文档库 最新最全的文档下载
当前位置:文档库 › 高中数学选修2-2学案8:1.1.2 导数的概念

高中数学选修2-2学案8:1.1.2 导数的概念

高中数学选修2-2学案8:1.1.2 导数的概念
高中数学选修2-2学案8:1.1.2 导数的概念

1.1.2 导数的概念

学习目标:

1.通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景.

2.了解导数的概念,知道瞬时变化率就是导数. 3.掌握函数在一点处导数的定义. 核心扫描:

1.理解瞬时速度的意义,会求物体运动过程中某时刻t 0的瞬时速度.

2.理解函数在某点处的导数是本节的难点,正确理解这一概念为进一步研究导数奠定基础. 课前探究学习:

自学导引

1.瞬时变化率

函数y =f (x )在x =x 0处的瞬时变化率是函数f (x )从x 0到x 0+Δx 的平均变化率在Δx →0时的极限,即()()000

lim

x f x x f x x ?→+?-?=0lim x y

x

?→??. 物理意义是把位移s 看成时间t 的函数s =s (t )在时间段[t 1,t 2]上的平均速度,即v =s (t 2)-s (t 1)t 2-t 1

.

2.函数f (x )在x =x 0处的导数

函数y =f (x )在x =x 0处的瞬时变化率是0lim

x y

x ?→??=()()000lim x f x x f x x

?→+?-?,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,

即f ′(x 0)=0lim

x y

x ?→??=()()000lim x f x x f x x

?→+?-?. 名师点睛

1.对瞬时变化率的理解

(1)瞬时速度即位移函数相对于时间的瞬时变化率.

(2)在平均变化率Δs

Δt 中,Δt 趋近于0,是指时间间隔Δt 越来越短,能越过任意小的时间

间隔,但始终不能为0.

(3)Δt ,Δs 在变化中都趋近于0,其比值Δs

Δt 趋近于一个确定的常数,这时此常数才称为

t 0时刻的瞬时速度.

(4)瞬时变化率的实质是当平均变化率中自变量的改变量趋向于0时的值,其作用是刻

画函数值在x 0点处变化的快慢. 2.对导数概念的理解

导数是在点x =x 0处附近Δy

Δx 的极限,是一个局部概念,y =f (x )在x =x 0处的导数f ′(x 0)是

一个确定的数.

注意:(1)某点导数的概念包含两层含义: ①0lim

x y

x

?→??存在(惟一确定的值),则称函数y =f (x )在x =x 0处可导,

②若0lim

x y

x

?→??不存在,则函数y =f (x )在x =x 0处不可导.

(2)位移函数在某一时刻的瞬时变化率(导数)叫瞬时速度, 即v =0lim

x ?→Δs

Δt =0

lim x ?→s (t 0+Δt )-s (t 0)Δt .

(3)f ′(x 0)=0

lim x ?→

f (x )-f (x 0)

x -x 0

与定义中的f ′(x 0)意义本质相同.

课堂讲练互动:

题型一 物体运动的瞬时速度

例1:一质点按规律s (t )=at 2+1作直线运动(位移单位:m ,时间单位:s),若该质点在t =2 s 时的瞬时速度为8 m/s ,求常数a 的值.

思路探索:求物体的瞬时速度,应先求出平均速度Δs

Δt

,再取极限.

规律方法:求瞬时速度是利用平均速度“逐渐逼近”的方法得到的,其求解步骤如下: (1)由物体运动的位移s 与时间t 的函数关系式求出位移增量Δs =s (t 0+Δt )-s (t 0); (2)求时间t 0到t 0+Δt 之间的平均速度v =Δs

Δt ;

(3)求0lim

x ?→Δs

Δt

的值,即得t =t 0时的瞬时速度. 变式1:如果质点A 按照规律s =3t 2运动,则在t =3时的瞬时速度为( ).

A .6

B .18

C .54

D .81

题型二 函数在某点处的导数

例2:求y =x 2在点x =1处的导数.

规律方法 求函数y =f (x )在点x 0处的导数的步骤是:

(1)求函数的增量Δy =f (x 0+Δx )-f (x 0);

(2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)

Δx ;

(3)取极限,得导数f ′(x 0)=0lim x ?→Δy

Δx

.

变式2:求y =2x 2+4x 在点x =3处的导数.

题型三 导数的实际意义

例3:一条水管中流出的水量y (单位:m 3) 是时间x (单位:s)的函数y =f (x )=x 2+7x +15(0≤x ≤8).计算第2 s 和第6 s 时,水管流量函数的导数,并说明它们的实际意义.

审题指导 先利用导数的定义求导,再利用导数就是瞬时变化率解释其实际意义. 题后反思:导数实质上就是瞬时变化率,它描述物体的瞬时变化率,例如高度h 关于时间t 的导数就是运动员的瞬时速度,气球半径r 关于体积V 的导数就是气球的瞬时膨胀率. 变式3:服药后,人体血液中药物的质量浓度y (单位:μg/mL)是时间t (单位:min)的函数y =f (t ),假设函数y =f (t )在t =10和t =100处的导数分别为f ′(10)=1.5和f ′(100)=-0.60,试解释它们的实际意义.

——★ 参 考 答 案 ★——

课堂讲练互动:

题型一 物体运动的瞬时速度

例1:解:∵Δs =s (2+Δt )-s (2)

=a (2+Δt )2+1-a ·22-1 =4a Δt +a Δt 2, ∴

Δs

Δt

=4a +a Δt . 在t =2 s 时,瞬时速度为0

lim x ?→

Δs

Δt

=4a ,即4a =8,∴a =2. 变式1:[解析]s =3t 2,∴s (3+Δt )-s (3)(3+Δt )-3

=3(3+Δt )2-3·32Δt =18Δt +3Δt 2

Δt =3Δt +18,

lim Δt →0

(3Δt +18)=18,∴在t =3时的瞬时速度为18.

[答案]B

题型二 函数在某点处的导数

例2:解:Δy =(1+Δx )2-12=2Δx +(Δx )2,

Δy Δx =2Δx +(Δx )2

Δx =2+Δx , ∴0lim

x ?→Δy

Δx =0

lim x ?→(2+Δx )=2.

∴y ′|x =1=2.

变式2:解:Δy =2(3+Δx )2+4(3+Δx )-(2×32+4×3)=2(Δx )2+16Δx ,

Δy

Δx =2Δx +16, ∴0lim

x ?→Δy

Δx =0

lim x ?→ (2Δx +16)=16,即y ′|x =3=16.

题型三 导数的实际意义

例3:解:在第2 s 和第6 s 时,水管流量函数的导数为f ′(2)和f ′(6)

根据导数的定义, Δy Δx =f (2+Δx )-f (2)Δx

=(2+Δx )2+7(2+Δx )+15-(22+7×2+15)Δx

=4Δx +(Δx )2+7Δx Δx =Δx +11,

所以f ′(2)=lim Δx →0

Δy

Δx =lim Δx →0

(Δx +11)=11 m 3/s , 同理可得f ′(6)=19 m 3/s.

在第2 s 与第6 s 时,水管流量函数的导数分别为11与19.它说明在第2 s 附近,水管流量大约以11 m 3/s 的速度流出,在第6 s 附近,水管流量大约以19 m 3/s 的速度流出.

变式3:解:f′(10)=1.5表示服药后10 min时,

血液中药物的质量浓度上升的速度为1.5 μg/(mL·min).f′(100)=-0.6表示服药后100 min时,

血液中药物的质量浓度下降的速度为0.6 μg/(mL·min).

高中数学选修2-2学案7:2.2.2 反证法

2.2.2 反证法 学习要求 1.了解反证法是间接证明的一种基本方法. 2.理解反证法的思考过程,会用反证法证明数学问题. 知识要点 1.定义:假设原命题________,经过正确的推理,最后得出矛盾,因此说明_________,从而证明了__________,这种证明方法叫做反证法. 2.反证法常见的矛盾类型:反证法的关键是在正确的推理下得出矛盾.这个矛盾可以是与__________矛盾,或与______矛盾,或与________________________矛盾等. 问题探究 探究点一反证法的概念 问题1王戎小时候,爱和小朋友在路上玩耍.一天,他 们发现路边的一棵树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动,等到小朋友们摘了李子一尝,原来是苦的!他们都问王戎:“你怎么知道李子是苦的呢?” ”王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的.”这就是著名的“道旁苦李”的故事.王戎的论述,运用了什么方法? 问题2上述方法的含义是什么? 问题3反证法证明的关键是经过推理论证,得出矛盾. 反证法引出的矛盾有几种情况? 问题4反证法主要适用于什么情形? 探究点二用反证法证明定理、性质等一些事实结论

例1已知直线a,b和平面α,如果a?α,b?α,且a∥b,求证:a∥α. 小结数学中的一些基础命题都是数学中我们经常用到的明显事实,它们的判定方法极少,宜用反证法证明.正难则反是运用反证法的常见思路,即一个命题的结论如果难以直接证明时,可考虑用反证法. 跟踪训练1已知:a∥b,a∩平面α=A,如图.求证:直线b与平面α必相交. 探究点三用反证法证明否定性命题 例2求证:2不是有理数.

高中数学《导数的概念及几何意义》公开课优秀教学设计

《导数的概念及几何意义》教学设计 教材内容分析 本节课的教学内容选自人教社普通高中课程标准实验教科书( A 版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念及几何意义》是在学习了函数平均变化率以后,过渡到瞬时变化率,从而得出导数的概念,再从平均变化率的几何意义,迁移至瞬时变化率即导数的几何意义。 导数是微积分的核心概念之一,是从生产技术和自然科学的需要中产生的,它深刻揭示了函数变化的本质,其思想方法和基本理论在在天文、物理、工程技术中有着广泛的应用,而且在日常生活及经济领域也日渐显示出其重要的功能。 在中学数学中,导数具有相当重要的地位和作用。 从横向看,导数在现行高中教材体系中处于一种特殊的地位。它是众多知识的交汇点,是解决函数、不等式、数列、几何等多章节相关问题的重要工具, 它以更高的观点和更简捷的方法对中学数学的许多问题起到以简驭繁的处理。 从纵向看,导数是函数一章学习的延续和深化,也是对极限知识的发展, 同时为后继研究导数的几何意义及应用打下必备的基础, 具有承前启后的重要作用。 学生学情分析 学生在高一年级的物理课程中已经学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度, 再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型, 并将瞬时变化率定义为导数,这是符合学生认知规律的. 而在第一课时平均变化率的学习中,课本给出了一个思考,观察函数 )(x f y 的图像,平均变化x y 表示什么?这个思考为研究导数的几何意义埋下 了伏笔。因此,在将瞬时变化率定义为导数之后, 立即让学生继续探索导数的几何意义,学生会对导数的几何意义有更为深刻的认识。 教学目标 1、知识与技能目标会从数值逼近、几何直观感知,解析式抽象三个角度认识导数的含义,应用导数的定义求简单函数在某点处的导数, 掌握求导数的基本步骤,初步学会求解 简单函数在一点处的切线方程。 2、过程与方法目标 通过动手计算培养学生观察、分析、比较和归纳能力,通过问题的探究体会逼近、类比、以及用已知探求未知、从特殊到一般的数学思想方法。 3、情感态度与价值观

高中数学选修2-2导学案

高二数学导学案 §1.1.1 函数的平均变化率导学案 【学习要求】 1.理解并掌握平均变化率的概念. 2.会求函数在指定区间上的平均变化率. 3.能利用平均变化率解决或说明生活中的一些实际问题. 【学法指导】 从山坡的平缓与陡峭程度理解函数的平均变化率,也可以从图象上数形结合看平均变化率的几何意义. 【知识要点】 1.函数的平均变化率:已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx = ,Δy =y 1-y 0=f (x 1)-f (x 0)= ,则当Δx ≠0时,商x x f x x f ?-?+) ()(00=____叫做函数y =f (x )在x 0到x 0+Δx 之间 的 . 2.函数y =f (x )的平均变化率的几何意义:Δy Δx =__________ 表示函数y =f (x )图象上过两点(x 1,f (x 1)),(x 2,f (x 2))的割线的 . 【问题探究】 在爬山过程中,我们都有这样的感觉:当山坡平缓时,步履轻盈;当山坡陡峭时,气喘吁吁.怎样用数学反映山坡的平缓与陡峭程度呢?下面我们用函数变化的观点来研究 这个问题. 探究点一 函数的平均变化率 问题1 如何用数学反映曲线的“陡峭”程度? 问题2 什么是平均变化率,平均变化率有何作用? 例1 某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率. 问题3 平均变化率有什么几何意义? 跟踪训练1 如图是函数y =f (x )的图象,则: (1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 探究点二 求函数的平均变化率 例2 已知函数f (x )=x 2,分别计算f (x )在下列区间上的平均变化率: (1)[1,3];(2)[1,2];(3)[1,1.1];(4)[1,1.001]. 跟踪训练2 分别求函数f (x )=1-3x 在自变量x 从0变到1和从m 变到n (m ≠n )

导数学案(有答案)

3.1.1平均变化率 课时目标 1.理解并掌握平均变化率的概念.2.会求函数在指定区间上的平均变化率.3.能利用平均变化率解决或说明生活中的实际问题. 1.函数f(x)在区间[x1,x2]上的平均变化率为____________.习惯上用Δx表示________,即__________,可把Δx看作是相对于x1的一个“__________”,可用__________代替x2;类似地,Δy=__________,因此,函数f(x)的平均变化率可以表示为________. 2.函数y=f(x)的平均变化率Δy Δx= f(x2)-f(x1) x2-x1 的几何意义是:表示连接函数y=f(x)图象 上两点(x1,f(x1))、(x2,f(x2))的割线的________. 一、填空题 1.当自变量从x0变到x1时,函数值的增量与相应自变量的增量之比是函数________.(填序号) ①在[x0,x1]上的平均变化率; ②在x0处的变化率; ③在x1处的变化率; ④以上都不对. 2.设函数y=f(x),当自变量x由x0改变到x0+Δx时,函数的增量Δy=______________. 3.已知函数f(x)=2x2-1的图象上一点(1,1)及邻近一点(1+Δx,f(1+Δx)),则Δy Δx= ________. 4.某物体做运动规律是s=s(t),则该物体在t到t+Δt这段时间内的平均速度是______________. 5.如图,函数y=f(x)在A,B两点间的平均变化率是________. 6.已知函数y=f(x)=x2+1,在x=2,Δx=0.1时,Δy的值为________. 7.过曲线y=2x上两点(0,1),(1,2)的割线的斜率为______. 8.若一质点M按规律s(t)=8+t2运动,则该质点在一小段时间[2,2.1]内相应的平均速度是________. 二、解答题 9.已知函数f(x)=x2-2x,分别计算函数在区间[-3,-1],[2,4]上的平均变化率.10.过曲线y=f(x)=x3上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率.

《导数的概念》(第1课时)教案1

导数的概念(第1课时) 一、教学目标: 1.了解曲线的切线的概念. 2.在了解瞬时速度的基础上,抽象出变化率的概念. 3.掌握切线的斜率、瞬时速度,它们都是一种特殊的极限,为学习导数的定义奠定基础. 二、教学重点:切线的概念和瞬时速度的概念. 教学难点:在了解曲线的切线和瞬时速度的基础上抽象出变化率的概念. 三、教学用具:多媒体 四、教学过程: 1.曲线的切线 如图,设曲线C 是函数)(x f y =的图像,点),(00y x P 是曲线C 上一点,点),(00y y x x Q ?+?+是曲线C 上与点P 邻近的任一点.作割线PQ ,当点Q 沿着曲线C 无限地趋近于点P ,割线PQ 便无限地趋近于某一极限位置PT .我们就把极限位置上的直线PT ,叫做曲线C 在点P 处的切线. 问:怎样确定曲线C 在点P 处的切线呢?因为P 是给定的,根据解析几何中直线的点斜式方程的知识,只要求出切线的斜率就够了.设割线PQ 的倾斜角为β,切线PT 的倾斜角为α,既然割线PQ 的极限位置上的直线PT 是切线,所以割线PQ 斜率的极限就是切线PT 的斜率αtan ,即.)()(lim lim tan 0000x x f x x f x y x x ?-?+=??=→?→?α 例题 求曲线12+=x y 在点P (1,2)处的切线的斜率k . 解:x x x f x f x f x x f y ?+?=+-+?+=-?+=-?+=?2)11(1)1()1()1()()(2200 222+?=??+?=??x x x x x y ∴2)2(lim lim 0 0=+?=??=→?→?x x y k x x ,即2=k . 2.瞬时速度 我们知道,物体作直线运动时,它的运动规律可用函数)(t s s =描述.

高中数学选修2-1 抛物线导学案加课后作业及参考答案

抛物线及其标准方程导学案 【学习要求】 1.掌握抛物线的定义及焦点、准线的概念. 2.会求简单的抛物线的方程. 【学法指导】 通过观察抛物线的形成过程,得出抛物线定义,建系得出抛物线标准方程.通过抛物线及其标准方程的应用,体会抛物线在刻画现实世界和解决实际问题中的作用. 【知识要点】 1.抛物线的定义 平面内与一个定点F 和一条定直线l (l 不经过点F ) 的点的轨迹叫做抛物线.点F 叫做抛物线的 ,直线l 叫做抛物线的 2 探究点一 抛物线定义 如图,我们在黑板上画一条直线EF ,然后取一个三角板,将一条拉链AB 固定在三角板的一条直角边 上,并将拉链下边一半的一端固定在C 点,将三角板的另一条直角边贴在直线EF 上,在拉锁D 处放置一支粉笔,上下拖动三角板,粉笔会画出一条曲线. 问题1 画出的曲线是什么形状? 问题2 |DA |是点D 到直线EF 的距离吗?为什么? 问题3 点D 在移动过程中,满足什么条件? 问题 4 在抛物线定义中,条件“l 不经过点F ”去掉是否可以? 例1 方程[] 2 2)1()3(2-++y x =|x -y +3|表示的曲线是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 跟踪训练1 (1)若动点P 与定点F (1,1)和直线l :3x +y -4=0的距离相等,则动点P 的轨迹是 ( ) A .椭圆 B .双曲线 C .抛物线 D .直线 (2)若动圆与圆(x -2)2+y 2=1相外切,又与直线x +1=0相切,则动圆圆心的轨迹是 ( ) A .椭圆 B .双曲线 C .双曲线的一支 D .抛物线 探究点二 抛物线的标准方程 问题 1 结合求曲线方程的步骤,怎样求抛物线的标准方程? 问题2 抛物线方程中p 有何意义?标准方程有几种类型? 问题3 根据抛物线方程如何求焦点坐标、准线方程? 例2 已知抛物线的方程如下,求其焦点坐标和准线方程. (1)y 2=-6x ; (2)3x 2+5y =0; (3)y =4x 2; (4)y 2=a 2x (a ≠0). 跟踪训练2 (1)抛物线方程为7x +4y 2=0,则焦点坐标为( ) A .??? ?7 16,0 B .????-74,0 C .??? ?-7 16,0 D .? ???0,-7 4 (2)抛物线y =-1 4x 2的准线方程是 ( ) A .x =1 16 B .x =1 C .y =1 D .y =2 例3 分别求满足下列条件的抛物线的标准方程. (1)准线方程为2y +4=0; (2)过点(3,-4); (3)焦点在直线x +3y +15=0上. 跟踪训练3 (1)经过点P (4,-2)的抛物线的标准方程为( ) A .y 2=x 或x 2=y B .y 2=x 或x 2=8y C .x 2=-8y 或y 2=x D .x 2=y 或y 2=-8x (2)已知抛物线的顶点在原点,焦点在y 轴上,抛物线上一点M (m ,-3)到焦点F 的距离为5,求m 的值、

配套学案:导数的计算

导数的计算(复习课) 【学习目标】 1.掌握基本初等函数的导数公式以及导数的运算法则; 2.会求含有加、减、乘、除运算的函数导数; 3.会求简单复合函数的倒数. 【知识回顾】 1.基本初等函数的导数公式: (1)c '=___________(c 为常数); (2))('α x =________(α为常数); (3))('x a =________(0a >且1a ≠); (4))(log 'x a =______(0a >且1a ≠); (5))('x e =_____________; (6))(ln 'x =_____________; (7)=')(sin x ___________; (8))(cos 'x =____________. 2.设两个函数分别为f(x)和g(x), (1)=')]([x f c _____________; (2)[]='±)()(x g x f ___________; (3)[]='?)()(x g x f __________________; (4)='?? ????)()(x g x f ____________)0)((>x g . 3. 复合函数()[]x f y ?=,设u φ=(x ), 则))((x f ?'=_________________. (复合函数求导的基本步骤是:分解——求导——相乘——回代) 【典例精析】 例1. 求曲线2 y x =过下列点的切线方程:(1)P (-1,1);(2)Q(0,-1).联合例5后置处理

例2.求下列函数的导数: (1)y=3x ·lnx ; (2)y=lgx- 2x 1; (3)y= x x -1cos ; (4)2)2(-=x y .

(word完整版)高中数学导数练习题(分类练习)讲义

导数专题 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1 (1))M f ,处的切线方程是1 22 y x =+,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1 (1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线32 242y x x x =--+在点(1 3)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(1 3)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。

解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02 030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在() 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴ 2632302 0020+-=+-x x x x , 整理得:03200=-x x ,解得:2 3 0=x 或00=x (舍),此时,830- =y ,41-=k 。所以,直线l 的方程为x y 4 1 -=,切点坐标是?? ? ??-83,23。 答案:直线l 的方程为x y 41- =,切点坐标是?? ? ??-83,23 点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 解析:函数()x f 的导数为()163'2 -+=x ax x f 。对于R x ∈都有()0'a 时,函数()x f 在R 上存在增区间。所以,当3->a 时,函数()x f 在 R 上不是单调递减函数。 综合(1)(2)(3)可知3-≤a 。

高等数学导数的概念学习教案.docx

教学合班 1:专业班合计人授课 合班 2:专业班合计人日期对象 合班 3:专业班合计人地点教学第二章导数与微分计划 内容 第一节导数的概念 2学时 (课题) 通过学习,学生能够: 1.理解导数概念,会用定义求函数在一点处的导数; 2.理解导数的几何意义,会求曲线的切线; 3.理解可导与连续的关系。 具体目标如下: 教学 目的 知识目标:技能目标:素养目标: 教学重点难点教学资源 1.理解导数的概念;1.会用定义求函数在一点处 1 .培养学生的数学思维 2.理解导数的几何意义;的导数;能力和解决问题的能 3.把握可导与连续的关系。2.会求曲线的切线。力; 2.培养学生严谨、求实 的作风。 重点:导数的定义。 难点:理解导数的几何意义。 教材、例子(幻灯片)、课件。 教学后记 对培养方案、大纲修改意见对授课计划修改意见对本教案修改意见需增加资源其他教研室主任:系主任:教务处:

教学活动流程 教学步骤与内容教学目标教学方法时间 对前面的知 识进行复习 A. 复习内容与巩固,并简述 1.极限的定义为新知识和6mins 2.极限的计算方法新技能的学 习奠定必要 的基础。 板书 ( 或 PPT展 B. 板书课题,明确学习目标及主要学习内容示)课题简介 明确本次课的辅以2mins (略。详见教案首页)内容重点及目PPT展示 标 C.讲授新知 导数与微分是微积分的基本概念,要更好地理解导数 的概念,应从解决实际问题的背景出发,在解决问题的过 程中自然抽象出导数的概念。导数与微分在理论上和实践 中都有非常广泛的应用。 一、瞬时速度、曲线的切线斜率 1.变速直线运动的瞬时速度 设一质点作变速直线运动,质点的运行路程s与时间t的 关系为 s s(t ) ,求质点在 t0时刻的瞬时速度. 分析:如果质点做匀速直线运动,给时间一个增量t ,讲解20mins 那么质点在时刻 t0与时刻 t0t 间隔内的平均速度也就是 辅以 PPT展示 引入导数概念 质点在时刻 t0的瞬时速度为 v0v s(t0t ) s(t0 ) t 在匀速直线运动中,这个比值是常数,但是如果质点作 变速直线运动,它的运行速度时刻都在发生变化,为了计算 瞬时速度,首先在时刻 t0任给时间一个增量t ,考虑质点由 t0到 t0 Vt 这段时间的平均速度:v s(t0t )s(t0 ) t

《导数的概念》说课稿与教学说明

《导数的概念》说课稿 本节课的教学内容选自人教社普通高中课程标准实验教科书(A版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念》是第2课时. 教学内容分析 1.导数的地位、作用 导数是微积分的核心概念之一,它是一种特殊的极限,反映了函数变化的快慢程度.导数是求函数的单调性、极值、曲线的切线以及一些优化问题的重要工具,同时对研究几何、不等式起着重要作用.导数概念是我们今后学习微积分的基础.同时,导数在物理学,经济学等领域都有广泛的应用,是开展科学研究必不可少的工具. 2.本课内容剖析 教材安排导数内容时,学生是没有学习极限概念的.教材这样处理的原因,一方面是因为极限概念高度抽象,不适合在没有任何极限认识的基础上学习.所以,让学生通过学习导数这个特殊的极限去体会极限的思想,这为今后学习极限提供了认识基础.另一方面,函数是高中的重要数学概念,而导数是研究函数的有力工具,因此,安排先学习导数方便学生学习和研究函数. 基于学生已经在高一年级的物理课程中学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度,再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型,并将瞬时变化率定义为导数,这是符合学生认知规律的. 进行导数概念教学时还应该看到,通过若干个特殊时刻的瞬时速度过渡到任意时刻的瞬时速度;从物体运动的平均速度的极限是瞬时速度过渡到函数的平均变化率的极限是瞬时变化率,我们可以向学生渗透从特殊到一般的研究问题基本思想.

教学目的 1.使学生认识到:当时间间隔越来越小时,运动物体在某一时刻附近的平均速度趋向于一个常数,并且这个常数就是物体在这一时刻的瞬时速度; 2.使学生通过运动物体瞬时速度的探求,体会函数在某点附近的平均变化率的极限就是函数在该点的瞬时变化率,并由此建构导数的概念; 3.掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤; 4.通过导数概念的构建,使学生体会极限思想,为将来学习极限概念积累学习经验; 5.通过导数概念的教学教程,使学生体会到从特殊到一般的过程是发现事物变化规律的重要过程. 教学重点 通过运动物体在某一时刻的瞬时速度的探求,抽象概括出函数导数的概念. 教学难点 使学生体会运动物体在某一时刻的平均速度的极限意义,由此得出函数在某点平均变化率的极限就是函数在该点的瞬时变化率,并由此得出导数的概念. 教学准备 1.查找实际测速中测量瞬时速度的方法; 2.为学生每人准备一台Ti-nspire CAS图形计算器,并对学生进行技术培训; 3.制作《数学实验记录单》及上课课件. 教学流程框图 教学流程设计充分尊重学生认知事物的基本规律,使学生在操作感知的基础上形成导数概念的表象,再通过表象抽象出导数概念,并通过运用导数概念解决实际问题使学生进一步体会导数的本质.教学的主要过程设计如下:

人教版高中数学选修2-3学案 全册

§1.1 分类加法计数原理与分步乘法计数原理(1) ※学习目标 1.通过实例,总结出分类加法计数原理、分步乘法计数原理; 2. 了解分类、分步的特征,合理分类、分步; 3. 体会计数的基本原则:不重复,不遗漏. ※课前预习 1、预习目标 准确理解两个原理,弄清它们的区别;会用两个原理解决一些简单问题。 2、预习内容 分类计数原理:完成一件事, 有n类方式, 在第一类方式,中有m 1 种不同的方法,在第二类方 式,中有m 2种不同的方法,……,在第n类方式,中有m n 种不同的方法. 那么完成这件事共有 N= 种不同的方法. 分步计数原理:完成一件事,需要分成n个,做第1步有m 1 种不同的方法,做 第2步有m 2种不同的方法,……,做第n步有m n 种不同的方法,那么完成这件事共有 N= 种不同的方法。 3、提出疑惑 同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中 疑惑点疑惑内容 预习自测 1从高二(1)班的50名学生中挑选1名同学担任学校元旦晚会主持人,有多少种不同挑选结果? 2一次会议共3人参加,结束时,大家两两握手,互相道别,请你统计一下,大家握手次数共有多少?

二、新课导学 ※学习探究 探究任务一:分类计数原理 问题1:P2思考题1 分析:给座位编号的方法可分____类方法? 第一类方法用,有___ 种方法; 第二类方法用,有___ 种方法; ∴能编出不同的号码有__________ 种方法. 新知:分类计数原理-加法原理: 如果完成一件工作有两类不同的方案,由第1类方案中有m种方法,在第2类方案中有n种 m+种不同的方法. 不同的方法,那么,完成这件工作共有n 试试:一件工作可以用2种方法完成,有5人只会用第1种方法完成,另有4人只会用第2种方法完成,从中选出1人来完成这项工作,不同选法的种数是. 反思:使用分类计数原理的条件是什么?分类加法原理可以推广到两类以上的方法吗? 探究任务二:分步计数原理 问题2:P3思考题2 分析:每一个编号都是由个部分组成,第一部分是,有____种编法,第二部分是,有种编法;要完成一个编号,必须完成上面两部分,每一部分就是一个步骤,所以,不同的号码一共有个. 新知:分步计数原理-乘法原理: 完成一件工作需要两个步骤,完成第1步有m种不同的方法,完成第2步有n种不同的方 m?种不同方法。 法,那么,完成这件工作共有n 试试:P4例2

变化率与导数、导数的计算学案(高考一轮复习)

20XX 年高中数学一轮复习教学案 第二章 函数、导数及其应用 第11节 变化率与导数、导数的计算 一.学习目标: 1.了解导数概念的实际背景,理解导数的几何意义; 2.能根据导数定义,求函数y =c (c 为常数),y =x ,y =x 2,y =1 x 的导数; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 二.学习重、难点: 1.学习重点:能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数; 2.学习难点:理解导数的几何意义. 三.学习方法:讲练结合 四.自主复习: 1.导数的概念 (1)函数在x =x 0处的导数 函数y =f (x )在x =x 0处的瞬时变化率是__________________________=lim Δx →0 Δy Δx , 称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0 . (2)导函数:当上式中的x 0看作变量x 时,函数f ′(x )为f (x )的________. (3)导数的几何意义:f ′(x 0)是曲线y =f (x )在点P (x 0,f (x 0))处的________,相应的切线方程是_____________________.

2.基本初等函数的导数公式 3.运算法则 (1)[f(x)±g(x)]′=_________________; (2)[f(x)·g(x)]′=________________________; (3)[f(x) g(x) ]′=_______________________ (g(x)≠0).五.复习前测: 1.已知函数f(x)=sin x+ln x,则f′(1)的值为() A.1-cos1 B.1+cos1 C.cos1-1 D.-1-cos1

高中数学选修2-2教学设计9:1.1.2 导数的概念教案

1.1.2 导数的概念 教学目标:1、会用极限给瞬时速度下精确的定义;并能说出导数的概念. 2、会运用瞬时速度的定义,求物体在某一时刻的瞬时速度. 教学重难点: 重点:1、导数的求解方法和过程;2、导数符号的灵活运用 难点:导数概念的理解. 教学过程: 情境导入: 高台跳水运动中,运动员相对于水面的高度h 与起跳后的时间t 的关系为: 2() 4.9 6.510h t t t =-++.通过上一节的学习,我们可以求在某时间段的平均速度.这节课我们将学到如何求在某一时刻的瞬时速度,例当t =1时的瞬时速度. 合作探究: 探究任务一:瞬时速度 问题1:在高台跳水运动中,运动员在不同时刻的速度是不同的. 新知: 瞬时速度定义:物体在某一时刻(某一位置)的速度,叫做瞬时速度. 探究任务二:导数 问题2: 瞬时速度是平均速度t s ??当t ?趋近于0时的速度. 得导数的定义:函数()y f x =在0x x =处的瞬时变化率是0000()()lim lim x x f x x f x f x x ?→?→+?-?=??,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0 |x x y =' 即000()()()lim x f x x f x f x x ?→+?-'=? 注意:(1)函数应在点0x 的附近有定义,否则导数不存在 (2)在定义导数的极限式中,x ?趋近于0可正、可负、但不为0,而y ?可以为0 (3)x y ??是函数)(x f y =对自变量x 在x ?范围内的平均变化率,它的几何意义是过曲线)(x f y =上点()(,00x f x )及点)(,(00x x f x x ?+?+)的割线斜率 (4)导数x x f x x f x f x ?-?+=→?)()(lim )(0000/ 是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在点0x 处变化的快慢程度.

导数及其应用学案+作业 (答案)

变化率与导数、导数的计算 1.函数y =f (x )在x =x 0处的导数:f ′(x 0)=lim Δx →0 Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx . 2.函数f (x )在点x 0处的导数f ′(x 0)的几何意义:f ′(x 0)是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 二、基本初等函数的导数公式 原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x f ′(x )=a x ln_a f (x )=e x f ′(x )=e x f (x )=lo g a x f ′(x )=1x ln a f (x )=ln x f ′(x )=1x 三、导数的运算法则 1.[f (x )±g (x )]′=f ′(x )±g ′(x ); 2.[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); 3.????f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2 (g (x )≠0). 1.函数求导的原则 对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误. 2.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别与联系 (1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,切线斜率为k =f ′(x 0)的切线,是唯一的一条切线. (2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条. 1.用定义法求下列函数的导数. (1)y =x 2; (2)y =4x 2. [自主解答] (1)因为Δy Δx =f (x +Δx )-f (x )Δx =(x +Δx )2-x 2 Δx

导数概念 教案

导数的概念 (教案?讲稿?PPT) 一、教案 【教学目标】 (1)、知识与技能目标 1.了解导数的历史背景,体会导数定义的探索过程 2.掌握导数的内容,初步会用它进行有关的计算求解. 3.使学生深刻理解导数的概念,理解导数在几何、物理上的意义,能够根据导数的定义求函数在区间上的导数. (2)、过程与方法目标 1. 在导数定义的过程中,用形象直观的两个实际例子作为引例,培养学生的观察能力、抽象思维能力.体会数形结合的思想. 2.通过探究导数定义的过程,体验数学思维的严谨性。 (3)、情感、态度与价值观目标 1. 了解导数发现的历史,感受数学知识所蕴含的数学文化,培养学生学习数学,探究数学的兴趣与本领。 2. 在探究活动中,体验用极限方法解决平均变化率逼近某点处的变化率的思想,培养学生的探究精神。 【教学重点】导数的概念. 【教学难点】如何引出导数的概念,并根据导数的定义计算导数. 【教学方法】形象直观式教学法、问题探究式教学法. 【背景知识】自由落体物体的瞬时速度问题,曲线切线的斜率问题等. 【特色和创新之处】 用通俗易懂的语言,通过文、理结合的方式,最后以口诀的形式结尾,讲解抽象的内容,体现数学的草根本色。 【教学进程概要】 用两个实际问题阐述函数在一点上导数的定义,由例题1和例题2,来讲述在一点上求导的方法;接着由例题2,引出函数左、右导数的概念;用例题3引出在开区间上的导数,即导函数的定义,在此基础上给出求导函数的例子,例题4;最后以口诀的形式结尾。 【板书内容】 导数的概念

00000 ()()()lim lim t t s t t s t s v t t t ?→?→+?-?==?? 0000 ()()lim lim MT x x f x x f x y k x x ?→?→+?-?==?? 对一般函数: ()y f x = 0000 0()()|lim lim x x x x f x x f x y y x x =?→?→+?-?'==?? x x f x x f x y y x x ?-?+=??='→?→?) ()(lim lim 00

高中数学选修2-2教案_学案

高中数学教案选修全套 【选修2-2教案|全套】 目录 目录................................................................................. I 第一章导数及其应用 (1) §1.1.1变化率问题 (1) 导数与导函数的概念 (4) §1.1.2导数的概念 (6) §1.1.3导数的几何意义 (9) §1.2.1几个常用函数的导数 (13) §1.2.2基本初等函数的导数公式及导数的运算法则 (16) §1.2.2复合函数的求导法则 (19) §1.3.1函数的单调性与导数(2课时) (22) §1.3.2函数的极值与导数(2课时) (27) §1.3.3函数的最大(小)值与导数(2课时) (31) §1.4生活中的优化问题举例(2课时) (34) §1.5.3定积分的概念 (38) 第二章推理与证明 (42) 合情推理 (42) 类比推理 (45) 演绎推理 (48) 推理案例赏识 (50) 直接证明--综合法与分析法 (52) 间接证明--反证法 (54) 数学归纳法 (56) 第3章数系的扩充与复数的引入 (67) §3.1数系的扩充和复数的概念 (67) §3.1.1数系的扩充和复数的概念 (67) §3.1.2复数的几何意义 (70) §3.2复数代数形式的四则运算 (73) §3.2.1复数代数形式的加减运算及几何意义 (73) §3.2.2复数代数形式的乘除运算 (77)

第一章 导数及其应用 §1.1.1变化率问题 教学目标: 1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率 教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关: 一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。 导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? ? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是33 4)(r r V π= ? 如果将半径r 表示为体积V 的函数,那么3 43)(π V V r = 分析: 3 43)(π V V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为 )/(62.00 1) 0()1(L dm r r ≈-- ⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为 )/(16.01 2) 1()2(L dm r r ≈-- 可以看出,随着气球体积逐渐增大,它的平均 膨胀率逐渐变小了. 思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? 1 212)()(V V V r V r - -

导数的概念教学设计

《导数的概念》教学设计 胡雪东 一、【教材分析】 1. 本节内容: 《导数的概念》这一小节分“曲线的切线”,“瞬时速度与瞬时加速度”,“导数的概念”,“导数的几何意义”四个部分展开,大约需要4个课时.第一、二课时学习“曲线的切线”,“瞬时速度”,今天说的是第三课时的内容导数概念的形成. 2. 导数在高中数学中的地位与作用: “导数的概念”是全章核心.不仅在于它自身具有非常严谨的结构,更重要的是,导数运算是一种高明的数学思维,用导数的运算去处理函数的性质更具一般性,获得更为理想的结果;把运算对象作用于导数上,可使我们扩展知识面,感悟变量,极限等思想,运用更高的观点和更为一般的方法解决或简化中学数学中的不少问题;导数的方法是今后全面研究微积分的重要方法和基本工具,在在其它学科中同样具有十分重要的作用;在物理学,经济学等其它学科和生产、生活的各个领域都有广泛的应用.导数的出现推动了人类事业向前发展. 二、【学情分析】 1. 有利因素:学生已较好地掌握了函数极限的知识,又刚刚学过曲线的切线、瞬时速度,并积累了大量的关于函数变化率的经验;另外,学生思维较活跃,对数学新内容的学习,有相当的兴趣和积极性,这为本课的学习奠定了基础. 2. 不利因素:导数概念建立在极限基础之上,超乎学生的直观经验,抽象度高;再者,本课内容思维量大,对类比归纳,抽象概括,联系与转化的思维能力有较高的要求,学生学习起来有一定难度. 三、【目标分析】 1. 教学目标 (1)知识与技能目标:①理解导数的概念.②掌握用定义求导数的方法. (2)过程与方法目标:通过导数概念的形成过程,让学生掌握从具体到抽象,特殊到一般的思维方法;领悟极限思想和函数思想;提高类比归纳、抽象概括、联系与转化的思维能力. (3)情感、态度与价值观目标: ①通过合作与交流,让学生感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,激发学生对数学知识的热爱,养成实事求是的科学态度. ②培养学生正确认识量变与质变、运动与静止等辩证唯物主义观点,形成正确的数学观.

新苏教版高中数学选修2-2教学案(全册 共214页)

新苏教版高中数学选修2-2教学案(全册) _1.1导数的概念 1.1.1 平均变化率 假设下图是一座山的剖面示意图,并在上面建立平面直角坐标系.A 是出发点,H 是山顶.爬山路线用函数y =f (x )表示. 自变量x 表示某旅游者的水平位置,函数值y =f (x )表示此时旅游者所在的高度.设点A 的坐标为(x 0,y 0),点B 的坐标为(x 1,y 1). 问题1:若旅游者从A 点爬到B 点,则自变量x 和函数值y 的改变量Δx ,Δy 分别是多少? 提示:Δx =x 1-x 0,Δy =y 1-y 0. 问题2:如何用Δx 和Δy 来刻画山路的陡峭程度? 提示:对于山坡AB ,可用Δy Δx 来近似刻画山路的陡峭程度. 问题3:试想Δy =y 1-y 0 x 1-x 0的几何意义是什么? 提示:Δy Δx =y 1-y 0 x 1-x 0 表示直线AB 的斜率. 问题4:从A 到B ,从A 到C ,两者的Δy Δx 相同吗?Δy Δx 的值与山路的陡峭程度有什么关系? 提示:不相同.Δy Δx 的值越大,山路越陡峭. 1.一般地,函数f (x )在区间[x 1,x 2]上的平均变化率为 f (x 2)-f (x 1) x 2-x 1 . 2.平均变化率是曲线陡峭程度的“数量化”,或者说,曲线陡峭程度是平均变化率的“视觉化”. 在函数平均变化率的定义中,应注意以下几点:

(1)函数在[x 1,x 2]上有意义; (2)在式子f (x 2)-f (x 1) x 2-x 1 中,x 2-x 1>0,而f (x 2)-f (x 1)的值可正、可负、可为0. (3)在平均变化率中,当x 1取定值后,x 2取不同的数值时,函数的平均变化率不一定相同;同样的,当x 2取定值后,x 1取不同的数值时,函数的平均变化率也不一定相同. [对应学生用书P3] [例1] (1)求函数f (x )=3x 2+2在区间[2,2.1]上的平均变化率; (2)求函数g (x )=3x -2在区间[-2,-1]上的平均变化率. [思路点拨] 求出所给区间内自变量的改变量及函数值的改变量,从而求出平均变化率. [精解详析] (1)函数f (x )=3x 2+2在区间[2,2.1]上的平均变化率为: f (2.1)-f (2)2.1-2 =(3×2.12+2)-(3×22+2) 0.1=12.3. (2)函数g (x )=3x -2在区间[-2,-1]上的平均变化率为g (-1)-g (-2) (-1)-(-2) = [3×(-1)-2]-[3×(-2)-2](-1)-(-2) = (-5)-(-8) -1+2 =3. [一点通] 求函数平均变化率的步骤为: 第一步:求自变量的改变量x 2-x 1; 第二步:求函数值的改变量f (x 2)-f (x 1); 第三步:求平均变化率f (x 2)-f (x 1) x 2-x 1 . 1.函数g (x )=-3x 在[2,4]上的平均变化率是________. 解析:函数g (x )=-3x 在[2,4]上的平均变化率为g (4)-g (2)4-2=-3×4-(-3)×2 4-2 = -12+6 2 =-3. 答案:-3 2.如图是函数y =f (x )的图象,则:

相关文档
相关文档 最新文档