙醇:在1L 95%乙醇中,加入4g锌粉和4ml硫酸(1+1),在水浴中回流24h,然后蒸馏,在馏出液中加入4g锌粉和4gKOH后再蒸馏一次;⑦一水半乳糖醛酸。 三、实验步骤 1、果胶物质的提取 将10g新鲜橘皮和125ml95%乙醇一起捣碎,抽滤后保留沉淀,用50ml75%乙醇洗涤沉淀两次,将沉淀转移到250ml烧杯中,加入100ml 1%EDTA溶液,用1mol/LNaOH 将PH调节至11.5,保持30min后,再用醋酸溶液将果胶溶液酸化到PH5.0,然后加入10ml 果胶酶提取液,搅拌0.5h后,定容至250ml,用脱脂棉过滤,弃去沉淀和前20ml滤液,

果胶的提取作业指导书

果胶的提取作业指导书 一、目的要求 1.学习从柑橘皮中提取果胶的方法。 2.进一步了解果胶质的有关知识。 二、实验原理 果胶物质广泛存在于植物中,主要分布于细胞壁之间的中胶层,尤其以果蔬中含量为多。不同的果蔬含果胶物质的量不同,山楂约为6.6%,柑橘约为0.7~1.5%,南瓜含量较多,约为7%~17%。在果蔬中,尤其是在未成熟的水果和果皮中,果胶多数以原果胶存在,原果胶不溶于水,用酸水解,生成可溶性果胶,再进行脱色、沉淀、干燥即得商品果胶。从柑橘皮中提取的果胶是高酯化度的果胶,在食品工业中常用来制作果酱、果冻等食品。 三、实验器材 烘箱、恒温水浴锅、布氏漏斗、抽滤瓶、玻棒、尼龙布、表面皿、精密pH 试纸、(100mL、250mL)烧杯、电子天平、小刀、真空泵、柑橘皮(新鲜)。四、实验试剂 1.95%乙醇、无水乙醇。 2.0.2 mol/L盐酸溶液:18mL HCl溶于1000mL蒸馏水中。 3.6 mol/L氨水:向100mL市售氨水(25-28%)中加入19mL水。 五、操作步骤 1.称取新鲜柑橘皮20g(干品为8g),用清水洗净后,放入250 mL烧杯中,加120 mL水,加热至90℃保温5~10 min,使酶失活。用水冲洗后切成3~5 mm 大小的颗粒,用50℃左右的热水漂洗,直至水为无色,果皮无异味为止。每次漂洗都要把果皮用尼龙布挤干,再进行下一次漂洗。 2.将处理过的果皮粒放入烧杯中,加入0.2 mol/L的盐酸以浸没果皮为度,调溶液的pH 2.0~2.5之间。加热至90℃,在恒温水浴中保温40 min,保温期间要不断地搅动,趁热用垫有尼龙布(100目)的布氏漏斗抽滤,收集滤液。 3.滤液冷却后,用6mol/L氨水调至pH 3~4,在不断搅拌下缓缓地加入95%乙醇溶液,加入乙醇的量为原滤液体积的1.5倍(使其中酒精的质量分数达50%~60%)。酒精加入过程中即可看到絮状果胶物质析出,静置20min后,用尼龙布(100目)过滤制得湿果胶。 4.将湿果胶转移于100mL烧杯中,加入30mL无水乙醇洗涤湿果胶,再用尼龙布过滤、挤压。将脱水的果胶放入表面皿中摊开,在60~70℃烘干。将烘干的果胶磨碎过筛,制得干果胶。

3实验-果胶的提取

3果胶的提取方法 目前,提取果胶的工艺主要有四种:醇析法、离子交换法、盐沉淀法及微生物法。 3.1 醇析法 醇析法是一种最古老的工业果胶生产方法,其基本原理是将植物细胞中的非水溶性果胶在稀酸中转化成水溶性果胶。常用的酸有盐酸、六偏磷酸、草酸等。经酸萃取后得到很稀的果胶水溶液,将得到的果胶水溶液浓缩后,这种方法的工艺比较成熟,各种工艺条件 比较容易控制,而且果胶产品不含杂质,颜色较好。其工艺流程如下:原料→预处理→ 酸提→脱色→浓缩→沉析→干燥→成品。 何立芳等研究发现在醇析法中,浸提温度、浸提时间、酸度及浸提剂用量都对提取率有较大的影响。温度过高,果胶易分解,果胶胶凝度很低,质量不好;温度过低,速度太慢,提取率低,故浸提过程温度一般控制在80~90℃之间。酸度大,果胶提取率高,主要原因是果胶水解逐渐强烈之故。但酸度过大,果胶胶凝度会下降,故一般浸提液的pH值调节在1.5~2.5之间。随着浸提时间的提高,提取率和胶凝度有所提高,但浸提时间达到一定后,产品提取率增大变得很缓慢,且产品颜色加深,影响质量,从节能和生产效率的角度出发,时间控制在45~60min为佳[5]。韦鑫等研究发现,果胶的提取率除了与浸提温度、浸提时间、酸度及浸提剂用量有关外,还与果胶酶和水质有关。未经过预处理的果胶由于果胶酶的存在,会分解果胶,从而影响果胶产量;自来水由于其中含有部分Ca2+、Mg2+离子,这些离子对果胶有一定的封闭作用,以致影响果胶产量[5]。黄秀山,高凤芹研究发现,用95%的乙醇等体积沉淀效果好;用无水乙醇则会增加成本;用稀释后的乙醇萃取不完全,使得产品产量降低[6]。 醇析法的主要缺点是整个工艺耗时较长,酒精用量多,酒精回收能耗较多。 3.2 盐沉淀法 盐沉淀法就是在酸抽提出果胶后,采用铁盐、铝盐或者铁铝混合盐来沉淀果胶,从而把果胶分离出来,再通过乙醇的清洗和干燥过程,得到果胶产品。其生产工艺如下:原料处理→酸萃取→过滤→加盐沉淀→过滤→盐析后处理→干燥→果胶成品[9]。采用盐沉淀法沉淀出果胶,省去了稀酸浓缩工序,减少乙酸回收量,节省能耗,从而可以降低生产成本。目前的盐析法主要是铁盐法、铝盐法和铁铝混合盐法。若单独用铝盐沉淀果胶时,则果胶产率较低,沉淀颗粒较小,难以分离;若单独用高价铁盐沉淀果胶时,果胶产率较高,但果胶产品颜色较深,果胶质量不高。赵伟良曾提出用铁铝混合溶液沉淀果胶,能够形成果胶酸盐的絮状沉淀,得到的果胶产品色泽好,产率高[10]。 当前盐析法的主要问题在于脱盐技术未能跟上,脱盐不彻底,因而造成果胶粘度下降,果胶凝胶度不高。 3.3 离子交换法 由于桔皮原料、酸及水中钙、镁等离子含量较高,这些离子对果胶有封闭作用,影响果胶转化为水溶性果胶;同时也因为原料中杂质含量较高,从而影响酸提效果。所以在果胶提取时,采用酸水解同时结合离子交换树脂的方法。首先酸可使原果胶溶解,由于酸水解纤维素——果胶多糖复合物,果皮中的钙、镁、钠等阳离子溶出,阳离子交换树脂通过吸附阳离子,从而加速原果胶的溶解,提高果胶的质量和产率;阴离子交换树脂可以吸附分子量为500以下的低分子物质,解除果胶的一些机械性牵绊,因而也可提高果胶的质量和产率[11]。西南

果胶提取工艺

果皮中提取果胶方法探讨综述 摘要:由于时间不允许,没做到实验,不过先从理论探讨一下各方法从果皮中提取果胶, 对酸解法工艺进行初步探讨。 关键词:果胶、提取方法、工艺 Abstract: due to the time did not permit, didn't do the experiment, but first discuss the method from the theory from the extraction of the peel pectin, the acid solution process for a preliminary discussion. Keywords: pectin and extraction method, process 果胶广泛存在于植物组织之中, 主要形成细胞壁的中层, 起组织硬化和保持水分的作用。由于酸和果胶酶的存在, 它的含量随果实的成熟度的增加而降低, 果胶是以α一1,4 糖苷键键合的D一半乳糖醛酸为基本结构的多糖类物质, 分子量为10000到400000。一般地, 一个果胶分子由几百到1000 多个半乳糖醛酸残基组成, 平均分子量在50000到220000之间[1]。 作为膳食纤维的主要成分之一, 果胶具有抗腹泻、抗癌、治疗糖尿病等功效, 在医药工业中用于制造轻泻剂、止血剂、毒性金属解毒剂、血浆代用品等, 另外, 果胶具有良好的胶凝性和乳化稳定作用, 被广泛地用于果冻、果酱、婴儿食品、冰淇淋及果汁的生产中。FAO/WHO 规定, 果胶作为食品添加剂, 其添加量不受限制。 果胶提取方法: 酸萃取法传统的无机酸提取法是将洗净、除杂预处理后的果皮用无机酸(如盐酸、硫酸、亚硫酸、硝酸、磷酸等)调节一定pH值,加热90~ 95℃并不断搅拌, 恒温50~ 60min,然后将果胶提取液离心、分离、过滤除杂(提取用水最好经过软化处理),得到果胶澄清液。该法的缺点是果胶分子在提取过程中会发生局部水解,反应条件也较复杂,过滤时速度较慢,生产周期较长,效率较低。徐伟玥等通过正交试验优化了酸解法提取胡萝卜果胶的工艺条件, 结果表明, 其最优工艺条件为: 料液比1B30, 提取时间90m in, 提取温度95e , 所得胡萝卜果胶提取率为15. 64% [2]。夏红等以0.2mol/L的盐酸溶液萃取香蕉皮中的果胶, 通过正交试验研究了萃取液用量、萃取温度和萃取时间对果胶提取率的影响。结果表明,萃取液用量是原料的2倍、萃取时间为1.5h、萃取温度为85℃时,果胶的提取率相对较高[3]。 碱萃取法生产中常用的碱法脱酯速度很快,但果胶在碱法脱酯过程中,除了分子中的甲氧基含量减少外,还发产生果胶分子解聚,即β-消去反应。β-消去反应可导致果胶分子量、粘度和胶凝能力下降。果胶的脱酯反应和β-消去反应往往同时发生,但反应条件不同时,两者的反应速度不同;这2种化学反应属于竞争性反应: 前者使果胶中甲氧基含量降低,而后者必须在甲氧基存在的条件下才能进行,两者相互竞争甲氧基,脱酯反应进行一定阶段后,由于甲氧基含量的减少,2种化学反应速度均降低。雷激等以商品柑橘高酯果胶为原料,重点探讨了低温碱法脱酯对果胶质量的影响(以果胶的半乳糖醛酸含量、酯化度(DE值)、特性粘度等为考察指标),结果表明,低温下(5℃)碱法脱酯可将影响果胶品质的β-消去反应控制在较小程度,所得产品能最大程度的保持其特性粘度。柑橘高酯果胶碱法脱酯的最佳工艺条件为:

相关文档