文档库 最新最全的文档下载
当前位置:文档库 › 光子晶体制备研究及应用_李丽丽

光子晶体制备研究及应用_李丽丽

光子晶体制备研究及应用_李丽丽
光子晶体制备研究及应用_李丽丽

第23卷第1期 齐 齐 哈 尔 大 学 学 报 Vol.23,No.1 2007年1月 Journal of Qiqihar University Jan.,2007

光子晶体制备研究及应用

李丽丽1,石美荣2

(1.齐齐哈尔大学计算机与控制工程学院,黑龙江 齐齐哈尔 161006;2.华东师范大学信息科学与技术学院,上海200062)

摘要:叙述了一维、二维和三维光子晶体的物理机理,制作方法,并对光子晶体的应用前景进行了展望。

关键词:光子晶体;光子禁带;蛋白石结构;四方螺旋结构

中图分类号:TN304.6文献标识码:A文章编号:1007-984X(2007)01-0092-04

用光子作为信息处理和传输的载体,通过控制光子在器件中的行为,能够实现信息产业容量更大,速度更快,集成度更高,功耗更小,抗干扰性能更好的目标。1987年,Yablonovitch[1]和John[2]分别提出了光子禁带。光子禁带是指某一频率的光不能在其中传播的类似于半导体禁带的带状结构,而具有光子禁带的人造晶体结构就称为光子晶体。

1 光子晶体的结构与制作

自然界中本身存在着光子晶体结构,比如蝴蝶的翅膀和海老鼠的毛发,但实验室和实际应用的光子晶体都为人造结构,周期性排列不同折射率(或介电常数)的电介质或金属就形成了光子晶体。人们尝试着用多种方法制作出了微波以及光波段的一维、二维、三维光子晶体。光子晶体的加工手段主要有机械钻孔技术、各种刻蚀技术、外延生长技术、气相沉积技术和胶体自组装技术等。理论研究表明光子禁带的形成与两种材料的折射率比,填充比,以及晶格结构有着密切的关系。光子晶体的结构尺度必须与带隙对应的波长相近,因此,用机械加工的手段可以得到微波波段的光子晶体,但对于红外与可见光范围内的光子晶体,就需要采用微加工工艺才能制备。下面分别介绍不同维度和结构的光子晶体及其制作方法。

1.1 一维光子晶体

折射率在一维空间呈周期性变化,主要是层状排列结构,如图1所示。一维光子晶体结构简单,制作简便,制备方法有真空镀膜技术、溶胶-凝胶技术、分子束外延等[3-4]。

1.2 二维光子晶体

折射率在二维空间呈周期性变化,主要结构有周期性排列的介质棒阵列和打孔的薄膜结构,如图2所示。排列方式一般为四边形和三角形点阵,通过调节棒或孔的直径以及间距大小,可以实现不同频率与带宽的光子禁带。一般采用激光刻蚀、电子束刻蚀和外延生长法等制造二维光子晶体[5-7]。

1.3 三维光子晶体

折射率在三维空间呈周期性变化,三维光子晶体中可以出现完全光子禁带,完全光子禁带是指在一定频率范围内,任何偏振与传播方向的电磁波都被严格禁止。严格地讲,只有光波段的具有较大完全光子禁带的三维光子晶体才是名副其实的光子晶体。因为要求各个方向上的高度对称性,三维光子晶体制作起来

收稿日期:2006-10-10

作者简介:李丽丽(1980-),女,齐齐哈尔人,大学本科,主要研究方向为铁电材料。

第1期 光子晶体制备研究及应用 ˇ93ˇ

比较困难,人们尝试采用不同的方法和结构来实现光波段的完全光子禁带。下面为三维光子晶体的几种主要结构:金刚石结构 Ho,Chan以及Soukoulis理论计算出具有金刚石结构的光子晶体具有三维的光子禁带[8],1991年Yablonovitch制作成功了第一个三维光子晶体[9]。这个金刚石结构三维光子晶体具有完全光子禁带,光子禁带处于微波频段(13-16 GHz)。它是采用机械加工手段得到,如图3所示,在厚介质平板上覆盖一层带有三角阵列排布的圆孔图案的掩膜板,对每个圆孔沿偏离法线35.26°的角度向介质平板内打孔三次,三次打孔的夹角为120°,在介质平板内就形成了球形空隙的金刚石结构,图中十字交叉形成的阴影部分就可以出现光子禁带。金刚石结构的优点是能够得到较宽的光子禁带,缺点是禁带频率太低,用机械加工手段仅能得到微波波段的光子晶体,要得到红外及可见光波段的金刚石结构需要采用反应离子刻蚀等更加精细的加工手段,制作过程比较复杂,层叠结构如图4所示。层叠结构的光子晶体是以介质棒作为基本单元,每一层是由数个间距为a的介质棒平行排列构成,相邻层的介质棒排列方向互相垂直,第一层与第三层有0.5a的偏移,每四层构成了一个重复周期[10-13]。Ozbay[10]详细论述了从微波到远红外波段的几种层叠结构光子晶体的制作方法,通过粘合四方形介质棒和圆柱形介质棒可以得到光子禁带在11.7-13.5GHz的光子晶体,而采用刻蚀技术加工的硅片以及高能激光器加工的铝片可以实现毫米波段的三维光子禁带,通过刻蚀超薄硅片能得到远红外的光子晶体。Wanke[11]等采用激光辅助化学气相沉积的方法得到氧化铝光子晶体的光子禁带为4THz(75μm)。Lin[12]等用刻蚀技术结合化学机械抛光制作的多晶硅棒光子晶体具有20-30THz(10-14.5μm)的光子禁带。Noda报道了III-V族半导体材料组成的层叠结构光子晶体[13],GaAs 的光子晶体具有30-60THz (5-10μm)的光子禁带,而InP的光子晶体具有200-300THz(1-1.5μm)的光子禁带,改进的实验在近红外处得到较大的光子禁带带宽。层叠结构的优点是结构比较简单,能够实现高频段的光子禁带,缺点是一般需要采用复杂的工艺设备,精确度不容易控制。

图3 金刚石结构的三维光子晶体 图4 层叠结构的三维光子晶体

蛋白石和反蛋白石结构。蛋白石是具有光子带隙的天然材料。由蛋白石的结构,人们想到通过分子自组装的方法构造光子晶体。胶体分子大小在可见光波长量级,因此可以用来实现光波段的三维光子晶体结构[14]。方法是先在聚合物或氧化硅的悬浊液中通过分子自组装生成密集排列的胶体球,然后煅烧形成连接胶体球的空隙,这时得到的面心立方结构称为蛋白石结构,如图5(a)。但是这种结构并不具有三维完全光子禁带,于是人们考虑用这种结构作为模板,再用化学气相沉积等方法在空隙中生长另一种介质,用煅烧或者酸刻蚀的方法去除掉原来的聚合物或者氧化硅,就得到含空气孔的反蛋白石结构,如图5(b),反蛋白石结构可以实现三维完全光子禁带。包裹空气孔的介质一般有TiO2,石墨碳和CdS。为了得到高质量的近红外和可见光波段的完全光子禁带,Blanco制作了硅质的反蛋白石结构[15]。这种结构的优点是由于空隙大小在可见光波长量级,所以容易实现可见光波段的三维光子禁带,制作工艺比较简便。缺点是介质折射率比不高,得到的禁带带宽不大,并且制作过程中的缺陷不容易控制,结构不够稳定。

四方螺旋结构与反四方螺旋结构。Toader提出的四方螺旋结构如图6所示[16],通过掠射角沉积技术(GLAD),溶胶—凝胶生长,刻蚀以及双光子光刻等技术就可以得到四方螺旋结构和反四方螺旋结构,用平面波展开的方法计算得到四方螺旋结构的禁带带宽为15%,反四方螺旋的禁带带宽为24%[16]。这种结构的优点是能够得到较大的禁带带宽,对结构参数的精确要求不高,制得的光子晶体稳定,缺陷少,因此可以实现大规模制造。缺点是要采用先进的半导体加工手段,制作工艺复杂。

ˇ94ˇ齐 齐 哈 尔 大 学 学 报 2007年

(a)蛋白石结构 (b) 反蛋白石结构 (a)四方螺旋结构 (b) 反四方螺旋结构 图5 蛋白石结构和反蛋白石结构 图6 四方螺旋结构与反四方螺旋结构

2 光子晶体的性质与应用

自从光子晶体的概念提出以来,人们除了对光子晶体的制作进行了广泛的研究以外,对光子晶体的性质及应用也做了深入的研究,尤其是二维光子晶体,已经在光纤、光波导、激光器等方面显示出了巨大的应用前景。

光子晶体的禁带特性。光子晶体的最根本特性就是具有光子禁带,一定频率的光不能在光子晶体中传播,可以用来实现滤波器以及微波天线。

对自发辐射的控制。如果原子的自发辐射频率落在光子禁带内,这种自发辐射就会被抑制;如果在光子晶体中加入杂质,光子禁带中就出现了杂质态,可以实现自发辐射的增强。对自发辐射的抑止或增强可用于无阈值激光器和高效发光二极管。

光子晶体的缺陷态。在光子晶体中引入点缺陷,就相当于制作了一个可以捕获光的微腔,可以实现高Q值的谐振腔;而引入线缺陷,就相当于在光子晶体中引入了光的传播通道,可以作为光波导和光纤。

光子晶体的反常折射现象。许多研究表明光子晶体在光波段的折射率可以小于1,甚至可以出现负折射率的现象。负折射的性质可以用来平板成像,以及实现完美透镜。光子晶体还可以实现超折射,因而可以用来制备高分光能力的超棱镜。

3 展望

由于具有不同寻常的电磁学性质,光子晶体有着广泛的应用前景。光子晶体做成的器件和电路有望实现全光信息处理与传输。下一步关于光子晶体的研究重点将会在以下方面展开:1)制作水平的提高,随着微加工技术和纳米加工技术的发展,有望制作出尺寸更小参数更优的介质,在可见光波段表现出优良的电磁学性质。2)器件设计的进一步推进以及应用的拓展,可以设计成独立器件,也可以作为现有光电器件的补充。一旦这些材料的应用拓展到可见光波段,将会引起光学器件设计和应用的极大变革。

参考文献

[1] Yablonovitch E.Phys. Rev. Lett.[J]. 1987,(58):2059.

[2] John S. Phys. Rev. Lett.[J].1987,(58):2486.

[3] Chigrin D N, Lavrinenko A V, Yarotsky D A et al. Appl. Phys. A[J].1998,(68):25.

[4] Chen K M et al. Appl. Phys. Lett. [J]. 1999,(75):3805.

[5] McCall S L,Platzman P M. Phys. Rev. Lett. [J].1991,(67):2017.

[6] Robertson W M, Arjavalingam G. Phy. Rev. Lett. [J]. 1992,(68):2023.

[7] Cassagne D, Jouanin C, Bertho D. Phys. Rev. B[J].1996,(53):7134

[8] Ho K M, Chan C T, Soukoulis C M.Phys. Rev. Lett. [J].,1990,(65):3152.

[9] Yablonovitch E, GmitterT J, Leung K M. Phys. Rev.Lett. 1991,(67):2295.

[10] Ozbay E .J. Opt. Soc. Am. B[J].1996,(13):1945.

[11] Wanke M C,Lehmann O et al. Science[J]. 1997,(275):1284.

[12] Lin S Y, Fleming J G et al.Nature[J].1998,(394):251.

[13] Noda S, Tomoda K et al. Science[J].2000,(289):604.

[14] Tarhan I I , Watson G H. Phys. Rev. Lett. [J]. 1996,(76):315.

第1期 光子晶体制备研究及应用 ˇ95ˇ

[15] Blanco A, Chomski E, Grabtchak S et al.Nature[J]. 2000,(405):437.

[16] Toader O, John S. Science[J].2001,(292):1133.

Research and progress on preparation of photonic crystal

LI Li-li1,SHI Mei-rong2

(https://www.wendangku.net/doc/fe18037715.html,puter and Control Engineering College of Qiqihar University, Heilongjiang Qigihar 161006,China;

2.College of Information Science and Technology, East China Normal University, Shanghai 200062, China)

Abstract: This paper gives a review on the theoretical and experimental research of photonic crystal. The properties and applications of photonic crystal are presented.

Key words: photonic crystal;photonic band gap;opal structure;square spiral structure

提高设备检修质量的几项措施

在设备的检修工作工作中,涉及到方方面面的工作。因而,为了提高设备的检修质量,要采取的措施有很多,但最重要的,要做好人、物两个方面的工作。

通过提高维修工人的技术业务水平,来提高设备检修的质量。设备的检修工作不仅要由维修工人来承担,也应由操作者直接参与。因此,维修工人和操作者技术业务水平的高低,将直接影响到检修工作的质量。目前,我分公司引进了大量的先进技术设备,而这批新设备,融合进了许多当前的高新技术,这就需要我们的技术工人不断地去学习新的技术,总结新的维修经验,以便适应维修新设备的需要。另一方面,由于我们的维修工人所从事该项工作的时间都较短,一些基本的技术业务素质还没有具备,这就更需要不但要学习理论知识,更要注重实际演练的学习,不但要在内部学习,还要走出去,学习别人的新技术、新经验。总之,只有维修工人和操作者的技术业务水平提高了,设备检修工作的质量才会提高。

为了提高设备维修工作的质量,应严格把握所购进的设备零部件的质量关。通过相当长一段时间的检修工作,我们发现,由于在设备检修工作中更换的设备零部件的质量不过关,造成检修质量不高,出现大量返工的现象很多。例如:由于质量低劣,新安装的逆止阀就出现阀盖不严、反向通水、通汽等现象;再如,由于质量不过关,新安装的自动往复泵、排气阀门就出现裂纹,密合部不严等现象。电器原件更应该注意,象我们生产车间用的交流接触器、空气开关、热继器、各种导线、电缆,这些起动装置直接影响到电机的寿命,甚至引起火灾,伤害操作者。因此,能否把握机器设备零件的质量关,是能否提高设备检修质量的关键。当前,由于社会上的伪冒低劣产品很多,因而造成了很多以次充好、以假乱真的事情发生。因此,为了提高设备检修工作的质量,就一定要把住材料购进的质量关,要努力把那些质量不过关的零部件排除在外。另外,在检修过程中,还要注意零部件的轻拿轻放,以免人为损坏现象的发生。

为了提高检修工作的质量,还应注重检修工艺装备的制造工作。俗话说“人巧不如家什妙”,有了好的检修工艺装备,在检修工作当中,就会出现事半功倍的效果。从而提高检修工作的质量。例如:在变电所的维护中,在停电检查时,一定要执行两票操作,在车间主管和代班长的监督下首先在模拟板上演习一次,确认无误后,认真执行倒闸操作,在检验确实没有电的情况下,挂好禁止合闸和加设零线,将隔离开关加锁后,方可进入现场仔细检查,高压及高低压盘检查完毕后,首先在模拟板上演习一次后拆卸零线,清理好现场后按送电顺序依次送电。综合以上的工作,相应的专用工具是保证设备维护的必要条件,模拟板、高压拉杆、高压试电笔、绝缘靴显得格外重要,这些工具必须专管专用,定期检测,进而提高检修工作的质量和安全。

为了提高检修工作的质量,还应严格按照检修工艺规程的要求进行检修,不能为所欲为,盲目乱干,这样做不但不能保证检修质量,还可能造成机器设备的进一步损坏。例如:有些循环泵在检修工艺要求中,要加湿油(如机油或汽机油等)润滑,而有些工人在检修工作中,为了自己工作的方便,擅自将湿油改为干油(如二硫化钼等),这样做,不但不能提高设备检修工作的质量,反而加速了循环泵的损坏。因而在设备检修工作中,一定要按照检修工艺要求去做。

(井继春,华冠科技齐齐哈尔分公司,黑龙江 齐齐哈尔)

光子晶体的应用及其发展前景

光子晶体的应用及其发展前景 摘要:光子晶体是一种介电常数不同的,是人工设计的由两种或两种以上介质材料排列的一维·二维或三维周期结构的晶体。一维光子晶体已得到实际应用,三维光子晶体仍处于实验室实验阶段。由于光子晶体有带隙和慢光等优良特性,所以具有广泛的应用前景。 关键字:光子晶体物理基础材料制备应用 1、物理基础 (1)1987年,E.Y allonovitch 和S.John在研究抑制自发辐射和光子局域时提出光子这概念。概念提出后,其研究经历了一个从一维、二维到三维的过程,并将带隙不断向短波方向推进。微波波段的逞隙常称为电磁带隙(ElectromagneticBand-Gap,简称为EBG),光子晶体的引入为微波领域提供了新的研究方向。光子晶体完全依靠自身结构就可实现带阻滤波,且结构比较简单,在微波电路、微波天线等方面均具有广阔的应用前景。国外在这一方面的研究已经取得了很多成果,而国内的研究才刚刚起步,所以从事光子晶体的研究具有重要的意义。光子晶体是指具有光子带隙(Photonic Band-Gap,简称为PBG)特性的人造周期性电介质结构,有时也称为PBG结构。所谓的光子带隙是指某一频率范围的波不能在此周期性结构中传播,即这种结构本身存在“禁带”。这一概念最初是在光学领域提出的,现在它的研究范围已扩展到微波与声波波段。由于这种结构的周期尺寸与“禁带”的中心频率对应的波长可比拟,所以这种结构在微波波段比在光波波段更容易实现。相比一维二维光子晶体只能产生方向禁带,三维光子晶体能产生全方向的禁带,具有更普遍的实用性。 2、光子晶体的原理 (1)什么是光子晶体 光子晶体是指具有光子带隙的周期性介电结构材料,所谓光子带隙是由于介电常数不同的材料在空间周期性排列导致介电常数的空间周期性,使得光折射率产生周期性分布,光在其中传播时产生能带结构,在带隙中的光子频率被禁止传播,因此称光子禁带,具有光子禁带特征的材料称光子晶体。 (2)光子晶体的特性 根据固体物理的理论知识,在电子晶体中,由原子排布的晶格结构产生的周期性势场会对其中的运动电子形成调制。类似于电子晶体的一些特性,光子晶体中由于介电常数的空间周期分布带来的调制作用,所以也会形成光波的的带状分布,出现不连续的光子能带,能带的间隙称为光子禁带。禁带中对应频率的光波不能被传播。 光子禁带是光子晶体的两个重要特征之一,它的另一重要特征是光子局域。按照形成光子晶体结构的介电材料的空间周期性,可将其分为一维、二维和三维光子晶体。对于一维的光子晶体来说,由于介电材料只在一个空间方向上周期排列,所以只能在这一方向上产生光子禁带。对于二维光子晶体来说,由于介电常数在两个空间方向上均具有周期分布,所以产生的光子禁带位于这两个方向或这两个波矢交面上。三维光子晶体具有全方位的周期结构,可在所有方向上产生光子禁带。产生的光子禁带又分完全带隙和不完全带隙。在具有完全带隙的光子晶体中,落在光子禁带中的光在任何方向都不能传播,而在具有不完全带隙的光子晶体中,光波只是在某些方向上被禁止。

光子晶体光纤预制棒的制备方法(发明)

说明书摘要

权利要求书 1、一种发红光的高硅氧玻璃的制造方法,采用SiO2的重量百分比含量超过95%的多孔玻璃,该多孔玻璃的孔径为1nm~20nm,纳米孔占玻璃的体积为23%~33%。通过溶液的分次浸渍法,将该多孔玻璃浸入到含有活性稀土离子和惰性稀土离子以及其他过渡金属离子的溶液中,再在特定的温度制度和气氛中高温烧结而制备。 2、根据权利要求1所述的发红光的高硅氧玻璃的制造方法,其特征在于所述的溶液的溶剂为酸、水、乙醇、以及丙酮等。 3、根据权利要求2所述的稀酸为稀硝酸,稀盐酸和稀硫酸等。 4、根据权利要求1所述的发绿光的高硅氧玻璃的制造方法,其特征在于所述的活性稀土离子为铕离子。 5、根据权利要求1所述的发绿光的高硅氧玻璃的制造方法,其特征在于所述的惰性稀土离子为硝酸钇和硝酸钆。 6、根据权利要求1所述的发绿光的高硅氧玻璃的制造方法,其特征在于所述的其他过渡金属离子系指钒离子和铋离子。 7、根据权利要求1所述的分次浸渍法是指: 掺杂钒离子的过程和掺杂其他金属离子的过程分开,具体而言就是将多孔玻璃先浸入到含有钒离子的溶液中,待浸泡至少20分钟后,在135摄氏度到650摄氏度温度之间干燥后再浸入到含有铕离子,铋离子,钇离子或者钆离子的溶液中去。或者是将多孔玻璃浸入到含有铕离子,铋离子,钇离子或者钆离子的溶液中,待浸泡至少1个小时后,在350摄氏度到650摄氏度温度之间干燥后再浸入到含有钒离子的溶液中去。 8、根据权利要求1所述的温度制度,是指按照如下程序升温: 从室温到100摄氏度至200摄氏度区间,升温速率小于1摄氏度每分钟;必须保持100摄氏度至200摄氏度温度区间至少120分钟;100摄氏度到200摄氏度区间任一温度升温到600摄氏度到800摄氏度区间任一温度,升温速率小于3.5摄氏度每分钟;必须保持600摄氏度到800摄氏度温度区间任意温度至少90分钟;从600摄氏度到800摄氏度区间任一温度升温到950摄氏度,升温速率小于3.5摄氏度每分钟;必须保持950摄氏度温度至少90分钟;950摄氏度升温到1100摄氏度,升温速率小于1摄氏度每分钟;必须保持1100

光子晶体简介及应用

光子晶体及其应用的研究 (程立锋物理电子学) 摘要:光子晶体(PbmDftic Crystal)是一种新型的人工材料,其最显著的特点就是具有光子禁带(Photonic B锄d.G £lp,简称PBG),频率落在光子禁带内的电磁波是禁止传播的,因而具有光子带隙的周期性奔电结构就称为光子晶体。近几年,光子晶体被广泛地应用于微波、毫米波的电路设计中。的滤波特性,加以优化,则可以实现带通滤波器。迄今为止,已有多种基于光子晶体的全新光子学器件被相继提出,包括无阈值的激光器,无损耗的反射镜和弯曲光路,高品质因子的光学微腔,低驱动能量的非线性开关和放大器,波长分辨率极高而体积极小的超棱镜,具有色散补偿作用的光子晶体光纤,以及提高效率的发光二极管等。光子晶体的出现使光子晶体信息处理技术的"全光子化"和光子技术的微型化与集成化成为可能,它可能在未来导致信息技术的一次革命,其影响可能与当年半导体技术相提并论。 关键词:光子晶体;算法;应用;

1光子晶体简介 在过去的半个世纪里,随着人们对电子在物质尤其是半导体中运动规律的研究,使得对电子控制能力的增加,从而产生了各种微电子器件以及大规模的集成电路。推动了电子工业和现代信息产业的迅猛发展,半导体技术在人们生活中扮演着越来越重要的角色。半导体的工作载体是电子,因此半导体的研究围绕着怎样利用和控制电子的特性。但近年来,电子器件的进一步小型化以及在减小能耗下提高运行速度变得越来越困难。人们感到了电子产业发展的极限,转而把目光投向了光子。与电子相比,以光子作为信息和能量的载体具有优越性。光子是以光速运动的微观粒子,速度快;它的静止质量为零,彼此间不存在相互作用,即使光线交汇时也不存在相互干扰:它还有电子所不具备的频率和偏振等特征。电子能带和能隙结构是电子作为一种波的形式在凝聚态物质中传播的结构,而光子和电子一样具有波动性,那么是否存在这样一种材料,光子作为一种波的形式在其中传播也会产生光子能带和带隙。近来大量的理论和实验表明确实存在这样一种材料,其典型的结构是一个折射率周期变化的三维物体,它的周期为光的波长,折射率变化比较大时,会出现类似于电子情况的光子能带和带隙。这种具有光子能带和带隙的材料被称为光子晶体。 在半导体材料中,电子在晶体的周期势场中传播时,由于电子波会受到周期势场的布拉格散射而形成能带结构,带与带之间可能存在

光子晶体基本原理

光子晶体 2.1光子晶体的基本原理 大家都知道,许多研究都因类似的现象作出的假设。这是因为宇宙具有相同的模式,其中有一个高度一致的内部规则,即使拥有千变万化的外观。光子晶体也是这样,这是第一先假设光子也具有类似于电子的传输性质,不同的是电子是在普通晶体中传输,而光子是在光子晶体中传输,然后在半导体的基础上发展起来的。 另外,晶体的原子是周期性的,有序排列的,由于这个周期势场,电子的运动收到周期性布拉格散射效应,从而形成一个能带结构,带隙存在于带与带之间。如果电子波带隙能量落到带隙中,就不能继续传播。事实上,无论什么电磁波,只要受到周期性调制,就会产生一个能带结构,也有可能出现带隙。 简而言之,由于半导体中离子的周期性排列引起了能带结构的产生,而能带控制着载流子(半导体中的电子或者空穴)在半导体中运动。同样的,在光子晶体由周期性变化所产生的光的光带隙结构,从而由光带隙结构控制着光在光子晶体中的移动。 2.2光子晶体的制备 人们已广泛认识到光子晶体具有的巨大应用前景, 这是光子晶体得以应用的必要条件———光子晶体的制备工艺得到世界上众多研究人员的深入研究,在此后的时间里,关于光子晶体的理论研究和实际应用的探索得到突飞猛进的发展,已然成为国际信息科技领域的一个热点问题。 从光子晶体的维数上看,光子晶体可以分为一维光子晶体, 二维光子晶体和三维光子晶体。一维光子晶体,顾名思义,就是在一个维度上周期性排布的光子晶体,它是由两种介质块构成的,而且这两种介质块须具有不同的介电常数,并在空间上交替排列。二维光子晶体是不同介电常数的介质柱(或其他规则介质)在二维空间上周期性排列的结构,如石墨结构,在某一平面上具有周期性,而在垂直这个平面的方向上是连续不变的。三维光子晶体是在三个方向上均具有周期性结构,因此与一维、二维光子晶体在某一个或两个方向上具有光子带隙不同,它在三个方向也都具有光子禁带,也被称为全方位光子带隙。

光子晶体原理及应用

一、绪论 1.1光子晶体的基本概念 光子晶体是由不同介电常数的介质材料在空间呈周期排布的结构,当电磁波受到调制而形成类似于电子的能带结构,这种能带结构称为光子能带。在合适的晶格常数和介电常数比的条件下,类似于电子能带隙,在光子晶体的光子能带间可出现使某些频率的电磁波完全不能透过的频率区域,将此频率区域称为光子带隙或光子禁带。人们又将光子晶体称为光子带隙材料。 与一般的电子晶体类似,光子晶体也有一维、二维、三维之分。一维光子晶体是介电常数不同的两种介质块交替堆积形成的结构。实际上,一维光子晶体已经被广泛应用,如法布里-珀罗腔光学多层的增反/透膜等。二维光子晶体是介电常数在二维空间呈周期性排列的结构。 光子晶体中存在光子禁带的物理机理是基于固体物理的布洛赫理论。 1.2光子带隙 光子在光子晶体中的行为类似于电子在半导体晶体中的行为,通过独特的光子禁带可改变光的行为。研究表明,光子带隙有完全光子带隙与不完全光子带隙的区分。所谓完全光子带隙,是指在一定频率范围内,无论其偏振方向及传播方向如何,光都禁止传播,或者说光在整个空间的所有传播方向上都有能隙,且每个方向上的能隙能互相重叠。所谓不完全光子带隙,则是相应于空间各方向上的能隙并不能完全重叠,或只在特定的方向上有能低折射率的介质在晶格中所占比率以及它们在空间的排列结构。总的来说,折射率差别越大带隙越大,能够达到的效率也就越高。 二、光子晶体的晶体结构和能带结构特性研究 2.1一维光子晶体的传输矩阵法 设一维光子晶体由两种材料周期性交替排列构成,通常称一维二元光子晶体,类似固体能带理论中的Kroning-penney模型,在空气中由A、B薄层交替构成一维人工周期性结构材料,其中A材料的折射率是na,厚度为ha,B材料的

光子晶体光纤材料

光子晶体光纤材料 光子晶体的能带结构 电子能带与光子能带 在半导体晶体中, 电子受原子周期排列所构成的周期势场的作用, 它的能谱呈带状结构由于原子的布拉格散射, 在布里渊区边界上能量变得不连续, 出现带隙, 电子被全反射在光子晶体中, 也存在类似的周期性势场, 它是由介电函数在空间的周期性变化所提供的当介电函数的变化幅度较大且变化周期与光的波长相比拟时, 介质的布拉格散射也会产生带隙, 相应于此带隙区域的那些频率的光将不能通过介质, 而是被全部反射出去由于周期结构的相似性, 普通晶体的许多概念被引入光子晶体, 如能带、能隙、能态密度、缺陷态等实际制备的光子晶体多由两种介电常数不同的物质构成, 其中低介电物质常采用空气, 因此相应于半导体的价带和导带, 在光子晶体中存在介电带和空气带。 完全光子能隙的产生 光子能隙有完全能隙与不完全能隙的区分所谓完全能隙, 是指光在整个空间的所有传播方向上都有能隙, 且每个方向上的能隙能相互重叠不完全能隙, 相应于空间各个方向上的能隙并不完全重叠, 或只在特定的方向上有能隙由于能隙产生于布里渊区的边界处,原则上完全能隙更容易出现在布里渊区是近球形的结构中。FCC是具有最接近球形布里渊区的空间周期结构。 人们对光子能带的理论计算最初是照搬电子能带的计算方法, 如平面波法和缀加平面波法等, 将光子当作标量波, 利用薛定愕方程求解一计算结果显示, 包括在内的许多结构的光子晶体都将出现光子带隙然而, 随后的研究表明, 这种

标量波近似法不仅在定量上, 甚至在定性上都与实验结果不符。由于电子是自旋为1/2的费米子, 为标量波而光子是自旋为的玻色子, 是矢量的电磁波, 两者存在着本质的区别因此, 计算光子晶体的能带结构必须在矢量波理论的框架下, 从麦克斯韦方程出发在各种理论中, 平面波展开法是应用得最普遍, 也是最成功的由于光子之间没有复杂的相互作用, 理论计算可以非常精确地预言光子晶体的性质, 对实验工作起着重要的指导作用。 能带计算表明由球形颗粒构成的结构具有很高的对称性, 对称性引起的能级简并使它只存在不完全能隙, 例为了得到具有完全能隙的光子晶体结构, 需要从两方面考虑:(1)提高提高周期性介电函数的变化幅度, 即要有高的折射率反差(2)从结构上消除对称性引起的能带简并为此, 在结构的晶胞内引入两个球形粒子构成的金刚石结构, 能产生很宽的完全带隙,通过引入非球形的晶胞颗粒也能消除能带简并从而产生完全的光子带隙。利用材料介电常数的各向异性,在FCC、BCC、SC等各种简单晶格中也将产生部分能隙, 此外, 在介电质材料中引入彼此分离的金属颗粒构成的复合光子晶体, 将具有很宽的完全能隙, 然而由于在可见光和红外波段金属材料的强烈耗散, 这种光子晶体的效率很低。 光子晶体中的缺陷能级 半导体材料的广泛应用与其掺杂特性密切相关向高纯度半导体晶体中掺杂, 禁带中会产生相应的杂质能级, 从而显著改变半导体材料的电学、光学特性类似地, 可以向光子晶体中引入杂质和缺陷, 当缺陷是由引入额外的高介电材料所至图右, 其特性类似于半导体掺杂中的施主原子, 相应的缺陷能级起始于空气带底, 并随缺陷尺寸的变化而移向介电带当缺陷是由移去部分高介电材料所至, 其特性类似于半导体掺杂中的受主原子, 相应的缺陷能级起始于介电带顶, 并随缺陷

光子晶体的制备

光子晶体的制备 1987年,物理学家Eli Yablonovitch预测,光子带隙晶体(PBC)能够像现有的微电路处理电信号一样处理光信号。研究人员一直在寻找此类材料,并设法批量生长。在这项工作中,生长出的蛋白石状晶体具有PBC所需的独特结构:透明颗粒以类似于金刚石中碳原子的方式排列。 PBC的菱形晶格中粒子须按一定的方式排列。每个粒子连接四个等间距的近邻粒子,当两个这样的粒子聚在一起时,调整粒子的方向,使这两个粒子结合的六个粒子处于正确的相对方向。这项工作合成了微观的塑料块体,每个块体由四个球组成呈现出三角形金字塔的形状,每个棱锥面的中心有一个凹陷的粘性贴片。当悬浮在水滴中时,通过粘性贴片对接在一起的颗粒,粒子将调整到合适的角度,然后自发地形成具有金刚石结构的高度有序的稳定晶体。最终制备出的晶体仅包含100000个颗粒且重量不到1微克,但增大尺寸的过程并不复杂。大型三维光子晶体的制备需要用纯硅或二氧化钛填充这些晶体中的空隙,最后溶解这些晶体模板。 具体的制备过程为: 第一步,固体非交联聚苯乙烯颗粒与3-(甲基丙烯酰氧)丙基三甲氧基硅烷(TPM)的较小液滴混合,四个固体颗粒与一个液滴结合,形成四面体团簇;

第二步,在悬浮液中添加增塑剂(这里采用四氢呋喃)控制聚苯乙烯的变形,球体的变形挤压了团簇的液核,使核心从构成团簇的三个聚苯乙烯粒子之间的空隙中凸出,室温的条件有利于微调聚苯乙烯球被压缩和液核被挤出的程度; 第三步,采用HOOMD-blue模拟软件进行模拟,选择压缩比在0.63-0.78、粒径比接近1.2的粒子,初始的聚苯乙烯粒子尺寸为1.0μm; 第四步,退火后,粒子连接形成小晶体,为了生长更大的 晶体,将颗粒悬浮在H 2O和D 2 O的混合物中(使用PBS缓冲液), 将悬浮液装入玻璃毛细管中密封,尺寸为100μm×2mm×50 mm,毛细管沿2mm的方向倾斜20?,沿50mm长的毛细管方向施加约1℃的温度梯度,团簇进行结晶,尺寸为40μm或100μm甚至更大,制备出的胶体颗粒具有高的约束性和机械稳定性,有利于干燥悬浮液和保持金刚石结构; 第五步,以晶体为模板,在晶体上涂覆保护性氧化层,利用化学气相沉积法在模板上涂覆硅,移除模板和氧化层,最终制备出PBC。 最终制备出的胶体金刚石的晶格具有宽且完整的光子带隙。PBC的应用之一是量子计算机,传统计算机中存储“0”或“1”的数字比特被可以同时是“0”或“1”的量子比特取代。这可以更加快速地解决代码破译中许多困难的组合问题。构建量子计算机的挑战在于将许多的量子比特连接在一起以及隔离这些量子

光子晶体的应用与研究

光子晶体的应用与研究 IsSN1009—3044 Compu~rKnowledgeandTechnology电脑知识与技术 V o1.7,No.22.August2011. 光子晶体的应用与研究 陆清茹 (东南大学成贤学院,江苏南京210000) E—mail:kfyj@https://www.wendangku.net/doc/fe18037715.html,.ell https://www.wendangku.net/doc/fe18037715.html, Tel:+86—551~56909635690964 摘要:光子晶体是指具有光子带隙(PhotonicBand~Gap,简称为PBG)g~性的人造周期性电介质结构.有时也称为PBG光子晶体结 构.该文系统的阐述了光子晶体的产生,制备及应用. 关键词:光子晶体;光子频率禁带;激光全息: 中图分类号:TN364文献标识码:A 光子晶体激光器:微波天线 文章编号:1009—3044(2011)22—5468—02 进入2O世纪后半叶以来,全球迎来了电子时代,电子器件被极其广泛的应用于工作和生活的各个领域,尤其是促进了计算机 和通讯行业的发展.但是进入21世纪以后,伴随着电子器仲不断深入的小型化,低耗能,高速度,其进一步的提升也越来越困难.人 们感到了电子器件发展的瓶颈,开始把目光转向了光子,有人提出了使用光子代替电子作为新一代信息载体的设想.电子器件的基 础是电子在半导体中的运动,类似的,光子器件的基础是光子在光子晶体中的运动.光子的性质决定了光子器件的主要特点是能量 损耗小,运行速度快,所以工作效率高.光子器件在高效率发光二极管,光子开关,光波导器件,光滤波器等方面都具备巨大的应用

潜力.近年来,光子晶体相关的理论研究,实验科学以及实际应用都已经得到了迅速的发展,光子晶体领域已经成为现在世界范围 的研究热点.1999年l2月17日,《科学》杂志就已经把光子晶体的研究列为全球十大科学进展之一. 1光子晶体的由来 1987年S.John和E.Yablonovitch等人分别提出了光子晶体的概念:光子晶体是指具有光子带隙(PhotonicBand—Gap,简称为 PBG)特性的人造周期性电介质结构,有时也称为PBG光子晶体结构.它是根据电子学上的概念类比得出的.我们知道,在固体物理 学的研究中,晶体中的呈周期性排列的原子产生的周期性电势场会对其中电子有特殊的约束作用.在介电常数周期性分布的介质 中的电磁波的一些频率是被禁止的,光子晶体也类似.通常这些被禁止的频率区间为光子带隙,也叫光子频率禁带,而将具有"光子 频率禁带"的材料称作为光子晶体 2光子晶体的分类与结构 我们可以根据光子晶体的结构进行分类根据其能隙空间分布的不同,我们把光子晶体分为一维光子晶体,二维光子晶体,三 维光子晶体. 3光子晶体的制造 光子晶体在自然界中几乎不存在,它是一种人造做结构,其制备工艺主要有以下几种: 3.1机械加工法 机械加工法又叫精密机械加工法.这种加工法是存光子晶体的早期研究中发展起来的方法.机械加工法通过在集体材料上进 行机械接卸钻孑L,利用空气介质和集体材料的折射率差束获得光子晶体,这种方法可以用于制备制作起来比较容易的晶格常熟在 厘米至毫米量级的微波波段光子晶体. 3.2半导体微制造法 半导体制备技术中的"激光刻蚀","反应离子束刻蚀","电子束刻蚀"以及"化学汽相

光子晶体制备的四种方法。

光子晶体是一种人造微结构,它的晶格尺寸与光波的波长相当,是晶体晶格尺寸的1000倍。光子晶体的制作具有相当大的难度,根据适用的波长范围,制作技术也不同。此外,还需要引入缺陷态,因此,制作过程往往需要采用多种技术才能完成。 1.精密加工法 Ames实验室证实了金刚石结构的光子晶体具有很大的带隙后, Yablonovitch等人便采用活性离子束以打孔法制造了第一块具有完全光子带隙(photonic band gap, PBG)的三维光子晶体。他们采用反应离子束刻蚀技术在一块高介电常数的底板表面以偏离法线35.26°的角度从3个方向钻孔,各方向的夹角为120°。但是,当孔钻得较深,并彼此交叉时,孔会产生位置偏离,从而影响其周期性结构。 Ho等提出了木堆结构(Woodp ile Structure) ,即用介电柱的多层堆积形成完全带隙的介电结构。Ozbay等用铝棒堆积成Woodpile结构,其缺点是工艺比较繁琐,且结构的周期准确性难以保证。Ozbay等又发展了逐层叠加结构(Layer- by-layer Structure) ,即先制造出各向异性的二维Si/SiO2 层状结构,然后以Woodp ile结构的周期结构形式进行逐层叠加,即四层形成一个周期。通过层叠 法和半导体工艺的结合,使得设计出的光子晶体具有禁带宽、带隙可达到红外及近红外区的优点。由于是以半导体工业成熟的技术为基础,精密加工法是制备光子晶体最为稳定可靠的方法。然而其工艺复杂、造价昂贵,并且受现有半导体技术水平的限制,若要制备更小波长尺度的三维光子晶体、晶体掺杂以及缺陷引入等方面却存在着很大的挑战。 2.胶体晶体法 早在1968年, Kriger等人就发现了由乳液聚合得到的聚苯乙烯胶乳(50~500nm)在体积分数超过35%时出现蛋白石特有的颜色。蛋白石是一种具有不完全带隙的光子晶体,其独有的颜色是由可见光的布拉格衍射产生的。由于胶体晶体的晶格尺寸在亚微米级量级,它可望成为制造近红外及可见光波段三维光子晶体的一条有效途径。 在溶液中,胶体颗粒小球表面带有电荷,在适当的电荷密度和颗粒浓度下,通过静电力相互作用,小球自组织生长成周期性结构,形成胶体晶体。在毛细容器中,利用胶粒与带电玻璃器壁的静电力相互作用。当胶粒体积分数较高时,胶体悬浮颗粒以面心立方( FCC)点阵堆积; 当体积分数较低时,倾向于体心立方(BCC)点阵堆积,晶体的密排面平行于器壁表面。 目前,已经制备的胶体晶体多为聚苯乙烯乳胶体系和二氧化硅胶体颗粒体系。遗憾的是它们不具备高的介电比和合适的网络拓扑结构,因而并不能产生完全光子带隙。为了提高介电比,可以将胶体晶体小心脱水,得到紧密堆积的蛋白石结构。 3.反蛋白石结构法 反蛋白石结构是指低介电系数的小球(通常为空气小球)以面心立方密堆积结构分布于高介电系数的连续介质中,这种结构将有望产生完全能隙。1997年Velev等人首先用经阳离子表面活性剂CTAB浸泡过的聚苯乙烯颗粒形成的胶体晶体为模 板,合成了含三维有序排列的空气球的二氧化硅反蛋白石材料。主要采用模板法,具体操作为:以颗粒小球所构成的紧密堆积结构为模板,向小球间隙填充高介电常数的Si, Ge, TiO2等材料,然后通过煅烧、化学腐蚀等方法将模板小球除去,得到三维空间的周期结构。Vlasov等人

光子晶体的应用及其发展前景

光子晶体的应用及其发展前景 光子晶体的应用及其发展前景摘要:光子晶体是一种介电常数不同的,是人工设计的由两种或两种以上介质材料排列的一维?二维或三维周期结构的晶体。一维光子晶体已得到实际应用,三维光子晶体仍处于实验室实验阶段。由于光子晶体有带隙和慢光等优良特性,所以具有广泛的应用前景。关键字:光子晶体物理基础材料制备应用 1、物理基础 (1)1987年,E.Yallonovitch 和 S.John在研究抑制自发辐射和光子局域时提出光子这概念。概念提出后,其研究经历了一个从一维、二维到三维的过程,并将带隙不断向短波方向推进。微波波段的逞隙常称为电磁带隙(ElectromagneticBand-Gap,简称为EBG),光子晶体的引入为微波领域提供了新的研究方向。光子晶体完全依靠自身结构就可实现带阻滤波,且结构比较简单,在微波电路、微波天线等方面均具有广阔的应用前景。国外在这一方面的研究已经取得了很多成果,而国内的研究才刚刚起步,所以从事光子晶体的研究具有重要的意义。光子晶体是指具有光子带隙(Photonic Band-Gap,简称为PBG)特性的人造周期性电介质结构,有时也称为PBG结构。所谓的光子带隙是指某一频率范围的波不能在此周期性结构中传播,即这种结构本身存在“禁带”。这一概念最初是在光学领域提出的,现在它的研究范围已扩展到微波与声波波段。由于这种结构的周期尺寸与“禁带”的中心频率对应的波长可比拟,所以这种结构在微波波段比在光波波段更容易实现。相比一维二维光子晶体只能产生方向禁带,三维光子晶体能产生全方向的禁带,具有更普遍的实用性。 2、光子晶体的原理 (1)什么是光子晶体

论光子晶体光纤技术的现状和发展

论光子晶体光纤技术的现状和发展 摘要: 光子晶体光纤,又称多孔光纤或微结构光纤,以其独特的光学特性和灵活的设计成为近年来的热门研究课题。光子晶体光纤在外观上和传统的普通单模光纤非常相似,但微观上光子晶体光纤的横截面完全不同。近年来,国内外的很多大学和科研单位都在积极开展光子晶体光纤的研究工作。本文阐述了PCF的一些独特光学性质、制作技术及其一些重要应用,介绍了PCF的发展以及最新成果。关键词:光子晶体,光子晶体光纤,非线性 1 引言 1987年Yabnolovitch 在讨论如何抑制自发辐射时提出了光子晶体这一新概念。几乎同时,John 在讨论光子局域时也独立提出。如果将不同介电常数的介电材料构成周期结构,电磁波在其中传播时由于布拉格散射,电磁波会受到调制而形成能带结构,这种能带结构叫做光子能带。光子能带之间可能出现带隙,即光子带隙。具有光子带隙的周期性介电结构就是光子晶体,或叫做光子带隙材料,也有人把它叫做电磁晶体。 光子晶体光纤(photonic crystal fiber,PCF),又称多孔光纤或微结构光纤,以其独特的光学特性和灵活的设计成为近年来的热门研究课题。这类光纤是由在纤芯周围沿着轴向规则排列微小空气孔构成,通过这些微小空气孔对光的约束,实现光的传导。独特的波导结构,灵活的制作方法,使得PCF与常规光纤相比具

有许多奇异的特性,有效地扩展和增加了光纤的应用领域[1]。在光纤激光器这一领域内,PCF经专门设计可具有大模面积且保持无限单模的特性,有效地克服了常规光纤的设计缺陷。以这种具有新颖波导结构和特性的光纤作为有源掺杂的载体,并把双包层概念引入到光子晶体光纤中,将使光纤激光器的某些性能有显著改善。近年来,国内外的很多大学和科研单位都在积极开展光子晶体光纤激光器的研究工作[2]。目前,国外输出功率达到几百瓦的光子晶体光纤激光器已有报道。本文阐述了PCF的一些独特光学性质、制作技术及其理论研究方法,介绍了PCF 的发展以及最新成果。 2 光子晶体光纤概述 2.1 光子晶体光纤导光原理 光子晶体光纤的概念基于光子晶体,按其传导机制可分为带隙型光子晶体光纤(PBG-PCF)和折射率引导型光子晶体光纤(TIR-PCF)两类[3]。 带隙型光子晶体光纤是一种具有石英-空气光子晶体包层的空芯石英光纤,其包层横截面的折射率具有规则的周期分布,通过包层光子晶体的布拉格衍射来限制光在纤芯中传播的在满足布拉格条件时出现光子带隙,对应波长的光不能在包层中传播,而只能限制在纤芯中传播,见图2-1(a)。 折射率引导型光子晶体光纤的导光机制与传统光纤类似,包层由石英-空气周期介质构成,中心为SiO2构成的实芯缺陷。由于纤芯折射率高于包层平均折射率,光波在纤芯中依靠全内反射传播。由于包层含有气孔,与传统光纤的实芯熔融硅包层不同,因而这种导光机制叫做改进的全内反射,见图2-1(b)

光子晶体论文

光子晶体 摘要:光子晶体是指具有光子带隙的周期性介电结构材料,按其空间分布分为一维、二维、三维光子晶体,一维光于晶体已得到实际应用,三维光于晶体仍处于实验室实验阶段,由于其优良的性能,未来光子晶体材料必将得到大力开发,应用前景更广泛。本文简要的论述了光子晶体的原理,理论研究,材料制备以及相关的应用。光子晶体材料是本世纪最具潜力的材料之一,至从上世间八十年代后期提出这一概念后。光于材料的研究和应用得到了很太的发展,目前在光纤和半导体激光器中已得到应用,本文就光子材料的基本概念和研究现状综合评述并对其未来发展趋势作出相应预测。 关键字:光子晶体;材料制备;前景应用 Hotonic crystal Abstract:photonic crystal is a photonic band gap in periodic dielectric structure material, according to their spatial distribution is divided into one-dimensional, two-dimensional, three-dimensional photonic crystal, one-dimensional light in crystals have been obtained the practical application, 3D light in the crystal is still in the laboratory stage, because of its excellent performance, future photonic crystal material bound to get development, application is more extensive. This paper briefly discusses the principle of photonic crystal, theoretical research, preparation and application. Photonic crystal material is the most potential of one of the materials, to the world in the late eighty put forward this concept. Light in materials research and application has been great development, present in the fiber and semiconductor lasers have been applied, the photonic materials the basic concepts and research status are summarized and the future development trends to make the corresponding prediction. Keywords: photonic crystal material preparation and its application prospect 光子晶体的原理 1、什么是光子晶体 光子晶体是指具有光子带隙的周期性介电结构材料,所谓光子带隙是由于介电常数不同的材料在空间周期性排列导致介电常数的空间周期性,使得光折射率产生周期性分布,光在其中传播时产生能带结构,在带隙中的光子频率被禁止传播,因此称光子禁带,具有光子禁带特征的材料称光子晶体。因其具有光子局域、抑制自发辐射等特性,故光子晶体也被认为是控制光子的光半导体。

光子晶体简介论文

光子晶体简述 吉林师范大学欧天吉 0908211 摘要:光子晶体是指具有光子带隙的周期性介电结构材料,按其空间分布分为一维、二维、 三维光子晶体,一维光于晶体已得到实际应用,三维光于晶体仍处于实验室实验阶段,由于其优良的性能,未来光子晶体材料必将得到大力开发,应用前景更广泛。本文简要的论述了光子晶体的原理,理论研究,材料制备以及相关的应用。光子晶体材料是本世纪最具潜力的材料之一,至从上世间八十年代后期提出这一概念后。光于材料的研究和应用得到了很太的发展,目前在光纤和半导体激光器中已得到应用,本文就光子材料的基本概念和研究现状综合评述并对其未来发展趋势作出相应预测。 关键字:光子晶体材料制备前景应用 光子晶体的原理 1、什么是光子晶体 光子晶体是指具有光子带隙的周期性介电结构材料,所谓光子带隙是由于介电常数不同的材料在空间周期性排列导致介电常数的空间周期性,使得光折射率产生周期性分布,光在其中传播时产生能带结构,在带隙中的光子频率被禁止传播,因此称光子禁带,具有光子禁带特征的材料称光子晶体。因其具有光子局域、抑制自发辐射等特性,故光子晶体也被认为是控制光子的光半导体。 1987年,E.Yallonovitch和S.John在研究抑制自发辐射和光子局域时分别,提出了光子晶体这一新概念1990年,Ho.K.M,等人从理论上计算了一种三维金刚石结构光子晶体的色散关系。 光子晶体即光子禁带材料,从材料结构上看,光子晶体是一类在光学尺度上具有周期性介电结构的人工设计和制造的晶体。与半导体晶格对电子波函数的调制相类似,光子带隙材料能够调制具有相应波长的电磁波---当电磁波在光子带隙材料中传播时,由于存在布拉格散射而受到调制,电磁波能量形成能带结构。能带与能带之间出现带隙,即光子带隙。所具能量处在光子带隙内的光子,不能进入该晶体。光子晶体和半导体在基本模型和研究思路上有许多相似之处,原则上人们可以通过设计和制造光子晶体及其器件,达到控制光子运动的目的。光子晶体(又称光子禁带材料)的出现,使人们操纵和控制光子的梦想成为可能。 2、光子晶体的性质 光子晶体的最根本性质是具有光子禁带,落在禁带中的光是被禁止传播的。Yablonovitch指出:光子晶体可以抑制自发辐射。因自发辐射的几率与光子所在频率的态的数目成正比,当原子被放在一个光子晶体里面,而它的自发辐射光的频率正好 落在光子禁带中时,由于该频率光子的态的数目为零,因此自发辐射几率为零,自发辐射被抑制。反之,光子晶体也可以增强自发辐射,只要增加该频率光子的态的数目便可以实现,如光子晶体中混有杂质时,光子禁带中会出现品质因子很高的杂质态,具有很大的态密度,这样就可以实现辐射增强。

光子晶体应用于化学及生物传感器的研究进展

光子晶体应用于化学及生物传感器的研究进展 段廷蕊 李海华 孟子晖3 刘烽 都明君 (北京理工大学化工环境学院 北京 100081) 摘 要 光子晶体是由两种以上具有不同折光指数的材料在空间按照一定的周期顺序排列所形成的有序结构材料,它具有尺度为光波长量级的重复结构单元,通过对这些结构单元的合理设计,可以调控光子晶体 的光学性质。近年来,光子晶体不仅在药物释放、光学开关、金属探针领域取得了广泛的应用,也为化学及生 物传感器领域提供了新的检测原理和手段。本文概述了光子晶体的制备方法及近年来该技术在化学及生物 传感器领域中的应用研究。 关键词 光子晶体 水凝胶 化学传感器 生物传感器 分子识别 Application of Photonic Crystals in Chemical and Bio2sensors Duan T ingrui,Li Haihua,Meng Z ihui3,Liu Feng,Du Mingjun (School of Chemical&Environmental Engineering,Beijing Institute of T echnology,Beijing100081) Abstract Photonic crystals are periodical materials which are made by periodically arrangement of m ore than tw o materials with different reflective index.Photonic crystals have periodical and repeated unit structure with nanometer scale, and its optical properties can be tuned by reas onably designing of the structure units.Photonic crystals have been applied not only in clinical diagnosis,drug delivery,optical s witches,ion probe,but als o in biosens ors and chemical sens ors.Here the preparation methods and applications in sens ors field of photonic crystals are summarized. K eyw ords Photonic crystals,Hydrogel,Chemical sens or,Biosens ors,M olecular recognition 1 光子晶体的概念及其结构特性 光子晶体(photonic crystals)是1987年Y ablonovitch和John等在研究自辐射和光子局域化时分别提出的。光子晶体是由两种以上具有不同折光指数的材料在空间按照一定的周期顺序排列所形成的有序结构材料。电磁波在这种具有周期性结构的材料中传播时会受到由电介质构成的周期势场的调制,从而形成类似于半导体能带结构的光子能带(photonic band)。光子能带之间可能会出现带隙,即光子带隙(photonic bandgap,简称P BG)。具有P BG的周期性介电结构即光子晶体,或称作光子带隙材料,也有人把它叫做电磁晶体。 光子晶体中,周期性排列的重复结构单元的尺度是光波长量级,根据重复结构循环的维数,可分为一维、二维和三维光子晶体(图1)。就像半导体中原子点阵可以控制电子传播一样,光子晶体中不同折光指数的周期性排列结构可以控制一定频率的光的传播。光子带隙或禁带是指一个频率范围,频率在此范围的电磁波不能在光子晶体里传播,而频率位于导带的电磁波则能在光子晶体里几乎无损地传播。带隙的宽度和位置与光子晶体的折光指数、周期排列的结构尺寸及排列规则都有关系。但与电子相比,光子具有更多的信息容量、更高的效率、更快的响应速度以及更低的能量损耗。光子晶体作为一种新型的信息传导材料,已成为学术界的一个研究热点[1~5],王玉莲、顾忠泽等[6~8]发表过相关的综述和文章,宋延林等[9,10]近年来报道的具有荧光特性的光子晶体在光学器件领域显示了良好的应用前景。 国家自然科学基金项目(20775007)和863计划项目(2007AA10Z433)资助 2008206230收稿,2008209229接受

光子晶体的制备及其应用.

简述光子晶体的制备及其应用 摘要:简单介绍了光子晶体,光子晶体的理论分析方法,简述了光子晶体在光传感的应用,空心光纤的简单介绍。 关键词:光子晶体简介,光子晶体的制备,光子晶体理论分析方法,光子晶体的应用,光传感,空心光纤1.简介]1[ 光子晶体是指具有光子带隙(PhotonicBand-Gap,简称为PBG)特性的人造周期性电介质结构,有时也称为PBG结构。所谓的光子带隙是指某一频率范围的波不能在此周期性结构中传播,即这种结构本身存在“禁带”。这一概念最初是在光学领域提出的,现在它的研究范围已扩展到微波与声波波段。由于这种结构的周期尺寸与“禁带”的中心频率对应的波一筹莫展可比拟,所以这种结构在微波波段比在光波波段更容易实现。微波波段的逞隙常称为电磁带隙(ElectromagneticBand-Gap,简称为EBG),光子晶体的引入为微波领域提供了新的研究方向。光子晶体完全依靠自身结构就可实现带阻滤波,且结构比较简单,在微波电路、微波天线等方面均具有广阔的应用前景。国外在这一方面的研究已经取得了很多成果,而国内的研究才刚刚起步,所以从事光子晶体的研究具有重要的意义。 从材料结构上看,光子晶体是一类在光学尺度上具有周期性介电结构的人工设计和制造的晶体。与半导体晶格对电子波函数的调制相类似,光子带隙材料能够调制具有相应波长的电磁波---当电磁波在光子带隙材料中传播时,由于存在布拉格散射而受到调制,电磁波能量形成能带结构。能带与能带之间出现带隙,即光子带隙。所具能量处在光子带隙内的光子,不能进入该晶体。光子晶体和半导体在基本模型和研究思路上有许多相似之处,原则上人们可以通过设计和制造光子晶体及其器件,达到控制光子运动的目的。光子晶体(又称光子禁带材料)的出现,使人们操纵和控制光子的梦想成为可能。 2.制备和理论分析方法]2[ 2 . 1有效折射率方法 B i r k s等人最早研究光子晶体光纤时,将其与传统的阶跃折射率光纤类比, 提出了等效折射率模型,主要用于解释全反射型光子晶体光纤的单模特性,并指 出对于光子晶体包层空气孔比较大的情况下不能使用此方法,而且很少用于分析 光纤的色散特性,主要原因是一般认为其精度比较低。但也有文章表示,等效折 射率模型可以进行模式特性、传输常量、模场分布、功率限制特性、瑞利散射损 耗特性、色散特性等等,同时结果精度较好1 4 5 - 4 8 1 。其计算方法的主要等效步骤如 图2 . 3 . 1 所示。

光子晶体光纤设计与分析

光子晶体光纤设计与分析 摘要:光学物理学家探索的光子晶体材料应用中,光纤无疑是最具有前景的一项应用。光子晶体光纤(以下简称PCF)是一种新型光波导,具有与普通光纤截然不同的特性。这种新型光纤可以分为两个基本类型——折射率波导和带隙波导。由于横向折射率分布有很大的自由度,所以折射率波导型PCF可以设计成具有高度反常色散、非线性以及双折射等特性的光纤。关键词:PCF原理结构分析制备特性应用 正文: 一.PCF的导光原理 按导光机理来说,PCF可以分为两类:折射率导光机理和光子能隙导光机理。 1.1折射率导光机理 周期性缺陷的纤芯折射率(石英玻璃)和周期性包层折射率(空气)之间有一定差别,从而使光能够在纤芯中传播,这种 同,由于包层包含空气,所以这种机理称为改进的全内反射,这是因为空芯PCF中的小孔尺寸比传导光的波长还小的缘故[3]。 1.2光子能隙导光机理 理论上求解光波在光子晶体中的本征方程即可导出实芯和空芯PCF的传导条件,即光子能隙导光理论。如图2所示,光纤中心为空芯,虽然空芯折射率比包层石英玻璃低,但仍能保证光不折射出去,这是因为包层中的小孔点阵构成光子晶体。当小孔间距和小孔直径满足一定条件时,其光子能隙范围内就能阻止相应光传播,光被限制在中心空芯之内传输。最近有研究表明,这种PCF可传输99%以上的光能,而空间光衰减极低,光纤衰减只有标准光纤的1/2~1/4[4]。 空芯PCF光子能隙传光机理具体解释为:在空芯PCF中形成周期性的缺陷是空气,传光机理是利用包层对一定波长的光形成光子能隙,光波只能在空气芯形成的缺陷中存在和传播。虽然在空芯PCF中不能发生全内反射,包层中的小孔点阵结构起到反射镜的作用,使光在许多小孔的空气和石英玻璃界面多次发生反射。 二.PCF的结构与制作 PCF的结构一般是在石英光纤中沿径向有规律地排列着许多空气孔道,这些微小的孔道沿光纤轴线平行排列。根据其结构类型可以分为实心光纤和空心光纤。实心光纤是纤芯为石英玻璃、包层为石英玻璃中分布许多空气孔道和石英玻璃壁的组合体。空心光纤的纤芯为一条直径较大的空气孔道,包层与实心光纤类似。通过设计这些空气孔的位置、大小、间距及占空比等波长量级的特征参数,对某以波段形成带隙,从而对这一波段的光传播是实现控制。 光子晶体的制作都要经过拉伸、堆积和熔合等过程,如Knight J C等的制作方法: (1)取一根直径为30mm的石英棒,沿其轴线方向上钻一条直径为16mm的孔,随后将石英棒研磨成一个正六棱柱; (2)把该石英棒放在2000℃的光纤拉丝塔中,将它拉成直径为0.8mm的细长正六棱柱丝; (3)把正六棱柱丝切成适当长度的若干段,然后堆积成需要的晶体结构,再把它们放到拉丝塔中熔合、拉伸,使内部空气孔的间距减小到50Λm左右,形成更细的石英丝; (4)在以上工作的基础上,把上述石英丝高温拉伸,形成最后的PCF。在以上3个阶段的拉伸过程中,晶胞减少了104数量级以上,最后形成的光子晶体的孔间距在2Λm左右。PCF 沿着石英丝的轴向均匀排列着空气孔,从PCF 的横切面看,存在着周期性的二维结构。如果核心处引入一个多余的空气孔,或者在应该出现空气孔的地方由均匀硅代替,从而在光子晶体中引入一

相关文档