文档库 最新最全的文档下载
当前位置:文档库 › 承台模板设计计算书

承台模板设计计算书

承台模板设计计算书
承台模板设计计算书

承台模板设计计算书

1 工程简介

面板采用15mm厚木胶板(平面尺寸3150×1220mm),竖向内楞为50×100mm 方木,竖向内楞外设横向外楞,外楞为双拼φ48×3mm钢管,对拉螺杆采用φ16mm 拉杆,用M16螺栓固定。模板立面图如下图1.2-1所示。

图1-1 承台模板设计图

2 设计相关参数选定

2.1 计算目的

对承台模板强度、刚度进行计算,确保承台施工时处在安全状态,混凝土施工质量符合要求,保证施工人员安全。

2.2 计算范围

本计算书适用于林岳车辆段与综合基地C区承台混凝土浇筑施工。

2.3 参考资料

(1)林岳车辆段与综合基地现有设计图纸;

(2)《建筑结构荷载规范》 GB 50009-2012;

(3)《建筑施工模板安全技术规范》 JGJ 162-2008;

(4)《混凝土结构设计规范》GB 50010-2010;

(5)《路桥施工计算手册》

2.4 主要控制参数

(1)模板采用15mm 厚木胶板,按照《建筑施工模板安全技术规范》表A.5.2进行取值,抗弯强度设计值[f m ]=22MPa ,弹性模量E=10×103 MPa ;

(2)φ48×3mm 扣件式钢管截面特性:I =1.078×105mm 4,W =4.493×103mm 3,E =2.1×105MPa ,f =215MPa ;

(3)竖肋采用方木,按照《路桥施工计算手册》表8-6进行取值,抗弯强度设计值[σw ]=13MPa ,弹性模量E=10×103 MPa ;

(4)按照《建筑施工模板安全技术规范》中4.4.1节变形值的规定;对于结构表面隐蔽的模板,最大变形值为构件计算跨度的1/250。

2.5 设计技术参数及相关荷载大小选定

2.5.1 荷载类型

恒载:

新浇筑混凝土作用于模板的最大侧压力标准值(G 4k ),可按下列公式计算,并取其中的较小值:

2

1

21022.0V t F c ββγ= 式1 H F c γ= 式2 式中:

c γ为混凝土的重力密度,取3/26m kN ;

V 为混凝土的浇注速度,取1m/h ; t 0为新浇混凝土的初凝时间,取5h ;

β1为外加剂影响修正系数,混凝土不掺缓凝剂,取值1.0;

β2为混凝土坍落度影响修正系数,墩柱混凝土的坍落度为160mm-180mm ,参照规范取值1.15;

H 为混凝土侧压力计算位置处至新浇混凝土顶面的总高度; 因此,

式1结果为F=0.22×26×5×1.0×1.15×11/2=32.89kN/m 2;

式2结果为F=26×3.15=81.9kN/m 2。

故G 4k = 32.89kN/m 2,则有效压头高度h=F/γC =1.26m 。 可变荷载:

按照《建筑施工模板安全技术规范》 JGJ162-2008中表4.1.2的要求,计算过程中只需考虑倾倒混凝土对垂直面模板产生的水平荷载标准值,由于采用泵送浇筑混凝土,故23/2m kN Q k 。 2.5.2 工况分析

承台高度为3.15m ,最快完成时间为3h ,即混凝土浇筑完成后首批料仍未进入初凝阶段,此时的结构为最不利工况,计算该工况下对模板强度、刚度进行计算。

2.5.3 工况及荷载组合

根据《建筑施工模板安全技术规范》的要求,工况及荷载组合如表 2.5-1所示。

表2.5-1 支架荷载组合表

水平荷载q =1.2×32.89+1.4×2=42.27kN/㎡。 2.5.4 计算方法

本次计算主要采用手算方式进行。

3 模板设计计算

3.1 面板计算

承台模板面板采用δ=15mm 木胶板,按支撑于竖向背肋的三跨连续梁计算。模板体系竖楞采用50mm×100mm 的方木,方木中心间距300mm ,模板宽度取3150mm ,作用于模板线荷载为:

q 1=ql=3.15×42.27=133.15kN/m 截面抵抗矩:W=6

1bh 2

=3150×152/6=118125mm 3; 惯性矩I=

12

1bh 3

=3150×153/12=885937.5mm 4; (1)模板强度验算:

根据《路桥施工计算手册》查得最大弯矩系数为0.1 弯矩Mmax=0.1q 1l 2=0.1×133.15×3002=12×105N ·mm

σ=M max /W=12×105/118125=10.15MPa <[f m ]=22MPa ,符合要求。 (2)模板挠度验算:

《路桥施工计算手册》查得其挠度系数为f1=0.677,故挠度计算结果如下: W=f1*ql 4/100EI=0.677×133.15×3004/(100×10×103×885937.5)mm =0.82mm<300/250=1.2mm (满足要求)

3.2 背肋计算

背肋采用50×100方木,背肋方木所受侧压力为42.27kPa 。按支撑于外楞的三跨连续梁计算,外楞最大间距为650mm 。作用于方木的线荷载:q 2=47.27×0.3=12.68kN/m 。

背肋截面特性为: 截面抵抗矩:W=6

1bh 2

=50×1002/6=83333.3mm 3; 惯性矩:I=

12

1bh 3

=100×503/12=1041666.6mm 4; 外楞采用双排钢管横向布设,间距按照最大间距650mm 计算。

(1)背肋强度验算:

根据《路桥施工计算手册》查得最大弯矩系数为0.1 弯矩M max =0.1q 2l 2=0.1×12.68×6502=5.35×105N ·mm

σ=Mmax/W=5.35×105/83333.3=6.4MPa <[σw ]=13MPa ,符合要求。 (2)背肋刚度验算:

《路桥施工计算手册》查得其挠度系数为f 1=0.677,故挠度计算结果如下:

2.6mm 650/2501.5mm 1041666.6

101010065012.680.6771003

4

=<=?????==EI ql f 41ω,满足要求。

3.3 外楞计算

拉杆布置间距800mm,根据《路桥计算手册》查表13-4得双拼φ48×3mm 钢管:W=4.493×103×2=8986mm3,I=10.783×104×2=21.566×104mm4,E=2.1×105MPa,f=215MPa。线荷载q

3

=42.27×0.65=27.46kN/m

(1)外楞强度验算:

根据《路桥施工计算手册》查得最大弯矩系数为0.1

弯矩M

max =0.1q

3

l2=0.1×27.46×8002=17.69×105N·mm

σ=M max/W=17.69×105/8986=196.86MPa<[f]=215MPa,符合要求。

(2)外楞刚度验算:

《路桥施工计算手册》查得其挠度系数为f1=0.677,故挠度计算结果如下: W=f1*ql4/100EI=0.677×27.46×8004/(100×2.1×105×21.566×104)mm=1.67mm<800/250=3.2mm满足要求

3.4 拉杆计算

拉杆按照横向间距为800mm,竖向间距650mm布置,拉杆承受的拉力为:P=F·A=42.27×0.8×0.65=21.9kN

式中:P—拉杆承受的拉力;

F—混凝土的侧压力(N/m2),计算为42.27kN/m2;

A—拉杆分担的受荷面积(m2),其值为A=a×b;

a—拉杆的横向间距(m);

b—拉杆的竖向间距(m)。

查《路桥施工计算手册》表8-28,选用M16对拉螺栓或5.4mm钢绞线,其容许拉力为24.5kN>21.9kN,符合要求。

4 计算结果汇总

承台模板计算结果汇总如表4-1所示。

表4-1 承台模板计算结果汇总表

5 结论

通过对承台模板结构强度、刚度的计算,该模板体系安全可靠,能满足要求。

柱下独立承台计算书

2柱下独立承台: CT-2 2.1工程名称:工程一 2.2基本资料 2.2.1承台类型:二桩承台,圆桩直径 d = 500mm,按桩承载力自动计算 2.2.2桩中心距 S a= 1500mm,承台边距 S b= 500mm,承台边缘至桩中心距离 S c= 500mm 2.2.3承台根部高度 H = 1100mm,承台端部高度 h = 1100mm 2.2.4柱截面高度 h c= 600mm (X 方向),柱截面宽度 b c= 600mm (Y 方向) 2.2.5单桩竖向承载力特征值 R a= 1400kN,桩中心最小间距为 1.5m,3d (d -- 圆桩直径或方桩边长) 2.2.6混凝土强度等级为 C30, f c= 14.331N/mm2, f t= 1.433N/mm2 2.2.7钢筋抗拉强度设计值 f y= 360N/mm2;纵筋合力点至截面近边边缘的距离 a s= 110mm 2.2.8纵筋的最小配筋率ρmin= 0.15% 2.2.9永久荷载的分项系数,对由可变荷载效应控制的组合,取γG= 1.2,对由永久荷载效应控制的组合,取γG= 1.35 2.2.10承台自重及承台上的土重 基础混凝土的容重γc= 26kN/m3;基础顶面以上土的重度γs= 18kN/m3, 顶面上覆土厚度 d s= 1m a = 2S c + S a= 2*500+1500 = 2500mm; b = 2S b= 2*500 = 1000mm 承台底部底面积 A b= a·b = 2.5*1 = 2.5m2 承台体积 V c= A b·H = 2.5*1.1 = 2.75m3 承台自重标准值 G k"=γc·V c= 26*2.75 = 71.5kN 承台上的土重标准值 G k' =γs·(A b - b c·h c)·d s= 18*(2.5-0.6*0.6)*1 = 38.5kN 承台自重及其上土自重标准值 G k= G k" + G k' = 71.5+38.5 = 110.0kN 基础自重及其上的土重的基本组合值 G =γG·G k 对由可变荷载效应控制的组合,取 G = 1.20*110 = 132.0kN; 对由永久荷载效应控制的组合,取 G = 1.35*110 = 148.5kN 2.2.11圆桩换算截面边宽 b p= 0.8d = 0.8*500 = 400mm 2.2.12设计时执行的规范: 《混凝土结构设计规范》(GB 50010-2010),以下简称"混凝土规范" 《建筑桩基技术规范》(JGJ 94-2008),以下简称"桩基规范" 《钢筋混凝土承台设计规程》(CECS 88:97),以下简称"承台规程" 2.3基础底面控制内力 N k、F k ---- 相应于荷载效应标准组合时,作用于基础顶面的竖向力值(kN); V xk、V yk -- 相应于荷载效应标准组合时,作用于基础顶面的剪力值(kN); M xk'、M yk'-- 相应于荷载效应标准组合时,作用于基础顶面的弯矩值(kN·m); M xk、M yk --- 相应于荷载效应标准组合时,作用于基础底面的弯矩值(kN·m); M xk= M xk' - V yk·H、 M yk= M yk' + V xk·H N、F---- 相应于荷载效应基本组合时,作用于基础顶面的竖向力值(kN); V x'、V y'-- 相应于荷载效应基本组合时,作用于基础顶面的剪力值(kN); M x'、M y'-- 相应于荷载效应基本组合时,作用于基础顶面的弯矩值(kN·m); M x、M y ---- 相应于荷载效应基本组合时,作用于基础底面的弯矩值(kN·m); M x= M x' - V y·H、 M y= M y' + V x·H 2.3.1相应于荷载效应标准组合时,基础底面控制内力 2.3.1.1柱号: 0、N kmax、无地震作用组合 N k= 2690.0; M xk' = 0.0,M yk' = 0.0; V xk= 0.0,V yk= 0.0 F k= 2690.0; M xk= 0.0,M yk= 0.0 2.3.2相应于荷载效应基本组合时,基础底面控制内力 2.3.2.1柱号: 0、D con、无地震作用组合 N = 3631.5; M x' = 0.0,M y' = 0.0; V x= 0.0,V y= 0.0 F = 3631.5; M x= 0.0,M y= 0.0 2.4相应于荷载效应标准组合时,轴心荷载作用下任一单桩的竖向力 Q k= (F k + G k) / n (桩基规范式 5.1.1-1) 2.4.1柱号: 0、N kmax、无地震作用组合 Q k= (2690+110)/2 = 1400.0kN ≤ R a= 1400kN 2.5相应于荷载效应基本组合时,不计承台及其上填土自重,单桩平均净反力 N j= F / n 2.5.1柱号: 0、D con、无地震作用组合 N j= 3631.5/2 = 1815.7kN 2.6柱对承台的冲切计算 F l≤ 2[β0x(b c + a0y) + β0y·(h c + a0x)]·βhp·f t·h0(桩基规范式 5.9.7-4) 2.6.1 X 方向上从柱边至桩边的水平距离: a0x= 0.5S a - 0.5(b p + h c) = 750-0.5*(400+600) = 250mm λ0x= a0x / h0= 250/(1100-110) = 0.2525 β0x= 0.84 / (λ0x + 0.2) = 0.84/(0.2525+0.2) = 1.8563 2.6.2 a0y= S b - 0.5b c= 500+0.5*600 = 200mm ≤ H0,故不需要验算该冲切锥体。 2.7角桩对承台的冲切计算 承台受角桩冲切的承载力可按桩基规范式 5.9.7-4 推导出下列公式进行计算:

承台模板计算书

承台模板计算书

承台模板计算书 1、编制依据及规范标准 1.1、编制依据 (1)、现行施工方案 (2)、地质勘查报告 (3)、现行施工安全技术标准 (5)、公路施工手册《桥涵》(人民交通出版社2000.10) 1.2、规范标准 (1)、公路桥涵设计通用规范(JTGD60-2004) (2)、钢结构及木结构设计规范(JTJ 025-86) 2、工程概况 桥梁全长 m ,桥梁全宽 m ,共有承台4座。全桥承台钢筋用量为 t ,C15砼用量为 m 3,C30砼用量为 m 3 。 3、方案综述 承台模板采用竹胶板施工,竖肋采用50×100mm 方木,承台尺寸: 17.8×6.2×2.0m ;模板采用分块吊装组拼就位的方法施工。根据模板重量选择合适的起吊设备立模、拆模。 4、结构计算 4.1、荷载计算 当混凝土的浇筑速度在6m/h 以下时,新浇筑的普通混凝土作用于模板的最大侧压力可按下式计算,通过比较,一般取计算值较小者; 混凝土侧压力根据公式: Pmax=0.2221 210γv k k t Pmax=γ×h Pmax =0.22×24×5×1×1.15×22 1 =43 kpa Pmax =24×2=48 kpa 式中: Pmax-新浇筑混凝土对模板的最大侧压力(kpa ); h -有效压头高度(m ); ν –混凝土的浇筑速度(m/h );

0t -新浇混凝土的初凝时间(h ); γ-混凝土的体密度(KN/m3); K1-外加剂影响修正系数,不参加外加剂时取1.0,掺缓凝作用的外加剂时取1.2; K2-混凝土坍落度影响修正系数,当坍落度小于30mm 时,取0.85; 50-90mm 时,取1.0;110-150mm 时,取1.15; H-混凝土灌注层(在水泥初凝时间以内)的高度(m )。 倾倒混凝土时产生的水平荷载: P1=2.0 KPa (查桥梁施工常用技术手册) 振捣混凝土时产生的水平荷载: P1=4.0 KPa (查桥梁施工常用技术手册) 荷载组合: P=1.2×43+1.4×(2.0+4.0)=60 KN/m 2 4.2、承台面板计算 面板为受弯结构,需验算其抗弯强度及刚度。 面板采用δ=18mm 厚竹胶板, 竖肋间距0.3m ,横肋间距0.6m ,取1m 板宽按三跨连续梁进行计算。 材料力学性能参数及指标 3 32 2 105418 10006161W mm bh ?=??== 4 5 3 3 1086.418100012 1121mm bh I ?=??= = Α =b ×h=1000×18=180002 mm 结构计算 a 、强度计算 σ= w M = 3 6 10 *5410*54.0=10Mpa<[σ]=45Mpa ,符合要求。 b 、刚度计算 f= 128EI ql 4 =0.002mm<300/250=1.2mm ,符合要求。 4.3、竖肋计算

墙模板计算书

墙模板计算书 齐家工程;工程建设地点:;属于结构;地上0层;地下0层;建筑高度:0m;标准层层高:0m ;总建筑面积:0平方米;总工期:0天。 本工程由投资建设,设计,地质勘察,监理,组织施工;由担任项目经理,担任技术负责人。 墙模板的计算参照《建筑结构荷载规范》(GB 50009-2001)、《混凝土结构设计规范》(GB50010-2002)、《钢结构设计规范》(GB 50017-2003)等规范。 墙模板的背部支撑由两层龙骨(木楞或钢楞)组成:直接支撑模板的为次龙骨,即内龙骨;用以支撑内层龙骨的为主龙骨,即外龙骨。组装墙体模板时,通过穿墙螺栓将墙体两侧模板拉结,每个穿墙螺栓成为主龙骨的支点。 根据《建筑施工手册》,当采用溜槽、串筒或导管时,倾倒混凝土产生的荷载标准值为2.00kN/m2; 墙模板的总计算高度(m):H=3.00;模板在高度方向分 2 段进行设计计算。 第1段(墙底至墙身高度1.50米位置;分段高度为1.50米): 一、参数信息 1.基本参数 次楞间距(mm):150;穿墙螺栓水平间距(mm):450; 主楞间距(mm):450;穿墙螺栓竖向间距(mm):450; 对拉螺栓直径(mm):M14; 2.主楞信息 主楞材料:圆钢管;主楞合并根数:2; 直径(mm):48.00;壁厚(mm):2.50; 3.次楞信息 次楞材料:木方;次楞合并根数:2; 宽度(mm):60.00;高度(mm):80.00; 4.面板参数

面板类型:胶合面板;面板厚度(mm):14.00; 面板弹性模量(N/mm2):6000.00;面板抗弯强度设计值f c(N/mm2):13.00; 面板抗剪强度设计值(N/mm2):1.50; 5.木方和钢楞 方木抗弯强度设计值f c(N/mm2):13.00;方木弹性模量E(N/mm2):9000.00; 方木抗剪强度设计值f t(N/mm2):1.50; 钢楞弹性模量E(N/mm2):206000.00;钢楞抗弯强度设计值fc(N/mm2):205.00; 墙模板设计简图 二、墙模板荷载标准值计算 按《施工手册》,新浇混凝土作用于模板的最大侧压力,按下列公式计算,并取其中的较小值: F=0.22γtβ1β2V1/2 F=γH 其中γ -- 混凝土的重力密度,取24.000kN/m3; t -- 新浇混凝土的初凝时间,取2.000h; T -- 混凝土的入模温度,取20.000℃; V -- 混凝土的浇筑速度,取1.500m/h; H -- 模板计算高度,取1.500m; β1-- 外加剂影响修正系数,取1.200;

钢模板、拉杆l螺栓及模板连接螺栓计算

计算书 本工程施工所用模板主要用在箱涵的侧墙和顶板及桥墩和桥台,采用大模板可大大节省模板材料,加快施工进度。 一、新浇混凝土对模板侧面的压力计算 在进行侧模板及支承结构的力学计算和构造设计时,常需计算新浇混凝土对模板侧面的压力。混凝土作用于模板的压力,一般随混凝土的浇筑高度而增加,当浇筑高度达到某一临界值时,侧压力就不再增加,此时的侧压力即为新浇混凝土的最大侧压力。侧压力达到最大值的浇筑高度称为混凝土的有效压头。 采用内部振捣器,当混凝土浇筑速度在6.0m/小时以下时,新浇混凝土作用于模板的最大侧压力,可按以下二式计算,并取二式中的较小值。 P m=4+1500K SKwV1/3 /(T+30)(3-1)P m=25H(3-2)式中:Pm——新浇混凝土的最大侧压力(KN/m2); T——混凝土的入模温度(oC); H——混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m);K S——混凝土坍落度影响修正系数。当坍落度为50~90mm时取1.0,为110~150mm时取1.15; K W——外加剂影响修正系数。不掺外加剂时取1.0,掺有缓凝作用的外加剂时取1.2; V——混凝土的浇筑速度(m/h)。

已知混凝土每环最大为4m,采用坍落度为120mm的普通混凝土,浇筑速度为0.25m/h,浇注入模温度为30oC,则作用于模板的最大侧压力及有效压头高度为: 查表得:K S=1.15,K W=1.2 由公式(3-1),P m=4+1500×1.15×1.2×(1.2)1/3 /(30+30)=40.7 KN/m2由公式(3-2),P m=25×2=50KN/m2 取较小值,故最大侧压力为40.7KN/m2 。有效压头高度为:h=40.7/25=1.628m。 二、模板拉杆、螺栓计算 1、拉杆及栏杆上螺栓 模板拉杆用于连接内、外两组模板,保持内、外两组模板的间距,承受混凝土侧压力和其它荷载,使模板有足够的刚度和强度。本工程模板拉杆采用对拉螺栓,采用Φ16精轧螺纹钢制作。其计算公式为: F=P mA 式中:F——模板拉杆承受的拉力(N); P m——混凝土的侧压力(N/m2

基础承台钢筋计算

1)基础承台: 底板钢筋长度=底板边长-2×保护层 根数=板底另一边边长-2min(75mm,s/2)(注:取小值)÷s(注钢筋间距)-1 Kg/m=长度×0.00617×b2 2)注:单柱独立柱基础边长≥2.5m时,基础底板配筋,按0.9边长下料,交错布置。外侧钢筋长度=底板边长-2保护层 根数=2根(两边各一根钢筋) 其余钢筋长度=底板边长×0.9-保护层 或者底板边长-0.1底板边长-保护层 其余钢筋根数=底板另一侧长度-2min(75mm,S/2)/S-1 1

03G101图集计算 1)柱纵筋=柱净高+柱基础插筋+(柱顶)锚固长度2)柱基础插筋=基础高度-保护层+弯折长度 2

3)柱顶锚固:中柱:梁高-保护层(柱的)≥lae,则直锚, 直锚长度=梁高-保护层 梁高-保护层<lae时,则弯锚12d,弯锚长度=梁高-保护层+12d 边角柱:外侧钢筋=1.5lae 内侧钢筋同中柱 注:Lae=保护长度 3

柱箍筋根数: 1)加密段箍筋根数计算: 根数=加密段长度/加密间距+1【取max(本层净高,柱边长尺寸、500)】 2)非加密箍筋根数计算:根数=非加密段长度/非加密间距-1【取max(本层净高,柱边长尺寸、500)】 例子:(0.55+0.558)/0.1+1+(0.558/0.1+1)+(3.9-0.55-0.558×2/0.2-1) 梁+下部0.1加密区 + 下部加密区 +中间非加密区 4

柱和梁箍筋 2)箍筋长度(外围一圈长度)=(b-2×保护层+2d)×2+(h-2×保护层+2d)×2+1.9d ×2+2× max(75mm,10d)(注:取大值)03G规范计算。 箍筋长度(外围一圈长度)=(b-2×保护层)×2+(h-2×保护层)×2+1.9d×2+2×max(75mm,10d)(注:取大值)11G规范计算。 箍筋长度(里面一圈长度)=【(b(h)-2×保护层-D)/3×1+D+2D】×2+【h(b)-2×保护层+2d】×2+1.9d×2+2×max(10d,75) D—柱纵筋直径 d—箍筋直径 b—内侧钢筋箍宽 5

墙模板(组合式钢模板)计算书_20150716_101743984

墙模板(组合式钢模板)计算书计算依据: 1、《建筑施工模板安全技术规范》JGJ162-2008 2、《组合钢模板技术规范》GB 50214-2001 3、《混凝土结构设计规范》GB50010-2010 4、《建筑结构荷载规范》GB 50009-2012 5、《钢结构设计规范》GB 50017-2003 一、工程属性 新浇混凝土对模板的侧压力标准值G4k=min[0.22γc t0β1β2v1/2,γc H]=min[0.22×24×4×1×1×21/2,24×3.2]=min[29.87,76.8]=29.87kN/m2 承载能力极限状态设计值S承=0.9max[1.2G4k+1.4Q3k,1.35G4k+1.4×0.7Q3k]=0.9max [1.2×29.87+1.4×2,1.35×29.87+1.4×0.7×2]=0.9max[38.644,42.285]=0.9×42.285=38.056kN/m2 正常使用极限状态设计值S正=G4k=29.87 kN/m2 三、面板布置

模板设计立面图 四、面板验算 面板长向接缝方式为端缝齐平,根据《组合钢模板技术规范》GB50214,4.3.5和4. 4.4条,面板强度及挠度验算,宜以单块面板作验算对象。面板受力简图如下:

1、强度验算 q=0.95bS承=0.95×0.6×38.056=21.692kN/m 面板弯矩图(kN·m) M max=1.091kN·m σ=M max/W=1.091×106/21.1×103=51.724N/mm2≤[f]=205N/mm2 满足要求! 2、挠度验算 q=bS正=0.6×29.87=17.922kN/m 面板变形图(mm) ν=0.086mm≤[ν]=1.5mm 满足要求! 五、小梁验算

基础承台设计计算

、某五层钢筋混凝土框架结构,柱网尺寸 6m x 6m ,横向承重框架,柱截面 500mm x 500mm ,底层平面图及地质资料见附图。基础采用静压预制混凝土管桩,桩直径400mm , 桩 身混凝土强度等级为C60,承台混凝土强度等级为 C20,桩端进入持力层深度2d ,最小 桩距取3d ,各桩传至承台顶的内力(柱号:Z1,Z2 —— Fk=910,1500,Mk=110,40. ,Vk=50,22 , F=1152,1935, M=140,50, V=64,25,——单位符号除 Mk 、M 为 KN ? m ,其余的均为 KN ) 地质资料见附图。 附图: 11.00 淤泥质粉土 qsa=8kpa 15.40 粉质粘土 qsa=25kpa h=0.8Z3 F.39 % 56 r/p -—> 0.4 踣3/3 ?0.23 al1=373mm 23.C0 qpa=800Kpa 2.98m 等边三桩承台 粉细砂 qsa=24kpa Y al2=232mm H S=1.6

地质资料 【附:相似三角形: AH=0.46 + 0.23=0.69 AI ■由相似比得:少 AG AF 0.8/1.245=0.69/AF AF ^ 1.08 由厶 AED 相似于△ AGF 其中 AE=0.8 + 0.354/2=0.977 AE AF - aL2 .由相似比得: AG AF 0.977/1.245=(1.08-al2)/1.08 一、Z1基础设计计算: [解] (1) 确定桩端持力层 根据地质情况,初步选择粉质粘土层作为桩端持力层。 (2) 确定桩的类型、桩长和承台埋深 静压预制混凝土管桩,直径为 400mn 进入粉质粘土层2d=0.8m,初定承台高度为1.5m , 承 台顶距天然地面0.2m ,承台埋深1.5m 。 (3) 确定单桩竖向承载力特征值 Ra=qpaAp + 卩 p E qsiali = 〒 X 0.42 X 800+3.14 X 0.4 X (12 X 4+22X 2.1+24 X 4.9+8 X 4.4+25 X 0.8) =100.48+355.352=435.832KN (4) 估算桩数及初定承台面积 n=1.2 X Fk/Ra=1.2 X 910/435.832 ?2.51 取 3 根 因桩位静压预制混凝土管桩,所以取桩距 S=4d=1.6m 取等边三桩承台:如上图 承台面积为: ?0.5 X 2.59 X 2.98-0.267=3.6 m 2 (5) 桩基础验算 1) 单桩承载力验算 承台及上覆土重 Gk=20X 3.6 X 1.85=133.2KN 轴心竖向力作用下,桩顶承受的平均竖向力 Qk=(Fk + Gk)/n=(910 + 133.2)/3=347.73KN < Ra 满足要求 偏心竖向力作用下,桩顶承受的最大与最小竖向力 Qk=(Fk + Gk)/n 土 (Mxk X Yi)/ E Yi2 ± (Myk X Xi)/ E Xi2 =(910 + 133.2)/3 ± (110+50 X 1.5) X 0.8/2 X 0.82 △ AJH 相似于△ AGF 其中 AJ=0.8、AG=0.8 + 0.695-0.25=1.245 、 AH .al2=0.232 】

承台模板拉杆计算(100713)

一模板拉杆计算 1.1侧压力计算 模板主要承受混凝土侧压力,本工程砼一次最大浇筑高度为3.6米,模板高度为 3.65米。新浇筑混凝土作用于模板的最大侧压力取下列二式中的较小值: F=0.22γ c t β 1 β 2 V2 1 F=γ c H 式中 F—新浇筑混凝土对模板的最大侧压力(KN/m2); γ c —混凝土的重力密度,取24KN/m3; t —新浇混凝土的初凝时间,取10h; V—混凝土的浇灌速度,取0.48m/h; H—混凝土侧压力计算位置处至新浇混凝土顶面的总高度,取3.6m; β 1 —外加剂影响修正系数,取1.2; β 2 —混凝土坍落度影响修正系数,取1.15; 所以 F=0.22γ c t β 1 β 2 V2 1 =0.22×24×10×1.2×1.15×0.482 1 =50.4816KN/m2 F=γ c H =24×3.6 =86.4KN/m2 综上混凝土的最大侧压力F=50.48 KN/m2 有效压头高度为 h=F/γ c =50.48/24 =2.1034m 混凝土侧压力的计算分布图见下图:

q=50.48KN/m2 1.2对拉杆的强度的验算 φ16mm螺纹钢对拉杆承受的拉力为 P=F.A =50.48×1.2×1

=60.58kN 式中P—模板拉杆承受的拉力(kN); F—混凝土的侧压力(N/m2),计算为50.48kN/m2; A—模板拉杆分担的受荷面积(m2),其值为A=a×b; a—模板拉杆的横向间距(m); b—模板拉杆的纵向间距(m)。 对拉杆承受的拉应力为 σ=P/S =60.58×103/(3.14×82) =301MPa<[σ]=335 MPa 式中S—拉杆的截面积,πR2=2.01×10-4 m2。

天津模板设计方案-计算书

模板工程专项方案 一、工程概况 配料楼工程(包括FC1廊道、混合料转卸楼、FC2廊道),位于天津市大港区北围堤路炼油厂西侧天津耀皮玻璃有限公司厂区内,建筑面积建筑面积2576 m2,檐高37.85m。钢砼独立基础,埋深约为-6.5 m。主楼地下一层,地上四层,±0.00高程 3.85m,上海市机电设计研究院有限公司设计,上海三凯建设监理有限公司监理。 二、模板及支撑系统的支设材料选定 针对工程质量要求及文明施工目标的实现,为了确保混凝土的质量和美观,在材料上选用了18mm九合木胶板作为梁、柱、墙、板的模板,木档采用6×8cm松木方料,支架全部采用φ48-A3钢管。 三、模板安拆施工 A.模板安装前准备工作 a.模板拼装 模板组装要严格按照模板图尺寸拼装成整体,并控制模板的偏差在规范允许的范围内,拼装好模板后要求逐块检查其背楞是否符合模板设计,模板的编号与所用的部位是否一致。 b.模板的基准定位工作 首先引测建筑的边柱或者墙轴线,并以该轴线为起点,引出每条轴线,并根据轴线与施工图用墨线弹出模板的内线、边线以及外侧控制线,施工前5线必须到位,以便于模板的安装和校正。 c.标高测量 利用水准仪将建筑物水平标高根据实际要求,直接引测到模板的安装位置。 d.竖向模板的支设应根据模板支设图。 e.已经破损或者不符合模板设计图的零配件以及面板不得投入使用。 f.支模前对前一道工序的标高、尺寸预留孔等位置按设计图纸做好技术复核工作。 B.模板支设 1、地下室底板、承台、地梁 ①底板下翻,地梁及承台侧模全部采用砖胎模,为增强基坑边坡强度及稳定性,基槽土方开挖后,由施工员进行放线。外围梁的侧胎模厚为240mm,M5水泥砂浆砌筑。砌体砂浆饱满,以防止基坑外出现的渗水。

圆柱钢模计算书

直径1.4m圆柱计算书 1,基本情况 1.1该圆柱模高7.8米,直径1.4米。采用混凝土泵车下灰,浇注混凝土速度3m/h,混凝土入模温度约 25℃,采用定型钢模板:面板采用6mm钢板;横肋采用厚12mm,宽100 mm的圆弧肋板,间距400mm; 竖肋采用普通10#槽钢,间距353mm, 2.荷载计算 2.1混凝土侧压力 (1)新浇混凝土侧压力计算公式为下式中的较小值: 其中c——混凝土的重力密度,取24.000kN/m3; t ——新浇混凝土的初凝时间,为0时(表示无资料)取200/(T+15),取5.000h; T ——混凝土的入模温度,取25.000℃; V ——混凝土的浇筑速度,取3.000m/h; H ——混凝土侧压力计算位置处至新浇混凝土顶面总高度,取 7.800m; 1——外加剂影响修正系数,取1.200; 2——混凝土坍落度影响修正系数,取1.150。 根据公式计算的新浇混凝土侧压力标准值 F1=63.100kN/m2 考虑结构的重要性系数0.9,实际计算中采用新浇混凝土侧压力标准值F1=0.9×63.100=56.790kN/m2 考虑结构的重要性系数0.9,倒混凝土时产生的荷载标准值 F2=0.9×3.000=2.700kN/m2。 (2)进行荷载组合 F′=56.790+2.700= 59.49KN/㎡ 3板面计算:圆弧模板在混凝土浇注时产生的侧压力有横肋承担,在刚度计算中与与平模板相似。 3.1计算简图

3.2挠度计算 按照三边固结一边简支计算,取10mm宽的板条作为计算单元,荷载为q=0.0595*10=0.595N/mm 根据lX/lY=0.9,查表得 ωmax=0.00258ql4/k k=Eh3b/12(1-v2)=206000*63*10/12*(1-0.3*0.3)=40750000 V-钢的泊桑比=0.3 ωmax=0.57 mm≤[ω]=1/400=0.883 mm 故满足要求 4竖肋计算 4.1计算简图: 竖肋采用10#槽钢间距353 mm,因竖肋与横肋焊接,故按两端固定梁计算,面

基础工程承台计算

4.7 承台计算 4.7.1 承台底面单桩竖向力设计值计算(图4-59) yd i d xd i id 2 2 i i M x F M y N n y x = ±± ∑∑ (4-87) 式中:id N ——第i 根桩的单桩竖向力设计值; d F ——由承台底面以上的作用(或荷载)产生的竖向力组合设计值; xd M 、yd M ——由承台底面以上的作用(或荷载)绕通过桩群形心的x 轴、y 轴的弯矩组合 设计值; n ——承台下面桩的根数; i x 、i y ——第i 排桩中心至y 轴、x 轴的距离。 4.7.2 承台下面外排桩中心距墩台身边缘大于承台高度时的计算 此时,其正截面(垂直于x 轴、y 轴的竖向截面)抗弯承载力可作为悬臂梁按“梁式体系”进行计算。 1 承台截面计算宽度 1)当桩中距不大于三倍桩边长或桩直径时,取承台全宽; 2)当桩中距大于三倍桩边长或桩直径时 s 23(1)b a D n =+- (4-88) 式中:s b ——承台截面计算宽度; a ——平行于计算截面的边桩中心距承台边缘距离; D ——桩边长或直径; n ——平行于计算截面的桩的根数。 2 承台计算截面弯矩设计值应按下列公式计算(图4-59) xcd id ci M N y =∑ (4-89) 图4-59 桩基承台计算 1-墩身;2-承台;3-桩;4-剪切破坏斜截面

ycd id ci M N x = ∑ (4-90) 式中:xcd M 、ycd M ——计算截面外侧各排桩竖向力产生的绕x 轴和y 轴在计算截面处的弯矩 组合设计值; id N ——计算截面外侧第i 排桩的竖向力设计值,取该排桩根数乘以该排桩中最大单桩竖向力设计值; ci x 、ci y ——垂直于y 轴和x 轴方向,自第i 排桩中心线至计算截面的距离。 4.7.3承台下面外排桩中心距墩台身边缘等于或小于承台高度时的计算 此时承台短悬臂可按“撑杆-系杆体系”计算撑杆的抗压承载力和系杆的抗拉承载力(图4-60)。 1 撑杆抗压承载力 可按下列规定计算 0id s cd,s D tb f γ≤ (4-91) cu,k cd,s cu,k 1 0.481.43304f f f ε= ≤+ (4-92) 2 id 1i s s ( 0.002)cot T A E εθ=+ (4-93) i a i sin cos t b h θθ=+ (4-94) a 6h s d =+ (4-95) 式中:id D ——撑杆压力设计值,包括1d 1d 1/sin D N θ=,2d 2d 2/sin D N θ=,其中1d N 和2d N 分 别为承台悬臂下面“1”排桩和“2”排桩内该排桩的根数乘以该排桩中最大单桩竖向力设计值,单桩竖向力按式(4-87)计算;按式(4-91)计算撑杆抗压承载力时,式中id D 取1d D 和2d D 两者较大者; cd,s f ——撑杆混凝土轴心抗压强度设计值; t ——撑杆计算高度; s b ——撑杆计算宽度,按前述有关正截面抗弯承载力计算时对计算宽度的规定; b ——桩的支撑宽度,方形截面桩取截面边长,圆形截面桩取直径的0.8倍; a )“撑杆-系杆”力系 b )撑杆计算高度 图4-60 承台按“撑杆-系杆体系”计算 1-墩台身;2-承台;3-桩;4-系杆钢筋

模板设计计算书(一)

模板设计计算书(一) 模板设计计算书(一)提要:计算底模承受的荷载:梁的底模设计要考虑四部分荷载,模板自重,新浇砼的重量,钢筋重量及振捣砼产生的荷载 模板设计计算书(一) 矩形梁模板和顶撑计算 梁长6.9米,截面尺寸为250*550mm,离地面高m,?梁底钢管顶撑间距为600mm,侧模板立档间距为600mm。木材用红松:fe=10N/mm2fv=/mm2 fm=13N/mm2 1.底板计算 底板计算 抗弯强度验算 计算底模承受的荷载:梁的底模设计要考虑四部分荷载,模板自重,新浇砼的重量,钢筋重量及振捣砼产生的荷载,均乘以分项系数,设底模厚度为4mm。 底模板自重 .2×5××=/m 砼荷重 .2×24××=/m 钢筋荷重

.2×××=/m 振捣砼荷载 .2××=/m 根据《砼结构工程施工及验收规范》的规定,设计荷载值要乘以V=?的折减系数,所以q=×=/m 验算底模抗弯承载力 底模下面顶撑间距为米,底模的计算简图是一个等跨的多跨连续梁,因为模板长度有限,一般可按四等跨连续梁计算,查静力计算表得: L= L= L= L= Mmax=-=-××=·m 按下列公式验算 Mmax/wn≤kfm Mmax/Wn=×106/﹛250/(6×402)﹜=/mm2 满足要求 抗剪强度验算 Vmax==××= Lmax=3Vmax/2bh=3××103/(2×250×40)=/mm2 Kfv=×=/mm2>/mm2

满足要求 挠度验算 验算挠度时,采用荷载标准值,且不考虑振捣砼的荷载 q’=++=/m wA=×q’l4/100EI=××6004/﹛100×9×103×(1/12)×250×403﹜=? 允许挠度为h/400=600/400=> 满足要求 2、侧模板计算 (1)侧压力计算,梁的侧模强度计算,?要考虑振捣砼时产生的荷载及新浇砼对模板侧面的压力,并乘以分项系数1.2。 采用内部振捣器时,新浇筑的普通砼作用于模板的最大侧压力:F=×24×200/20+15×1×1×(2)=/m2 F=24H=24×=/m2 选择二者之中较小者取F=/m2 振捣砼时产生的侧压力为4kN/m2 总侧压力q1==/m2 化为线荷载q=×=/m 验算抗弯强度 按四跨连续梁查表得: Mmax=-=-××=kn·m=- 钢模板静截面抵抗矩为

怎样计算桥墩钢模板

一、基本资料: 1. 基本尺寸 全钢模板,面板为h=5mm厚钢板;内模竖肋6.3号槽钢,背楞为10号双槽钢,横边框100×8mm钢板;外模竖肋10号槽钢,背楞为14号双槽钢,横边框100×12mm钢板模板;内外模之间对拉螺栓及外模角部斜螺栓直径30mm。模板平面图如图1所示。 图1 模板平面图 2. 材料的性能 根据《建筑结构荷载规范GB 50009-2001》和《建筑工程大模板技术规程JGJ 74-2003》的规定,暂取: 砼的重力密度:26 kN/m3;砼浇筑时温度:20℃;砼浇筑速度:2m/h;掺外加剂。 钢材取Q235钢,重力密度:78.5kN/m3;容许应力为215MPa,不考虑提高系数;弹性模量为206GPa。 根据《混凝土施工技术指南050729》D.0.1之规定,人员机具荷载取2.5kPa。风荷载取1kN/m2。 3. 计算荷载 对模板产生侧压力的荷载主要有三种: 1) 振动器产生的荷载:4.0 kN/m2;或倾倒混凝土产生的冲击荷载:4.0km/m2;二者不同时计算。 2) 新浇混凝土对模板的侧压力; 荷载组合为:强度检算:1+2;刚度检算:2 (不乘荷载分项系数) 当采用内部振捣器,混凝土的浇筑速度在6m/h以下时,新浇的普通混凝土作用于模板的最大侧压力可按下式计算(《桥梁施工工程师手册》P171杨文渊): (1) 当v/T<0.035时,h=0.22+24.9v/T; 当v/T>0.035时,h=1.53+3.8v/T; 式中:P——新浇混凝土对模板产生的最大侧压力(kPa); H——有效压头高度(m);

V——混凝土浇筑速度(m/h); T——混凝土入模时的温度(℃); ——混凝土的容重(kN/m3); K——外加剂影响修正系数,不掺外加剂时取k=1.0,掺缓凝作用的外加剂时k=1.2; 根据前述已知条件: 因为 v/T=2.0/20=0.1>0.035, 所以 h=1.53+3.8v/T=1.53+3.8×0.1=1.91m 最大侧压力为: =1.2×26×1.91=59.59kN/m2 检算强度时最大荷载设计值为: 1.2×59.59+1.4×4.0=77.91 kN/m2; 检算刚度时最大荷载标准值为: 59.59 kN/m2; 4. 检算标准 1) 强度要求满足钢结构设计规范; 2) 结构表面外露的模板,挠度为模板结构跨度的1/500; 3) 钢模板面板的变形为1.5mm; 4) 钢面板的钢楞、柱箍的变形为3.0mm; 二、模板整体检算 (一)计算模型 建立整体模型,进行检算,模型示意图如下: 图2 模型平面图

承台模板计算书

中铁一局集团有限公司 沪通铁路站前Ⅵ标 承台模板设计计算单 设计: 复核: 审核: 中铁一局集团有限公司 沪通铁路站前Ⅵ标项目部 2015年5月

目录 一、工程概况 (1) 二、编制依据 (1) 三、模板构造及主要技术条件 (1) 3.1 模板构造 (1) 四、计算参数 (1) 五、模板受力分析及载荷计算 (2) 六、模板力学计算 (3) 6.1模板检算 (3) 6.1.1面板检算 (3) 6.3 对拉杆螺栓检算 (9) 七、结论 (10)

一、工程概况 模板为沪通VI 标承台模板,本计算主要针对其承台模板的强度、刚度进行力学分析计算,以利于安全施工。 二、编制依据 1、《混凝土工程模板与支架技术》; 2、《路桥施工计算手册》(第一版); 3、《机械设计手册》(第四版); 4、《钢结构设计规范》(GB50017-2003); 5、《建筑结构荷载规范》(GB50009-2012); 6、《混凝土结构设计规范》(GB50010-2010); 7、《公路桥涵钢结构及木结构设计规范》(JJ025-86); 8、相关技术文件及图纸。 三、模板构造及主要技术条件 3.1 模板构造 模板采用6mm 厚的A3钢板,竖肋采用c10槽钢,间距0.4m 布置,背杠采用双c18槽钢,底顶部背杠均距离模板底顶0.5m 。水平方向每个1m 布置一组拉条,竖向设置两道拉条,距承台底0.3m 设置一道,承台顶设置一道,拉条采用直径20mm 的圆钢,螺帽采用双螺帽,。模板间采用20mm 的螺栓连接,最大浇筑高度3m 。 四、计算参数 (1)砼比重取值为:2.4t/m3; (2)钢材为Q235b 钢:重力密度3/5.78m N ,弹性模量为 MPa 5 101.2?; (3)强度设计值(GB50017—2003钢结构设计规范规定):[]215a MP σ=拉、压 []215a w MP σ= [] 125a MP τ=; (4)容许挠度[]f :结构表面外露的模板L/400,拱架、支架受载荷挠曲的杆件 L/400,钢模板的面板2mm ;

模板支架计算书

模板支架 计 算 书

一、概况: 现浇钢筋砼检查井,板厚(max=200mm),最大满包截面为300×600 mm,沿梁方向梁下立杆间距为800 mm,最大层高4.7 m,施工采用Ф48×3.5 mm钢管搭设滿堂脚手架做模板支撑架,楼板底立杆纵距、横距相等,即la=lb=1000mm,步距为1.5m,模板支架立杆伸出顶层横杆或模板支撑点的长度a=100 mm。剪力撑脚手架除在两端设置,中间隔12m-15m设置。应支3-4根立杆,斜杆与地面夹角450-600。搭设示意图如下: 二、荷载计算: 1.静荷载 楼板底模板支架自重标准值:0.5KN/ m3 楼板木模板自重标准值:0.3KN/m2 楼板钢筋自重标准值:1.1KN/ m3 浇注砼自重标准值:24 KN/ m3 2.动荷载 施工人员及设备荷载标准值:1.0 KN/ m2 掁捣砼产生的荷载标准值:2.0 KN/ m2 架承载力验算: 大横向水平杆按三跨连续梁计算,计算简图如下:

q 作用大横向水平杆永久荷载标准值: qK1=0.3×1+1.1×1×0.16+24×1×0.16=4.32 KN/m 作用大横向水平杆永久荷载标准值: q1=1.2 qK1=1.2×4.32=5.184 KN/m 作用大横向水平杆可变荷载标准值: qK2=1×1+2×1=3KN/m 作用大横向水平杆可变荷载设计值: q2=1.4 qK2=1.4×3=4.2 KN/m 大横向水平杆受最大弯矩 M=0.1q1Ib2+0.117q2Ib2=0.1×5.184×12+0.117×4.2×12=1.01 KN/m 抗弯强度:σ=M/W=1.01×106/5.08×103=198.82N/ m2<205N/ m2=f 滿足要求 挠度:V=14×(0.667 q1+0.99 qK2)/100EI =14×(0.667×5.184+0.99×3)/100×2.06×105×12.19×104 =2.6 mm<5000/1000=5 mm滿足要求 3.扣件抗滑力计算 大横向水平杆传给立杆最大竖向力 R=1.1q1Ib+1.2q2Ib=1.1×5.184×1+1.2×4.2×1=10.74KN>8KN,不能滿足,应采取措施,紧靠立杆原扣件下立端,增设一扣件,在主节点处立杆上为双扣件,即R=10.74KN <16KN,滿足要求。 4.板下支架立杆计算: 支架立杆的轴向力设计值为大横杆传给立杆最大竖向力与楼板底模板支架自重产生的轴向力设计值之和,即: N=R+0.5×1.2+10.74+0.5×1.2=11.34KN

钢模板设计-验算

工程承台钢模板(侧模)计算 一、浇筑砼最大侧压力计算 已知:最高台身H=2.5 m,浇筑速度V=2.5/2.4 m/h=1.04m/h<6m/h,混凝土入模温度T=15℃,混凝土不掺外加剂,v/T=1.04/15=0.069>0.035,γ=25KN/m3 (1)P m=K*γ*h =1*25*(1.53+3.8*0.069)=44.8KN/m2; (2)振捣混凝土时对侧面模板的压力按4KPa计; 二、模板面板强度和刚度计算 (1)模板面板厚度的选定 钢结构对钢模板的要求,一般为其跨径的l/100,且不小于6~8mm,本钢模竖肋最大跨径为1000mm,故δ=1000/100=10mm,由于钢模板为临时结实结构,且本工程特殊—为旧模板利用,δ=6mm; (2)模板面板强度和刚度验算 P=48.8KN/m2(考虑动荷载4KN/m2); 竖肋间距:l1=1000mm; 横肋间距:l2=400mm;经初步查表估算1000mm太大,现采用400mm进行验算; 模板厚度:δ=6mm; 跨径l=l2=400mm=40cm;板宽b取1m,即 q=P*b=48.8*1=48.8KN/m; 考虑到板的连续性,其强度和刚度计算: M max=1/10*q*L2=1/10*48.8*402*10-4=0.781KN*m;

W=1/6*b*h2=1/6*100*0.62=6cm3; σ= M max/W=130.1MPa<[σw]=181MPa; f max=ql4/128*EI=0.237cm<0.3cm; 模板面板在内楞间距400mm显得比较薄,但考虑到实际情况,为旧模板利用,仍采用δ=6mm; 二、内钢楞计算 ]10槽钢:I=88.52*104,W=12.2*103,E=2.1*105MPa,f=215MPa (一)计算横肋间距: (1)按抗弯强度计算 b=(10*f*w/(P*a))1/2 =[(10*215*12.2*103)/(48.8*10-3*1000)]1/2=733mm; 取b=450mm, (2)按挠度计算 b=[(150*[W]*E*I)/(P*a)]1/4=1144mm; 按以上计算原来的[10槽钢,跨度1000mm,间距1000不能满足要求,需要加密,内钢楞间距建议加密为选择400mm的常用模数,符合要求; (二)纵肋、横肋强度和刚度计算 (1)均布荷载仍按48.8*0.40=19.52KN/m; (2)强度验算: 按简支梁简化近似计算,跨中位置弯矩最大值: M max=1/8*19.52*1002*10-4=2.44KN*m;

基础承台设计计算

基础承台设计计算 This model paper was revised by the Standardization Office on December 10, 2020

一、某五层钢筋混凝土框架结构,柱网尺寸6m×6m,横向承重框架,柱截面500mm ×500mm,底层平面图及地质资料见附图。基础采用静压预制混凝土管桩,桩直径 400mm,桩身混凝土强度等级为C60,承台混凝土强度等级为C20,桩端进入持力层深度2d,最小桩距取3d,各桩传至承台顶的内力(柱号:Z1,Z2 ——Fk=910,1500, Mk=110,40.,Vk=50,22,F=1152,1935,M=140,50,V=64,25,——单位符号除Mk、M为KN·m,其余的均为KN) 地质资料见附图。 附图: 面 X

1 粉质粘土 33≈ 33≈ al1=373mm qsa=25kpa qpa=800Kpa 等边三桩承台 地质资料 【附:相似三角形:△AJH 相似于△AGF ,其中AJ=、AG= + 、 AH= + =、 ∴由相似比得:AF AH AG AJ = =AF ∴AF ≈ 由△AED 相似于△AGF ,其中AE= + 2= ∴由相似比得:AF aL AF AG AE 2-= =/ ∴al2= 】 一、Z1基础设计计算: 【解】 (1)确定桩端持力层 根据地质情况,初步选择粉质粘土层作为桩端持力层。 (2)确定桩的类型、桩长和承台埋深 静压预制混凝土管桩,直径为400mm 进入粉质粘土层2d=,初定承台高度为, 承台顶距天然地面,承台埋深。 (3)确定单桩竖向承载力特征值 Ra=qpaAp + μp ∑qsiali =414 .3××800+××(12×4+22×+24×+8×+25× =+= (4)估算桩数及初定承台面积 n=×Fk/Ra=×910/≈ 取3根 因桩位静压预制混凝土管桩,所以取桩距S=4d= 取等边三桩承台:如上图 承台面积为: ≈××(5)桩基础验算 1)单桩承载力验算 承台及上覆土重Gk=20××= 轴心竖向力作用下,桩顶承受的平均竖向力

相关文档