文档库 最新最全的文档下载
当前位置:文档库 › 脑电信号采集处理的综述

脑电信号采集处理的综述

脑电信号采集处理的综述
脑电信号采集处理的综述

生物电子学

学院:电子信息学院

班级:生物医学工程101班

关于脑电信号采集处理的综述

摘要:

脑电信号是人体的一种基本生理信号, 具有重要的临床诊断和治疗价值。由于脑电信号的自身非平稳性随机特点, 使得对它的研究成为一项具有相当难度

的课题。本文总结了脑电信号的采集方法以及后期处理的方法。脑电的采集主要是前置级放大电路的设计,而后期的处理则是通过对实测脑电信号进行时域分析、频域分析、W igner方法、小波方法等若干算法的仿真和对比, 深入分析和评价了脑电信号若干方法的特点以及存在的问题。

关键词:

脑电信号、采集、前置级放大、信号处理方法

前言:

脑电信号是大脑神经元突触后电位的综合,具有丰富的大脑活动信息,是大脑研究、生理研究、临床脑疾病诊断的重要手段。脑电信号采集的预处理是一个比较复杂的问题。

首先,脑电信号非常微弱,一般只有50μV左右,幅值范围为5μV~100μV。所以,脑电信号放大增益要比一般的信号高得多,一般要放大20000 倍左右。

第二,脑电信号头皮与颅骨通常几千欧姆的电阻,所以要求前置部分有很高的输入阻抗,以提高脑电信号索取能力,一般输入阻抗要大于10 MΩ。第三,脑电信号的频率低,一般在0.1 Hz ~ 100Hz,需要滤除脑电信号频率以外的高频干扰。

第四,在普通环境下,脑电信号采集受到工频干扰等共模干扰,信噪比通常低于-10 dB。工频干扰主要是以共模形式存在,幅值在mV 数量级,所以要求放大器具有很高的共模抑制比,一般要大于120 dB。

第五,在电极与头皮接触的部位会产生电位差,称为极化电压。极化电压一般在几毫伏到几百毫伏之间,理想情况下,在用双电极提取人体两点电位差时,两个电极保持对称则可以使极化电压互相抵消,但实际上,由于极化电压和通过电极电流大小、电极和皮肤接触阻抗不对称等很多因素有关,所以不可避免造成干扰,尤其当电极和皮肤接触不良时,干扰更严重。如果在仪表放大器的前端不做处理,极化电压的存在使得前置放大器的增益不能过大。除了极化电压的干扰外,还受主体的呼吸及运动等低频干扰,这些都是要考虑的。

第六,必须考虑被测者的生理自然性和保证操作安全性等。

第七,还需要考虑电极材料的选取。

前置级放大电路的设计:

1 生物电前置级电路分析

文献中以BB公司的仪表放大器INA128为例。当由该电路构成生物电信号前置级放大电路,只要将第5脚接地,3脚和2脚接差动输入, 8脚和1脚接调节增益

的电阻, INA128最大增益可达到10 000倍, 经过激光调节, 器件内部电阻精度很

高,运放对称度高. 但在实际的脑电信号提取中, 由于与电极接的是电解质溶液, 如导电膏、人体汗液或组织液, 因而会形成一个金属电解质溶液界面. 由电化学知识可知, 在金属和电解液之间会形成电荷分布, 产生一定的电位差,称为电极极化电压. 极化电压的幅值一般较高, 在几毫伏到几百毫伏之间. 理想情况下, 在用双电极提取人体两点间电位差时, 两电极保持对称就可使极化电压互相抵消, 但实际上, 由于极化电压与通过电极电流大小、电极和皮肤接触阻抗不对称等很多因素有关, 所以不可避免造成干扰, 尤其当电极和皮肤接触不良, 干扰

将更严重. 如果在仪表放大器的前端不做处理, 毫伏级的极化电压经过放大倍

数设置过高的仪表放大器, 势必造成信号的饱和.极化电压的存在给生物电信号前置级电路的设计增加了较大的难度, 为避免信号在进入滤波处理的过程中出

现大的失真, 希望前置级电路尽可能大地提高放大倍数.有一种解决方案是在仪表放大器的前端加上高通RC电路, 滤除低于0.5 Hz以下的低频干扰, 由于极化

电压是直流成分, 自然可以去除掉.但这个电路的缺点其一是降低了放大器的输入阻抗, 其二是由于脑电信号的信号源的内阻高, 且两输入端不平衡, 隔直电

容(高通网络)使共模干扰转变为差模干扰, 电磁干扰尤其是50 H z工频干扰窜入电路, 极大地影响了电路性能.

2 新型高性能的脑电前置级电路设计

笔者在实验中用到的新型高性能的脑电前置级电路. 这个电路采用了2个仪表放大器共同构成脑电前置放大电路, 实际上就是2个同相并联结构的前置放大电路的级联, 由于隔直电容与Rg1串联, 前置级第一级电路的放大增益不可能设置得很高,采用INA 121作为第一级放大电路主要是从成本上考虑,INA 121可调放大增益和共模抑制比要低于INA128,所以图中采用了浮地跟踪电路进一步提高第一级电路的共模抑制比.

从理论上计算整个电路的共模抑制比为:

而整个电路的放大倍数为:, 式中CMRR为

电路总的共模抑制比; CMRR1 为第一级电路的共模抑制比; CMRR2 为第二级电路的共模抑制比;A1d、A1c、A2d、A2c分别为第一级电路和第二级电路的差模增益和共模增益.由图2所示电阻参数可以计算出电路的放大倍数为25000倍, 理论上其共模抑制比可达到200dB.

由于脑电信号源的高阻抗,干扰极易通过脑电极进入两输入端, 由于两输入端阻抗总是不平衡的,共模干扰转化为差模干扰, 把输入端的接地端浮置并跟踪共模电压,即相当于器件的偏置电压都跟踪共模输入电压.这样,共模电压不能随着信号一起被放大, 从而放大器输出端产生的共模误差电压便被大大削弱, 这就相当于提高了放大器的共模抑制能力.第二级电路放大增益可设置到10000, 但实际应用中如果放大增益设置过高, 可能影响信号的线性度,一般将增益设定为几百倍.

主放大电路:

经过前置放大电路的放大,脑电信号的电压依然十分微弱,根据另一篇信号处理的方法来了解主放大电路的设计。由于后续电路输入电压范围为0 V~2.5 V,因此脑电信号在送入ADC 之前还需要进一步放大,本设计采用两级放大,分别位于低通滤波器的前后。都是采用简单的同相放大电路。第一级主放大电路放大倍数为20。第二级主放大倍数可调。调节电位器可以改变第二级主放大器的增益,使之在模数转换器的输入范围。

脑电信号的处理方法:

脑电信号的时域分析方法时域分析直接从时域提取特征是最早发展起来的方法,因为它直观性强,物理意义比较明确,因此仍有不少脑电图工作者使用。过去的EEG分析主要靠肉眼观察,这可以看作是人工时域分析。虽然大量脑电信息从频域观察更为直观,但也有一些重要信息在时域上反映更为突出,如反映癫痫信息的棘慢波、反映睡眠信息的梭形波等瞬态波形,因此时域分析在目前脑电定量化与分析中也有很重要的地位。时域分析主要用来直接提取波形特征, 如过零截点分析、直方图分析、方差分析、相关分析、峰值检测及波形参数分析、相干平均、多通道脑电时域分析技术、脑电瞬态特征的提取等等。

脑电信号的频域分析方法:

1、功率谱估计方法

功率谱估计是频域分析的主要手段。它的意义在于把幅度随时间变化的脑电波变换为脑电功率随频率变化的谱图,从而可直观地观察到脑电节律的分布与变换情况。谱估计法一般可分为经典方法与现代方法。

1.1经典方法

经典的谱估计方法是直接按定义用有限长数据来估计,即以短时间段数据的傅氏变换为基础的周期法。主要有直接法和间接法两种途径,这里不多做介绍,有兴趣的同学可以查阅参考文献中的文章。

1.2现代方法

为了避免经典谱估计存在的缺点, 近年来发展了各种现代谱估计技术, 参数

模型法是其中应用最为广泛的一种方法, 在EEG信号处理中应用也较为普遍。参数模型法的优点是频率分辨率高, 特别适用于短数据处理, 且谱图平滑, 有利

于参数的自动提取和定量分析, 因此适合于对EEG作动态分析。目前在EEG 分析中应用较多的是AR( Auto Regressive)模型谱估计技术。

时频分析

脑电信号是非平稳时变信号。脑电信号是一种时变的、非平稳信号, 不同时刻有不同的频率成分, 无论是时域分析方法还是频域分析方法都不能有效地反

映脑电信号的这些特征, 而单纯的时、频分析方法通过傅氏变换联系起来, 它们的截然分开是以信号的频率时不变特性或统计特性平稳为前提的。但由于时域和频域分辨率的不确定性原理, 不可能在时域和频域同时获得较高的分辨率。而且在EEG中有许多病变都是以瞬态形式表现的, 只有把时间和频率结合起来进行处理, 才能取得更好的结果。时频分析着眼于真实信号组成成分的时变谱特征, 简单的说就是将一维的时域信号或者频域信号以二维的时间- 频率密度函数的形

式表示出来, 揭示信号中包含频率的分部, 以及每个频率分量随时间变化的规律。所以时频分析为脑电信号的处理提供了新手段, 可以说信号的时频分析法为脑电信号处理提供了非常好的前景。目前应用的较为广泛的方法有维格纳分布和小波变换, 匹配跟踪方法目前也已用于睡眠纺锤波的分析。

维格纳分布:

异常脑电波如癫痫患者, 其EEG中出现棘波, 尖波及棘慢综合波等, 脑电波属于时变, 非平稳信号, 不同时刻有不同的频率成分, 单纯时频域不能准确表征

信号, EEG 许多病变以瞬态形式出现的, 只有时频结合才能有效处理, 维格纳

分布正是具有一些重复性质的时- 频分析法, 很适合于脑电信号瞬态波形的特

征提取。通过对信号进行wigner分析, 不但可求出信号的时间,频率两域分布图, 还可求出信号的频率变化情况, 从而更好地对脑电信号进行分类以及判别。但是, wigner分布不是线性处理, 会有一个多余的交叉项, 这个多余成分会对信号的

有用成分构成干扰, 影响了wigner分布的实际应用。消除交叉项主要方法属于时频两轴卷积平滑和利用模糊函数消除交叉扰。利用wigner分布进行脑电信号处理,要先进行低通滤波,满足WD频率需要,防止混迭,保证EEG的有用特性不会被隔去, EEG信号截止频率选在30H z以下。若对信号未进行预处理就进行w igner方法分析, 将会由于交叉干扰的存在而无法分辨信号特征。

小波变换:

小波变换具有多分辨率(多尺度)、品质因数即相对带宽( 中心频率与带宽之比) 恒定的优点, 因此适当地选择基本小波,可使小波在时、频两域都具有表征信号局部特征的能力。当使用小尺度时, 时轴上观察范围小, 而在频域上相当于用较高频率做分辨率较高的分析, 即用高频小波做细致观察; 当使用较大尺度时, 时轴上观察范围大, 而在频域上相当于用低频小波作概貌观察。因此小波变换被誉为/ 数学显微镜0。它是一种把时间和频率两域结合起来的分析方法, 在时频域都具有表征信号局部特征的能力的特点。时域分辨率和频域分辨率的相互矛盾得以解决。适当选取小波W( t), 可看作滤波器的特性, 意味着具有某一特性滤波器在不同分辨率下观察信号。这组带通滤波器中心频率各不相同。

结论:

脑电信号显然是非平稳随机信号,对它的分析从上个世纪20年代到现在,由于大脑产生机理的复杂性,一直有没有突破性的进展,存在许多问题未解决,使得这个领域仍有大量的工作待思考、开发和深入研究。本文根据多位专家学者的相关研究总结出了对脑电信号的采集处理方法, 以期为脑电信号处理及特征提取提供一定的理论参考和分析依据。目前人们也尝试用非线性处理方法、神经网络的方法、时频结合等等现代的方法来处理脑电信号,相信这些方法会为脑认知以及医学的发展作出贡献。

参考文献:

[1]王三强、何为、石坚.新型脑电信号前置级放大电路设计[ J] .重庆大学学报(自然科学版),2006,29(6):51-53.

[2]谢松云、张振中、杨金孝、张坤.脑电信号的若干处理方法与评价[J].计算机仿真,2007,24(2):326-330

[3]陈真诚、钟靖.脑电信号采集预处理电路设计[J].中国医学物理学杂志,2009,26(4):1299-1305

[4]史瑞超、刘红星、郁健、白志平.压电信号采集中放大电路前置级的设计[J].现代电子技术,2011,34(10):179-181

[5]马颖颖、张泾周、吴疆.脑电信号处理方法[J].北京生物医学工程,2007,26(1):99-102

心电数据处理与去噪

燕山大学 课程设计说明书题目心电数据处理与去噪 学院(系):电气工程学院 年级专业: 11级仪表一班 学号: 110103020036 学生姓名:张钊 指导教师:谢平杜义浩 教师职称:教授讲师

燕山大学课程设计(论文)任务书 院(系):电气工程学院基层教学单位:自动化仪表系 说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 2014年7月 5 日

摘要 (2) 第1章设计目的、意义 (3) 1.1 设计目的 (3) 1.2设计内容 (3) 第2章心电信号的频域处理方法及其分析方法 (4) 2.1小波分析分析 (4) 2.2 50hz工频滤波分析 (10) 第3章 GUI界面可视化 (14) 学习心得 (15) 参考文献 (15)

信号处理的基本概念和分析方法已应用于许多不同领域和学科中,尤其是数字计算机的出现和大规模集成技术的高度发展,有力地推动了数字信号处理技术的发展和应用。心脏周围的组织和体液都能导电,因此可将人体看成为一个具有长、宽、厚三度空间的容积导体。心脏好比电源,无数心肌细胞动作电位变化的总和可以传导并反映到体表。在体表很多点之间存在着电位差,也有很多点彼此之间无电位差是等电的。心脏在每个心动周期中,由起搏点、心房、心室相继兴奋,伴随着生物电的变化,这些生物电的变化称为心电 它属于随机信号的一种,用数字信号处理的方法和Matlab软件对其进行分析后,可以得到许多有用的信息,对于诊断疾病有非常重要的参考价值。 关键字:信号处理心电信号Matlab

第一章设计目的、意义 1 设计目的 进行改革,增大学生的自主选择权,让学生发展自己的兴趣,塑造自己未来的研究发展方向。课程设计的主要目的: (1)培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料。 (2)培养灵活运用所学的电力电子技术知识和创造性的思维方式以及创造能力。 (3)培养学生综合分析问题、发现问题和解决问题的能力。 (4)培养学生用maltab处理图像与数据的能力。 2 设计内容 2.1 设计要求: 要求设计出心电数据处理的处理与分析程序。 (1) 处理对象:心电数据; (2) 内容:心电数据仿真,心电数据处理(仿真数据,真实数据); (3) 结果:得到处理结果。 2.2 设计内容: (1)心电数据仿真; (2)心电数据处理; (3)分析处理结果。 (4)可视化界面设计 2.3 实验原理 2.3.1心电产生原理 我们常说的心电图一般指体表心电图,反映了心脏电兴奋在心脏传导系统中产生和传导的过程。正常人体的每一个心动周期中,各部分兴奋过程中

心电信号采集电路实验报告.doc

心电放大电路实验报告 一概述 心脏是循环系统中重要的器官。由于心脏不断地进行有节奏的收缩和舒张活动,血液才能在闭锁的循环系统中不停地流动。心脏在机械性收缩之前,首先产生电激动。心肌激动所产生的微小电流可经过身体组织传导到体表,使体表不同部位产生不同的电位。如果在体表放置两个电极,分别用导线联接到心电图机(即精密的电流计)的两端,它会按照心脏激动的时间顺序,将体表两点间的电位差记录下来,形成一条连续的曲线,这就是心电图。 普通心电图有一下几点用途 1、对心律失常和传导障碍具有重要的诊断价值。 2、对心肌梗塞的诊断有很高的准确性,它不仅能确定有无心肌梗塞,而且还可确定梗塞的病变期部位范围以及演变过程。 3、对房室肌大、心肌炎、心肌病、冠状动脉供血不足和心包炎的诊断有较大的帮助。 4、能够帮助了解某些药物(如洋地黄、奎尼丁)和电解质紊乱对心肌的作用。 5、心电图作为一种电信息的时间标志,常为心音图、超声心动图、阻抗血流图等心功能测定以及其他心脏电生理研究同步描纪,以利于确定时间。 6、心电监护已广泛应用于手术、麻醉、用药观察、航天、体育等的心电监测以及危重病人的抢救。 二系统设计 心电信号十分微弱,频率一般在0.5HZ-100HZ之间,能量主要集中在17Hz附近,幅度大约在10uV-5mV之间,所需放大倍数大约为500-1000倍。而50hz工频信号,极化电压,高频电子仪器信号等等干扰要求心电信号在放大的过程中始终要做好噪声滤除的工作。下图为整体化框图。 三具体实现 电路图如下: 1 导联输入: 导联线又称输入电缆线。其作用是将电极板上获得的心电信号送到放大器的输入端。心脏

心电信号的计算机分析final

心电信号的计算机分析 【实验目的】: 通过理论结合实际,用C语言编程对MIT心电信号数据进行分析,实现低通滤波、高通滤波、QRS检测、特征提取、心律失常分析,从中了解和掌握数字信号处理的方法和应用。 【实验要求】 1读取数据 2 QRS检测 3 特征参数提取 4 心率失常分析 5 功率谱分析 【实验报告】 一实验介绍 心脏在有节律的活动过程中,能在人体表面产生微弱的电信号,如果我们在人体表面的特定部位安放电极,就能在电极上获得微弱的心电信号,此信号经放大、处理后,描记在记录纸上就是心电图,它能够反映心脏的功能及病情。 在获取心电图的过程中,由于心电信号比较微弱,仅为毫伏(mV)级,所以极易受环境的影响。对心电信号引起干扰得主要因数有:工频干扰、电极接触噪声、运动伪迹、呼吸引起的基线漂移和心电幅度变化、信号记录和处理中电子设备产生的干扰、电外科噪声等。 为了增强心电信号中的有效成分,抑制噪声和伪迹,提高波形检测准确率,除了对心电记录仪的硬件抗干扰能力有较高的要求外,心电信号A/D 变换后的处理也至为重要。 用于心电信号数字处理的方法主要有:消除电源干扰的工频滤波器,消除采样时间段引起信号失真的汉宁平滑滤波器,消除高频肌电的低通滤波器,消除直流偏移和基线漂移等低频噪声的高通滤波器,以及用于QRS 波检测的带通滤波器。本实验利用MIT心电信号数据库,简单设计了对心电信号进行计算机分析的实验,实验主要分成两部分:信号处理和心电参数分析;信号处理的方法有低通滤波、高通滤波、微分(查分运算):,对处理后的信号进行如下分析:QRS检测心率失常分析参数提取功率谱分析。 本实验的整个过程是:先读取文件数据,将数据显示在计算机屏幕上,并可进行翻页显示,然后对所读心电数据进行低通滤波、高通滤波、微分(查分运算)等处理,同时将处理后的数据显示在屏幕上;对心电信号的分析是采用处理后的的数据,先对QRS波进行检测,然后计算特征参数,

心电信号的预处理及瞬时心率的测量

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期: 2011 年 4 月 28 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注 全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号):

心电信号的预处理及瞬时心率的测量 摘要 心电信号作为心脏活动在人体体表的表现,具有信号微弱,而体表检测心电信号中常带有工频干扰、基线漂移、肌电干扰等各种噪声, 给临床对心血管疾病的诊断带来了障碍,也无法准确测得其心率,进而无法进行心率变异分析。因此本文设计出基于FIR的陷波器滤除工频干扰信号,设计出低通滤波器消除肌电干扰信号,以及设计的高通滤波器来消除基线漂移的干扰,利用这三种滤波器对题目中所给的实测数据进行了预处理。对处理后的数据利用连续小波变化的原理给出了测量瞬时心率的算法,在Matlab软件上进行了仿真,利用试题中所给不正常心电信号对该算法进行了验证,并对该算法优缺点进行分析。第三问中我们在第二问的基础上通过对瞬时心率信号的几个参数进行分析,从而判断是否存在心率变异,给出了一个比较简单可行的算法,并利用了试题中所给心电信号对该算法进行了验证。最后我们辩证的分析题目中所建立模型和算法的优缺点,提出了模型的改进方向,并分析了该模型的实用性与可行性。 关键词:凯赛窗滤波器 FIR 小波变换 HRV信号

心电信号的采集与处理

中北大学信息商务学院课程设计说明书 学生姓名:苏慧敏学号:1305034211 学生姓名:王晓腾学号:1305034217 学生姓名:李康学号:1305034243 学院:中北大学信息商务学院 专业:电子信息工程 题目:心电信号的采集与处理 指导教师:王浩全职称: 教授 2016 年 6 月 9 日

中北大学信息商务学院课程设计任务书 2015-2016 学年第二学期 学院:中北大学信息商务学院 专业:电子信息工程 学生姓名:苏慧敏学号:1305034211 学生姓名:王晓腾学号:1305034217 学生姓名:李康学号:1305034243 课程设计题目:心电信号的采集与处理 起迄日期:2016年6 月13日~2016年7月1 日 课程设计地点:系专业实验室 指导教师:王浩全 系主任:王浩全 下达任务书日期: 2016年6月 9日

课程设计任务书

课程设计任务书

设计说明书应包括以下主要内容: (1)封面:课程设计题目、班级、姓名、指导教师、时间 (2)设计任务书 (3)目录 (4)设计方案简介 (5)设计条件及主要参数表 (6)设计主要参数计算 (7)设计结果 (8)设计评述,设计者对本设计的评述及通过设计的收获体会(9)参考文献

目录 一、基于PCI总线A/D卡的报告 (1) (一)基于PCI总线的基本结构 (1) 1.PCI总线 (1) 2.PCI总线的基本含义 (1) (二)基于PCI的A/D卡的通用结构 (2) (三)基于PCI总线发展趋势 (2) (四)PCI总线的特点: (3) 二、设计方案简介 (3) 三、设计条件及主要参数表 (4) 四、设计结果 (6) 五、设计评述 (7) 六、参考文献 (7)

心电信号采集及系统设计(荟萃内容)

微弱信号检测课题报告 心电信号采集 —噪声分析及抑制 指导老师:宋俊磊 院系:机电学院测控系 班级: 学号: 姓名:

【目录】 【摘要】 (3) 第一章 (4) 1.1人体生物信息的基本特点[1} (4) 1.2 体表心电图及心电信号的特征分析[4] (5) 1.3心电信号的噪声来源[7] (6) 1.4 心电电极和导联体系分析 (7) 1.4.1系统电极选择[8] (7) 第二章硬件电路设计 (8) 2.1 心电信号采集电路的设计要求 (8) 2.2 心电采集电路总体框架 (9) 2.3采集电路模块 (11) 2.4 AD620引入的误差 (11) 2.4.1 电子元件内部噪声 (11) 2.4.2集成运放的噪声模型: (13) 2.4.3 AD620的噪声计算 (14) 2.4.4 前置放大电路改进措施 (15) 2.5 滤波电路设计 (18) 2.6电平抬升电路[14] (21) 2.7心电信号的50Hz带阻滤波器(50Hz陷波)设计[15] (21) 结论 (23) 附录:参考文献 (24)

【摘要】 心脏是人体循环系统的核心,心脏的活动是由生物电信号引发的机械收缩。在人体这个三维空间导体当中,这种生物电信号可以波及人体各个部分,在人体体表产生规律性的电位变化。在人体体表的一定位置安放电极,按时间顺序放大并记录这种电信号,可以得到连续有序的曲线,这就是心电图。 针对心电信号的特点进行心电信号的采集、数据转换模块的设计与开发。设计一种用于心电信号采集的电路,然后进行A/D转换,使得心电信号的频率达到采样要求。人体的心电信号是一种低频率的微弱信号,由于心电信号直接取自人体,所以在心电采集的过程中不可避免会混入各种干扰信号。为获得含有较小噪声的心电信号,需要对采集到的心电信号做降噪处理。运用一个心电信号检测放大电路,充分考虑了人体心电信号的特点,采用前置差动放大+带通滤波器+50Hz陷波器(带阻滤波器)组成的模式,对心电信号进行测量。 关键词:心电信号采集,降噪,A/D转换放大,噪声分析

脑电信号特征提取及分类

脑电信号特征提取及分类

第 1 章绪论 1.1引言 大脑又称端脑,是脊椎动物脑的高级的主要部分,由左右两半球组成及连接两个半球的中间部分,即第三脑室前端的终板组成。它是控制运动、产生感觉及实现高级脑功能的高级神经中枢[1]。大脑是人的身体中高级神经活动中枢,控制着人体这个复杂而精密的系统,对人脑神经机制及高级功能进行多层次、多学科的综合研究已经成为当代脑科学发展的热点方向之一。 人的思维、语言、感知和运动能力都是通过大脑对人体器官和相应肌肉群的有效控制来实现的[2]。人的大脑由大约1011个互相连接的单元体组成,其中每个单元体有大约104个连接,这些单元体称做神经元。在生物学中,神经元是由三个部分组成:树突、轴突和细胞体。神经元的树突和其他神经元的轴突相连,连接部分称为突触。神经元之间的信号传递就是通过这些突触进行的。生物电信号的本质是离子跨膜流动而不是电子的流动。每有一个足够大的刺激去极化神经元细胞时,可以记录到一个持续1-2ERP的沿轴突波形传导的峰形电位-动作电位。动作电位上升到顶端后开始下降,产生一些小的超极化波动后恢复到静息电位(静息电位(Resting Potential,RP)是指细胞未受刺激时,存在于细胞膜内外两侧的外正内负的电位差)。人的神经细胞的静息电位为-70mV(就是膜内比膜外电位低70mV)。这个变化过程的电位是局部电位。局部电位是神经系统分析整合信息的基础。细胞膜的电特性决定着神经元的电活动[3]。当神经元受到外界刺激时,神经细胞膜内外两侧的电位差被降低从而提高了膜的兴奋性,当兴奋性超过特定阈值时就会产生神经冲动或兴奋,神经冲动或兴奋通过突触传递给下一个神经元。由上述可知,膜电位是神经组织实现正常功能的基本条件,是兴奋产生的本质。膜电位使神经元能够接收刺激信号并将这一刺激信号沿神经束传递下去。在神经元内部,树突的外形就像树根一样发散,由很多细小的神经纤维丝组成,可以接收电信号,然后传递给细胞体。如果说树突是树根的话,那么细胞体就是树桩,对树突传递进来的信号进行处理,如果信号超过特定的阈值,细胞体就把信号继续传递给轴突。轴突的形状像树干,是一根细长的纤维体,它把细胞体传递过来的信号通过突触发送给相邻神经元的树突。突触的连接强度和神经元的排列方式都影响着神经组织的输出结果。而正是这种错综复杂的神经组织结构和复杂的信息处理机制,才使得人脑拥有高度的智慧。我们的大脑无时无刻不在产生着脑电波,对脑来说,脑细胞就像是脑内一个个“微小的发电站”。早在1857年,英国的青年生理科学工作者卡通(R.Caton)就在猴脑和兔脑上记录

心电信号采集模块的设计200501

医学仪器与设备课程设计题目:心电信号采集模块的设计 院系:电气工程学院 专业:生物医学工程 姓名: 学号: 指导老师:戴启军 时间:2008年12月29日——2009年1月6日

心电信号采集电路的设计 一、系统概述 心电信号采集模块组成:心电电极;导联线;缓冲放大器;威尔逊电阻网络;差动放大;低通滤波器;高通滤波器;50Hz陷波器;光电隔离器;增益可调电路;调零电路 (1)心电电极 生物电引导电极实际完成人体和测量系统之间的界面作用。为了把生物电信号引入信号处理模块中,引导电极必须具备电流的传导能力。在人体内,电流靠离子导电,而在测试系统内是电子导电。通过引导电极,把离子电流变为电子电流,所以电极实际上起了一个换能器的作用。提取心电信号,采用的是皮肤表面电极(体表电极)。 (2)导联线 此设计中心电采集模块由4个电极组成导联线,包括三个肢体电极和一个右腿接地(右腿驱动)电极。电极获取的心电信号仅为毫伏级,所以导联线均用屏蔽线。 导联线的芯线和屏蔽线之间有分布电容存在(约100pF/m),为了减少电磁感应引起的干扰,屏蔽线可直接接地,但这样会降低输入阻抗。也可以采用屏蔽驱动,这样可减少共模误差和不降低输入阻抗。 (3)缓冲放大器 缓冲放大器保证心电放大器的高输入阻抗要求,起到阻抗变换作用。生物信号源本身是高内阻的微弱信号源,通过电极提取又呈现出不稳定的高内阻源性质。不稳定性将使放大器电压增益不稳定。放大器的输入阻抗应至少大于1MΩ。 (4)威尔逊电阻网络 威尔逊电阻网络是按照标准十二导联心电图定义组成的电阻网络。 (5)差动放大 差动放大是心电前置放大的主要部分,和缓冲放大器一起组成心电图前置放大。差动放大的作用是将幅度仅为毫伏级的微弱心电信号进行放大。同时必须有高抗干扰能力,即具有高共模抑制比。 (6)低通滤波器 心电信号的高频响应界限为100Hz,由100Hz低通滤波器完成。 (7)高通滤波器 心电信号的低频响应界限为0.05Hz,由0.05Hz高通滤波器完成。 (8)50Hz陷波器 50Hz陷波器用于加强滤除50Hz干扰。有的心电图机还设有40Hz低通滤波器用于滤除肌电干扰。

心电信号

昆明理工大学信息工程与自动化学院学生实验报告 ( 2016 —2017 学年第二学期) 课程名称:生物医学信号处理开课实验室:信自445 设备编号: 实验日期:2017.6.13 一、实验目的 1、对心电信号的记录、处理,心电信号的特点、心电信号的噪声抑制,工频干扰的抑制与基线纠漂有总体了解。 2、能利用MATLAB GUI设计简单GUI程序。 二、实验原理 1、心电信号属生物医学信号,具有如下特点: 信号具有近场检测的特点,离开人体表微小的距离,就基本上检测不到信号;心电信号通常比较微弱,至多为mV量级;属低频信号,且能量主要在几百赫兹以下;干扰特别强。干扰既来自生物体内,如肌电干扰、呼吸干扰等;也来自生物体外,如工频干扰、信号拾取时因不良接地等引入的其他外来串扰等;干扰信号与心电信号本身频带重叠(如工频干扰等)。 2、工频干扰抑制:现在使用较多的方法是使用滤波器对工频干扰进行抑制。 3、基线漂移:基线漂移是因为呼吸,肢体活动或运动心电图测试所引起的,故这样使得ECG信号的基准线呈现上下漂移的情况。 三、实验内容及步骤 1、查询心电信号处理相关资料。了解心电信号的记录、处理,心电信号的特点、心电信号的噪声抑制,工频干扰的抑制与基线纠漂。 (1)心电信号相关资料

人体心电信号是非常微弱的生理低频电信号,通常最大的幅值不超过5mV,信号频率在0.05~100Hz之间。心电信号是通过安装在人体皮肤表面的电极来拾取的。由于电极和皮肤组织之间会发生极化现象,会对心电信号产生严重的干扰。加之人体是一个复杂的生命系统,存在各种各样的其他生理电信号对心电信号产生干扰。同时由于我们处在一个电磁包围的环境中,人体就像一根会移动的天线,从而会对心电信号产生50Hz左右的干扰信号。心电信号具有微弱、低频、高阻抗等特性,极容易受到干扰,所以分析干扰的来源,针对不同干扰采取相应的滤除措施,是数据采集重点考虑的一个问题。 (2)心电信号具有以下几个特点: 信号极其微弱,一般只有0.05~4mV,典型值为1mV;频率范围较低,频率范围为0.1~35Hz,主要集中在5~20Hz;存在不稳定性。人体内部各器官问的相互影响以及各人的心脏位置、呼吸、年龄、是否经常锻炼等因素,都会使心电信号发生相应变化;干扰噪声很强。对心电信号进行测量时,必然要与外界联系,但由于其自身的信号非常微弱,因此,各种干扰噪声非常容易影响测量。其噪声可能来自工频(50Hz)干扰、电极接触噪点、运动伪迹、肌电噪声、呼吸引起的基线漂移和心电幅度变化以及其他电子设备的机器噪声等诸多方面。 2、编译、理解所提供的程序 程序 clear; %清空工作区 close all; %关闭所有窗口 clc; %清空命令区域 load 100_ECG_0_20 %读取心电信号 %%%Eliminate Baseline Drift %消除基线漂移 s1=ECG_2; s2=smooth(s1,150); ecgsmooth=s1-s2; %%%apply Wavelet Transform %进行小波变换 [C,L]=wavedec(ecgsmooth,8,'db4'); [d1,d2,d3,d4,d5,d6,d7,d8]=detcoef(C,L,[1,2,3,4,5,6,7,8]); %%%Denoise %去噪处理 [thr,sorh,keepapp]=ddencmp('den','wv',ecgsmooth); cleanecg=wdencmp('gbl',C,L,'db4',8,thr,sorh,keepapp); %%%thresholding1 %阈值选择 max_value=max(cleanecg);

基于matlab的脑电信号处理

航空航天大学基于Matlab的脑电信号处理 陆想想 专业领域生物医学工程 课程名称数字信号处理

二О一三年四月

摘要:脑电信号属于非平稳随机信号,且易受到各种噪声干扰。本文基于Matlab仿真系统,主要研究了小波变换在脑电信号处理方面的应用,包括小波变换自动阈值去噪处理、强制去噪处理,以α波为例,提取小波分解得到的各层频率段的信号,并做了一定的分析和评价。关键词:脑电信号;小波变换;去噪重构;频谱分析 0 引言 脑电信号EEG(Electroencephalograph)是人体一种基本生理信号,蕴涵着丰富的生理、心理及病理信息,脑电信号的分析及处理无论是在临床上对一些脑疾病的诊断和治疗,还是在脑认知科学研究领域都是十分重要的。由于脑电信号的非平稳性且极易受到各种噪声干扰,特别是工频干扰。因此消除原始脑电数据中的噪声,更好地获取反映大脑活动和状态的有用信息是进行脑电分析的一个重要前提。本文的研究目的是利用脑电采集仪器获得的脑电信号,利用Fourier变换、小波变换等方法对脑电信号进行分析处理,以提取脑电信号α波的“梭形”节律,并对脑电信号进行功率谱分析和去噪重构。 1 实验原理和方法 1.1实验原理 1.1.1脑电信号 根据频率和振幅的不同,可以将脑电波分为4种基本类型[1],即δ波、θ波、α波、β波。4种波形的起源和功能也不相同,如图1所示。 图1 脑电图的四种基本波形 α波的频率为8~13Hz,振幅为为20~100μV,它是节律性脑电波中最明显的波,整个皮层均可产生α波。正常成人在清醒、安静、闭目时,波幅呈现有小变大,再由大变小,如此反复进行,形成所谓α节律的“梭形”。每一“梭形”持续时间约为1~2s。当被试者睁眼、警觉、思考问题或接受其他刺激时,α波立即消失而代之以快波,这种现象称之为

心电信号的分析

心电信号的分析,含义,用途 班级:07生医1班 姓名:王颖晶 学号:0700308108 什么是心电: 心脏周围的组织和体液都能导电,因此可将人体看成为一个具有长、宽、厚三度空间的容积导体。心脏好比电源,无数心肌细胞动作电位变化的总和可以传导并反映到体表。在体表很多点之间存在着电位差,也有很多点彼此之间无电位差是等电的。心脏在每个心动周期中,由起搏点、心房、心室相继兴奋,伴随着生物电的变化,这些生物电的变化称为心电。 心电信号的用途: 心电信号是人们认识最早、研究最早的人体生理电信号之一。目前心电检测已经成为重要的医疗检测手段,但是心电信号的相关试验及研究依然是医学工作者和生物医学工程人员的重要议题。 心血管疾病是人类生命的最主要的威胁,而心电(ECG,electrocardiogram)信号是诊断心血管疾病的主要依据,因此实时检测病人心电活动、设计自动采集存储病人心电信号的便携式系统具有重要意义。 心电信号的含义: 心电信号是由人体心脏发出相当复杂的微弱信号,其幅度一般在1O V~5mV之间,频率为0.05~ 1。OHZ,外界干扰以及其他因素的

存在使其变得更难以检测n 。心电信号采集处理系统以抑制干扰、得到较为理想状态下的心电信号为目的。在心电信号滤波和处理算法中,要频繁进行大量的数据乘、加运算。 三个特殊波段的检测: 1.QRS波的检测 ?QRS的特点: ?其能量在心电信号中占很大的比例, ?其频谱分布在中高频区, 峰值落在10-20Hz之 间, ?二阶导数算法 ?心电信号的一阶和二阶导数的平方和作为QRS 波标记的脉冲信号, ?移动平均算法 ?其求导平方运算和上相同, 并对求导平方数据 进行移动平均, 从而突出QRS波的特征信息, ?正交滤波算法 2.R波峰点的检测 ?双边阈值检测法 ?取一个固定的阈值Ra, t1,t2分别为R波上升和 下降通过这个阈值的时刻,则R基准点的位置 t=(t1+t2)/2 ?固定宽度检测法

根据MATLAB的心电信号分析

计算机信息处理课程设计说明书题目:基于MATLAB的心电信号分析 学院(系): 年级专业: 学号: 学生姓名: 指导教师:

燕山大学课程设计(论文)任务书 院(系):基层教学单位: 说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 2014年12月 01日

摘要 心电信号是人们认识最早、研究最早的人体生理电信号之一。目前心电检测已经成为重要的医疗检测手段,但是心电信号的相关试验及研究依然是医学工作者和生物医学工程人员的重要议题。 信号处理的基本概念和分析方法已应用于许多不同领域和学科中,尤其是数字计算机的出现和大规模集成技术的高度发展,有力地推动了数字信号处理技术的发展和应用。心电信号是人类最早研究并应用于医学临床的生物电信号之一,它比其他生物电信号便易于检测,并具有较直观的规律性,对某些疾病尤其是心血管疾病的诊断具有重要意义。它属于随机信号的一种,用数字信号处理的方法和Matlab软件对其进行分析后,可以得到许多有用的信息,对于诊断疾病有非常重要的参考价值。 本课题基于matlab对心电信号做了简单的初步分析。直接采用Matlab 语言编程的静态仿真方式、对输入的原始心电信号,进行线性插值处理,并通过matlab语言编程设计对其进行时域和频域的波形频谱分析,根据具体设计要求完成程序编写、调试及功能测试,得出一定的结论。 关键词: matlab 心电信号线性插值频谱分析

目录 一:课题的目的及意义 (1) 二:设计内容与步骤 (1) 1.心电信号的读取 (1) 2.对原始心电信号做线形插值 (3) 3.设计滤波器 (5) 4.对心电信号做频谱分析 (6) 三:总结 (7) 四:附录 (8) 五:参考文献 (12)

基于某matlab的心电信号预处理

基于matlab的心电信号预处理 一、心电信号 (1)心电信号的特性 人体心电信号是非常微弱的生理低频电信号,通常最大的幅值不超过5mV,信号频率在0.05~100Hz之间。心电信号是通过安装在人体皮肤表面的电极来拾取的。由于电极和皮肤组织之间会发生极化现象,会对心电信号产生严重的干扰。加之人体是一个复杂的生命系统,存在各种各样的其他生理电信号对心电信号产生干扰。同时由于我们处在一个电磁包围的环境中,人体就像一根会移动的天线,从而会对心电信号产生50Hz左右的干扰信号。心电信号具有微弱、低频、高阻抗等特性,极容易受到干扰,所以分析干扰的来源,针对不同干扰采取相应的滤除措施,是数据采集重点考虑的一个问题。常见干扰有如下几种: ①工频干扰②基线漂移③肌电干扰 心电信号具有以下几个特点: ·信号极其微弱,一般只有0.05~4mV,典型值为1mV; ·频率围较低,频率围为0.1~35Hz,主要集中在5~20Hz; ·存在不稳定性。人体部各器官问的相互影响以及各人的心脏位置、呼吸、年龄、是否经常锻炼等因素,都会使心电信号发生相应变化; ·干扰噪声很强。对心电信号进行测量时,必然要与外界联系,但由于其自身的信号非常微弱,因此,各种干扰噪声非常容易影响测量。 其噪声可能来自工频(50Hz)干扰、电极接触噪点、运动伪迹、肌电噪声、呼吸引起的基线漂移和心电幅度变化以及其他电子设备的机器噪声等诸多方面。 (2)心电信号的选择 本次实验所采用的心电信号来自MIT-BIH库,库中有48组失常的心电信号,要在其中找出符合实验要求的心电信号(即含有肌电干扰、工频干扰和基线漂移)。 (3)正常心电信号波形 图1是正常心电信号在一个周期的波形,由P波、QRS波群和T波组成。 P波是由心房的去极化产生的,其波形比较小,形状有些圆,幅度约为0.25mV,持续时间为0.08~0.11s。窦房结去极化发生在心房肌细胞去极化之前,因而在时间上要先于P波,只是窦房结处于心脏部,其电活动在体表难以采集。 P-R间期是指P波起点和QRS波群起点所跨越的时间,是窦房结产生的兴奋,经过右心房、左心房、房室交接区、房室束、左右束支之后,传到到心室所需要的时间。在正常的体表心

基于matlab的脑电信号处理

南京航空航天大学基于Matlab的脑电信号处理 姓名陆想想 专业领域生物医学工程 课程名称数字信号处理 二О一三年四月

摘要:脑电信号属于非平稳随机信号,且易受到各种噪声干扰。本文基于Matlab仿真系统,主要研究了小波变换在脑电信号处理方面的应用,包括小波变换自动阈值去噪处理、强制去噪处理,以α波为例,提取小波分解得到的各层频率段的信号,并做了一定的分析和评价。关键词:脑电信号;小波变换;去噪重构;频谱分析 0 引言 脑电信号EEG(Electroencephalograph)是人体一种基本生理信号,蕴涵着丰富的生理、心理及病理信息,脑电信号的分析及处理无论是在临床上对一些脑疾病的诊断和治疗,还是在脑认知科学研究领域都是十分重要的。由于脑电信号的非平稳性且极易受到各种噪声干扰,特别是工频干扰。因此消除原始脑电数据中的噪声,更好地获取反映大脑活动和状态的有用信息是进行脑电分析的一个重要前提。本文的研究目的是利用脑电采集仪器获得的脑电信号,利用Fourier变换、小波变换等方法对脑电信号进行分析处理,以提取脑电信号α波的“梭形”节律,并对脑电信号进行功率谱分析和去噪重构。 1 实验原理和方法 1.1实验原理 1.1.1脑电信号 根据频率和振幅的不同,可以将脑电波分为4种基本类型[1],即δ波、θ波、α波、β波。4种波形的起源和功能也不相同,如图1所示。 图1 脑电图的四种基本波形 α波的频率为8~13Hz,振幅为为20~100μV,它是节律性脑电波中最明显的波,整个皮层均可产生α波。正常成人在清醒、安静、闭目时,波幅呈现有小变大,再由大变小,如此反复进行,形成所谓α节律的“梭形”。每一“梭形”持续时间约为1~2s。当被试者睁眼、警觉、思考问题或接受其他刺激时,α波立即消失而代之以快波,这种现象称之为“α波阻断”。一

基于LabVIEW的心电信号采集系统的设计

?基础研究?基于LabVIEW的心电信号采集系统的设计 于 杰,李川勇,贾林壮 摘 要:目的 设计一套基于LabVIEW的心电信号采集系统。方法 在插入式信号采集板DAQ的硬件支持下,利用LabVIEW编程软件,设计了一套双通道心电信号采集系统,本系统用传统的心电图机采集心电信号,经过调解后,输 入计算机采集并显示,同时,为了能够对心电信号作进一步的研究,利用小波变换对心电信号进行了处理。结果 成 功采集到心电信号,并计算了心率的大小。 关键词:LabVIEW;心电信号;采集系统 中图分类号:R540.41;TP311.52 文献标识码:A文章编号:1009-7090(2001)03-0131-0003 The Design of ECG Aquiring System on LabVIEW Y U Jie,LI Chuan-y ong,J I A Ling-zhuang Department o f Bio2 physics,Nankai Univer sity Abstract:Objective T o design the ECG acquiring system on LabVIEW.Methods With a DAQ board,we design an ECG acquisi2 tion system based on LabVIEW.The electrocardiographic signal is conditioned by a traditional ECG machine and acquired by a DAQ board on a com puter.A wavelet trans formation was used to process the acquired signal.R esults The ECG signals were acquired success fully and the heartbeat rate was calculated. K ey w ords:LabVIEW;ECG;collecting system 1 前言 生物电是生命的特征,心电是生物电的一种。利用心电图等有关心电活动的曲线和图形资料为临床提供诊断信息,是心血管病不可缺少的检查诊断方法。 传统的心电图诊断方法是由三大功能模块组成:心电信号的记录、分析和表述结果,这三者都是由手工完成的,完全依靠医生的临床经验,在结果分析方面存在个体差异,并且在心电图结果的保存方面也有不便。随着计算机技术的发展,计算机在心电图中的应用为人们从事心电学研究和进行临床诊断提供了现代化的手段,如果把传统心电图机的信号分析和处理、结果表达与输出等的功能由计算机完成,可以使传统心电图机在数据处理、表达、传送、存储等方面获得突破。 虚拟仪器是一种新兴的构造仪器的技术,它利用计算机强大的计算能力和丰富的软硬件资源来组 作者单位:南开大学生物物理系,天津 300071 收稿日期:2000-10-11;修回日期:2001-01-12织仪器系统,实现从传统仪器向计算机系统的过渡。LabVIEW是基于虚拟仪器技术的应用开发软件,这种软件开发平台具有编程简单、结果直观的特点,这为开发出符合要求且界面友好的心电信号采集分析系统提供了方便。 我们使用了美国National Instruments公司的相关产品,利用LabVIEW511图形化软件开发平台的超强能力和DAQ数据采集板,采用虚拟仪器的方法,建立了一种新的心电信号采集、显示和分析方法,使传统的心电图机成为一个智能化的心电信号采集和分析系统。 2 系统的构成 心电信号采集和分析系统由软件和硬件两部分组成,硬件部分的任务是由传统的心电图机将心电信号转换为电信号,并进行信号调理,再由数据采集板DAQ通过其A/D转换等的功能,将信号以数字形式采集到计算机;软件部分通过编程将由硬件部分采集到的信号进行显示、分析和处理。系统的结构框图如图1所示。 131 生物医学工程与临床2001年9月第5卷第3期

心电信号采集与调理电路

心电信号的采集和调理电路 1概述 1.1国内外发展现状 心电图机就是用来记录心脏活动时所产生的生理电信号的仪器。由于心电图机诊断技术成熟、可靠,操作简便,价格适中,对病人无损伤等优点,已成为各级医院中最普及的医用电子仪器之一。 在国外,心电图机的研制和生产,占主要地位的是以德国、日本、加拿大、美国为主的发达国家,相对而言国内心电图机发展速度较慢,水平较落后,心电图机的研制和生产是在1904年荷兰的爱因托芬(Willem Einthoven)制造的第一台弦线式电流计的基础上发展而来的,20世纪50年代之前,心电图机的发展主要解决了小型化和提高灵敏度的问题。1960年第一个专用心电图波形自动识别系统建立起来,自1978年美国Marquett公司首次推出数字化12导同步心电图机,便开创了心电图记录、分析与诊断、保存与管理的新纪元,从此心电图机进入数字化发展新时代,特别是计算机在各个领域的广泛运用,数字化信息处理为医学界进步和深入研究提供了现代化高科技手段。常规的心电图机有单道和多道,虽使用方便,但体积庞大、价格高,主要适合医院,并且对许多偶发、短暂心律失常无法进行监测;动态心电图机(HOLTER),虽然可用于24小时甚至更长时间的心电图记录,但是HOLTER价格昂贵,使用不方便,并且不能实时处理。 在国内,截至2007年10月,据不完全统计,我国已有医疗器械生产企业12530家,而专业生产心电图机的企业仅有20几家,大多数是中小企业,产品技术水平较低,不具备国际竞争力,所需的器件、材料、工艺,水平低基础差。目前我国心电图机主要生产厂家在广东、山东和上海,但在国内市场上均形不成主导地位。1985年上海医用心电图机的产品约占全国的80%,产品畅销;但自1989年12月上海医用电子仪器厂与日本光电工业株式会社签约合资成立上海光电医用电子仪器有限公司后,中国几家心电图机生产企业便开始滑坡,而光电公司的产品却更加稳固地占领了中国市场。我国心电图机产品数量尚远低于国际上已有品种,技术水平同样偏低。国产设备多为劳动密集型的低科技产品,特别是由于基础研究弱、创新能力差、缺少具有自主知识产权的产品。目前仅能解决中小医院的基本装备需求,高档设备主要靠进口。 由于心电图已应用于各个层次的医疗机构的临床和科研中,特别是人们对其的深入认识和广泛用于临床中的各个疾病。由于心电图机的非创伤性和多功能化,使心电图不局限于心脏疾患的范围,而且可用于临床电解质监测,非心脏疾病的鉴别诊断等等。随着人们生活节奏的加快和生活方式的改变,心血管疾病的发病率不断上升,心电图也在今后相当长的时间内更现重要。心电图机正向着多通道,数字智能型,网络共享型等方向发展。 1.2心电信号的形成

对心电信号的认识

对心电信号的认识 .......................................... 电气医信41班陈富琴(1043032053) 1.人体心电信号的产生:心脏周围的组织和体液都能导电,因此可将人体看成为一个具有长、宽、厚三度空间的容积导体。心脏好比电源,无数心肌细胞动作电位变化的总和可以传导并反映到体表。在体表很多点之间存在着电位差,也有很多点彼此之间无电位差是等电的。心脏在每个心动周期中,由起搏点、心房、心室相继兴奋,伴随着生物电的变化,这些生物电的变化称为心电。 2.人体心电信号的特点:心电信号属生物医学信号,具有如下特点: (1)信号具有近场检测的特点,离开人体表微小的距离,就基本上检测不到信号; (2)心电信号通常比较微弱,至多为mV量级; (3)属低频信号,且能量主要在几百赫兹以下; (4)干扰特别强。干扰既来自生物体内,如肌电干扰、呼吸干扰等;也来自生物体外,如工频干扰、信号拾取时因不良接地等引入的其他外来串扰等; (5)干扰信号与心电信号本身频带重叠(如工频干扰等)。 3.心电信号的研究:心电信号是人类最早研究并应用于医学临床的生物信号之一,它比其它生物电信号更易于检测,并且具有较直观的规律性,因而心电图分析技术促进了医学的发展。心电图检查是临床上诊断心血管疾病的重要方法。心电图的准确自动分析与诊断对于心血管疾病起着关键的作用,也是国内外学者所热衷的课题。以前的心电图大多采用临床医生手动分析的方法,这一过程无疑是费时费力且可靠性不高。在计算机技术迅速发展的情况下,心电图自动分析得以迅速发展,将医生从繁重的手工劳动中解脱出来,大大提高了工作效率。七十年代后,心电图自动分析技术已有很大发展,并进入实用化和商业化阶段。然而,心电图自动诊断还未广泛应用于临床,从国内外的心电图机检测分析来看,自动分析精度还达不到可以替代医生的水平,仅可以为临床医生提供辅助信息。其主要原因是心电波形的识别不准,并且心电图诊断标准不统一。因此,探索新的方法以提高波形识别的准确率,寻找适合计算机实现又具诊断价值的诊断标准,是改进心电图自动诊断效果,扩大其应用范围的根本途径。如何把心电信号的特征更加精确的提取出来进行自动分析,判断出其异常的类型成了鱼待解决的焦点问题。 4.心电信号的检查意义:用于对各种心率失常、心室心房肥大、心肌梗死、心律失常、 心肌缺血等病症检查。心电图是反映心脏兴奋的电活动过程,它对心脏基本功能及其病理研究方面,具有重要的参考价值。心电图的检查必须结合多种指标和临床资料,进行全面综合分析,才能对心脏的功能结构做出正确的判断。 5.心电信号基本构成:心电信号由P、QRS、T波和静息期组成,如图1,各波具有不同的频率特性,是一种典型的具有明显时频特称与时间—尺度特征的生物医学信号。 P.QRS.T波以及PR,ST,QT间期都不同程度地反应了心脏的功能的变化,因此通过算法实现对心脏功能的自动分析判别已成为一个比较热门的研究方向。

P300脑电信号的特征提取及分类研究

龙源期刊网 https://www.wendangku.net/doc/ff10432146.html, P300脑电信号的特征提取及分类研究 作者:马也姜光萍 来源:《山东工业技术》2017年第10期 摘要:针对P300脑电信号信噪比低,分类困难的特点,本文研究了一种基于独立分量分析和支持向量机相结合的脑电信号处理方法。首先对P300脑电信号进行叠加平均,根据ICA 算法的要求,对叠加平均的信号进行去均值及白化处理。然后使用快速定点的FastICA算法提取P300脑电信号的特征向量,最后送入支持向量机进行分类。采用国际BCI 竞赛III中的DataSetII数据进行验证,算法的最高分类正确率达90.12%。本算法原理简单,能有效提取 P300脑电信号的特征,对P300脑电信号特征提取及分类的任务提供参考方法。 关键词:P300脑电信号;特征提取;独立分量分析;支持向量机 DOI:10.16640/https://www.wendangku.net/doc/ff10432146.html,ki.37-1222/t.2017.10.180 0 引言 近年来随着世界人口的不断增多和老龄化加剧的现象,肌肉萎缩性侧索硬化症,瘫痪,老年痴呆症等患者的基数也相应增长,给社会及病人家属带来了沉重的负担。而近年来出现的涉及神经科学、认知科学、计算机科学、控制工程、医学等多学科、多领域的脑机接口方式应运而生[1]。脑机接口(brain computer interface,BCI)是建立一种大脑与计算机或其他装置联系的技术,该联系可以不通过通常的大脑输出通路(大脑的外周神经和肌肉组织)[2]。这种人 机交互形式可以代替语言和肢体动作,使得恢复和增强人类身体与心理机能、思维意念控制变成为可能。因此在军事目标搜索[3]、飞行模拟器控制[4]、汽车驾驶[5]、新型游戏娱乐[6]以及帮助运动或感觉机能出现问题的残障人士重新恢复信息通信功能[7]等方面均有应用并有巨大 潜能。 脑机接口系统的性能主要由脑电信号处理模块决定。脑电信号处理模块的核心由特征提取和分类识别两部分组成。常见的脑电信号特征提取方法很多,针对不同的脑电信号有不同的方法。例如时域分析方法有功率谱分析及快速傅里叶变换(FFT)等,适用于P300、N400等潜伏期与波形恒定,与刺激有严格锁时关系的诱发脑电信号;频域分析方法有自回归模型及数字滤波器等,适用于频率特征明显的运动想象脑电信号;时频域分析方法有小波变换,适用于时频特性随时间不断改变的脑电信号。上述方法实时性较好,使用较为广泛,但不能直接表达EEG各导联之间的关系。空间域特征提取方法有共空间模式法(CSP)、独立分量分析法(ICA)等,该类方法可以利用各导联脑电信号之间的空间分布及相关性信息,一般用于多通道的脑电信号特征提取。 [8-10]

相关文档
相关文档 最新文档