文档库 最新最全的文档下载
当前位置:文档库 › 用二项式定理证明不等式

用二项式定理证明不等式

用二项式定理证明不等式
用二项式定理证明不等式

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++ 等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求9 1()x x -的展开式中3 x 的系数及二项式系数

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

证明不等式的几种方法

证明不等式的几种方法 淮安市吴承恩中学 严永飞 223200 摘要:不等式证明是中学数学的重要内容,证明方法多种多样.通常所用的公式法、放缩法只能解决一些较简单的问题,对于较难的问题则束手无策.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法,使解题容易,新颖独特. 关键词:不等式,公式法,构建模型法 前言 证明不等式是中学数学的重要内容之一,内容抽象,难懂,证明方法更是变化多端.通常所用的一些方法如公式法、放缩法只能解决一些较简单的问题,较难的问题则无法解决.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法. 这里所举的几种证明不等式的特殊方法看似巧妙,但如果认真思考,广泛联系,学以致用,一定能使问题得到很好的解决. 1 运用倒数变换证明不等式 这里所说倒数变换是根据具体的题目要求把不等式的部分进行倒数变换,通过化简后使不等式变得简单,更好更快的解决证明问题. 例1 设+∈R z y x ,,,且xyz =1 求证:)(13z y x ++)(13z x y ++)(13y x z +≥2 3 分析 如果先通分再去分母,则不等式将变得很复杂. 令A x =-1,B y =-1 ,C z =-1 ,则+∈R C B A ,,且1=ABC . 欲证不等式可化为 C B A +2+A C B +2+B A C +2≥23(*) 事实上,a 2+22b λ≥ab λ2 (+∈R b a ,,λ), 而当b >0时, a 2/b ≥b a 22λλ-. (*)式左边≥A λ2-2λ(C B +)+ B λ2-2λ(C A +)+C λ2-2λ(A B +) = λ2(λ-1)(C B A ++) ≥λ6(λ-1)3ABC = λ6(λ-1). 令λ=21时,C B A +2+A C B +2+ B A C +2 ≥6×21×(1-21)=23 得证. (这里用到二元平均不等式的变形和三元平均不等式.) 例 2 已知z y x ,,>0,n 为大于1的正整数,且n n x x +1+n n y y +1+n n z z +1=1 求证:n x x +1+n y y +1+n z z +1≤n n 12-

二项式定理的十大应用

二项式定理的十方面应用 一、利用二项式定理求展开式的某一项或指定项的系数 1.(2012年高考安徽卷理科7)(x2+2)( 1 x2-1)5的展开式的常数项是() (A)-3(B)-2(C)2(D)321世纪教【答案】D 【解析】第一个因式取x2,第二个因式取 1 x2得:1?C1(-1)4=5 5 第一个因式取2,第二个因式取(-1)5得:2?(-1)5=-2展开式的常数项是5+(-2)=3. 2.(2012年高考天津卷理科5)在(2x2- 1 x )5的二项展开式中,x的系数为() (A)10(B)-10(C)40(D)-40 点评:利用二项式定理求展开式的某一项或指定项的系数,实际上就是对二项展开式的通项公式的考查,此类问题是高考考查的重点. 3.在二项式(x-1)11的展开式中,系数最小的项的系数是 解:ΘT r+1 =C r x11-r(-1)r 11 ∴要使项的系数最小,则r必为奇数,且使C r为最大,由此得r=5,从而可知最小项的 11 系数为C5(-1)5=-462 11 二、利用二项式定理求展开式的系数和 1、若(1-2x)2013=a+a x+a x2+...+a 0122013 x2013(x∈R), 则(a+a)+(a+a)+(a+a)+Λ+(a+a 010******** )=_______。(用数字作答) 解析:在(1-2x)2013=a+a x+a x2+...+a 0122013 x2013中,令x=0,则a=1, 令x=1,则a+a+a+a+Λ+a 01232004 =(-1)2013=1 故(a+a)+(a+a)+(a+a)+Λ+(a+a 0102030 精品资料 2013 )

利用放缩法证明数列型不等式压轴题

利用放缩法证明数列型不等式压轴题 惠州市华罗庚中学 欧阳勇 摘要:纵观近几年高考数学卷,压轴题很多是数列型不等式,其中通常需要证明数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其它多种数学思想方法,充分体现了能力立意的高考命题原则。处理数列型不等式最重要要的方法为放缩法。放缩法的本质是基于最初等的四则运算,利用不等式的传递性,其优点是能迅速地化繁为简,化难为易,达到事半功倍的效果;其难点是变形灵活,技巧性强,放缩尺度很难把握。对大部分学生来说,在面对这类考题时,往往无从下笔.本文以数列型不等式压轴题的证明为例,探究放缩法在其中的应用,希望能抛砖引玉,给在黑暗是摸索的学生带来一盏明灯。 关键词:放缩法、不等式、数列、数列型不等式、压轴题 主体: 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式 问题。裂项放缩法主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333n n n S a +=-?+,1,2,3, n =。设2n n n T S =, 1,2,3, n =,证明: 1 32 n i i T =< ∑。 证明:易得12(21)(21),3 n n n S +=--1132311()2(21)(21)22121n n n n n n T ++= =-----, 11223 111 31131111 11 ()()221212212121212121 n n i i i n n i i T ++===-=-+-++ ---------∑∑ = 113113()221212 n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1 11 2121 n n +---,然后再求和,即可达到目标。 (2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的

高中数学不等式的几种常见证明方法(县二等奖)

高中数学不等式的几种常见证明方法 摘 要:不等式是中学数学的重要知识,考察学生对不等式理论熟练掌握的程度也是衡量学生数学水平的重要方面,同时,不等式也是高中数学的基础,因此,在每年的数学高考题中,有关不等式的相关题目都有所出现,本文介绍了几种不等式的证明方法,并举例进一步加强对各种不等式的理解. 关键字:不等式;数学归纳法;均值;柯西不等式 一、比较法 所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1a b <”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法. 例 1 设,x y R ∈,求证:224224x y x y ++≥+. 证明: 224224x y x y ++-- =2221441x x y y -++-+ =22(1)(21)x y -+- 因为 2(1)0x -≥, 2(21)0y -≥ ∴ 22(1)(21)0x y -+-≥ ∴2242240x y x y ++--≥ ∴224224x y x y ++≥+ 例 2 已知:a >b >c >0, 求证:222a b c a b c ??>b c a c b c a b c +++??. 证明:222a b c b c a c b c a b c a b c +++????=222a b c b a c c b c a b c ------?? >222a b c b a c c b c c c c ------??

=0c =1 222a b c b c a c b c a b c a b c +++??∴??>1 ∴222a b c a b c ??>b c a c b c a b c +++?? 二、分析法 分析法:从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立. 例 3 求证3< 证明: 960+>> 5456<成立运用分析法时,需积累一些解题经验,总结一些常规思路,这样可以克服无目的的乱写,从而加强针对性,较快地探明解题的途径. 三、综合法 从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式,这种证明方法叫做综合法. 例 4 已知,a b R +∈,1a b +=,求证:221125()()2 a b a b +++≥ 证明:∵ 1a b += ∴ 1=22222()22()a b a b ab a b +=++≤+ ∴ 221 2 a b +≥

高考数学 考点23 两个计数原理、排列、组合及其应用、

考点23 两个计数原理、排列、组合及其应用、 二项式定理及应用 1.(2010·湖北高考文科·T6)现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( ) (A)65(B)56(C)565432 2 ????? (D)6543 ????2 【命题立意】本题主要考查分类和分步计数原理,考查考生的逻辑推理能力. 【思路点拨】因每名同学可自由选择其中的一个讲座,故6名同学的安排可分6步进行,每步均有5种选择,由分步计数原理即可得出答案. 【规范解答】选A.每名同学可自由选择5个讲座中的其中一个讲座,故6名同学的安排可分6步进行,每步均有5种选择,因此共有65种不同选法. 【方法技巧】本题每名同学可自由选择其中的一个讲座,故每位同学的选择都有5种,共有65种不同选法.若将“每名同学可自由选择其中的一个讲座”改为“每一个讲座都至少有一位同学去听”,它就是一个典型的不同元素的分组问题.利用“先分堆,再分配”的思想将6名同学分为5堆,再分给5个不同的讲座, 有 25 65 1800 C A= 1 800种不同选法. 2.(2010·湖北高考理科·T8)现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是() (A)152 (B)126 (C)90 (D)54 【命题立意】本题主要考查分类和分步计数原理,考查排列、组合知识的应用,考查考生的运算求解能力.【思路点拨】由甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作知,司机工作很特殊.按安排几个人担任司机工作可分为两类:①司机只安排1人;②司机安排2人,然后将其余的人安排到其他三个不同的位置. 【规范解答】选B.当司机只安排1人时,有 123 343 C C A =108(种);当司机安排2人时有 23 33 C A =18(种).由分类 计数原理知不同安排方案的种数是108+18=126(种). 【方法技巧】本题要求每项工作至少有一人参加,因此属于不同元素的分组问题,解题时往往采用“先分堆,再分配”的办法.若去掉“每项工作至少有一人参加”的限制,则甲、乙二人各有3种选择,丙、丁、 戊各有4种选择,因此共有33444576 ????=(种)安排方案. 3.(2010·全国高考卷Ⅱ理科·T6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有( ) (A)12种(B)18种(C)36种(D)54种 【命题立意】本题考查了排列、组合的知识. 【思路点拨】运用先选后排解决,先从3个信封中选取一个放入标号为1,2的2张卡片,然后剩 余的2个信封分别放入2张卡片. 【规范解答】选B.标号为1,2的卡片放法有A 1 3种,其他卡片放法有 2 2 2 4 C C种,所以共有A132 2 2 4 C C=18 (种). 【方法技巧】先排列特殊元素是解决排列、组合问题的常用方法.

用“放缩法”证明不等式的基本方法

2 3、先放缩,后裂项(或先裂项再放 缩) n a =n ,求证:k=1 例3、已知 a k n 证明:苕 1 V (k — 1)k(k + 1) _________ 二[+£莖壬匹 ^/(k — 1)(k + 1) ( >/k + 1 +寸 k — 1 ) k z2 (二 学习必备 欢迎下载 用放缩法”证明不等式的基本方法 近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的一个难点,它可以考察学生 逻辑思维能力以及分析问题和解决问题的能力。特别值得一提 的是,高考中可以用 放缩法”证明不等式的频率很高, ,对它的运用往往能体现出创造性。 放缩法”它可以和很 而且要恰到好处,目标往往要从证明的结论考察, 例谈 若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小。由于证明不等式的 需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。本题在放缩 k 时就舍去了 2 -2,从而是使和式得到化简. 2、先放缩再求和(或先求和再放缩) 例 2、函数 f (x )= 一,求证:f (1) +f (2) + …+f (n ) 1 +4x f(n)=二=1--^A 1-丄 1 +4n 1+4 2 *2 1 1 1 +f (2) + …+f (n ) >1—+1屮"+1— 2 21 2 22 2 2n +1 +1 +…=n + 丄一1 (n 迂 N *). 2 4 2n 2n '1 2 此题不等式左边不易求和,此时根据不等式右边特征,先将分子变为常数, 再对分母进行放缩,从而对左边可以进行 求和.若分子,分母如果同时存在变量时,要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。女口 它是思考不等关系的朴素思想和基本出发点 ,有极大的迁移性 多知识内容结合,对应变能力有较高的要求。因为放缩必须有目标, 放缩时要注意适度,否则就不能同向传递。下面结合一些高考试题, 1、添加或舍弃一些正项(或负项) 放缩”的基本策略,期望对读者能有所帮助。 例1、已知 a n =2“ -1(n 亡 N ).求证: n 1 2—3 a 2 a 3 + a n 证明:,— a k + 2k -1 =2^ 1 2 "2(22-1) _ 1 "2"3.2k +2k -2 >1-1.l^,k=1,2,..., n, 2 3 2k 玉+更+ +旦 a 2 a 3 「-1(1 +-+...+丄)」-丄(1二)「-1 , 2 3 2 22 2n 2 3 2n 2 3 2 3 a 2 a 3 + <-(n 迂 N *). a n + 2 证明:由 需放大,则只要把分子放大或分母缩小即可; 如需缩小,则只要把分子缩小或分母放大即可。

巧用两根式证明不等式

巧用两根式证明不等式 以二次函数及一元二次方程的两根满足条件为背景的不等式证明题,在全国高考和一些省市高考中都出现过,在各地模拟试题也屡见不鲜,这些题目的特点是:方法独特,变形技巧多,变换方法灵活,要求学生有较强的思维转换能力和运算能力,难度大,在此将对一些典型题的解法作讲析。 【例1】(97全国)设二次函数)0(2)(>++=a c bx ax f x , 方程0)(=-x x f 的两个根21,x x 满足a x x 102 1<<<. (1) 当),0(1x x ∈时,证明;1)(x f x x <<; (2)设函数 )(x f 的图象关于直线x =x 0对称,证明2 10x x < . 简析:从本题条件易联想到一元二次方程的实根分布和根与系数的关系,难达到证明的目的。 【解答】(1) 设f (x )-x =ax 2+(b -1)x +c =a (x -x 1)(x -x 2) ∴ f (x )=a (x -x 1)(x -x 2)+x ∵ a x x x 1 021< <<<. ∴ x -x 1<0, x -x 2<0, a >0且ax 2<1 ∴ f (x )-x >0 ∴f (x )>x 又 f (x )-x 1=a (x -x 1)(x -x 2)+ x -x 1=(x -x 1)(ax -ax 2+1) ∵ ax 2<1 ∴-ax 2+1>0 ∴ax -ax 2+1>0 又 x -x 1<0 ∴f (x )-x 1<0 ∴f (x )0 ⑵若方程f (x )=0有两实根,且两实根是相邻两整数,求证: f (-a )= 4 1(a 2-1) ⑶若方程f (x )=0有两非整数实根,且这两实根在相邻两整数之间,试证明存在整数k ,使得:|f (k )|≤ 4 1 . 【解答】(1) 由△=a 2 -4b <0 得 b > 4 a 2 ≥0, ∴b >0 (2) 由|x 1-x 2|= b 4a 2 -=1得b = 4 1 a 2- ∴ f (- a )=a 2 -a 2 +b = 4 1 a 2- (3) 设m <1+<>+m f m f ∴ |f (m )|·|f (m +1)|=|(m -α)(m -β)(m +1-α)(m +1-β)| =[(α-m )(m +1-α)]·[(β-m )(m +1- β )]≤( 2 1)2·( 2 1)2= 16 1 ∴| f (m )|≤41或|f (m +1)|≤4 1 故存在整数k ,使得:|f (k )| ≤ 4 1 【评析】第(1)、(2)问考查一元二次方程根与系数关系, 较容易。第(3)问很抽象,把根的范围符号化,巧设求根式,利用实根分布和基本不等式使问题得证。 例3.已知函数f (x )= 31x 3 +2 1 (b -1)x 2+cx (b 、c 为常数). (1) 若f (x )在x =1和x =3处取得极值,试求b 、c 的值; (2) 若f (x )在x ∈(-∞,x 1)、(x 2,+∞)上单调递增且在x ∈(x 1,x 2)上单调递减,又满足 x 2-x 1>1,求证:b 2>2(b +2c ); (3) 在(2)的条件下,若t <x 1,试比较t 2+b t+c 与x 1的大小,并加以证明. 【解答】 (1) f ’(x )=x 2+(b -1)x +c 依题意, 1和3是方程x 2+(b -1)x +c=0的两根,

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

最新二项式定理应用常见题型大全(含答案)

二项式定理应用常见题型大全 一.选择题(共21小题) 1.(2012?重庆)的展开式中常数项为() .C D 2.(2012?桃城区)在的展开式中,有理项共有() 2012 4.(2008?江西)展开式中的常数项为() n*5 6.(2006?重庆)若的展开式中各项系数之和为64,则展开式的常数项为() 88 29211 2006 10.(2004?福建)若(1﹣2x)9展开式的第3项为288,则的值是() D. 11.若则二项式的展开式中的常数项为() 12.(a>0)展开式中,中间项的系数为70.若实数x、y满足则z=x+2y的最小值是()

C 10 14.的展开式中第三项的系数是() .C. 4n+1 n 17.设f(x)等于展开式的中间项,若f(x)≤mx在区间[,]上恒成立,则m的取值范围是 [[,[ 18.在的展开式中系数最大的项是() 6 8 2010

参考答案与试题解析 一.选择题(共21小题) 1.(2012?重庆)的展开式中常数项为() .C D 的展开式通项公式中,令 的展开式通项公式为 = 2.(2012?桃城区)在的展开式中,有理项共有() ??, 2012

+ 4.(2008?江西)展开式中的常数项为() 的展开式的通项为 的展开式的通项为= 的通项为= ,时,展开式中的项为常数项 n*5

6.(2006?重庆)若的展开式中各项系数之和为64,则展开式的常数项为() 则展开式的常数项为 88 29211 2006

分别取, 时,有)( 时,有)( ( 10.(2004?福建)若(1﹣2x)9展开式的第3项为288,则的值是() D. 中,化简可得答案. , x= =2 11.若则二项式的展开式中的常数项为() ∴二项式的通项为 的展开式中的常数项为=160

高三数学专题复习概率二项式定理函数不等式及其证明等几大专题高考复习资料

高三数学专题概率二项式定理函数不等式及其证明 数学高考总复习:概率 知识网络目标认知考试大纲要求: 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别. 2.了解两个互斥事件的概率加法公式. 3.理解古典概型及其概率计算公式;会计算一些随机事件所含的基本事件数及事件发生的概率. 4.了解随机数的意义,能运用模拟方法估计概率;了解几何概型的意义。 5.了解条件概率和两个事件相互独立的概念,并能解决一些简单的实际问题. 重点: 理解互斥事件的概率加法公式,古典概型及其概率计算公式,并能计算有关随机事件的概率;求简单的几何概型的概率问题;条件概率和两个事件相互独立的概念,并能解决一些简单的实际问题. 难点: 古典概型及其概率计算公式;几何概型的意义,用条件概率和两个事件相互独立的概念,解决一些简单的实际问题. 知识要点梳理知识点一:事件及有关概念1.事件: 在一定条件下出现的某种结果。在一定的条件下,能否发生某一事件有三种可能: ①必然事件:在一定条件下,一定会发生的事件; ②不可能事件:在一定条件下,一定不会发生的事件; ③随机事件:在一定条件下,可能发生也可能不发生的事件; 必然事件和不可能事件的统称为确定事件,确定事件和随机事件统称为事件,其一般用大写字母A、B、C……表示。 2. 基本事件: 一次试验连同其可能出现的一个结果称为一个基本事件,它是试验中不能再分的最简单的随机事件,其他事件可以用它们来描绘,这样的事件称为基本事件。如果一次试验中可能出现的结果有n个,那么这个试验由n个基本事件组成。

3.基本事件的特点: (1)不能或不必分解为更小的随机事件; (2)不同的基本事件不可能同时发生; (3)一次试验中的基本事件是彼此互斥的; (4)试验中出现的结果总可以用基本事件来描绘. 知识点二:频率与概率1.频数与频率: 在相同条件下重复次试验,观察某一事件A是否出现,称次试验中事件A出现的次数为事件A出现的频数,称为事件A出现的频率。 2.概率: 对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率稳定在 某个常数上,则这个常数就叫事件A的概率,记作。 概率的基本性质 ①任何事件的概率的取值范围:。 ②P(必然事件)=1,P(不可能事件)=0; 3.频率与概率的区别与联系:①频率随着试验次数的改变而变化,概率却是一个常数; ②随机事件的频率,指事件发生的次数与试验总次数的比值,它具有一定的稳定性,总在某个常数附近 摆动,且随试验次数的不断增多,摆动幅度越来越小,这个常数就是这个随机事件的概率。 ③概率可以看作是频率理论上的期望值,它从数量上反映了随机事件发生的可能性的大小。 知识点三:古典概型1.定义: 具有如下两个特点的概率模型称为古典概型: (1)试验中所有可能出现的基本事件只有有限个; (2)每个基本事件出现的可能性相等。 注意:古典概型也称等可能性事件的概率。 2.古典概型的基本特征: (1)有限性:即在一次试验中,可能出现的结果,只有有限个,也就是说,只有有限个不同的基本事 件。 (2)等可能性:每个基本事件发生的可能性是均等的。 3.古典概型的概率计算公式

证明不等式的种方法

证明不等式的13种方法 咸阳师范学院基础教育课程研究中心安振平 不等式证明无论在高考、竞赛,还是其它类型的考试里,出现频率都是比较高,证明难度也是比较大的.因此,有必要总结证明不等式的基本方法,为读者提供学习时的参考资料.笔者选题的标准是题目优美、简明,其证明方法基本并兼顾巧妙. 1.排序方法 对问题的里的变量不妨排出大小顺序,有时便于获得不等式的证明. 例1已知,,0a b c ≥,且1a b c ++=,求证: ()22229 1. a b c abc +++≥2.增量方法 在变量之间增设一个增量,通过增量换元的方法,便于问题的变形和处理.例2设,,a b c R + ∈,试证:2222 a b c a b c a b b c c a ++++≥+++.3.齐次化法 利用题设条件,或者其它变形手段,把原不等式转换为齐次不等式. 例3设,,0,1x y z x y z ≥++=,求证: 2222222221.16 x y y z z x x y z +++≤4.切线方法 通过研究函数在特殊点处的切线,利用切线段代替曲线段,来建立局部不等式.例4已知正数,,x y z 满足3x y z ++=,求证: 323235 x y +≤++.. 5.调整方法 局部固定,逐步调整,探究多元最值,便能获得不等式的证明. 例5已知,,a b c 为非负实数,且1a b c ++=,求证:13.4 ab bc ca abc ++-≤ 6.抽屉原理

在桌上有3个苹果,要把这3个苹果放到2个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放2个苹果.这一简单的现象,就是人们所说的“抽屉原理”.巧用抽屉原理,证明某些不等式,能起到比较神奇的效果. 例6(《数学通报》2010年9期1872题)证明:在任意13个实数中,一定能找到两个实数,x y ,使得0.3.10.3x y x ->+7.坐标方法 构造点坐标,应用解析几何的知识和方法证明不等式. 例7已知a b c R ∈、、,a 、b 不全为零,求证: ()()()22 22222 22.a b ac a b bc a b c a b +++++≥+++8.复数方法 构造复数,应用复数模的性质,可以快速证明一些无理不等式. 例8(数学问题1613,2006,5)设,,,0,a b c R λ+ ∈≥求证:9.向量方法 构造向量,把不等式的证明纳入到向量的知识系统当中去. 例9已知正数,,a b c 满足1a b c ++=,求证: 4 ≤. 10.放缩方法 不等式的证明,关键在于恒等变形过程中的有效放大、或者缩小技巧,放和缩应当恰到好处. 例10已知数列{}n a 中,首项132 a = ,且对任意*1,n n N >∈,均有 11n n a a +=++()211332.42 n n n a -+<

二项式定理的推广与应用

二项式定理的推广及应用 曲靖市麒麟高级中学 车保勇 [摘 要] 二项式定理是在处理有关两个元素和的方幂问题时常常考虑到的一个重要公式.深入研究二项式定理的推广及其用途,巧妙应用,能为许多数学问题提供另类解法,同时解决一些难度较大的问题.因此,进一步探讨二项式定理的推广及应用仍是一项有意义的工作.但前人得出的应用范围仅局限于求值、近似计算、整除、求余数、证明不等式等方面,而且在推广方面不够完善,笔者对二项式定理的推广作进一步完善,系统整理已有用途,并给出一种前人尚未提及的用途:即用二项式定理处理特殊极限问题.纵观全文,深入研究二项式定理的用途,不仅为一些数学问题提供了另类解法,更重要的是拓宽了二项式定理的应用范围. [关键词] 二项式定理 推广 方幂 应用 1 引言 二项式定理是在处理有关两个元素和的方幂问题时常常考虑到的一个重要公式.数式二项式定理表述为:() 0,(,,0)n n r n r r n r a b C a b n r N r n -=+=∈≤≤∑.它有着十分广泛的应用,遍及初等数学和高等数学领域[1] .认真研究问题的条件和结构,把一些表面与二项式定理或推广定理无关的问题作适当变形,构造出二项式定理或推广定理,再用其求解(证明),可使解题简洁明快.巧妙应用二项式定理或推广定理,不仅为许多问题提供另类解法,还能解决一些难度较大的数学问题.因此,把二项式定理进一步推广完善,并充分研究其用途,拓宽其应用范围,仍是一件有意义的工作.

2 问题的提出 虽然学者们对二项式定理的推广及应用的研究取得了丰硕的成果,但已有成果都存在两个不足方面:一是推广不够完善;二是应用范围不够广.针对此情况,笔者试图将其推广进一步完善,系统整理已有用途,并提出新的用途,拓宽其应用范围. 3 二项式定理的推广 二项式定理是在处理有关两个元素和的方幂问题时常常考虑到的一个重要公式.数式二项式定理表述为: 011r n r r n n ()n n n n n n n a b C a C a b C a b C b --+=++ ++ +0 ,(,,0)n r n r r n r C a b n r N r n -==∈≤≤∑ 其中r n r r r 1T n C a b -+=叫做二项式的通项公式,()!!! r n n C r n r =-叫做二项式系数. 若令 -n r q =, 则 ! !! r n n C r q = ,(,,r q n)n r N ∈且+=. 3.1 推广一 在实际应用中,除遇到二项式外还常常遇到多项式问题,为便于应用,现将其作推广. 先考察三项式()()n a b c n N ++∈的展开式: ()[()]n n a b c a b c ++=++ ()n r r r n C a b c -=+++ ( )r q n r q q r n n r C C a b c ---= ++++ r q n r q q r n n r C C a b c ---= ++ 若令n r q p --=,便得到三项式()()n a b c n N ++∈展开式通项公式: (,,p q r n)r q p q r n n r C C a b c p q r N -∈且++=, 其中()()!(r)!! !!q!q !!q!p! r q n n r n n n C C r n r n r r --==---叫三项式系数.[2] 类似地可得四项式(d)()n a b c n N +++∈通项公式为 ! (,,,)!!!s! p q r s n a b c d p q r s N p q r ∈且p+q+r+s=n , 其中 ! !!!s! n p q r 称四项式系数.于是猜想m项式定理为: 定理112()n m a a a +++12 121212!!! !m m i i i m i i i n m n a a a i i i +++==∑,(,,1,2,,)k i n N k m ∈=.

北师大版数学高二选修2素材 1.5用二项式定理证明不等式

1.5 用二项式定理证明不等式 有关不等式证明问题是高考的热点。因不等式的结构变化万千,所以证明方法繁多,技巧性很强。如能根据题目特点,选择合适的方法,往往能出奇制胜。本文仅介绍用二项式定理证明不等式,供同学们参考。 一、直接利用定理 例1、 求证:)2(2 )12(1+>+-n n n (n )2≥∈n N 且 证明:(2+1)n =n 2+C 1 n 12 -n +C 222-n n +1+ >2n + C 1n 12-n =12-n (n+2) 二、创设条件利用定理 例2、 已知a 、b +∈R ,求证:n n n b a b a )2 ()(21+≥+ 证明:设a ,0>≥b 令a=s+t , b=s-t ,则s>0 ,t 0≥ (1)当n=1显然成立;(2)当n ≥2时,有 )(21n n b a +=2 1 =2222s t t s c s n n n n ≥+++- =n b a )2 (+ 例3:已知数列{}n a ,{}数列分别是等差数列和等比n b 且 a 1= b 1, a 2=b 2,a 12a ≠,a )(0+∈>N n n ,求证:当n 3≥时,a n n b < 证明:等差数列{}n a 的公差d= a 2- a 1≠0, 若d<0,必存在某个N ,当n>N 时,00 n 3≥,b n = b 1q 1-n = a 1(112)-n a a = a 1(11 1)-+n a d a = a 1(1+11)-n a d = a 1 =a 1(1+ C 11-n 1 a d )= a 1+(n-1)d=a n 总之:和自然数n 有关的不等式问题,我们用二项式定理(必要时去创设定理的应用条

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

相关文档