文档库 最新最全的文档下载
当前位置:文档库 › STAR CCM+多孔介质设定

STAR CCM+多孔介质设定

7.热交换器、风扇设定

7.1热交换器的换热设定

7.2热交换器的多孔介质设定

7.3风扇设定

7.1 热交换器的换热设定(1)

●冷凝器

发热量,最小温度差,温度设定

7.1 热交换器的换热设定(2)

●散热器

发热量,最小温度差,温度设定

7.2 热交换器的多孔介质设定(1)

●冷凝器

座标系的指定

7.2 热交换器的多孔介质设定(2)

●冷凝器

介质阻力系数的设定

其它设为100000.0

7.2 热交换器的多孔介质设定(3)

●散热器

座标系的指定

7.2 热交换器的多孔介质设定(4)

●散热器

介质阻力系数的设定

其它设为100000.0

多孔介质 - 技术总结

12.4.3 可压缩流动的求解策略 可压缩流动求解中速度、密度、压力和能量的高度耦合以及可能存在的激波导致求解过程不稳定。有助于改善可压缩流动计算过程稳定性的方法有 (仅适用于基于压力求解器)以接近于滞止条件的流动参数进行初始化(即,压力很小但不为零,压力和温度分别等于进口总压和总温)。在迭代过程的最初几十步不求解能量方程。设置能量方程的亚松驰因子等于1,压力的亚松驰因子0.4,动量的亚松驰因子0.3。求解过程稳定后再加入能量方程的求解,并将压力的亚松驰因子提高到0.7。 设置合理的温度和压力限制值以避免求解过程发散。 必要时,先以较低的进、出口边界压力比进行求解,然后再逐步升高压力比直到预定工况。对于低Mach 数流动,也可以先求解不可压缩流动,然后以所得到的解作为可压缩流动的迭代初值。 某些情况下,也可以先求解无粘性流动作为迭代初值。 2.5 无粘性流动 在高Re数流动中,惯性力相对于粘性力而言起支配作用,可忽略粘性的影响。例如高速飞行器在空气动力学方案分析阶段可以采用无粘性流动计算初步确定外形,然后进行粘性计算,将流体粘性和湍流粘性对升力和阻力的影响计入。无粘性流动计算的另一个用途是给复杂的流动提供好的迭代初值。对于特别复杂的问题有时这是唯一能使求解过程进行下去的方法。 无粘性流动的计算求解Euler 方程。其中质量方程与粘性流动的相同: 其动量方程与粘性流动的相比,没有粘性应力项 粘性耗散项能量方程与粘性流动相比,

式(2.34) ~ 式(2.36)中符号的意义与粘性流动控制方程的相同见(2.1.1 ~ 2.1.3 节)。 2.6 多孔介质模型 多孔介质(Porous Media)模型可用于模拟许多问题,包括流过填充床、滤纸、多孔板、布流器、管排等的流动。多孔介质模型在流体区上定义(见17.2.1 节)。 此外,一个被称为多孔阶跃面(porous jump)的多孔介质模型的一维简化可用于模拟已知速度?压降特性的薄膜。多孔阶跃面在界面区上定义。多孔阶跃面比多孔介质模型更健壮,收敛性更好.应 ANSYS FLUENT 参考手册 12首选采用。 2.6.1 基于表观速度的多孔介质动量方程 对于单相介质和多相介质,多孔介质模型可以使用表观速度或物理速度形式的公式。 基于表观速度的多孔介质模型根据多孔介质区中的体积流量率计算表观相速度或混合物速度。基于表观速度的多孔介质模型能够较好模拟多孔介质区内部的压力损失。但是在多孔介质区与非多孔介质区的交界面处的表观速度与的速度是相同的,不能反映实际速度变化所引起的动量变化,对计算精度不利。 多孔介质模型通过在动量方程中增加源项来模拟计算域中多孔性材料对流体的流动阻力。该源项由两部分组成即Darcy 粘性阻力项和惯性损失项 其中,D 和 C 分别为粘性阻力和惯性损失系数矩阵。这个负的动量源项导致多孔介质单元中的压力降。同时,在全部变量的输运方程和连续性方程中,瞬态项变为,其中 γ 为孔隙率。 对于简单的均匀多孔介质,分别在系数矩阵D和C中对角线项代入1/α和 C2,而其它项为零,则有: 其中ɑ为渗透率C2为惯性阻力系数。 也可以用速度大小的幂函数来模拟阻力:

多孔介质在fluent中的操作方法 网络上传版本

如何在Fluent中实现多孔介质双能量方程(LNTE) How to use Non-equilibrium Thermal equation (LNTE) model for Porous media in Fluent Software ●请参照本人发表的文章: ●Please refer to the following papers: 1)Wang Fu–Qiang*,Shuai Yong*,Wang Zhi–Q iang,Leng Yu,Tan He–Ping. Thermal and chemical reaction performance analyses of steam methane reforming in porous media solar thermochemical reactor,International Journal of Hydrogen Energy,39(2):718-730,2014 关键词:Porous, Solar, Hydrogen, Methane, Reforming, P1 approximation, radiative heat transfer 2)Wang Fu–Qiang*,Shuai Yong*,Tan He–Ping,Zhang Xiao-Feng,Mao Qian-Jun,Heat transfer analyses of porous media receiver with multi–dish collector by coupling MCRT and FVM method,Solar Energy,93:158–168,2013 关键词:Solar, Porous, dish concentrator, Receiver, Monte Carlo 3)Wang Fu–Qiang*,Shuai Yong*,Tan He–Ping,Yu Chun–Liang,Thermal Performance Analysis of Porous Media Receiver with Concentrated Solar Irradiation,International Journal of Heat and Mass Transfer,62:247–254,2013 关键词:Solar, Porous, dish concentrator, Receiver, Monte Carlo

多孔介质介绍

Fluent自带了一个多孔介质的例子,catalytic_converter.cas,是一个汽车尾气催化还原装置,其中绿色部分为催化剂部分 其他设置就不说了,只说说与多孔介质有关的设置。 在建立模型时,必须将多孔介质单独划分为一个区域,然后才可以在设置边界条件时将这个区域设置为多孔介质。 1、在zone中选中该区域,在type中选中fluid,点set来到设置面板。 2、在Fluid面板中,选中Porous zone选项,如果忽略多孔区域对湍流的影响,选中Laminar zone。 3、首先是速度方向的设置,在2d中,在direction-1 vector中填入速度方向,在3d中,在direction-1 vector和direction-2 vector中填入速度方向,余下的未填方向,可以根据principal axis得到。另外也可以用Update From Plane Tool来得到这两个量。 4、填入粘性阻力系数和惯性阻力系数,这两个系数可以通过经验公式得到。在catalytic_converter.cas中可以看到x方向的阻力系数都比其他两个方向的阻力系数小1000倍,说明x方向是主要的压力降方向,其他两个方向不流通,压力降无限大。(经验公式可以看帮助文

件,其中有详细的介绍)。随后的Power Law Model 中两个系数是另一种描述压力降的经验模型,一般不使用,可以保留缺省值0。 5、最后是Fluid Porosity,这个值只在模型选择了Physical Velocity 时才起作用,一般对计算没有影响,这个值要小于1。补充:这个值在计算热传导时也起作用。 下面是改变一些参数后的比较。 1、速度方向的改变: 原case:1、0、0 和0、1、0 y=0截面的速度矢量图 修正case:-0.7366537、0.06852359、0.6727893 和0.6694272、-0.06727878、0.7398248 y=0速度矢量图

FLUENT多孔介质中平面面板(plane surface)工具的使用

1、输出grid图形 2、选择surface---plane,打开plane surface面板 3、通过确定三个点来确定平面位置。单击slect point,出现提示,不点选cancel.在grid 图形的多孔介质区域任意位置右键点选3个点。 4、回到plane surface面板,勾选plane tool,则在grid图形的多孔介质区域出现一个平面。

若出现的平面与我们的预期相差比较大的话,可以单击reset points,可以获得一个特殊位置的平面。 5、打开多孔介质的控制面板,选择porou zone标签,点击update from plane tool按钮,获得方向矢量1,和方向矢量2的原始值,并与左下角的坐标系统比较,确定我们大概的旋转方向。 6、对比grid图形左下角的坐标系统,红线和红色箭头代表的是方向矢量1,绿线和绿色箭头代表的是方向矢量2 应该使红线和X正方向平行,绿线和Y正方向平行。具体的操作应该是: 一:先单击白线的蓝色箭头,固定了该方向在旋转过程中不变,可以保证在旋转的过程比较有规律,然后右键点选白线的红色箭头旋转红线的红色箭头到X的正轴; 二: 接下来应该是单击白线的红色箭头,固定该方向不变,单击白线的蓝色箭头,旋转绿线的绿色箭头指向Y的正轴。(所以多孔介质区域我们一般是设置在坐标系统里面,轴线等 与坐标系统无非直角角度关系)。把平面移动到图形外有利于旋转,比较清楚。平面

法线方向的移动是用鼠标右键单击平面阴影部分并拖动,横向移动则需按下shift并进行如上操作。 7、旋转到适当的位置后(鼠标右键拖动箭头),再次点击update from plane tool按钮,获得方向矢量1,和方向矢量2。 得到的数值很可能不是整数,这个时候我们可以把他简化为整数。例如:0.9123可以简化为1,0.01245可以简化为0,以此类推。

多孔介质条件多孔介质模型可以应用于很多问题,如通过充满介质的流动

多孔介质条件 多孔介质模型可以应用于很多问题,如通过充满介质的流动、通过过滤纸、穿孔圆盘、流量分配器以及管道堆的流动。当你使用这一模型时,你就定义了一个具有多孔介质的单元区域,而且流动的压力损失由多孔介质的动量方程中所输入的内容来决定。通过介质的热传导问题也可以得到描述,它服从介质和流体流动之间的热平衡假设,具体内容可以参考多孔介质中能量方程的处理一节。 多孔介质的一维化简模型,被称为多孔跳跃,可用于模拟具有已知速度/压降特征的薄膜。多孔跳跃模型应用于表面区域而不是单元区域,并且在尽可能的情况下被使用(而不是完全的多孔介质模型),这是因为它具有更好的鲁棒性,并具有更好的收敛性。详细内容请参阅多孔跳跃边界条件。 1、多孔介质模型的限制 如下面各节所述,多孔介质模型结合模型区域所具有的阻力的经验公式被定义为“多孔”。事实上多孔介质不过是在动量方程中具有了附加的动量损失而已。因此,下面模型的限制就可以很容易的理解了。 ● 流体通过介质时不会加速,因为事实上出现的体积的阻塞并没有在模型中出现。这对于过渡流是有很大的影响的,因为它意味着FLUENT 不会正确的描述通过介质的过渡时间。 ● 多孔介质对于湍流的影响只是近似的。详细内容可以参阅湍流多孔介质的处理一节。 2、多孔介质的动量方程 多孔介质的动量方程具有附加的动量源项。源项由两部分组成,一部分是粘性损失项 (Darcy),另一个是内部损失项: ∑∑==+=31312 1j j j j ij j ij i v v C v D S ρμ 其中S_i 是i 向(x, y, or z)动量源项,D 和C 是规定的矩阵。在多孔介质单元中,动量损失对于压力梯度有贡献,压降和流体速度(或速度方阵)成比例。 对于简单的均匀多孔介质: j j i i v v C v S ραμ2 12+= 其中a 是渗透性,C2是内部阻力因子,简单的指定D 和C 分别为对角阵1/a 和C2,其它项为零。 FLUENT 还允许模拟的源项为速度的幂率: ()i C C j i v v C v C S 10011-== 其中C_0和C_1为自定义经验系数。 注意:在幂律模型中,压降是各向同性的,C_0的单位为国际标准单位。

(整理)多孔介质-Fluent模拟

7.19多孔介质边界条件 多孔介质模型适用的范围非常广泛,包括填充床,过滤纸,多孔板,流量分配器,还有管群,管束系统。当使用这个模型的时候,多孔介质将运用于网格区域,流场中的压降将由输入的条件有关,见Section 7.19.2.同样也可以计算热传导,基于介质和流场热量守恒的假设,见Section 7.19.3. 通过一个薄膜后的已知速度/压力降低特性可以简化为一维多孔介质模型,简称为“多孔跳跃”。多孔跳跃模型被运用于一个面区域而不是网格区域,而且也可以代替完全多孔介质模型在任何可能的时候,因为它更加稳定而且能够很好地收敛。见Section 7.22. 7.19.1 多孔介质模型的限制和假设 多孔介质模型就是在定义为多孔介质的区域结合了一个根据经验假设为主的流动阻力。本质上,多孔介质模型仅仅是在动量方程上叠加了一个动量源项。这种情况下,以下模型方面的假设和限制就可以很容易得到: ?因为没有表示多孔介质区域的实际存在的体,所以fluent默认是计算基于连续性方程的虚假速度。做为一个做精确的选项,你可以适用fluent 中的真是速度,见section7.19.7。 ?多孔介质对湍流流场的影响,是近似的,见7.19.4。 ?当在移动坐标系中使用多孔介质模型的时候,fluent既有相对坐标系也可以使用绝对坐标系,当激活相对速度阻力方程。这将得到更精确的源项。 相关信息见section7.19.5和7.19.6。 ?当需要定义比热容的时候,必须是常数。 7.19.2 多孔介质模型动量方程 多孔介质模型的动量方程是在标准动量方程的后面加上动量方程源项。源项包含两个部分:粘性损失项(达西公式项,方程7.19-1右边第一项),和惯性损失项(方程7.19-1右边第二项) (7.19-1)

FLUENT多孔介质数值模拟设置

FLUENT多孔介质数值模拟设置 多孔介质条件 多孔介质模型可以应用于很多问题,如通过充满介质的流动、通过过滤纸、穿孔圆盘、流量分配器以及管道堆的流动。当你使用这一模型时,你就定义了一个具有多孔介质的单元区域,而且流动的压力损失由多孔介质的动量方程中所输入的内容来决定。通过介质的热传导问题也可以得到描述,它服从介质和流体流动之间的热平衡假设,具体内容可以参考多孔介质中能量方程的处理一节。 多孔介质的一维化简模型,被称为多孔跳跃,可用于模拟具有已知速度/压降特征的薄膜。多孔跳跃模型应用于表面区域而不是单元区域,并且在尽可能的情况下被使用(而不是完全的多孔介质模型),这是因为它具有更好的鲁棒性,并具有更好的收敛性。详细内容请参阅多孔跳跃边界条件。 多孔介质模型的限制 如下面各节所述,多孔介质模型结合模型区域所具有的阻力的经验公式被定义为“多孔”。事实上多孔介质不过是在动量方程中具有了附加的动量损失而已。因此,下面模型的限制就可以很容易的理解了。 流体通过介质时不会加速,因为事实上出现的体积的阻塞并没有在模型中出现。这对于过渡流是有很大的影响的,因为它意味着FLUENT不会正确的描述通过介质的过渡时间。 多孔介质对于湍流的影响只是近似的。详细内容可以参阅湍流多孔介质的处理一节。 多孔介质的动量方程 多孔介质的动量方程具有附加的动量源项。源项由两部分组成,一部分是粘性损失项 (Darcy),另一个是内部损失项: 其中S_i是i向(x, y, or z)动量源项,D和C是规定的矩阵。在多孔介质单元中,动量损失对于压力梯度有贡献,压降和流体速度(或速度方阵)成比例。 对于简单的均匀多孔介质: 其中a是渗透性,C_2时内部阻力因子,简单的指定D和C分别为对角阵1/a 和C_2其它项为零。 FLUENT还允许模拟的源项为速度的幂率: 其中C_0和C_1为自定义经验系数。 注意:在幂律模型中,压降是各向同性的,C_0的单位为国际标准单位。 多孔介质的Darcy定律 通过多孔介质的层流流动中,压降和速度成比例,常数C_2可以考虑为零。忽略对流加速以及扩散,多孔介质模型简化为Darcy定律: 在多孔介质区域三个坐标方向的压降为:

多孔介质模拟简介

FLUENT多孔介质数值模拟设置 FLUENT专题2009-08-18 21:54:19 阅读871 评论5字号:大中小 多孔介质条件 多孔介质模型可以应用于很多问题,如通过充满介质的流动、通过过滤纸、穿孔圆盘、流量分配器以及管道堆的流动。当你使用这一模型时,你就定义了一个具有多孔介质的单元区域,而且流动的压力损失由多孔介质的动量方程中所输入的内容来决定。通过介质的热传导问题也可以得到描述,它服从介质和流体流动之间的热平衡假设,具体内容可以参考多孔介质中能量方程的处理一节。 多孔介质的一维化简模型,被称为多孔跳跃,可用于模拟具有已知速度/压降特征的薄膜。多孔跳跃模型应用于表面区域而不是单元区域,并且在尽可能的情况下被使用(而不是完全的多孔介质模型),这是因为它具有更好的鲁棒性,并具有更好的收敛性。详细内容请参阅多孔跳跃边界条件。 多孔介质模型的限制 如下面各节所述,多孔介质模型结合模型区域所具有的阻力的经验公式被定义为“多孔”。事实上多孔介质不过是在动量方程中具有了附加的动量损失而已。因此,下面模型的限制就可以很容易的理解了。 ●流体通过介质时不会加速,因为事实上出现的体积的阻塞并没有在模型中出现。这对于 过渡流是有很大的影响的,因为它意味着FLUENT不会正确的描述通过介质的过渡时间。 ●多孔介质对于湍流的影响只是近似的。详细内容可以参阅湍流多孔介质的处理一节。 多孔介质的动量方程

多孔介质的动量方程具有附加的动量源项。源项由两部分组成,一部分是粘性损失项(Darcy),另一个是内部损失项: 其中S_i是i向(x, y, or z)动量源项,D和C是规定的矩阵。在多孔介质单元中,动量损失对于压力梯度有贡献,压降和流体速度(或速度方阵)成比例。 对于简单的均匀多孔介质: 其中a是渗透性,C_2时内部阻力因子,简单的指定D和C分别为对角阵1/a和C_2其它项为零。 FLUENT还允许模拟的源项为速度的幂率: 其中C_0和C_1为自定义经验系数。 注意:在幂律模型中,压降是各向同性的,C_0的单位为国际标准单位。 多孔介质的Darcy定律 通过多孔介质的层流流动中,压降和速度成比例,常数C_2可以考虑为零。忽略对流加速以及扩散,多孔介质模型简化为Darcy定律: 在多孔介质区域三个坐标方向的压降为: 其中为多孔介质动量方程1中矩阵D的元素v j为三个方向上的分速度,D n_x、D n_y、以及D n_z为三个方向上的介质厚度。 在这里介质厚度其实就是模型区域内的多孔区域的厚度。因此如果模型的厚度和实际厚

多孔介质

2.4.3 可压缩流动的求解策略 可压缩流动求解中速度、密度、压力和能量的高度耦合以及可能存在的激波导致求解过程不稳定。有助于改善可压缩流动计算过程稳定性的方法有: ● (仅适用于基于压力求解器)以接近于滞止条件的流动参数进行初始化(即,压力很小但不为零,压力和温度分别等于进口总压和总温)。在迭代过程的最初几十步不求解能量方程。设置能量方程的亚松驰因子等于1,压力的亚松驰因子0.4,动量的亚松驰因子0.3。求解过程稳定后再加入能量方程的求解,并将压力的亚松驰因子提高到0.7。 ● 设置合理的温度和压力限制值以避免求解过程发散。 ● 必要时,先以较低的进、出口边界压力比进行求解,然后再逐步升高压力比直到预定工况。对于低Mach 数流动,也可以先求解不可压缩流动,然后以所得到的解作为可压缩流动的迭代初值。某些情况下,也可以先求解无粘性流动作为迭代初值。 2.5 无粘性流动 在高Re 数流动中,惯性力相对于粘性力而言起支配作用,可忽略粘性的影响。例如高速飞行器在空气动力学方案分析阶段可以采用无粘性流动计算初步确定外形,然后进行粘性计算,将流体粘性和湍流粘性对升力和阻力的影响计入。 无粘性流动计算的另一个用途是给复杂的流动提供好的迭代初值。对于特别复杂的问题,有时这是唯一能使求解过程进行下去的方法。 无粘性流动的计算求解Euler 方程。其中,质量方程与粘性流动的相同: ()m v S t ρρ?+??=? (2.34) 其动量方程与粘性流动的相比,没有粘性应力项τ??: ()()v vv p g F t ρρρ?+??=-?++? (2.35) 能量方程与粘性流动相比,没有导热项()eff k T ???和粘性耗散项()eff v τ??? : ()()()j j h j E v E p h J S t ρρ???+??+=-??+ ???? ∑ (2.36) 式(2.34) ~ 式(2.36)中符号的意义与粘性流动控制方程的相同(见2.1.1 ~ 2.1.3节)。 2.6 多孔介质模型 多孔介质(Porous Media )模型可用于模拟许多问题,包括流过填充床、滤纸、多孔板、布流器、管排等的流动。多孔介质模型在流体区上定义(见17.2.1节)。 此外,一个被称为多孔阶跃面(porous jump )的多孔介质模型的一维简化可用于模拟已知速度?压降特性的薄膜。多孔阶跃面在界面区上定义。多孔阶跃面比多孔介质模型更健壮,收敛性更好,应

完整word版,fluent中多孔介质设置问题和算例

经过痛苦的一段经历,终于将局部问题真相大白,为了使保位同仁不再经过我之痛苦,现在将本人多孔介质经验公布如下,希望各位能加精: 1。Gambit中划分网格之后,定义需要做为多孔介质的区域为fluid,与缺省的fluid分别开来,再定义其名称,我习惯将名称定义为porous; 2。在fluent中定义边界条件define-boundary condition-porous(刚定义的名称),将其设置边界条件为fluid,点击set按钮即弹出与fluid边界条件一样的对话框,选中porous zone与laminar复选框,再点击porous zone标签即出现一个带有滚动条的界面;

3。porous zone设置方法: 1)定义矢量:二维定义一个矢量,第二个矢量方向不用定义,是与第一个矢量方向正交的;

三维定义二个矢量,第三个矢量方向不用定义,是与第一、二个矢量方向正交的; (如何知道矢量的方向:打开grid图,看看X,Y,Z的方向,如果是X向,矢量为1,0,0,同理Y向为0,1,0,Z向为0,0,1,如果所需要的方向与坐标轴正向相反,则定义矢量为负) 圆锥坐标与球坐标请参考fluent帮助。 2)定义粘性阻力1/a与内部阻力C2:请参看本人上一篇博文“终于搞清fluent中多孔粘性阻力与内部阻力的计算方法”,此处不赘述;

3)如果了定义粘性阻力1/a与内部阻力C2,就不用定义C1与C0,因为这是两种不同的定义方法,C1与C0只在幂率模型中出现,该处保持默认就行了; 4)定义孔隙率porousity,默认值1表示全开放,此值按实验测值填写即可。 完了,其他设置与普通k-e或RSM相同。总结一下,与君共享!

Fluent计算多孔介质模型资料

广东省深圳市宝安区沙井辛养社区西部工业园 TEL:+86-755-3366-8888 FAX:+86-755-3366-0612 Fluent计算多孔介质模型资料 这是一个多孔介质例子,进口速度为0.01m/s,组份为液态水和氧气,其中氧气从多孔介质porous jump 渗透过去,如何看氧气在tissue中扩散的。 porous jump的face permeability1 a=e-8 m_2 thickness 设为0.0001 pressure jump coefficient为默认 porous zone设置如下: direction vector 1, 1, viscous resistance 100 each inertial resistance 100 each porosity 0.1 边界条件设置如下: Ab – wall - default Bc – wall – default Be – porous jump – face permeability 1e-8, porous medium thickness 0.0001 Cd – outflow rating – 0.5 De – wall – default Default interior – interior Default interior001 – interior Default interior019 – interior Ef – wall - default Fg – outflow rating – 1 Fluid - porous zone - direction vector 1, 1, viscous resistance 100 each, inertial resistance 100 each, porosity 0.1 Gh- wall - default Hi – wall - default Hk - porous jump same conditions as other Ij – outflow – 0.5 Jk – wall – default Kl – wall – default

多孔介质的网络模型构建-宫法明

2012年齐鲁大学生软件设计大赛命题 多孔介质的网络模型构建 (中国石油大学宫法明) 一、课题背景简介 多孔介质是指内部含有大量空隙(void)的固体,固体骨架遍及多孔介质所占据的体积空间。多孔介质内部的空隙极其微小。储集石油和天然气的砂岩地层的空隙直径大多在不足1微米到500微米之间;毛细血管内径一般为5~15微米;肺泡-微细支气管系统的空隙直径一般为200微米左右或更小;植物体内输送水分和糖分的空隙直径一般不大于40微米。 一般多孔介质的空隙都是相通的,也可能是部分连通、部分不连通的。由于多孔介质本身的不均匀性、随机性和几何拓扑结构的复杂性,其内部渗透特性、流体传递过程等难以实测。因此,利用计算机对多孔介质进行微观建模,通过计算获取多孔介质的相关构造参数具有重要的研究价值。 注:本竞赛题目来自目前在研的一项国家科技重大专项课题,是其中的一部分,属于比较关键的基础研究,选报本题目的参赛选手在锻炼自己的同时,取得的任何一点成果,都很有可能会为国家做出重要的贡献。 二、课题研究的基本思路及环节 用计算机对多孔介质进行相关研究的基本思路及环节是: ①借助工业用微焦点CT 系统(目前已在使用纳米测量技术,数据更丰富,精度更准确),获取一系列能够真实描述多孔介质的微观空隙结构的CT 切片图像;图1所示为其中一张:

图1:CT切片图像 ②对每幅CT图像进行分割,找到空隙和固体骨架之间的边界,从而可以将固体部分剔除,只留下空隙部分所占据的平面区域;图2所示为分割结果(一个矩形的部分区域)中的一张(黑色 部分为空隙): 图2:分割结果

③将一系列CT图像中空隙部分所占据的区域叠加在一起,便构成了整个体积空间中所有空隙构成的一个三维体,从而可以用三维显示技术将空隙空间显示出来;如图3所示: 图3:空隙的三维体数据 ④上述步骤产生的空隙体数据一般数据量较大,影响显示的实时性,且大量空隙相互遮挡,不利观察,也不利于后续的各种参数计算,因此需要构建空隙空间的几何模型,通俗的说,就是在空隙体数据外围包上一层皮(一般是网状的,如四边形网格或三角网格),对这个“皮”进行材质、光照等设置之后显示出来,效果就有了较真实的展示。如图4所示:

COMSOL Multiphysics模拟多孔介质流动

COMSOL Multiphysics多孔介 质流动: 裂隙流 中仿科技技术部 中仿科技---专业信息化软件及技术咨询公司https://www.wendangku.net/doc/f617624292.html,

模型背景 在多孔介质的裂缝中,流体流动得较快,而在周围的多孔介质岩体当 中,流体也会进入微孔,尽管速度非常慢。由于裂缝和岩体之间存在 着流体的传质,所以在裂缝和岩体的界面上压强是连续的。精确模拟 岩体和裂缝中的流动在一些案例中是很有关键的,例如估计井的流 率,描述污染物的迁移,设计污染物清除策略等。 本算例说明了联合求解裂缝和岩体流动的一种高效而精确的方法。模 型建立为一个立方体岩体,它的内部边界为裂缝。Darcy定律是岩体 中速度的控制方程,裂缝中的流动设定与裂缝厚度有关。将裂缝定义 为内部边界是一种高效的方法,因为这样就不需要为狭窄的裂缝体积 来建立面积-厚度比非常高的精细网格。 中仿科技---专业信息化软件及技术咨询公司https://www.wendangku.net/doc/f617624292.html,

模型几何、控制方程及边界条件 流体流动—岩体 流体流动—裂缝 几何体为一块断裂多孔介质立方体,边长1m。裂缝对流体的透过性远好于岩体,而厚度为0.0001m, 也比岩体的尺度小得多。除了裂缝的边界之外,立方体的其它边界都是不可穿透的。流体在岩体内 从左至右流动,从下表面进入裂缝,从上表面流出。初始时,岩体内的流体并不流动。在模拟过程 中进口边界的压强保持不变,出口边界的压强随着时间降低。模拟时间为1000s。结束模拟之后会做 出数据列表。 中仿科技---专业信息化软件及技术咨询公司https://www.wendangku.net/doc/f617624292.html,

模型数据 Variable Units Description Value θs m3/m3Porosity of matrix blocks0.3 χf s2·m/kg Compressibility of the fluid 4.4·10-10 χs s2·m/kg Compressibility of the fluid10-8 κm m2Permeability of matrix blocks10-11 df m Thickness of the fracture0.0001 Sf s2·m/kg Storage coefficient of the fractureχf κf m2Permeability of fracture10-7 ηkg/m·s Viscosity0.001 gr m/s2Gravity9.82 ρf kg/m3Fluid density1000 pinlet kg/m·s2Pressure at the fracture inlet10e5 poutlet kg/m·s2Pressure at the fracture outlet p0 ?10t p0kg/m·s2Initial pressure distribution10e5 中仿科技---专业信息化软件及技术咨询公司https://www.wendangku.net/doc/f617624292.html,

FLUENT帮助里自带的多孔介质算例-经典资料

Tutorial 7. Modeling Flow Through Porous Media Introduction Many industrial applications involve the modeling of ow through porous media, such as _lters, catalyst beds, and packing. This tutorial illustrates how to set up and solve a problem involving gas ow through porous media. The industrial problem solved here involves gas ow through a catalytic converter. Catalytic converters are commonly used to purify emissions from gasoline and diesel engines by converting environmentally hazardous exhaust emissions to acceptable substances. Examples of such emissions include carbon monoxide (CO), nitrogen oxides (NOx), and unburned hydrocarbon fuels. These exhaust gas emissions are forced through a substrate, which is a ceramic structure coated with a metal catalyst such as platinum or palladium. The nature of the exhaust gas ow is a very important factor in determining the performance of the catalytic converter. Of particular importance is the pressure gradient and velocity distribution through the substrate. Hence CFD analysis is used to designe_cient catalytic converters: by modeling the exhaust gas ow, the pressure drop and the uniformity of ow through the substrate can be determined. In this tutorial, FLUENT is used to model the ow of nitrogen gas through a catalytic converter geometry, so that the ow _eld structure may be analyzed. This tutorial demonstrates how to do the following: _ Set up a porous zone for the substrate with appropriate resistances. _ Calculate a solution for gas ow through the catalytic converter using the pressurebased solver. _ Plot pressure and velocity distribution on speci_ed planes of the geometry. _ Determine the pressure drop through the substrate and the degree of non-uniformity of ow through cross sections of the geometry using X-Y plots and numerical reports. 许多工业应用都涉及通过多孔介质(如过滤器,催化剂床和填料)的流动模型。本教程说明如何建立和解决涉及气体通过多孔介质的问题。 这里解决的工业问题涉及通过催化转换器的气体流量。催化转化器通常用于通过将对环境有害的废气排放物转化为可接受的物质来净化汽油和柴油发动机的排放物。 这种排放的例子包括一氧化碳(CO),氮氧化物(NOx)和未燃烧的碳氢化合物燃料。这些废气排放物被迫通过衬底,该衬底是涂覆有诸如铂或钯的金属催化剂的陶瓷结构。 排气流量的性质是决定催化转化器性能的一个非常重要的因素。特别重要的是通过基底的压力梯度和速度分布。因此,使用CFD分析来设计催化转换器:通过对排气流量进行建模,可以确定通过基板的流量的压降和流量的均匀性。在本教程中,FLUENT 用于模拟通过催化转化器几何形状的氮气流量,从而可以分析流量结构。 本教程演示了如何执行以下操作: _设置具有适当阻力的基材的多孔区域。 _使用基于压力的解算器计算通过催化转化器的气体流量的解决方案。 _绘制几何体特定平面上的压力和速度分布。 _确定通过基材的压降和不均匀的程度 通过使用X-Y图和数字报告的几何横截面的流量。 Prerequisites This tutorial assumes that you are familiar with the menu structure in FLUENT and that you have completed Tutorial 1. Some steps in the setup and solution procedure will not be shown explicitly. 本教程假设您熟悉FLUENT中的菜单结构您已完成教程1.设置和解决方案过程中的某些步骤不会明确显示。Problem Description

多孔介质

fluent边界条件3 CFD专业知识2009-04-29 17:34:55 阅读244 评论0 字号:大中小 多孔介质条件 多孔介质模型可以应用于很多问题,如通过充满介质的流动、通过过滤纸、穿孔圆盘、流量分配器以及管道堆的流动。当你使用这一模型时,你就定义了一个具有多孔介质的单元区域,而且流动的压力损失由多孔介质的动量方程中所输入的内容来决定。通过介质的热传导问题也可以得到描述,它服从介质和流体流动之间的热平衡假设,具体内容可以参考多孔介质 中能量方程的处理一节。 多孔介质的一维化简模型,被称为多孔跳跃,可用于模拟具有已知速度/压降特征的薄膜。 多孔跳跃模型应用于表面区域而不是单元区域,并且在尽可能的情况下被使用(而不是完全的多孔介质模型),这是因为它具有更好的鲁棒性,并具有更好的收敛性。详细内容请参阅 多孔跳跃边界条件。 多孔介质模型的限制 如下面各节所述,多孔介质模型结合模型区域所具有的阻力的经验公式被定义为"多孔"。事实上多孔介质不过是在动量方程中具有了附加的动量损失而已。因此,下面模型的限制就可 以很容易的理解了。 l 流体通过介质时不会加速,因为事实上出现的体积的阻塞并没有在模型中出现。这 对于过渡流是有很大的影响的,因为它意味着FLUEN T不会正确的描述通过介质的过渡时间。 l 多孔介质对于湍流的影响只是近似的。详细内容可以参阅湍流多孔介质的处理一节 。 多孔介质的动量方程 多孔介质的动量方程具有附加的动量源项。源项由两部分组成,一部分是粘性损失项(Darc y),另一个是内部损失项: 其中S_i是i向(x, y, or z)动量源项,D和C是规定的矩阵。在多孔介质单元中,动量损失对于压力梯度有贡献,压降和流体速度(或速度方阵)成比例。 对于简单的均匀多孔介质: 其中a是渗透性,C_2时内部阻力因子,简单的指定D和C分别为对角阵1/a 和C_2其它项为零 。 FLUENT还允许模拟的源项为速度的幂率: 其中C_0和C_1为自定义经验系数。 注意:在幂律模型中,压降是各向同性的,C_0的单位为国际标准单位。 多孔介质的Darcy定律

Fluent建模教程

目录 1.理论知识 1.1Gambit软件的介绍 1.2Fluent软件的介绍 1.3Exceed.13+Gambit.V 2.4.06+Fluent.6.3安装介绍 2.建模过程 2.1Gambit 启动 2.2建立几何模型 3.网格划分 3.1划分网格 3.2检查网格划分情况 3.3设置边界类型 3.4输出网格文件 4.计算求解 4.1检查网格并定义长度单位 4.2设置计算模型 4.3设置流体材料属性 4.4设置边界条件 4.5求解初始化 4.6设置残差监视 4.7保存case文件 4.8求解计算 4.9保存计算结果 5.后期处理 5.1读入case和data文件 5.2显示网格 5.3创建相关面 5.4计算各单电池获得的质量流率 5.5绘制图表 6.参考链接

第一章理论知识 1.1Gambit软件的介绍 GAMBIT是为了帮助分析者和设计者建立并网格化计算流体力学(CFD)模型和其它科学应用而设计的一个软件包。GAMBIT通过它的用户界面(GUI)来接受用户的输入。GAMBIT GUI简单而又直接的做出建立模型、网格化模型、指定模型区域大小等基本步骤,然而这对很多的模型应用已是足够了。 面向CFD分析的高质量的前处理器,其主要功能包括几何建模和网格生成。由于GAMBIT本身所具有的强大功能,以及快速的更新,在目前所有的CFD前处理软件中,GAMBIT稳居上游。 GAMBIT软件具有以下特点: ☆ACIS内核基础上的全面三维几何建模能力,通过多种方式直接建立点、线、面、体,而且具有强大的布尔运算能力,ACIS内核已提高为ACIS R12。该功能大大领先于其它CAE软件的前处理器; ☆可对自动生成的Journal文件进行编辑,以自动控制修改或生成新几何与网格; ☆可以导入PRO/E、UG、CATIA、SOLIDWORKS、ANSYS、PATRAN等大多数CAD/CAE软件所建立的几何和网格。导入过程新增自动公差修补几何功能,以保证GAMBIT与CAD软件接口的稳定性和保真性,使得几何质量高,并大大减轻工程师的工作量; ☆新增PRO/E、CATIA等直接接口,使得导入过程更加直接和方便; ☆强大的几何修正功能,在导入几何时会自动合并重合的点、线、面;新增几何修正工具条,在消除短边、缝合缺口、修补尖角、去除小面、去除单独辅助线和修补倒角时更加快速、自动、灵活,而且准确保证几何体的精度; ☆G/TURBO模块可以准确而高效的生成旋转机械中的各种风扇以及转子、定子等的几何模型和计算网格; ☆强大的网格划分能力,可以划分包括边界层等CFD特殊要求的高质量网格。GAMBIT中专用的网格划分算法可以保证在复杂的几何区域内直接划分出高质量的四面体、六面体网格或混合网格; ☆先进的六面体核心(HEXCORE)技术是GAMBIT所独有的,集成了笛卡尔网格和非结构网格的优点,使用该技术划分网格时更加容易,而且大大节省网格数量、提高网格质量; ☆居于行业领先地位的尺寸函数(Size function)功能可使用户能自主控制网格的生成过程以及在空间上的分布规律,使得网格的过渡与分布更加合理,最大限度地满足CFD分析的需要;

多孔介质-Fluent模拟

多孔介质-Fluent模拟 7.19多孔介质边界条件 多孔介质模型适用的范围非常广泛,包括填充床,过滤纸,多孔板,流量分配器,还有管群,管束系统。当使用这个模型的时候,多孔介质将运用于网格区域,流场中的压降将由输入的条件有关,见Section 7.19.2.同样也可以计算热传导,基于介质和流场热量守恒的假设,见Section 7.19.3. 通过一个薄膜后的已知速度/压力降低特性可以简化为一维多孔介质模型,简称为“多孔跳跃”。多孔跳跃模型被运用于一个面区域而不是网格区域,而且也可以代替完全多孔介质模型在任何可能的时候,因为它更加稳定而且能够很好地收敛。见Section 7.22. 7.19.1 多孔介质模型的限制和假设 多孔介质模型就是在定义为多孔介质的区域结合了一个根据经验假设为主的流动阻力。本质上,多孔介质模型仅仅是在动量方程上叠加了一个动量源项。这种情况下,以下模型方面的假设和限制就可以很容易得到: , 因为没有表示多孔介质区域的实际存在的体,所以fluent默认是计算基于连续性方程的虚假速度。做为一个做精确的选项,你可以适用fluent 中的真是速度,见section7.19.7。 , 多孔介质对湍流流场的影响,是近似的,见7.19.4。 , 当在移动坐标系中使用多孔介质模型的时候,fluent既有相对坐标系也 可以使用绝对坐标系,当激活相对速度阻力方程。这将得到更精确的源项。 相关信息见section7.19.5和7.19.6。 , 当需要定义比热容的时候,必须是常数。 7.19.2 多孔介质模型动量方程

多孔介质模型的动量方程是在标准动量方程的后面加上动量方程源项。源项包含两个部分:粘性损失项(达西公式项,方程7.19-1右边第一项),和惯性损失项(方程7.19-1右边第二项) (7.19-1) 式中,si是i(x,y,z)动量方程的源项,是速度大小,D和C是矩阵。动量源项对多孔介质区域的压力梯度有影响,生成一个与速度大小(速度平方)成正比的压降。 对于各向同性多孔介质简单情况下: (7.19-2) 式中是渗透性系数,是惯性阻力系数,也就是将D,C矩阵简化为对角矩阵,对角上的系数分别为和,其它元素都是0. 同样fluent也可以将源项设定为速度的幂函数型: (7.19-3) 式中and 是用户自定义的经验系数。. 在幂函数型模型中,压降是均匀的,的单位是国际单位制。多孔介质中的达西定律

相关文档