文档库 最新最全的文档下载
当前位置:文档库 › D-E四桩基础计算书

D-E四桩基础计算书

D-E四桩基础计算书
D-E四桩基础计算书

四桩基础计算书

华师附小工程;工程建设地点:;属于结构;地上6层;地下0层;建筑高度:0m;标准层层高:0m ;总建筑面积:0平方米;总工期:0天。

本工程由洪山区与华中师范大学共同投资建设,由中南建筑设计院设计,湖北中南勘察基础工程有限公司勘察,武汉科达监理咨询有限公司建立,武汉新十建筑集团有限公司组织施工;由李带平担任项目经理,舒凡担任技术负责人。

本计算书主要依据施工图纸及以下规范及参考文献编制:《塔式起重机设计规范》(GB/T13752-1992)、《地基基础设计规范》(GB50007-2002)、《建筑结构荷载规范》(GB50009-2001)、《建筑安全检查标准》(JGJ59-99)、《混凝土结构设计规范》(GB50010-2002)、《建筑桩基技术规范》(JGJ94-2008)等编制。

一、塔吊的基本参数信息

塔吊型号:QZT80A(6010),塔吊起升高度H:40.000m,

塔身宽度B:1.65m,基础埋深D:0.500m,

自重F1:650kN,基础承台厚度Hc:1.350m,

最大起重荷载F2:60kN,基础承台宽度Bc:5.000m,

桩钢筋级别:HRB335,桩直径或者方桩边长:0.800m,

桩间距a:3.4m,承台箍筋间距S:200.000mm,

承台混凝土的保护层厚度:50mm,承台混凝土强度等级:C35;

二、塔吊基础承台顶面的竖向力和弯矩计算

塔吊自重(包括压重)F1=650.00kN;

塔吊最大起重荷载F2=60.00kN;

作用于桩基承台顶面的竖向力F k=F1+F2=710.00kN;

1、塔吊风荷载计算

依据《建筑结构荷载规范》(GB50009-2001)中风荷载体型系数:

地处湖北武汉市,基本风压为ω0=0.35kN/m2;

查表得:荷载高度变化系数μz=1.25;

挡风系数计算:

φ=[3B+2b+(4B2+b2)1/2]c/(Bb)=[(3×1.65+2×2.5+(4×1.652+2.52)0.5)×0.12]/(1.65×2.5)=0. 41;

因为是角钢/方钢,体型系数μs=2.17;

高度z处的风振系数取:βz=1.0;

所以风荷载设计值为:

ω=0.7×βz×μs×μz×ω0=0.7×1.00×2.17×1.25×0.35=0.665kN/m2;

2、塔吊弯矩计算

风荷载对塔吊基础产生的弯矩计算:

Mω=ω×φ×B×H×H×0.5=0.665×0.41×1.65×50×50×0.5=561.907kN·m;

M kmax=Me+Mω+P×h c=1900+561.907+83×1.35=2573.96kN·m;

三、承台弯矩及单桩桩顶竖向力的计算

1. 桩顶竖向力的计算

依据《建筑桩技术规范》(JGJ94-2008)的第5.1.1条,在实际情况中x、y轴是随机变化的,所以取最不利情况计算。

N ik=((F k+G k)/4)/n±M yk x i/∑x j2±M xk y i/∑y j2;

其中 n──单桩个数,n=4;

F k──作用于桩基承台顶面的竖向力标准值,F k=710.00kN;

G k──桩基承台的自重标准值:G k=25×Bc×Bc×Hc=25×5.00×5.00×

1.35=843.75kN;

M xk,M yk──承台底面的弯矩标准值,取2573.96kN·m;

x i,y i──单桩相对承台中心轴的XY方向距离a/20.5=2.40m;

N ik──单桩桩顶竖向力标准值;

经计算得到单桩桩顶竖向力标准值

最大压力:N kmax=(710.00+843.75)/4+2573.96×2.40/(2×2.402)=923.75kN。

最小压力:N kmin=(710.00+843.75)/4-2573.96×2.40/(2×2.402)=-146.88kN。

需要验算桩的抗拔!

2. 承台弯矩的计算

依据《建筑桩技术规范》(JGJ94-2008)的第5.9.2条。

M x = ∑N i y i

M y = ∑N i x i

其中 M x,M y──计算截面处XY方向的弯矩设计值;

x i,y i──单桩相对承台中心轴的XY方向距离取a/2-B/2=0.88m;

N i1──扣除承台自重的单桩桩顶竖向力设计值,N i1=1.2×

(N kmax-G k/4)=855.38kN;

经过计算得到弯矩设计值:M x=M y=2×855.38×0.88=1496.91kN·m。

四、承台截面主筋的计算

依据《混凝土结构设计规范》(GB50010-2002)第7.2条受弯构件承载力计算。

αs = M/(α1f c bh02)

δ = 1-(1-2αs)1/2

γs = 1-δ/2

A s = M/(γs h0f y)

式中,αl──系数,当混凝土强度不超过C50时,α1取为1.0,当混凝土强度等级为C80时,α1取为0.94,期间按线性内插法得1.00;

f c──混凝土抗压强度设计值查表得16.70N/mm2;

h o──承台的计算高度:H c-50.00=1300.00mm;

f y──钢筋受拉强度设计值,f y=300.00N/mm2;

经过计算得:αs=1496.91×106/(1.00×16.70×5000.00×1300.002)=0.011;

ξ =1-(1-2×0.011)0.5=0.011;

γs =1-0.011/2=0.995;

A sx =A sy =1496.91×106/(0.995×1300.00×300.00)=3858.80mm2。

由于最小配筋率为0.15%,所以构造最小配筋面积为:

5000.00×1350.00×0.15%=10125.00mm2。

建议配筋值:HRB335钢筋, 18@120。承台底面单向根数40根。实际配筋值10180mm2。

五、承台截面抗剪切计算

依据《建筑桩技术规范》(JGJ94-2008)的第5.9.9条,承台斜截面受剪承载力满足下面公式:

V≤βhsαf t b0h0

其中,b0──承台计算截面处的计算宽度,b0=5000mm;

λ──计算截面的剪跨比,λ=a/h0,此处,a=0.55m;当λ<0.25时,取λ=0.25;当λ>3时,取λ=3,得λ=0.427;

βhs──受剪切承载力截面高度影响系数,当h0<800mm时,取h0=800mm,h0>2000mm时,取h0=2000mm,其间按内插法取值,βhs=(800/1300)1/4=0.886;

α──承台剪切系数,α=1.75/(0.427+1)=1.226;

0.886×1.226×1.57×5000×1300=11085.037kN≥1.2×923.751=1108.501kN;

经过计算承台已满足抗剪要求,只需构造配箍筋!

六、桩竖向极限承载力验算

桩承载力计算依据《建筑桩技术规范》(JGJ94-2008)的第5.2.1条:

桩的轴向压力设计值中最大值N k=923.751kN;

单桩竖向极限承载力标准值公式:

Q uk=u∑q sik l i+q pk A p

u──桩身的周长,u=2.513m;

A p──桩端面积,A p=0.503m2;

各土层厚度及阻力标准值如下表:

序号土厚度(m) 土侧阻力标准值(kPa) 土端阻力标准值(kPa) 抗拔系数土名称

1 1.00 25.00 200.00 0.80 粉质粘土

2 10.00 40.00 650.00 0.70 粉质粘土

由于桩的入土深度为8.00m,所以桩端是在第2层土层。

单桩竖向承载力验算: Q uk=2.513×305+650×0.503=1093.274kN;

单桩竖向承载力特征值:

R=Q uk/2+εc f ak A c=1093.274/2+0.185×380×5.747=950.675kN;

N k=923.751kN≤1.2R=1.2×950.675=1140.811kN;

桩基竖向承载力满足要求!

七、桩基础抗拔验算

桩承载力计算依据《建筑桩技术规范》(JGJ94-2008)的第5.4.5条。

群桩呈非整体破坏时,桩基的抗拔极限承载力标准值:

T uk=Σλi q sik u i l i

其中:T uk──桩基抗拔极限承载力标准值;

u i──破坏表面周长,取u i=πd=3.142 ×0.8=2.513m;

q sik──桩侧表面第i层土的抗压极限侧阻力标准值;

λi──抗拔系数,砂土取0.50~0.70,粘性土、粉土取0.70~0.80,桩长l 与桩径d之比小于20时,λ取小值;

l i──第i层土层的厚度。

经过计算得到:T uk=Σλi q sik u i l i=542.87kN;

群桩呈整体破坏时,桩基的抗拔极限承载力标准值:

T gk=(u lΣλi q sik l i)/4= 907.20kN

u l──桩群外围周长,u l = 4×(3.4+0.8)=16.80m;

桩基抗拔承载力公式:

N k≤ T gk/2+G gp

N k≤ T uk/2+G p

其中 N k - 桩基上拔力设计值,N k=146.88kN;

G gp- 群桩基础所包围体积的桩土总自重设计值除以总桩数,G gp=705.60kN;

G p - 基桩自重设计值,G p =100.53kN;

T gk/2+G gp=907.2/2+705.6=1159.2kN > 146.876kN;

T uk/2+G p=542.867/2+100.531=371.965kN > 146.876kN;

桩抗拔满足要求。

八、桩配筋计算

1、桩构造配筋计算

A s=πd2/4×0.65%=3.14×8002/4×0.65%=3267mm2;

2、桩抗压钢筋计算

经过计算得到桩顶竖向极限承载力验算满足要求,只需构造配筋!

3、桩受拉钢筋计算

依据《混凝土结构设计规范》(GB50010-2002)第7.4条正截面受拉承载力计算。

N ≤ f y A s

式中:N──轴向拉力设计值,N=146875.61N;

f y──钢筋强度抗压强度设计值,f y=300.00N/mm2;

A s──纵向普通钢筋的全部截面积。

A s=N/f y=146875.61/300.00=489.59mm2

建议配筋值:HRB335钢筋,13 18。实际配筋值3308.5 mm2。

依据《建筑桩基设计规范》(JGJ94-2008),

箍筋采用螺旋式,直径不应小于6mm,间距宜为200~300mm;受水平荷载较大的桩基、承受水平地震作用的桩基以及考虑主筋作用计算桩身受压承载力时,桩顶以下5d范围内箍筋应加密;间距不应大于100mm;当桩身位于液化土层范围内时箍筋应加密;当考虑箍筋受力作用时,箍筋配置应符合现行国家标准《混凝土结构设计规范》GB50010的有关规定;当钢筋笼长度超过4m时,应每隔2m设一道直径不小于12mm的焊接加劲箍筋。

QTZ63塔吊四桩基础的计算书

四桩基础的计算书依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)。 一. 参数信息 二. 荷载计算 1. 自重荷载及起重荷载 1) 塔机自重标准值 F k1=454kN 2) 基础以及覆土自重标准值 G k=5.5×5.5×1.35×25=1020.9375kN 承台受浮力:F lk=5.5×5.5×5.35×10=1618.375kN

3) 起重荷载标准值 F qk=60kN 2. 风荷载计算 1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值 a. 塔机所受风均布线荷载标准值 (Wo=0.2kN/m2) =0.8×1.59×1.95×1.39×0.2=0.69kN/m2 =1.2×0.69×0.35×1.6=0.46kN/m b. 塔机所受风荷载水平合力标准值 F vk=q sk×H=0.46×75.00=34.75kN c. 基础顶面风荷载产生的力矩标准值 M sk=0.5F vk×H=0.5×34.75×75.00=1303.25kN.m 2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值 a. 塔机所受风均布线荷载标准值 (本地区 Wo=0.35kN/m2) =0.8×1.62×1.95×1.39×0.35=1.23kN/m2 =1.2×1.23×0.35×1.60=0.83kN/m b. 塔机所受风荷载水平合力标准值 F vk=q sk×H=0.83×75.00=61.97kN c. 基础顶面风荷载产生的力矩标准值 M sk=0.5F vk×H=0.5×61.97×75.00=2323.72kN.m 3. 塔机的倾覆力矩 工作状态下,标准组合的倾覆力矩标准值 M k=1552+0.9×(630+1303.25)=3291.93kN.m 非工作状态下,标准组合的倾覆力矩标准值 M k=1552+2323.72=3875.72kN.m 三. 桩竖向力计算 非工作状态下: Q k=(F k+G k)/n=(454+1020.94)/4=368.73kN

1#承台桩基础计算书

塔吊四桩基础的计算书 依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)。 一. 参数信息 塔吊型号:5015 塔机自重标准值:Fk1=1335.00kN 起重荷载标准值:Fqk=60.00kN 塔吊最大起重力矩:M=885.00kN.m 塔吊计算高度: H=80m 塔身宽度: B=1.80m 非工作状态下塔身弯矩:M1=-1170kN.m 桩混凝土等级: C80 承台混凝土等级:C35 保护层厚度: 50mm 矩形承台边长: 4.00m 承台厚度: Hc=1.400m 承台箍筋间距: S=200mm 承台钢筋级别: HRB335 承台顶面埋深: D=0.000m 桩直径: d=0.500m 桩间距: a=3.000m 桩钢筋级别: HPB235 桩入土深度: 11.90m 桩型与工艺:预制桩桩空心直径: 0.250m 计算简图如下: 二. 荷载计算 1. 自重荷载及起重荷载 1) 塔机自重标准值 Fk1=1335kN 2) 基础以及覆土自重标准值 Gk=4×4×1.40×25=560kN 承台受浮力:Flk=4×4×0.35×10=56kN 3) 起重荷载标准值 Fqk=60kN

2. 风荷载计算 1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值 a. 塔机所受风均布线荷载标准值 (Wo=0.2kN/m2) =0.8×1.48×1.95×1.54×0.2=0.71kN/m2 =1.2×0.71×0.35×1.8=0.54kN/m b. 塔机所受风荷载水平合力标准值 Fvk=qsk×H=0.54×80.00=43.01kN c. 基础顶面风荷载产生的力矩标准值 Msk=0.5Fvk×H=0.5×43.01×80.00=1720.32kN.m 2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值 a. 塔机所受风均布线荷载标准值 (本地区 Wo=0.55kN/m2) =0.8×1.54×1.95×1.54×0.55=2.03kN/m2 =1.2×2.03×0.35×1.80=1.54kN/m b. 塔机所受风荷载水平合力标准值 Fvk=qsk×H=1.54×80.00=123.07kN c. 基础顶面风荷载产生的力矩标准值 Msk=0.5Fvk×H=0.5×123.07×80.00=4922.67kN.m 3. 塔机的倾覆力矩 工作状态下,标准组合的倾覆力矩标准值 Mk=-1170+0.9×(885+1720.32)=1174.79kN.m 非工作状态下,标准组合的倾覆力矩标准值 Mk=-1170+4922.67=3752.67kN.m 三. 桩竖向力计算

四桩基础计算书1

四桩基础计算书 华清家园工程;工程建设地点:武清区新城翠通路西侧;属于结构;地上33层;地下1层;建筑高度:100m;标准层层高:3m ;总建筑面积:11500平方米;总工期:0天。 本工程由投资建设,设计,地质勘察,监理,组织施工;由担任项目经理,担任技术负责人。 本计算书主要依据施工图纸及以下规范及参考文献编制:《塔式起重机设计规范》(GB/T13752-1992)、《地基基础设计规范》(GB50007-2002)、《建筑结构荷载规范》(GB50009-2001)、《建筑安全检查标准》(JGJ59-99)、《混凝土结构设计规范》(GB50010-2002)、《建筑桩基技术规范》(JGJ94-2008)等编制。 一、塔吊的基本参数信息 塔吊型号:TQ60/80,塔吊起升高度H:65.000m, 塔身宽度B:2.5m,基础埋深D:1.500m, 自重F1:852.6kN,基础承台厚度Hc:1.000m, 最大起重荷载F2:80kN,基础承台宽度Bc:6.000m, 桩钢筋级别:HPB235,桩直径或者方桩边长:0.700m, 桩间距a:5m,承台箍筋间距S:200.000mm, 承台混凝土的保护层厚度:50mm,承台混凝土强度等级:C35; 二、塔吊基础承台顶面的竖向力和弯矩计算 塔吊自重(包括压重)F1=852.60kN; 塔吊最大起重荷载F2=80.00kN; 作用于桩基承台顶面的竖向力F k=F1+F2=932.60kN; 风荷载对塔吊基础产生的弯矩计算: M kmax=2188.71kN·m; 三、承台弯矩及单桩桩顶竖向力的计算

1. 桩顶竖向力的计算 依据《建筑桩技术规范》(JGJ94-2008)的第5.1.1条,在实际情况中x、y轴是随机变化的,所以取最不利情况计算。 N ik=(F k+G k)/n±M yk x i/∑x j2±M xk y i/∑y j2; 其中 n──单桩个数,n=4; F k──作用于桩基承台顶面的竖向力标准值,F k=932.60kN; G k──桩基承台的自重标准值:G k=25×Bc×Bc×Hc=25×6.00×6.00× 1.00=900.00kN; M xk,M yk──承台底面的弯矩标准值,取2188.71kN·m; x i,y i──单桩相对承台中心轴的XY方向距离a/20.5=3.54m; N ik──单桩桩顶竖向力标准值; 经计算得到单桩桩顶竖向力标准值 最大压力:N kmax=(932.60+900.00)/4+2188.71×3.54/(2×3.542)=767.68kN。 最小压力:N kmin=(932.60+900.00)/4-2188.71×3.54/(2×3.542)=148.62kN。 不需要验算桩的抗拔! 2. 承台弯矩的计算 依据《建筑桩技术规范》(JGJ94-2008)的第5.9.2条。 M x = ∑N i y i M y = ∑N i x i 其中 M x,M y──计算截面处XY方向的弯矩设计值; x i,y i──单桩相对承台中心轴的XY方向距离取a/2-B/2=1.25m; N i1──扣除承台自重的单桩桩顶竖向力设计值,N i1=1.2×

TC6515塔吊桩基础的计算书最终

解放军第八五医院新建病房综合楼工程TC6515型塔式起重机 基 础 施 工 方 案 施工单位:中夏建设集团 编制单位:上海颐东机械施工工程有限公司 日期:2010.11.22 版次:专家评审后修改版

塔式起重机安拆施工方案审批表

TC6515塔吊基础的计算书 1工程概况 解放军第八五医院新建病房综合楼工程位于上海市长宁区1328号。因工程建设需要欲安装一台TC6515塔机。本塔机最大独立高度为60米,初始安装高度50米。塔机的基础为混凝土承台+格构柱+灌注桩的形式。塔机混凝土承台尺寸为6500×6500×1400,承台面标高为-2.4米,混凝土型号不低于C35,配筋为纵横各不小于35根直径25的螺纹钢;格构柱截面尺寸为430×430,主肢为L180×180×18,缀板400×20×10@600,最大悬高9.35米,格构柱插入承台尺寸为600,插入灌注桩尺寸为3000;灌注桩为4根¢800的灌注桩,桩间距为4300,混凝土型号为C35,桩长33.85米,桩底标高为-45.6米。 2编制依据 2.1《建筑施工塔式起重机安装、使用、拆卸安全技术规范》JGJ196-2010 2.2《钢结构设计规范》GB50017-2003 2.3《建筑桩基技术规范》JGJ94-2008 2.4《塔式起重机混凝土基础工程技术规范》JGJ/T187-2009 2.5《混凝土结构设计规范》GB50010-2002 3施工注意事项 3.1钻孔灌注桩强度等级为C35,(按《建筑机械使用安全规程JGJ33-2001中 4.4.2条规定》,其施工时严格按照规范要求施工,超灌部分在地下室底板范围内,地下室施工时,需将钢构柱内的砼凿除干净后,在各格构柱的角钢上焊接钢板止水片。 3.2钢格构柱与灌注桩的搭接长度为3m,要求与钢筋笼主筋焊接,在下钢筋笼时,应严格控制四根钢格构柱的方向成正方形布置,以保证其外围槽钢加固杆的焊接。 3.3格构柱的主肢全长为11.55米,使用整长为12米的角钢焊接而成,不允许中间对接。 3.4塔吊底座与塔吊的安装应该按塔吊出场说明书要求执行,控制好预埋螺栓的位置及锚固深度,钢格构柱顶段应浇入塔基承台内0.6m。 3.5【20槽钢外围加固杆应随挖土深度及时焊接,每隔2.2米焊接水平支撑、斜向剪刀撑及水平剪刀撑。钢格构柱体露在土层以上格构的高度不得大于1.5米。斜向剪刀撑及水平剪刀撑的中间,一定要彼此连接好。具体的水平支撑、斜向剪刀撑及水平剪刀撑见附图。 3.6所有钢构件的焊接均为接触边长度内满焊,焊接厚度大于8mm。 3.7格构周围50cm以内的土,在开挖的时候,不允许使用大型机械进行开挖,必须使用人工进行挖土,以防止大型机械破坏格构柱。 3.8塔机在第一次安装好以后,需要顶升级到51米高,高于周围建筑物的高度。此后塔机在做附墙以前不再进行加节顶升。

最新四桩桩基承台计算

四桩桩基承台计算

四桩桩基承台计算 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、设计依据 《建筑地基基础设计规范》 (GB50007-2002)① 《混凝土结构设计规范》 (GB50010-2010)② 《建筑桩基技术规范》 (JGJ 94-2008)③ 二、示意图 三、计算信息 承台类型: 四桩承台计算类型: 验算截面尺寸 构件编号: CT-4 1. 几何参数 矩形柱宽bc=600mm 矩形柱高hc=600mm

圆桩直径d=400mm 承台根部高度H=1000mm 承台端部高度h=1000mm x方向桩中心距A=1600mm y方向桩中心距B=1600mm 承台边缘至边桩中心距 C=400mm 2. 材料信息 柱混凝土强度等级: C35 ft_c=1.57N/mm2, fc_c=16.7N/mm2 承台混凝土强度等级: C30 ft_b=1.43N/mm2, fc_b=14.3N/mm2 桩混凝土强度等级: C30 ft_p=1.43N/mm2, fc_p=14.3N/mm2 承台钢筋级别: HRB400 fy=360N/mm2 3. 计算信息 结构重要性系数: γo=1.0 纵筋合力点至近边距离: as=100mm 4. 作用在承台顶部荷载基本组合值 F=4297.800kN Mx=16.900kN*m My=71.900kN*m Vx=182.100kN Vy=43.200kN 四、计算参数 1. 承台总长 Bx=C+A+C=0.400+1.600+0.400= 2.400m 2. 承台总宽 By=C+B+C=0.400+1.600+0.400=2.400m 3. 承台根部截面有效高度 ho=H-as=1.000-0.100=0.900m ho1=h-as=1.000-0.100=0.900m

塔吊四桩基础的计算书TC7020

(TC7020)塔吊四桩基础的计算书 依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)。 计算简图如下: 荷载计算二. 自重荷载及起重荷载1. 塔机自重标准值1) =1260kN Fk12) 基础以及覆土自重标准值 G=4.5×4.5×1.60×25=810kN k3) 起重荷载标准值 F=160kN qk2. 风荷载计算 1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值 2a. 塔机所受风均布线荷载标准值 (Wo=0.2kN/m) 2 0.2=0.60kN/m×1.2× W=0.8×1.59×1.95k q=1.2×0.60×0.35× 2=0.50kN/m skb. 塔机所受风荷载水平合力标准值 F=q×H=0.50×46.50=23.25kN skvkc. 基础顶面风荷载产生的力矩标准值 M=0.5F×H=0.5×23.25×46.50=540.62kN.m vksk 非工作状态下塔机塔身截面对角线方向所受风荷载标准值2) 2) Wo=0.35kN/m (本地区a. 塔机所受风均布线荷载标准值2 × 0.35=1.06kN/m1.951.62××1.2 W=0.8×k q=1.2×1.06×0.35× 2.00=0.89kN/m skb. 塔机所受风荷载水平合力标准值 F=q×H=0.89×46.50=41.46kN

skvkc. 基础顶面风荷载产生的力矩标准值 M=0.5F×H=0.5×41.46×46.50=963.93kN.m vksk3. 塔机的倾覆力矩 工作状态下,标准组合的倾覆力矩标准值 M=1639+0.9×(1400+540.62)=3385.55kN.m k非工作状态下,标准组合的倾 覆力矩标准值 M=1639+963.93=2602.93kN.m k三. 桩竖向力计算 非工作状态下: Q=(F+G)/n=(1260+810.00)/4=517.50kN kkk Q=(F+G)/n+(M+F×h)/L vkkkkmaxk =(1260+810)/4+Abs(2602.93+41.46×1.60)/4.95=1056.85kN Q=(F+G-F)/n-(M+F×h)/L vkkkkkminlk =(1260+810-0)/4-Abs(2602.93+41.46× 1.60)/4.95=-21.85kN 工作状态下: Q=(F+G+F)/n=(1260+810.00+160)/4=557.50kN qkkkk Q=(F+G+F)/n+(M+F ×h)/L vkqkkmaxkkk =(1260+810+160)/4+Abs(3385.55+23.25× 1.60)/4.95=1249.11kN Q=(F+G+F-F)/n-(M+F×h)/L vkkkkkminlkqk =(1260+810+160-0)/4-Abs(3385.55+23.25× 1.60)/4.95=-134.11kN 四. 承台受弯计算 1. 荷载计算 不计承台自重及其上土重,第i桩的竖向力反力设计值: 工作状态下: 最大压力 N=1.35×(F+F)/n+1.35×(M+F×h)/L vkkikqk =1.35×(1260+160)/4+1.35×(3385.55+23.25× 1.60)/4.95=141 2.92kN 最大拔力 N=1.35×(F+F)/n-1.35×(M+F×h)/L vkkkiqk =1.35×(1260+160)/4-1.35×(3385.55+23.25× 1.60)/4.95=-454.42kN 非工作状态下: 最大压力 N=1.35×F/n+1.35×(M+F×h)/L vkkik =1.35×1260/4+1.35×(2602.93+41.46×1.60)/4.95=1153.38kN 最大拔力 N=1.35×F/n-1.35×(M+F×h)/L vkkik =1.35×1260/4-1.35×(2602.93+41.46×1.60)/4.95=-302.88kN 弯矩的计算2. 依据《塔式起重机混凝土基础工程技术规程》第6.4.2条 (kN.m);──计算截面处XY方向的弯矩设计值其中 M,My1x (m);──单桩相对承台中心轴的XY方向距离 x,yii 。i桩的竖向反力设计值(kN)──不计承台自重及其上土重,第 Ni 由于工作状态下,承台正弯矩最大: 0.75=2119.38kN.m ×=2×1412.92 M=Myx: 承台最大负弯矩0.75=-681.63kN.m ×=2×-454.42 M=Myx配筋计算3.

三桩承台计算书

三桩承台计算书 项目名称构件编号日期 设计校对审核 执行规范: 《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》《建筑地基基础设计规范》(GB 50007-2011), 本文简称《地基规范》《建筑结构荷载规范》(GB 50009-2012), 本文简称《荷载规范》 《建筑桩基技术规范》(JGJ 94-2008), 本文简称《桩基规范》 ----------------------------------------------------------------------- 1 设计资料 1.1 已知条件 承台参数(3 桩承台第 1 种) _承台底标高 _: -2.000(m) _承台的混凝土强度等级_: C30 _承台钢筋级别 _: HRB400 _配筋计算a s _: 50(mm) 承台尺寸参数 桩参数 _桩基重要性系数 _: 1.0 _桩类型 _: 混凝土预制桩 _承载力性状 _: 端承摩擦桩 _桩长 _: 15.000(m) _是否方桩 _: 否 _桩直径 _: 400(mm) _桩的混凝土强度等级 _: C35 _单桩极限承载力标准值_: 2400.000(kN) _桩端阻力比 _: 0.400 _均匀分布侧阻力比 _: 0.400 _是否按复合桩基计算 _: 否 _桩基沉降计算经验系数_: 1.000 _压缩层深度应力比 _: 20.00% 柱参数 _柱宽 _: 600(mm) _柱高 _: 600(mm) _柱子转角 _: 0.000(度)

_柱的混凝土强度等级_: C35 柱上荷载设计值 _弯矩M x _: 0.000(kN.m) _弯矩M y _: 0.000(kN.m) _轴力N _: 4400.000(kN) _剪力V x _: 0.000(kN) _剪力V y _: 0.000(kN) _是否为地震荷载组合 _: 否 _基础与覆土的平均容重_: 20.000(kN/m3) _荷载综合分项系数 _: 1.35 土层信息 _地面标高 _: 0.000(m) _地下水标高_: -10.000(m) (m)(kN/m3)(kN/m3)(MPa)征值(kPa)程度(kPa) 1.2 计算内容 (1) 桩基竖向承载力计算 (2) 承台计算(受弯、冲切、剪计算及局部受压计算) (3) 软弱下卧层验算 (4) 桩基沉降计算 2. 计算过程及计算结果 2.1 桩基竖向承载力验算 (1) 桩基竖向承载力特征值R计算 根据《桩基规范》5.2.2及5.2.3 式中: R a——单桩竖向承载力特征值; Q uk——单桩竖向极限承载力标准值; K ——安全系数,取K=2。 单桩竖向极限承载力标准值 Q uk = 2400.000(kN) 单桩竖向承载力特征值 R a = 1200.000(kN) (2) 桩基竖向承载力验算 根据《桩基规范》5.1.1 式5.1.1-1计算轴心荷载作用下桩顶全反力,式5.1.1-2计算偏心荷 载作用下桩顶全反力

塔吊四桩基础的计算书

本word文档可编辑修改 PKPM软件出品安全设施计算软件(2019) 塔吊四桩基础的计算书 依据《塔式起重机混凝土基础工程技术规程》 (JGJ/T 187-2009)。 一.参数信息 塔吊型号 :QTZ50 塔机自重标准值 :Fk1=357.70kN 起重荷载标准值 :Fqk=50.00kN 非工作状态下塔身弯矩 :M=-356.86kN.m 塔身宽度 :B=1.6m 塔吊最大起重力矩 :M=733.7kN.m 塔吊计算高度 :H=35m 桩身混凝土等级 :C80 保护层厚度 :H=50mm 承台厚度 :Hc=1.2m 承台混凝土等级 :C35 矩形承台边长 :H=5.0m 承台箍筋间距 :S=200mm 承台顶面埋深 :D=0.0m 桩间距 :a=1.25m 承台钢筋级别 :HRBF400 桩直径 :d=0.4m 桩钢筋级别 :HPB300 桩型与工艺 :预制桩 桩入土深度 :24m 桩空心直径 :0.2m 计算简图如下: 二.荷载计算 1.自重荷载及起重荷载 1)塔机自重标准值 F =357.7kN k1 2)基础以及覆土自重标准值 G =5×5×1.20×25=750kN k 3)起重荷载标准值

F qk=50kN 2.风荷载计算 1)工作状态下塔机塔身截面对角线方向所受风荷载标准值 a.塔机所受风均布线荷载标准值 (Wo=0.2kN/m2) W =0.8×1.59×1.95×1.49×0.2=0.74kN/m 2 k q =1.2×0.74×0.35×1.6=0.50kN/m sk b.塔机所受风荷载水平合力标准值 F =q×H=0.50×35.00=17.39kN vk sk c.基础顶面风荷载产生的力矩标准值 M =0.5F×H=0.5×17.39×35.00=304.24kN.m sk vk 2)非工作状态下塔机塔身截面对角线方向所受风荷载标准值 a.塔机所受风均布线荷载标准值 (本地区 Wo=0.35kN/m)2 W =0.8×1.62×1.95×1.49×0.35=1.32kN/m 2 k q =1.2×1.32×0.35×1.60=0.89kN/m sk b.塔机所受风荷载水平合力标准值 F =q×H=0.89×35.00=31.00kN vk sk c.基础顶面风荷载产生的力矩标准值 M =0.5F×H=0.5×31.00×35.00=542.46kN.m sk vk 3.塔机的倾覆力矩 工作状态下,标准组合的倾覆力矩标准值 M =-356.86+0.9×(733.7+304.24)=577.28kN.m k 非工作状态下,标准组合的倾覆力矩标准值 M =-356.86+542.46=185.60kN.m k 三.桩竖向力计算 非工作状态下: Q =(F +G)/n=(357.7+750.00)/4=276.93kN k k k Q kmax=(F +G)/n+(M +F×h)/L k k k vk

四桩基础计算书

四桩基础计算书 沧州世茂国际购物中心工程;属于框架结构;地上0层;地下0层;建筑高度:;标准层层高:;总建筑面积:平方米;总工期:0天;施工单位:。 本工程由投资建设,设计,地质勘察,监理,组织施工;由担任项目经理,担任技术负责人。 一、塔吊的基本参数信息 塔吊型号:QTZ40B,塔吊起升高度H=, 塔吊倾覆力矩M=,混凝土强度等级:C35, 塔身宽度B=,基础以上土的厚度D=, 自重F1=,基础承台厚度Hc=, 最大起重荷载F2=,基础承台宽度Bc=, 桩钢筋级别:II级钢,桩直径或者方桩边长=, 桩间距a=2m,承台箍筋间距S=, 承台砼的保护层厚度=50mm,空心桩的空心直径:。 二、塔吊基础承台顶面的竖向力和弯矩计算 塔吊自重(包括压重)F 1 =, 塔吊最大起重荷载F 2 =, 作用于桩基承台顶面的竖向力F=×(F 1+F 2 )=, 塔吊的倾覆力矩M=×=。 三、矩形承台弯矩及单桩桩顶竖向力的计算

图中x轴的方向是随机变化的,设计计算时应按照倾覆力矩M最不利方向进行验算。 1. 桩顶竖向力的计算 依据《建筑桩技术规范》JGJ94-94的第条。 其中 n──单桩个数,n=4; F──作用于桩基承台顶面的竖向力设计值,F=; G──桩基承台的自重 G=×(25×Bc×Bc×Hc/4+20×Bc×Bc×D/4)= ×(25×××+20×××=; Mx,My──承台底面的弯矩设计值,取; xi,yi──单桩相对承台中心轴的XY方向距离a/2=; Ni──单桩桩顶竖向力设计值(kN); 经计算得到单桩桩顶竖向力设计值, 最大压力:N=+/4+×(4× =。 2. 矩形承台弯矩的计算 依据《建筑桩技术规范》JGJ94-94的第条。

恒大塔吊四桩基础计算书 - 副本

目录 1、工程概况 (1) 2、地层特性表 (1) 3、塔吊选型及布案 (6) 4、塔吊的基本参数信息 (6) 5、桩顶作用效应计算 (9) 6、桩承载力验算 (11) 7、承台计算 (12) 8、承台配筋示意图 (14) 9、结论 (14)

一、工程概况 建设单位:昆明恒云置业有限公司 设计单位:华东建筑设计院有限公司 监理单位:达华工程管理(集团)有限公司 施工单位:江苏省建工集团有限公司 勘察单位:西南有色昆明勘测设计(院)股份有限公司 拟建场地位于昆明市西山区日新路陆家营社区,南侧为日新中路(十里长街),东侧为新建住宅小区,西侧为规划河道,北侧与核心商务区相邻,地处昆明南市副中心核心腹地位置。属于框剪结构;地上33层;地下2层;标准层层高:2.95m ;总建筑面积:约272058.21平方米; 本方案主要依据施工图纸及以下规范及参考文献编制:《塔式起重机设计规范》(GB/T13752-1992)、《地基基础设计规范》(GB50007-2002)、《建筑结构荷载规范》(GB50009-2001)、《建筑安全检查标准》(JGJ59-99)、《混凝土结构设计规范》(GB50010-2002)、《建筑桩基技术规范》(JGJ94-2008)《昆明恒大云报华府工程岩土工程堪察报告》等编制。 塔吊基础顶标高与主楼基础筏板顶标高相同高程为1880.935米,在地下车库桩间土开挖时进行基础施工,根据厂家提供的塔吊起重机作用说明书,选用16吨汽车式起重机安装塔机。 二、地层特性表

三、塔吊选型及布置方案 本工程在各主楼,垂直运输工作量较大,且起吊量重,根据现场施工情况和各主楼间楼距关系。项目部决定投入QTZ63塔吊2台,大臂长55米,QTZ60塔吊5台,2台大臂长42.5米,2台大臂长46.2米,1台大臂长50米,能满足整个施工现场垂直运输。本工程塔吊基础顶标高设计为同地下车库筏板顶标高,高程为1880.935米塔吊基础高度为1.4米。根据昆明26号区回迁安置房建设项目C、D地块拟建(建筑物部分)场地岩土工程勘察报告,查表塔吊基础底土层为第3层泥质碳土,为软弱下卧层,不能作基础持力层,地基承载力为40kpa不满足塔吊基础承载力设计200kpa要求。故本工程所有塔吊基础需重新设计采用四桩承台基础,本工程塔吊基础选型设计按QTZ63塔吊进行重新设计,QTZ60塔吊基础施工按设计计算后QTZ63塔吊基础进行施工。基础祥细布置详见塔吊基础平面布置图。 四、塔吊的基本参数信息 1、塔机属性 2、塔机荷载

中联QTZ80(TC6012)塔吊非标桩基础方案计算书上课讲义

QTZ80(TC6012-6)非标桩基础方案计算书根据麓枫路站现场的实际情况及QTZ80(TC6012)塔机的预装位置地质条件进行计算。现场桩采用直径800 灌注桩。12 轴线附近塔吊基础承台底进入冠梁180mm,基础承台底布筋与冠梁顶部布筋高度一致,基础承台顶高出地面约20mm。23 轴线附近塔吊基础承台底布筋与冠梁底部布筋高度一致,基础承台顶高出地面约100mm。塔机承台宽度方向超出冠梁100mm。桩基础示意见附图1,现场桩基础方案为: 塔机桩基础承台 1. 塔机基础承台大小5.6m*3.5m*1.3m; 2. 基础承台上下层长度方向布筋30-φ25@190(HRB400); 3. 基础承台上下层宽度方向均布筋24-φ25@148(HRB400); 4. 架立筋180-φ12@380/296(HPB300); 5. 基础承台上层主筋保护层厚度50mm,下层主筋保护层厚度 130mm; 6. 基础承台砼标号C35,施工时应捣实,养护期28 天(或达到额定强度); 7. 确保固定基节的安装后其中心线与水平面垂直度误差小于 1.5/1000; 8. 预埋螺栓基础的四组地脚螺栓相对位置必须准确,保证地脚螺栓 孔的对角线误差不大于2mm,确保固定基节的顺利安装; 9. 钢筋的弯折等其他要求与厂家的基础图要求一致。

桩 1. 共用原来的支护桩及冠梁,外加两根直径800mm 的灌注桩; 2. 外加两根灌注桩定位尺寸详见附图1,桩底比基坑底低2m,桩顶进入承台100mm; 3. 桩主筋通长布置,12-φ20@183(HRB400),见附图2; 4. 桩身布置φ8(HPB300)螺旋箍筋,桩顶以下5D 螺旋箍筋间距100mm,其余间距300mm; 5. 桩身每隔2m 设置加强筋φ20@2000(HRB400); 6. 桩身混凝土≥水下C30; 7. 桩端的持力层主要为强风化板岩,进入持力层深度从基坑底高度算起≥2m, 12 轴线塔吊L≥17.33m,23 轴线塔吊L≥16.53m;8. 灌注桩施工工艺同支护桩。 桩与基础承台连接 1. 桩嵌入承台的长度100mm; 2. 主筋入承台长度≥800mm; 基础承台与冠梁连接 1. 12 轴线附近塔吊基础承台底布筋与冠梁顶部布筋高度一致,利用架立筋将冠梁顶部主筋与承台上下层主筋编结在一起; 2. 23 轴线附近塔吊基础承台底布筋与冠梁底部布筋高度一致,利用架立筋将冠梁底部主筋与承台上下层主筋编结在一起; 3. 基础承台传递到冠梁处的最大水平力为160kN(方向360°任意),请项目方考虑基础承台处的冠梁或支护桩是否需加强,应满足最大水平力受力要求。

塔吊四桩基础的计算书(TC7020)

(TC7020)塔吊四桩基础得计算书依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)。 二、荷载计算 1、自重荷载及起重荷载 1)塔机自重标准值 F k1=1260kN 2)基础以及覆土自重标准值 G k=4、5×4、5×1、60×25=810kN 3) 起重荷载标准值 Fqk=160kN 2、风荷载计算 1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值 a、塔机所受风均布线荷载标准值(Wo=0、2kN/m2) Wk=0、8×1、59×1、95×1、2×0、2=0、60kN/m 2 q sk=1、2×0、60×0、35×2=0、50kN/m b、塔机所受风荷载水平合力标准值 Fvk=q sk×H=0、50×46、50=23、25kN c、基础顶面风荷载产生得力矩标准值 M sk=0、5F vk×H=0、5×23、25×46、50=540、62kN、m2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值 a、塔机所受风均布线荷载标准值(本地区Wo=0、35kN/m 2) W k=0、8×1、62×1、95×1、2×0、35=1、06kN/m 2qsk=1、2×1、06×0、35×2、00=0、89kN/m b、塔机所受风荷载水平合力标准值 F vk=q sk×H=0、89×46、50=41、46kN c、基础顶面风荷载产生得力矩标准值

Msk=0、5Fvk×H=0、5×41、46×46、50=963、93kN、m 3、塔机得倾覆力矩 工作状态下,标准组合得倾覆力矩标准值 M k=1639+0、9×(1400+540、62)=3385、55kN、m 非工作状态下,标准组合得倾覆力矩标准值 Mk=1639+963、93=2602、93kN、m 三、桩竖向力计算 非工作状态下: Q k=(Fk+G k)/n=(1260+810、00)/4=517、50kN Qkmax=(F k+G k)/n+(Mk+Fvk×h)/L =(1260+810)/4+Abs(2602、93+41、46×1、60)/4、95=1056、85kN Q kmin=(F k+G k—Flk)/n-(Mk+Fvk×h)/L =(1260+810-0)/4-Abs(2602、93+41、46×1、60)/4、95=-21、85kN 工作状态下: Q k=(F k+G k+Fqk)/n=(1260+810、00+160)/4=557、50kN Qkmax=(F k+Gk+F qk)/n+(M k+F vk×h)/L =(1260+810+160)/4+Abs(3385、55+23、25×1、60)/4、95=1249、11kN Q kmin=(Fk+G k+F qk-F lk)/n-(M k+F vk×h)/L =(1260+810+160-0)/4-Abs(3385、55+23、25×1、60)/4、95=-134、11kN 四、承台受弯计算 1、荷载计算 不计承台自重及其上土重,第i桩得竖向力反力设计值: 工作状态下: 最大压力 N i=1、35×(F k+F qk)/n+1、35×(M k+F vk×h)/L =1、35×(1260+160)/4+1、35×(3385、55+23、25×1、60)/4、95=1412、92kN 最大拔力 N i=1、35×(Fk+Fqk)/n—1、35×(M k+Fvk×h)/L =1、35×(1260+160)/4—1、35×(3385、55+23、25×1、60)/4、95=-454、42kN 非工作状态下: 最大压力 N i=1、35×Fk/n+1、35×(M k+F vk×h)/L =1、35×1260/4+1、35×(2602、93+41、46×1、60)/4、95=1153、38kN 最大拔力 N i=1、35×Fk/n—1、35×(M k+F vk×h)/L =1、35×1260/4-1、35×(2602、93+41、46×1、60)/4、95=-302、88kN 2、弯矩得计算 依据《塔式起重机混凝土基础工程技术规程》第6、4、2条

5#塔吊四桩基础的计算书

5#塔吊四桩基础的计算书依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2019)。 一. 参数信息 本计算书参考塔吊说明书荷载参数进行验算。 塔吊型号:TC6513-6 塔机工作状态:Fv=696.9kN,Fh=25.4kN 塔机非工作状态:Fv=586.3kN,Fh=103.2kN 工作状态倾覆力矩:M=2148.2kN.m 非工作状态倾覆力矩:M=2798.6kN.m 塔吊计算高度:H=77m 塔身宽度:B=1.8m 桩身混凝土等级:C80 承台混凝土等级:C35 保护层厚度:H=50mm 矩形承台边长:H=6m 承台厚度:Hc=1.35m 承台箍筋间距:S=200mm 承台钢筋级别:HRB400E 承台顶面埋深:D=0.0m 桩直径:d=0.6m 桩间距:a=4.8m 桩钢筋级别:HRB400E 桩入土深度:35m 桩型与工艺:预制桩 桩空心直径:0.38m 计算简图如下: 二. 荷载计算

1. 塔机基础竖向荷载 1) 塔机工作状态竖向荷载标准值 F k =696.9kN 2) 塔机非工作状态竖向荷载标准值 F k =586.3kN 3) 基础以及覆土自重标准值 G k =6×6×1.35×25=1215kN 2. 塔机基础水平荷载 1) 工作状态下塔机基础水平荷载标准值 F vk = 25.40kN 2) 非工作状态下塔机基础水平荷载标准值 F vk = 103.20kN 3. 塔机的倾覆力矩 工作状态下,标准组合的倾覆力矩标准值 M k = 2148.20kN.m 非工作状态下,标准组合的倾覆力矩标准值 M k = 2798.60kN.m 三. 桩竖向力计算 非工作状态下: Q k =(F k +G k )/n=(586.3+1215.00)/4=450.33kN Q kmax =(F k +G k )/n+(M k +F vk ×h)/L =(586.3+1215)/4+Abs(2798.60+103.20×1.35)/6.79=883.19kN Q kmin =(F k +G k -F lk )/n-(M k +F vk ×h)/L =(586.3+1215-0)/4-Abs(2798.60+103.20×1.35)/6.79=17.46kN 工作状态下: Q k =(F k +G k +F qk )/n=(696.9+1215.00)/4=477.98kN Q kmax =(F k +G k +F qk )/n+(M k +F vk ×h)/L

桩承台计算计算书

桩承台计算计算书 一、设计示意图 二、基本资料 1.设计规范: 《建筑地基基础设计规范》(GB 50007-2002) 《建筑桩基技术规范》(JGJ 94-94) 《混凝土结构设计规范》(GB 50010-2002) 2.几何参数: A = 500 mm H = 600 mm e11 = 750 mm e12 = 750 mm L11 = 450 mm L12 = 850 mm 3.柱计算数据 柱形状: 矩形截面高度h c: 700 mm 截面宽度b c: 700 mm 混凝土强度等级: C25 弯矩M y设计值: M y = 100.00 kN·m 弯矩M x设计值: M x = 100.00 kN·m 轴力N设计值: N = 1000.00 kN 剪力V x设计值: V x = 0.00 kN 剪力V y设计值: V y = 0.00 kN 是否为地震荷载组合: 否 4.桩计算数据 桩形状: 圆形直径: 600 mm 混凝土强度等级: C25 5.承台计算数据 桩基重要性系数: 0 = 1.00 混凝土强度等级: C25 钢筋级别: HRB400(20MnSiV、20MnSiNb、20MnTi) 受拉钢筋合力点到承台底边的距离: a s = 60 mm 三、各桩净反力计算 1.计算公式: 根据《建筑地基基础设计规范》(GB 50007-2002)公式(8.5.3-2)得出

N i = F k n± M xk y i ∑y i 2 ± M yk x i ∑x i 2 其中F k = N 2.各桩净反力: 桩号0: N 0 = 683.33 kN 桩号1: N 1 = 816.67 kN 最大桩净反力: N max = 816.67 kN 四、弯矩与配筋计算 1.计算公式: 弯矩根据《建筑地基基础设计规范》(GB 50007-2002)公式(8.5.16-1)、(8.5.16-2)计算 M x = ∑N i y i M y = ∑N i x i 按照简易方法配筋计算 A s = γ 0M 0.9 f y h 0 2.弯矩计算: 绕Y轴弯矩: 桩1: N 1 = 816.67 kN x 1 = 400 mm 绕Y轴弯矩计算结果: M y = 525.00 kN·m 绕X轴弯矩: 桩0: N 0 = 683.33 kN y 0 = 350 mm 桩1: N 1 = 816.67 kN y 1 = 350 mm 绕X轴弯矩计算结果: M x = 326.67 kN·m 3.配筋计算: 桩基重要性系数: γ 0 = 1.00 绕Y轴弯矩设计值: M y = 525.00 kN·m 绕X轴弯矩设计值: M x = 326.67 kN·m 钢筋抗拉强度设计值: f y = 360.00 N/mm2 计算截面处承台的有效高度: h 0 = 540 mm X向配筋面积计算结果(总计): A sx = 3000.69 mm2 Y向配筋面积计算结果(总计): A sy = 1867.09 mm2 4.配筋结果: X向: 计算面积(总计): 3000.69 mm2 采用方案(总计): 15C16 实配面积(总计): 3015.93 mm2 Y向: 计算面积(总计): 1867.09 mm2 采用方案(总计): 13C14 实配面积(总计): 2001.19 mm2

2#9#10#15#塔吊四桩基础的计算书

2#、9#、10#、15#塔吊四桩基础的计算书依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2019)。 一. 参数信息 本计算书依据塔吊规范JGJ187-2019进行验算。 塔吊型号:TC6513 塔机自重标准值:Fk1=245.00kN 起重荷载标准值:Fqk=13.00kN 塔吊最大起重力矩:M=2148.2kN.m 非工作状态下塔身弯矩:M=-2770.8kN.m 塔吊计算高度:H=65m 塔身宽度:B=1.8m 桩身混凝土等级:C80 承台混凝土等级:C35 保护层厚度:H=40mm 矩形承台边长:H=6m 承台厚度:Hc=1.35m 承台箍筋间距:S=200mm 承台钢筋级别:HRB400E 承台顶面埋深:D=0.0m 桩直径:d=0.5m 桩间距:a=4.8m 桩钢筋级别:HRB400E 桩入土深度:35m 桩型与工艺:预制桩 桩空心直径:0.3m 计算简图如下: 二. 荷载计算 1. 自重荷载及起重荷载 1) 塔机自重标准值 =245kN F k1 2) 基础以及覆土自重标准值 =6×6×1.35×25=1215kN G k

3) 起重荷载标准值 F qk =13kN 2. 风荷载计算 1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值 a. 塔机所受风均布线荷载标准值 (Wo=0.2kN/m2) W k =0.8×1.77×1.95×0.84×0.2=0.46kN/m2 q sk =1.2×0.46×0.35×1.8=0.35kN/m b. 塔机所受风荷载水平合力标准值 F vk =q sk ×H=0.35×65.00=22.80kN c. 基础顶面风荷载产生的力矩标准值 M sk =0.5F vk ×H=0.5×22.80×65.00=740.84kN.m 2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值 a. 塔机所受风均布线荷载标准值 (本地区 Wo=0.50kN/m2) W k =0.8×1.82×1.95×0.84×0.50=1.19kN/m2 q sk =1.2×1.19×0.35×1.80=0.90kN/m b. 塔机所受风荷载水平合力标准值 F vk =q sk ×H=0.90×65.00=58.60kN c. 基础顶面风荷载产生的力矩标准值 M sk =0.5F vk ×H=0.5×58.60×65.00=1904.42kN.m 3. 塔机的倾覆力矩 工作状态下,标准组合的倾覆力矩标准值 M k =-2770.8+0.9×(2148.2+740.84)=-170.66kN.m 非工作状态下,标准组合的倾覆力矩标准值 M k =-2770.8+1904.42=-866.38kN.m 三. 桩竖向力计算 非工作状态下: Q k =(F k +G k )/n=(245+1215.00)/4=365.00kN

相关文档