文档库 最新最全的文档下载
当前位置:文档库 › 电流环带宽

电流环带宽

电流环带宽
电流环带宽

电流环带宽

伺服的采样周期:对速度环、位置环而言,是对编码器采样;对电流环而言,是对霍尔元件或者电流互感器采样,循环时间和响应时间均为伺服运动控制能力的指标。

伺服循环时间指PID计算循环时间,也是伺服设定值循环时间。此处伺服设定值指伺服通过采样,经过PID计算后给出的设定值,而不是指上位发给伺服的设定值,通常上位设定值周期大于伺服PID计算设定值周期。

带宽:频带宽度简称,由系统频率响应特性来规定,反映伺服系统的跟踪的快速性。带宽越大,好。当伺服系统(通常以速度闭环来举例)速度环给定一个正弦波信号,则电机的速度也应以正弦规律变化。保持给定正弦波的幅值,逐渐提高正弦波的频率,电机速度的变化也会加高频率。当给定频率提高到一定程度,通常是几十赫兹时,响应正弦波的相位发生滞后,幅度下降3db,这一点的给定频率就是响应带宽,这是伺服的一个重要指标,它表征系统的响应速度、抗扰动的能力,也极大地影响静态指标。

在网上查的数据,拿到样本后会更新。

伦茨伺服有如下数据:

转矩环循环周期:62.5us,动态响应时间1ms

速度环循环周期:250us,动态响应时间6-20ms/1000rpm

位置环循环周期:250us

包米勒伺服有如下数据:

转矩环循环周期:125us,

速度环循环周期:125us,

位置环循环周期:125us,

未给出动态响应时间。

安川伺服:

速度响应特性为400Hz,这个概念值指在电机转子惯量和负载惯量相同的条件下,速度达到稳态后(一般测试为额定速度)对电机速度加入扰动值使之偏离稳态值10%(这个百分比记不大清了),扰动撤消后系统自动恢复到设定值(也就是额定值)的时间长短,400HZ意味着每秒能做400次,单次响应时间就是为2.5ms。

三菱伺服电机:

MR-J3的速度环频率响应高达900Hz。

MR-J2S的速度环频率响应高达550Hz。

欧姆龙伺服电机:

伺服频率特性为250HZ的高速度响应特性。

松下伺服电机:

速度环频率响应高达500Hz。

先摘一段我国国标的叙述:

驱动器输入正弦波转速指令,其幅值为额定转速指令的0.01倍,频率由1Hz逐渐升高,记录电动机对应的转速曲线。随着指令正弦波频率的提高,电动机转速的波形曲线对指令正弦波曲线的相位之后逐渐增大,而幅值逐渐减小。相位滞后增大至90度时的频率作为伺服系统90度相移的频带宽度,幅值减小至0.707的频率作为伺服系统-3dB的频带宽度。

首先,DB 是一个纯计数单位:dB = 10logX。dB的意义其实再简单不过了,就是把一个很大(后面跟一长串0的)或者很小(前面有一长串0的)的数比较简短地表示出来。如:X = 1000000000000000(多少个了?)= 10logX = 150 dB

X = 0.000000000000001 = 10logX = -150 dB

dB是一个表征相对值的值,当考虑甲的功率相比于乙功率大或小多少个dB时,按下面计算公式:10lg(甲功率/乙功率)

[例1] 甲功率比乙功率大一倍,那么10lg(甲功率/乙功率)=10lg2=3dB。也就是说,甲的功率比乙的功率大3 dB。

[例2] 7/8 英寸GSM900馈线的100米传输损耗约为3.9dB。

[例3] 如果甲的功率为46dBm,乙的功率为40dBm,则可以说,甲比乙大6 dB。

[例4] 如果甲天线为12dBd,乙天线为14dBd,可以说甲比乙小2 dB。

端口带宽限制

6.3.4 端口带宽限制 网络传输速率变慢的主要原因,往往是某些用户对网络的滥用。当使用MRTG等流量监控软件检测到流量来源于某个端口时,可以在核心交换机、汇聚交换机,甚至接入交换机上,对相应的端口作必要的处理,限制其传输带宽,从而限制每个用户所允许的最大流量,以便使其他网络用户能够恢复正常的网络应用服务。 第一步:进入全配置模式。 Switch# config terminal 第二步:指定欲配置的接口。 Switch(config)# interface interface-id 第三步:配置端口带宽控制。其中,input/output表明在输入和输出方向应用该带宽限制,通常情况下,应当进行双向限制。access-group acl-index用于定义使用该带宽限制的访问列表。bps用于定义限制带宽,以bps为单位,并采用8 kbps的增量。burst-normal用于定义所允许的普通突发速率,burst-max用于定义所允许的最大突发速率。conform-action conform-action用于指定在规定最大带宽时所执行的操作,通常为transmit,即允许发送。exceed-action exceed-action则用于指定在规定最大带宽时所执行的操作,通常为drop,即丢弃。 Switch(config-if)# rate-limit {input | output} [access-group acl-index] bps burst-normal burst-max conform-action conform-action exceed-action exceed-action 第四步:返回特权配置模式。 Switch(config-if)# end 第五步:显示并校验该接口当前的配置。 Switch# show interface interface-id 第六步:保存带宽限制配置。 Switch# copy running-config startup-config 例如,若欲限制GigabitEthernet4/4带宽为128 kbps,当连接的普通突发速率、最大突发在8 kBytes(即64 kbps)9 kBytes(即72 kbps)范围内时,所执行的操作是transmit(传

电压环与电流环设计

控制电路设计 一、电流环的设计 电流环的设计核心是控制主电路上电感电流的平均值,使它处于稳定状态,根据主电路与设计思路得电流控制环的系统框图如下: 其中Vcv 为电压环的输出电压(即系统的参考电压),Vs 为锯齿波的幅值,IL 为电感上的电流,K1为采样的放大倍数。设置PI 为单零点—单极点补偿网络。如下图所示: 因为系统的开关频率为100KHZ ,为了避免开关频率对控制环路的影响,穿越频率fci 必须远远小于开关频率,当然为了对系统动态响应的速度,我们希望fci 越大越好,在一般的开关电源中,fci 都小于开关频率的1/10,此处我们设置为开关频率的1/10,即10KHZ 。补偿网络的传递函数为:211111()R C S G s R C S += , 由系统框图可以得系统的开环传递函数为:21211(1)11()1S R C S G S K R C S V SL +=, 式中:Vs=5V ;L=15uH; K1=1/100; S=jw;代入上式,当fci=10KHz 时,2()G S =1,令补偿零点角频率1211w R C = 在fci/2处,即1211w R C ==5KHz ,经计算得11R C =62.710-?,21R C =4210-?,所以21 R R =74,令1R =1K ,得2R =74K ,1C = nf, 代入得开环传递函数为:2245000()/10 S G S S -+= ,经MATLAB 画出BODE 图如下: 从上图可以看出,在(1/2)fci 频率处,开环传递函数的斜率由-40dB 变成-20dB ,可以达到较快的动态响应,由于传递函数以-20dB 的斜率穿越0dB

锁相环电路

手机射频部分的关键电路----锁相环电路 锁相坏电路是一种用来消除频率误差为目的反馈控制电路,目前市场销售的手机基本上都是采用这种电路来控制射频电路中的压控振荡器。使其输出准确稳定的振荡频率。如锁相坏(PLL)电路出现故障将导致本振的频率输出不准确,则导致手机无信号。 目前通信终端设备中对频率的稳定采用的是频率合成CSYN技术。频率合成的基本方法有三种:第一种直接频率合成;第二种锁相频率合成(PLL);第三种直接数字频率合成(DDS)。由于锁相频率合成技术在电路设计方面(简单),成本方面控制灵敏度方面,频谱纯净度方面等。都要胜于直接频率合成,与直接数字频率合成。所以被移动通信终端设备广范采用。它在手机电路中的作用是控制压控振荡器输出的频率,相位与基准信号的频率,相位保持同步。 锁相坏电路的构成与工作原理: 1、构成:它是由鉴相器(PD)低通滤波器(LPF) 压控振荡器(VCO)三部分组成。 鉴相器:它是一个相位比较器。基准频率信号和压控振荡器输出的取样频率在其内部 进行相位比较,输出误差电压。 低通滤波器:是将鉴相器输出的锁相电压进行滤波,滤除电流中的干扰和高频成分。得到一个纯净的直流控制电压。 压控振荡器:产生手机所要的某一高频频率。 (注:SYNEN、SYNCLK、SYNDATA来自CPU控制分频器,对本振信号进行N次分频)。 当VCO产生手机所须的某一高频频率。一路去混频管,另一路反馈给锁相环,中的分频器进行N次分频。在这里为什么要进行N次分频呢?首先要说明一下基准频率与VCO振荡取样频率在鉴相要满足3个条件。 ①频率相同。②幅度相同。③相位不同。为了满足鉴相条件,所以在电路中设置了分 频器。VCO振荡频率取样信号送入分频器完成N次分频后,得到一个与基准频率相位不同,但频率

带宽与宽带的区别

带宽又叫频宽是指在固定的时间可传输的资料数量,亦即在传输管道中可以传递数据的能力。在数字设备中,频宽通常以bps表示,即每秒可传输之位数。在模拟设备中,频宽通常以每秒传送周期或赫兹Hertz (Hz)来表示。频宽对基本输出入系统(BIOS ) 设备尤其重要,如快速磁盘驱动器会受低频宽的总线所阻碍。单位时间内能够在线路上传送的数据量,常用的单位是bps(bit per second)计算机网络的带宽是指网络可通过的最高数据率,即每秒多少比特。 宽带一般是以目前拨号上网速率的上限56Kbps为分界,将56Kbps及其以下的接入称为“窄带”,之上的接入方式则归类于“宽带”。宽带目前还没有一个公认的定义,从一般的角度理解,它是能够满足人们感观所能感受到的各种媒体在网络上传输所需要的带宽,因此它也是一个动态的、发展的概念。目前的宽带对家庭用户而言是指传输速率超过1M,可以满足语音、图像等大量信息传递的需求。 包括:光纤,xDSL(ADSl,HDSL),ISDN(严格来说不算是宽带) 通俗的说:宽带是指上网方式。相对于电话拨号窄带来说的。带宽指上网的速度,每秒能达到上下行多少Mbit.比如说一兆带宽的adsl宽带。 最后我们来看看我们的网友是如何理解宽带与带宽的区别的。带宽:最初表示某个信号所具有的频带宽度,既信号的频率范围,单位是Hz,kHz等。由于很长一段时间内通信线路都用来传诵模拟信号,因此带宽就表示通信线路所允许信号的频率范围,当线路传诵数字信号时,人门将带宽与最大传输速率做同义语,尽管这种做法不太严格,因为数字信号的一个波形表示一个位,而频率是单位时间内所发送的波形个数,所以频率(带宽)可表示单位时间内传送的位:bit/s。 宽带:它是一种传输技术,而我门一般只了解它的速度相对基带比较高就行了,就像楼上说的大于56kb/s就算是宽带。

4-20mA电流环、电压电流转换芯片方案比较

4-20mA电流输出芯片比较 Precision Voltage-to-Current Converter/Transmitter NAME XTR110 XTR111 SUPPLY RANGE to 40V7V to 44V NONLINEARITY%% INPUT0V to +5V, 0V to +10V0 to 12V OUTPUT 0mA to 20mA, 5mA to 25mA Outputs Other Ranges 0mA–20mA, 4mA–20mA, 5mA–25mA AND VOLTAGE OUTPUTS Output Current Equation I O = 10 [(Vref In/16) + (VIN1/4) + (VIN2/2)] /RSPAN I O = 10 × Vvin/Rset PROBABLE PRICE 90元10元

XTR110应用电路 XTR111内部没有提供将0V输入转换成4mA输出的电路,最常用的方法是采用两个电阻网 络连接参考电压和输入信号进行分压输入 XTR111 应用电路

4-20mA CURRENT TRANSMITTER with Sensor Excitation and Linearization NAME XTR105XTR112XTR114 SUPPLY RANGE to 36V PRECISION CURRENT SOURCES INPUT EXCITATION2- OR 3-WIRE RTD OPERATION Output Current Equation IO = VIN (40/RG) + 4mA, VIN in Volts, RG in Input Offset V oltage VCM = 2V PROBABLE PRICE25元50元60元 XTR105/XTR112/XTR114原理图

伺服电机速度环、位置环、扭矩环的控制原理

运动伺服一般都是三环控制系统,从内到外依次是电流环、速度环、位置环。 1、电流环:电流环的输入是速度环PID调节后的那个输出,电流环的输入值和 电流环的反馈值进行比较后的差值在电流环内做PID调节输出给电机,“电流环的输出”就是电机的每相的相电流,“电流环的反馈”不是编码器的反馈而是在驱动器内部安装在每相的霍尔元件(磁场感应变为电流电压信号)反馈给电流环的。电流环就是控制电机转矩的,所以在转矩模式下驱动器的运算最小,动态响应最快。任何模式都必须使用电流环,电流环是控制的根本,在系统进行速度和位置控制的同时系统也在进行电流/转矩的控制以达到对速度和位置的相应控制。 2、速度环:速度环的输入就是位置环PID调节后的输出以及位置设定的前馈 值,速度环输入值和速度环反馈值进行比较后的差值在速度环做PID调节(主要是比例增益和积分处理)后输出到电流环。速度环的反馈来自于编码器的反馈后的值经过“速度运算器”得到的。速度环控制包含了速度环和电流环。 3、位置环:位置环的输入就是外部的脉冲,外部的脉冲经过平滑滤波处理和 电子齿轮计算后作为“位置环的设定”,位置环输入值和来自编码器反馈的脉冲信号经过偏差计数器的计算后的数值在经过位置环的PID调节(比例增益调节,无积分微分调节)后输出和位置给定的前馈值的和构成速度环的给定。位置环的反馈也来自于编码器。位置控制模式下系统进行了3个环的运算,系统运算量大,动态响应速度最慢。

编码器安装于伺服电机尾部,它和电流环没有任何联系,他采样来自于电机的转动而不是电机电流,和电流环的输入、输出、反馈没有任何联系。而电流环是在驱动器内部形成的,即使没有电机,只要在每相上安装模拟负载(例如电灯泡)电流环就能形成反馈工作。 三种控制模式 位置控制:通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的数量来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。应用领域如数控机床、印刷机械等等。 速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加了整个系统的定位精度。 转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。 PID各自对差值调节对系统的影响: 1、单独的P(比例)就是将差值进行成比例的运算,它的显著特点就是有差调节,有差的意义就是调节过程结束后,被调量不可能与设定值准确相等,它们之间一定有残差,残差具体值您可以通过比例关系计算出。增加比例将会有效减小残差并增加系统响应,但容易导致系统激烈震荡甚至不稳定。

完整版锁相环工作原理.doc

基本组成和锁相环电路 1、频率合成器电路 频率合成器组成: 频率合成器电路为本机收发电路的频率源,产生接收第一本机信号源和发射电路的发射 信号源,发射信号源主要由锁相环和VCO 电路直接产生。如图3-4 所示。 在现在的移动通信终端中,用于射频前端上下变频的本振源(LO ),在射频电路中起着非常 重要的作用。本振源通常是由锁相环电路(Phase-Locked Loop )来实现。 2.锁相环: 它广泛应用于广播通信、频率合成、自动控制及时钟同步等技术领域 3.锁相环基本原理: 锁相环包含三个主要的部分:⑴鉴相器(或相位比较器,记为PD 或 PC):是完成相位比较的单元, 用来比较输入信号和基准信号的之间的相位.它的输出电压正比于两个输入信号之相位差.⑵低通滤波器(LPF): 是个线性电路,其作用是滤除鉴相器输出电压中的高频分量,起平滑滤波的 作用 .通常由电阻、电容或电感等组成,有时也包含运算放大器。⑶压控振荡器(VCO ):振

荡频率受控制电压控制的振荡器,而振荡频率与控制电压之间成线性关系。在PLL 中,压控振荡器实际上是把控制电压转换为相位。 1、压控振荡器的输出经过采集并分频; 2、和基准信号同时输入鉴相器; 3、鉴相器通过比较上述两个信号的频率差,然后输出一个直流脉冲电压; 4、控制 VCO ,使它的频率改变; 5、这样经过一个很短的时间,VCO的输出就会稳定于某一期望值。 锁相环电路是一种相位负反馈系统。一个完整的锁相环电路是由晶振、鉴相器、R 分频器、N 分频器、压控振荡器(VCO )、低通滤波器(LFP)构成,并留有数据控制接口。 锁相环电路的工作原理是:在控制接口对R 分频器和N 分频器完成参数配置后。晶振产生 的参考频率( Fref)经 R 分频后输入到鉴相器,同时VCO 的输出频率( Fout)也经 N 分频后输入到鉴相器,鉴相器对这两个信号进行相位比较,将比较的相位差以电压或电流的方式 输出,并通过 LFP 滤波,加到 VCO 的调制端,从而控制 VCO 的输出频率,使鉴相器两输入端的 输入频率相等。 锁相环电路的计算公式见公式: Fout=(N/R)Fref 由公式可见,只要合理设置数值N 和 R,就可以通过锁相环电路产生所需要的高频信号。 4.锁相环芯片 锁相环的基准频率为13MHz ,通过内部固定数字频率分频器生成5KHz 或 6.25KHz 的参考频率。 VCO 振荡频率通过IC1 内部的可编程分频器分频后,与基准频率进行相位比较,产 生误差控制信号,去控制VCO,改变VCO的振荡频率,从而使VCO输出的频率满足要求。如图 3-5 所示。 N=F VCO /F R N:分频次数 F VCO: VCO 振荡频率

各种带宽概念详解,适合初学者

?什么是带宽? ? 在各类电子设备和元器件中,我们都可以接触到带宽的概念,例如我们熟知的显示器的带宽,内存的带宽,总线的带宽和网络的带宽等等;对这些设备而言,带宽是一个 非常重要的指标.不过容易让人迷惑的是,在显示器中它的单位是MHz,这是一个频率 的概念;而在总线和内存中的单位则是GB/s,相当于数据传输率的概念;而在通讯领域, 带宽的描述单位又变成了MHz,GHz……这两种不同单位的带宽表达的是同一个内涵么 二者存在哪些方面的联系呢本文就带你走入精彩的带宽世界. 一, 带宽的两种概念 第一种如果从电子电路角度出发,带宽(Bandwidth)本意指的是电子电路中存在一个固有通频带,这个概念或许比较抽象,我们有必要作进一步解释.大家都知道,各类复杂 的电子电路无一例外都存在电感,电容或相当功能的储能元件,即使没有采用现成的电 感线圈或电容,导线自身就是一个电感,而导线与导线之间,导线与地之间便可以组成 电容——这就是通常所说的杂散电容或分布电容;不管是哪种类型的电容,电感,都会 对信号起着阻滞作用从而消耗信号能量,严重的话会影响信号品质.这种效应与交流电 信号的频率成正比关系,当频率高到一定程度,令信号难以保持稳定时,整个电子电路 自然就无法正常工作.为此,电子学上就提出了"带宽"的概念,它指的是电路可以保 持稳定工作的频率范围.而属于该体系的有显示器带宽,通讯/网络中的带宽等等. 而第二种带宽的概念大家也许会更熟悉,它所指的其实是数据传输率,譬如内存带宽,总线带宽,网络带宽等等,都是以"字节/秒"为单位.我们不清楚从什么时候起 这些数据传输率的概念被称为"带宽",但因业界与公众都接受了这种说法,代表数据 传输率的带宽概念非常流行,尽管它与电子电路中"带宽"的本意相差很远. 区别:对于电子电路中的带宽,决定因素在于电路设计.它主要是由高频放大部分元件的特性决定,而高频电路的设计是比较困难的部分,成本也比普通电路要高很多.这部分 内容涉及到电路设计的知识,对此我们就不做深入的分析.而对于总线,内存中的带宽, 决定其数值的主要因素在于工作频率和位宽,在这两个领域,带宽等于工作频率与位宽 的乘积,因此带宽和工作频率,位宽两个指标成正比.不过工作频率或位宽并不能无限制提高,它们受到很多因素的制约。 我们会在接下来的总线,内存部分对其作专门论述. 二, 总线中的带宽 在计算机系统中,总线的作用就好比是人体中的神经系统,它承担的是所有数据传输的职责,而各个子系统间都必须籍由总线才能通讯,例如,CPU和北桥间有前端总线, 北桥与显卡间为AGP总线,芯片组间有南北桥总线,各类扩展设备通过PCI,PCI-X总 线与系统连接;主机与外部设备的连接也是通过总线进行,如目前流行的USB 2.0, IEEE1394总线等等,一句话,在一部计算机系统内,所有数据交换的需求都必须通过总 线来实现! 按照工作模式不同,总线可分为两种类型,一种是并行总线,它在同一时刻可以传输多位数据,好比是一条允许多辆车并排开的宽敞道路,而且它还有双向单向之分;另 一种为串行总线,它在同一时刻只能传输一个数据,好比只容许一辆车行走的狭窄道路, 数据必须一个接一个传输,看起来仿佛一个长长的数据串,故称为"串行". 并行总线和串行总线的描述参数存在一定差别.对并行总线来说,描述的性能参数 有以下三个:总线宽度,时钟频率,数据传输频率.其中,总线宽度就是该总线可同时

电流环接口介绍

电流环接口介绍 电流环通信接口也称为电流回路通信接口,是用回路中的有无电流来表示二进制代码“1”和“0”,常见于兰吉尔B型表、部分兰吉尔D表和部分ABB表,在国产电表中很少使用。具体电气参数见下表:电流发送(TX)接收 (RX)“0”,无回路电流≤2.5mA≤3mA “1”, 20mA回路电流≥11mA≥9mA 压降发送(TX)接收 (RX)1,20mA回路电流, ≤2V≤3V MARK 工作状态下最大开路电压30V直流 电流环接口分为半双工(两线)和全双工(四线)两种,通信电流由抄表设备提供,电表侧无源。现场使用四线电流环的电表比较少,下面介绍两线电流环的接线和检修。 电表和终端的接线: 回路中电流为直流电流,因此要按照标注的极性接线。费率装置表示电表,HHU表示抄表设备。 在现场如果遇到两块以上这样的电表,可以采用将电表串联的方式接线: 电流环接口出现硬件故障比较容易判断,只需要仔细观察并借助于万用表进行简单测量就能够找到故障位置。下面以我们新联公司的 XL01终端中的两线电流环为例,说说不能抄表时的检测步骤: 1、确保主站下发的抄表参数正确,如果抄表接口板上有跳线设置,

要保证设置正确。 2、观察抄表发射指示灯,看终端能否正常启动抄表。不能启动则为 终端故障。 3、如果抄表接收指示灯常常,则说明电流回路没有构成。将终端上 的电流环输出端子短路,启动抄表,这时候抄表发射、接收指示灯应该同时闪烁,否则是终端故障。 4、在电表侧短路接线,启动抄表,接收/发射指示灯同时亮,否则 是接线有问题。 5、接好线后测量电表通信借口上的电压,对应电表上的极性,应该 有小于3V的电压(见前面表格中的接收压降)。如果电压高,则是电表坏,电压极性不正确则是接线反。

飞思卡尔锁相环

备战飞思卡尔智能车大赛.开始模块总结. 锁相环设置. 公式: PLLCLK=2*OSCCLK*(SYNR+1)/(REFDV+1), fbus=PLLCLK/2 void INIT_PLL(void) { CLKSEL &= 0x7f; //选用外部时钟.准备设置锁相环 PLLCTL &= 0x8F; //禁止锁相环 SYNR = 0xc9; //设置SYNR REFDV = 0x81; //设置REFDV PLLCTL |=0x70; //锁相环使能 asm NOP; asm NOP; //两个机器周期缓冲时间 while(!(CRGFLG&0x08)); //等待锁相环锁定 CLKSEL |= 0x80; //设置锁相环为时钟源 } 飞思卡尔XS128的PLL锁相环详细设置说明——关于如何提高总线工作频率PLL锁相环就相当于超频单片机超频的原因和PC机是个一道理。分频的主要原因是外设需要的工作频率往往远低于CPU/MEMORY这也和PC机南北桥的原理类似。总线频率设置过程 1、禁止总中断 2、寄存器CLKSEL(时钟选择寄存器)的第七位置0即CLKSEL_PLLSEL=0。选择时钟源为外部晶振OSCCLK(外接晶振频率)在PLL(锁相环)程序执行前内部总线频率为OSCCLK/2 3. PLLCTL_PLLON=1 打开PLL 4.设置SYNR时钟合成寄存器、REFDV时钟分频寄存器、POSTDIV三个寄存器的参数 5、_asm(nop) _asm(nop);加入两条空指令使锁相环稳定 6、while(!(CRGFLG_LOCK==1));//时钟校正同步 7、CLKSEL_PLLSEL=1; 下面详细说一下频率的计算一、时钟合成寄存器SYNR寄存器结构VCOFRQ[1:0]控制压控振动器VCO的增益默认值为00VCO的频率与VCOFRQ[1:0]对应表

电流环速度环位置环

电流环速度环位置环 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

电流环是以电流信号作为反馈信号的控制环节。 速度环是以速度信号作为反馈信号的控制环节。 位置环是以位置信号作为反馈信号的控制环节。 电流环为最内环,在数控机床的伺服系统中它主要起到提高系统的机械特性的作用。其反馈元件一般为电流互感器。 速度环在电流环外面,在数控机床的伺服系统中它主要起到控制转速的作用。其反馈元件一般为模拟测速机或编码器。 位置环在速度环的外面,在数控机床上就是数控系统的位置控制单元。其反馈元件一般为编码器、光栅尺、感应同步器、旋转变压器等。 数控的驱动由电流环,速度环和位置环组成的,其优化一般由里及外层层优化,但由于电流环的参数在电机和功率模块的型号确定后用厂家的默认参数即可,一般不需要优化,故优化时先优化速度环,再优化位置环即可. 速度环的优化,一般涉及到速度环增益和速度环时间常数,速度环时间常数越大和增益越低,速度环越稳定,但精度和动态特性越差,一般来说,速度环时间常数设在10ms左右,而速度环增益调整在使速度环的阶约响应有20-40的超调.

位置环的优化涉及到位置环增益和加速度,调整时先可以减少加速度值,再增加位置环增益值,保证系统稳定,然后在适当增加加速度值,使之适应机床的机械特性,注意同一组的插补轴的位置环增益要一致,否则会影响加工精度 电流环和速度环属于伺服控制系统的内部双闭环控制。 位置环为数控机床位置控制环,通过数控系统和伺服系统共同控制,使伺服轴运动到数控系统指定的坐标,并在数控系统的屏幕上显示坐标值。 先将电流内环调稳,再调速度外环。 “电流在一个小的范围震荡,电机在低速时有一定振颤”——这个震荡误差带是多大小范围的震荡是允许的。 有几句口诀可以供你调试参考: PID常用口诀:参数整定找最佳,从小到大顺序查,先是比例后积分, 最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾, 比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长, 积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,

频谱分析仪中频带宽的设计

频谱分析仪中频带宽的设计 作者:何高楼、陈爽单位:中国电子科技集团公司第四十一研究所、电子测试技术国家重点实验室转载:国外电子测量技术发布时间:2008-01-15 引言 大多数接收机的中频频率是固定的,并在此频率上设计带通滤波器来抑制干扰、提高接收灵敏度。在某些宽带接收机中,中频的带宽需要根据实际应用情况进行调节,如多速率的宽带通信系统等,带宽必须和码元速率相匹配,过大或过小都会对接收机的性能产生很大的影响。频谱分析仪也不例外,只不过要求更高,中频带宽滤波器的设计直接关系到整机动态范围、频率分辩率、解调带宽以及功率测量准确度等关键技术指标。 1 设计原理 在某些特定的情况下,采用开关切换的方法是一种简洁而且适用的方法,但这只适用于带宽变化不多的场合下,比如4-5个以下。随着带宽数量的增加,这种方法就不再适用,其带来的最直接结果是电路变得异常庞大和复杂。 图1 同步调谐滤波器

频谱分析仪需要的中频带宽可能从几赫兹到几兆赫兹连续变化[2]。对于这些需求,采用程控带宽滤波器是比较简洁而且经济的方法。对于程控带宽滤波器来说,同步调谐滤波器是一种比较理想的解决方法。如图1所示:它由多级中心频率和Q值相等的谐振回路组成。各级之间通过FET高阻放大器缓冲隔离。单级的带宽由下式给出[1]: 通过改变串联电阻Rs可以降低整个谐振回路的Q值,从而改变带宽,它通常由PIN二极管构成。 这种电路结构有许多优点:调节方便;容许各级间的轻微不平衡;具有良好的脉冲响应特性;群时延变化较小;另外,这种拓扑结构的总Q值大于单级的Q值。 级联后的总带宽可用级联公式计算如下[1]: 式中,n为谐振回路的级数,为n级谐振后的电路总带宽,为单级谐振回路的带宽;如果采用4级级联谐振回路,通过式(2)可以算出单级带宽为总带宽的2.3倍。

无线路由器IP带宽控制设置步骤

无线路由器IP带宽控制设置步骤 @iefx 1、获取每台连接到此路由器的设备的MAC地址 进入“无线设置”——“主机状态”。可看到所有正在连接到此无线路由器的设备,每行对应一台设备,第二列即是设备的MAC地址。 至于要如何分清楚哪个MAC地址到底是哪个设备的,有一个低端的办法是让设备逐个与路由器断开或连接,自然可以知道哪个对应哪个。一台硬件对应的MAC地址只有一个并且永远不变。 2、导入静态ARP。 这里的IP地址为路由器自动给每台正在连接到路由器的设备分配的内部私有IP地址,一般默认为“192.168.1.*”的形式。 进入“IP与MAC绑定”——“ARP映射表”,根据MAC地址找到你想控制带宽的设备,在“配置”那一列点击“导入”。

若目标设备暂时不在这个映射表中,进入“IP与MAC绑定”——“静态ARP绑定设置”,找到“增加单个条目”,填写目标设备的MAC地址和你自己任意指定给的IP地址(形式为“192.168.1.*”,“*”一般为100到255的其中一个数字,注意不要与已有IP地址重复。)。 3、进行IP地址与MAC地址绑定。 在“IP与MAC绑定”——“静态ARP绑定设置”中,ARP绑定选择“启用”;根据MAC地址勾选目标设备的“绑定”那一栏,即IP地址与MAC地址绑定成功。 这时候,目标设备就不仅有与它对应的MAC地址,而且还有与它对应的IP地址了。

4、开启IP带宽控制 进入“IP带宽控制”——“控制设置”,勾选“开启IP带宽控制”。 (笔者认为上下行总带宽可以填适当超过实际总带宽的数值,例如2M的ADSL宽带可以填3000Kbps。) 5、设置IP带宽控制。 进入“IP带宽控制”——“控制规则”,点击“添加新条目”。勾选“启用”,地址段填写“步骤3” 中与目标设备绑定好了的IP地址。若添加的是单独一台设备,地址段的两个空都填入相同的目标设备IP地址,带宽控制是对单个设备进行限制;若添加的是IP连续的几台设备,填入它们的IP地址范围,带宽控制是以这几台设备作为一个小组单位进行统一限制。推荐使用前者。 “端口段”和“协议”保持默认值。 上行是上传数据的速度,下行是下载数据的速度。一般我们会更看重下行速度。 在这里你就可以填入对目标设备的带宽设定值了。“最小带宽”决定了理想网速下数据传输最慢的速度;“最大带宽”决定了理想网速下数据传输最快的速度。一般来说这里所标的每8Kbps成比例对应我们平常见到的网速的每1KB/S。例如设置了下行最大带宽为“800Kbps”,此时目标设备即使开着迅雷下大量文件,最大下载总速度也只能达到100KB/S左右哈哈哈哈哈哈。

电流环设计

(1)确定时间常数 1)整流装置滞后时间常数s T 。按表2-2,三相桥式电路的平均失控时间s T =0.0017s 。 2)电流滤波时间常数oi T 。三相桥式电路每个波头的时间是3.3ms ,为了基本滤平波头,应有(1~2)oi T =3.33ms ,因此取oi T =2ms=0.002s 。 3)电流环小时间常数之和i T ∑。按小时间常数近似出黎,取∑i T =s T +oi T =0.0037s 。 (2)选择电流调节器结构 根据设计要求i σ≤5%,并保证稳态电流误差,可按典型Ⅰ型系统设计电流调节器。电流环控制对象是双惯性型的,因此可用PI 型电流调节器,其传递函数见式(3-48)。 检查对电源电压的抗扰性能:i l T T ∑≈0.0037 0.03≈8.11,参看表3-2的典型Ⅰ型系统动态抗扰性能,各项指标都是可以接受的。 (3)计算电流调节器参数 电流调节器超前时间常数:s T l 03.0i ==τ。 电流环开环增益:要求i σ≤5%是,按表3-1,应取i I T K ∑=0.5,因此 1-i I 135.10.0037 0.5T 0.5K s ≈== ∑ 于是,ACR 的比例系数为 1.5350.044 360.60.03135.1K R K K s i I i ≈???== βτ (4)校验近似条件 电流环截止频率:-1I ci 135.1s K ==ω 1)校验晶闸管整流装置传递函数的近似条件 ci ω>≈?=1-1-s 196.1s s 0.0017313T 1 满足近似条件 2)校验忽略反电动势变化对电流环动态影像的条件 ci l m s s T ω<≈??=--1136.9203 .022.013T 13 满足近似条件

电流环控制原理分析

电流环控制原理分析 电流环是使电机以恒定的电流运转,以产生恒定的加速力矩。这对于转动惯量大的电机来说比较重要,它可以使电机一直以固定的电流驱动电机运转,驱动电流不会因为转速的升高下降。 ?要进行电流控制,首先必须时刻监控电机工作电流,因此电流传感器是伺服系统中的一个重要元件,它的精度和动态性能直接影响着系统的低速性能和快速性。电流检测的方法有电阻检测、光耦检测等各种不同的检测方法,本系统采用磁平衡原理实现的霍尔元件检测电流的方法,检测电源母线电路电流。采用的元器件为霍尔效应磁场补偿式电流传感器,此器件被国际上推荐为电力电子线路中的关键电流检测器件。它把磁放大器、互感器、霍尔元件和电子线路的思想集成一体,具有测量、反馈、保护的三重功能。实际是有源电流互感器,它最巧妙的构思是“磁场补偿”。被测量的原边磁场同测量绕组里的测量磁动势,时时补偿为零。即铁心里面实际没有磁通,因而其体积可以做得很小,而不用担心铁心饱和,也不用担心频率、谐波的影响。它的磁动势能补偿原理是利用霍尔效应的作用,当二者磁动势能不平衡时,霍尔元件上会产生磁动势,此磁动势作为以±15Y外加电源供电的差分放大器的输入信号,放大器的输出电流即为传感器的测量电流,自动迅速地恢复磁动势平衡,即霍尔输出总保持为零。这样,测量电流的波形忠实地反映了原边被测电流的波形,其大小只是一个匝比的关系。 ?具体说来,霍尔效应磁场补偿式电流传感器具有以下优点: ?它克服了传统的电流取样元件受规定频率、规定波形的限制及不适应功率变频发展,波形常不标准的缺点。它响应频率的带宽为0~100kHz,对任何波形,特别是含有直流分量的信号都可以迅速响应,符合电力电子技术,包

路由器IP带宽控制功能设置

路由器IP带宽控制功能设置 时间:2009-05-06 11:58来源:未知作者:admin 点击:510次 宽带路由器的使用让我们节省了宽带费用,但由于是共享环境,同一条线路下面,某人正在高速的从互联网下载电影,而他的邻居连网页也无法打开。这种带宽分配的不公平给许多人带来了困扰。如何合理、公平的利用带宽? TP-LINK 部分SOHO 路由器升级了 IP 带宽控 宽带路由器的使用让我们节省了宽带费用,但由于是共享环境,同一条线路下面,某人正在高速的从互联网下载电影,而他的邻居连网页也无法打开。这种带宽分配的不公平给许多人带来了困扰。如何合理、公平的利用带宽?TP-LINK部分SOHO路由器升级了“IP带宽控制功能”,提供多种带宽分配方案,灵活配置,对于多户共享宽带的环境非常实用。下面我们就来简单介绍一下IP带宽控制功能的配置使用。 1、登录路由器管理界面后,可以在左边看到IP带宽控制菜单,点击打开出现 如图1,在这里您可以针对不同用户的IP地址设置不同的模式和带宽大小。 2、首先是勾选上面的开启IP带宽控制,下面才可以具体进行设置。在选择宽 带线路类型及填写带宽大小时,请根据实际申请的带宽业务进行选择和填写,如不清楚,请咨询您的带宽提供商(如电信、网通等)。如:您申请的是电 信2M ADSL,需要选择线路类型“ADSL”,带宽大小填入2000即可。 注意:您申请的带宽大小,必须如实填写。如果填写的值与实际不符,IP带宽控制效果可能会受到很大影响,功效会大打折扣。 图片1 3、 保障最小带宽(推荐方案):受该条规则限制的IP地址(或IP地址段)的 带宽总和至少可以达到此值,最大不受限制。此模式最大限度的充分利用带宽资源。带宽大小的设置一般=总带宽/ 电脑台数。如图2,假设2M ADSL线路上有四台PC,那么每台电脑可获得的带宽是2000/4=500K。该模式可以让电脑在线路繁忙时最少可以获取500K带宽,体现了公平原则;在线路空闲时可以充分利用带宽,体现了合理原则。

PLL(锁相环)电路原理及设计 [收藏]

PLL(锁相环)电路原理及设计[收藏] PLL(锁相环)电路原理及设计 在通信机等所使用的振荡电路,其所要求的频率范围要广,且频率的稳定度要高。无论多好的LC振荡电路,其频率的稳定度,都无法与晶体振荡电路比较。但是,晶体振荡器除了可以使用数字电路分频以外,其频率几乎无法改变。如果采用PLL(锁相环)(相位锁栓回路,PhaseLockedLoop)技术,除了可以得到较广的振荡频率范围以外,其频率的稳定度也很高。此一技术常使用于收音机,电视机的调谐电路上,以及CD唱盘上的电路。 一PLL(锁相环)电路的基本构成 PLL(锁相环)电路的概要 图1所示的为PLL(锁相环)电路的基本方块图。此所使用的基准信号为稳定度很高的晶体振荡电路信号。 此一电路的中心为相位此较器。相位比较器可以将基准信号与VCO (Voltage Controlled Oscillator……电压控制振荡器)的相位比较。如果此两个信号之间有相位差存在时,便会产生相位误差信号输出。 (将VCO的振荡频率与基准频率比较,利用反馈电路的控制,使两者的频率为一致。) 利用此一误差信号,可以控制VCO的振荡频率,使VCO的相位与基准信号的相位(也即是频率)成为一致。 PLL(锁相环)可以使高频率振荡器的频率与基准频率的整数倍的频率相一致。由于,基准振荡器大多为使用晶体振荡器,因此,高频率振荡器的频率稳定度可以与晶体振荡器相比美。 只要是基准频率的整数倍,便可以得到各种频率的输出。 从图1的PLL(锁相环)基本构成中,可以知道其是由VCO,相位比较器,基准频率振荡器,回路滤波器所构成。在此,假设基准振荡器的频率为fr,VCO的频率为fo。 在此一电路中,假设frgt;fo时,也即是VC0的振荡频率fo比fr低时。此时的相位比较器的输出PD 会如图2所示,产生正脉波信号,使VCO的振荡器频率提高。相反地,如果frlt;fo时,会产生负脉波信号。

存储带宽设计

第一章存储和带宽设计 1.1 存储容量计算 1.标清D1(720×576)格式 存储要求:单路图像按2M码流计算,图像保存30天。 单路存储一天的容量计算=【2M×3600(秒)×24(小时)×1(路数)×1(天数)】/【8×1024】=21GB 单路存储30天的的容量计算=21GB×30(天数)=630GB 2.高清720P(1280×720)格式 存储要求:单路图像按2M码流计算,图像保存30天。 单路存储一天的容量计算=【2M×3600(秒)×24(小时)×1(路数)×1(天数)】/【8×1024】=21GB 单路存储30天的的容量计算=21GB×30(天数)=630GB 3.高清1080P(1920×1080)格式 存储要求:单路图像按4M码流计算,图像保存30天。 单路存储一天的容量计算=【4M×3600(秒)×24(小时)×1(路数)×1(天数)】/【8×1024】=42GB 单路存储30天的的容量计算=42GB×30(天数)=1260GB 1.2数据存放 存储设备通常会选用IP SAN、磁盘阵列、NVR等设备,所有前端捕获的数据(录像、图片等)通过网络传送至指挥中心,保存的同时可能连接至大屏(电视墙)观看路口情况。主要数据容量计算方法如下: 监控:以12Mbps单路视频图像码流为例,视频图像分辨率为1080P 25帧,视频图像变化运动率保持在70%左右,计算图像存储容量如下:12Mbps×70%=8600000比特/秒,8600000比特/秒÷8(8bit=1KB)÷1024=1050KB/秒,每小时容量=3600秒×1050KB/秒=3780000KB/秒=3322.2MB/小时,每路图像一天容量=24H×3322.3MB/小时=88593MB/天=86.4GB/天,所以1080P格式录像文件所需容量=86.4G×N

XTR115电流环电路原理及应用

XTR115电流环电路原理及应用 在各种数据采集与监控中通常用一个仪表放大器来完成信号的调理,但是工业现场进行长线传输时,往往会产生以下问题:1)由于传输的信号是电压信号,传输线会受到噪声的干扰;2)传输线的分布电阻会产生电压降;3)现场无法提供仪表放大器的工作电压。为了解决上述问题并避开相关噪声的影响,通常用电流来传输信号,这是因为电流对噪声并不敏感。4~20 mA的电流环便是用4 mA表示零信号,用20 mA表示信号的满刻度,而将低于4 mA 和高于20 mA的信号用作各种故障的报警。电流环电路,根据转换原理的不同可划分成以下两种类型:一种是电压/电流转换器,亦称电流环发生器,它能将输入电压转换成4~20 mA的电流信号(典型产品有1B21,1B22,AD693,AD694,XTR115和XTR116);另一种属于电流/电压转换器,也叫电流环接收器(典型产品为RCV420),上述产品可满足不同用户的需要。电流环电路,根据器件位置的不同又可划分成以下两种类型:两线制和三线制。当监控系统需要通过长线驱动现场的驱动器件(如阀门等)时,一般采用三线制变送器,这里,电流环器件位于监控的系统端,由系统直接向电流环器件供电,供电电源是二根电流传输线以外的第三根线。两线系统是电流环器件和传感器位于现场端,由于现场供电问题的存在,一般是接收端利用4~20 mA的电流环向远端的电流环器件供电,通过4~20 mA来反映信号的大小。 XTR系列是美国BB(BURR-BROWN)公司生产的精密电流变送器,该公司现已并入美国Texas Instruments公司。该系列产品包括XTR101,XTR10 5,XTR106,XTR110,XTR115和XTR116共6种型号。其特点是能完成电压/电流(或电流/电流)转换,适配各种传感器构成测试系统、工业过程控制系统、电子秤重仪等。其中,XTR115和XTR116能够满足工业测量标准的两线4~20 mA电流环电路,该电路设计巧妙、使用方便、超低静态电流,非常适合于变送器等典型工业测量应用之中。本文针对两线的XTR115电流环电路的工作原理和典型应用展开详细讨论,可为4~20 mA电流环电路的使用提供有益参考。1 XTR115的性能特点 XTR115具有如下性能特点: 1)XTR115属于二线制电流变送器,内部的2.5 V基准电压可作为传感器的激励源。XTR115可将传感器产生的40~200μA弱电流信号放大100倍,获得4~20 mA的标准输出。当环路电流接近32 mA时能自动限流。如果在3脚与5脚之间并联一只电阻,就可以改变限流值。 2)芯片中增加了+5 V精密稳压器,其输出电压精度为±0.05%,电压温度系数仅为20x10-6/℃,可给外部电路(例如前置放大器)单独供电,从而简化了外部电源的设计。 3)精度高,非线性误差小。转换精度可达±0.05%,非线性误差仅为±0.003%。 4)环路电源电压的允许范围宽为7.5~36 V。XTR115由环路电源供电。工作温度范围是-40~+85℃。 5)专门设计了功率管接口,适配外部NPN型功率晶体管,它与内部输出晶体管并联后可降低芯片的功耗。2 XTR115的工作原理 XTR115和XTR116用SO-8小型化封装,其结构组成及原理图,XTR115和XTR116内部电路主要由3部分组成。 第一部分是电流环电路的核心部分,它是由内部的运算放器A1、电阻RIN、R1、R2、Rlim 和外接晶体三极管T1组成。第二部分是电源调整电路,它提供传感器部分的外围电路工作电源和参考电压。第三部分是由电阻Ra、Rb、Rlim和晶体三极管TO组成保护电路,以防止输出电流过大或上电过程中的过冲脉冲损坏芯片。为了叙述方便,摘出电流环电路部分。 图2电路中,信号电压施加在VIN和VG之间,VG相当于传感器部分的参考点。根据运算放大器的基本原理,运算放大器的两个输入端电压基本相等,流入运算放大器输入端的电流基本为零。可知:此时的I0只是信号变化部分的电流,它的变化范围是0~16 mA,对应到I3是0~160μA,可以根据这一电流和输入信号的电压幅度决定输入电阻RIN;要

相关文档
相关文档 最新文档