文档库 最新最全的文档下载
当前位置:文档库 › 24混凝土梁受剪承载力计算

24混凝土梁受剪承载力计算

24混凝土梁受剪承载力计算
24混凝土梁受剪承载力计算

柱子承载力计算

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 三、框架柱承载力计算 (一)正截面偏心受压承载力计算 柱正截面偏心受压承载力计算方法与《混凝土基本原理》中相同(混凝土规范7.3)。如图所示。 即非抗震时: (3-62) (3-63)其中: (3-64)但考虑地震作用后,有两个修正,即: ◆正截面承载力抗震调整系数。

◆保证“强柱弱梁”,对柱端弯矩设计值按梁端弯矩来调整。(混凝土规范11.4.2,抗震规范 6.2.2,6.2.3)即: 一、二、三级框架柱端组合的弯矩设计值为: (3-65)一级框架结构及9度各类框架还应满足: (3-66)其中: ——为节点上下柱端截面顺时针或反时针方向组合的 弯矩设计值之和,如图所示; ——为节点左右梁端截面反时或顺时针方向组合的弯 矩设计值之和的较大者,一级框架节点左右梁端均为负弯矩时,绝对值较小的弯矩应取0; ——为节点左右梁端截面按反时针或顺时针方向采用实配钢筋截面面积和材料标准值,且考虑承载力抗震调整系数 计算的正截面抗震受弯承载力所对应的弯矩值之和的较大者。 其可按有关公式计算。 ——为柱端弯矩增大系数,一级取 1.4,二级取 1.2,三级取 1.1。

求得节点上下柱端的弯矩设计值之和后,一般情况下可按弹性分析所得的节点上下柱端弯矩比进行分配。 对于顶层柱和轴压比小于0.15的柱,可不调整,直接采用内力组合所得的弯矩设计值。 当反弯点不在柱的层高范围内时,柱端截面组合的弯矩设计值可直接乘以上述柱端弯矩增大系数。 一、二、三级框架底层柱下端截面组合的弯矩设计值,应分别乘以增大系数 1.5,1.25,1.15,且底层柱纵筋宜按上下端的不利情况配置。 (二)斜截面受剪承载力计算 1、柱剪力设计值(混凝土规范11.4.4,抗震规范 6.2.5) 为了保证“强剪弱弯”,柱的设计剪力应调整。 一、二、三级的框架柱的剪力设计值按下式调整: (3-67)一级框架和9度各类框架还应满足:

浅析混凝土路面的承载力

浅析混凝土路面的承载力 水泥混凝土(素混凝土)路面是山东地区加油站选用的主要硬化地面形式之一,由于公司部分加油站临近煤矿区或物流区,且车辆超载运输现象也较为普遍和严重,因此很多路面在使用初期就发生了严重的结构损坏,路面的使用寿命大大缩短,严重影响了加油站的经营销售、通行能力、行车安全和投资效益。因此,为解决大载重车辆地区的混凝土地面易破损问题,需要在施工开展前分析此地段的极限车辆荷载与混凝土地面的设计方法。 本文主要从混凝土地面承载力的主要影响因素入手,重点分析各因素对地面造成破坏的原因并根据破坏原因进行简单的数据测算,最后针对各破坏因素的极限值进行承载力比对,确定固定厚度的混凝土路面的极限承载力。 目的是简单清晰的确定混凝土的竖向承载力与混凝土厚度的比例关系。 混凝土地面承载力主要有四个影响因素,分别为:基础承载力,混凝土标号,混凝土厚度,及设计形式。 基础承载力(计算目标值):由于重点分析混凝土路面的承载力情况,且设计院设计的三元结构(15CM黄土垫层、15CM砂石垫层)一般情况下符合基础要求,因此计算中的基础一律按无限宽(刚性)基础进行考虑(根据厚度进行求解)。 混凝土标号:混凝土中的标号与刚度是成正比的即标号越大,混凝土的刚度越大,因此路面选择过低标号的混凝土会导致整体路面的网裂,而选择过高标号的混凝土会导致整体路面的刚度过大,呈现脆性即易整体开裂,因此标号的正确选择也是混凝土路面能否长期保持良好情况的重要因素,所以本文中的混凝土标号一律选用设计院设计的C30标号。 混凝土厚度(一般为18CM-30CM):根据公式分别代入25CM、28CM、30 CM。以25CM厚的C30混凝土为例,C30轴心抗压是20.1Mpa=20.1N/mm2=20.1×1000000N/m2,相当于20. 1×100000千克(五个零,除以10,重力加速度),也就是20.1×100吨,2010吨,即2010 吨/m2,因为是25CM厚混凝土,所以需要乘以0.25,因此推算每立方米的,25CM厚的C30混凝土的设计抗压能力约为502.5吨/m3。(初略计算,C30,厚25cm,最大只能承受63.245吨) 设计形式:由于上述影响因素均对混凝土的抗压进行考虑(即垂直地面方向),因此均按设计院提供的素混凝土方案,未进行配筋处理。 根据上述分析可以看出,素混凝土路面的抗压承载力主要取决于混凝土厚度,因此需要根据已知厚度可以通过公式计算出极限承载力。 Fcd=0.7·βh·Ftd·Um·H Fcd——混凝土最大集中返力; βh——对于厚度小于300mm时,取1; Ftd——轴心抗拉应力(C30取1.39mpa); Um——高度换算比=2·(a+b)+4H,a=20cm,b=60cm(a,b分别为轮迹宽、长); H ——厚度。 带入数值即对应关系: C30混凝土25CM 极限车辆承载力:63.245吨; C30混凝土28CM 极限车辆承载力:74.104吨; C30混凝土30CM 极限车辆承载力:81.732吨。 以上计算式只能计算出素混凝土路面在垂直方向上的极限承载力,但实际路面在对大车进行

柱子承载力计算

柱子承载力计算 Prepared on 22 November 2020

三、框架柱承载力计算 (一)正截面偏心受压承载力计算 柱正截面偏心受压承载力计算方法与《混凝土基本原理》中相同(混凝土规范)。如图所示。 即非抗震时: (3-62) (3-63)其中: (3-64)但考虑地震作用后,有两个修正,即: ◆正截面承载力抗震调整系数。 ◆保证“强柱弱梁”,对柱端弯矩设计值按梁端弯矩来调整。(混凝土规范11.4.2 一、二、三级框架柱端组合的弯矩设计值为: (3-65)一级框架结构及9度各类框架还应满足: (3-66)其中: ——为节点上下柱端截面顺时针或反时针方向组合的弯矩设计值之和,如图所示;

——为节点左右梁端截面反时或顺时针方向组合的弯矩设计值之和的较大者,一级框架节点左右梁端均为负弯矩时,绝对值较小的弯矩应取0; ——为节点左右梁端截面按反时针或顺时针方向采用实配钢筋截面面积和材料标准值,且考虑承载力抗震调整系数计算的正截面抗震受弯承载力所对应的弯矩值之和的较大者。其可按有关公式计算。 ——为柱端弯矩增大系数,一级取,二级取,三级取。 求得节点上下柱端的弯矩设计值之和后,一般情况下可按弹性分析所得的节点上下柱端弯矩比进行分配。 对于顶层柱和轴压比小于的柱,可不调整,直接采用内力组合所得的弯矩设计值。 当反弯点不在柱的层高范围内时,柱端截面组合的弯矩设计值可直接乘以上述柱端弯矩增大系数。 一、二、三级框架底层柱下端截面组合的弯矩设计值,应分别乘以增大系数,,,且底层柱纵筋宜按上下端的不利情况配置。 (二)斜截面受剪承载力计算 1、柱剪力设计值(混凝土规范11.4.4 为了保证“强剪弱弯”,柱的设计剪力应调整。 一、二、三级的框架柱的剪力设计值按下式调整: (3-67)一级框架和9度各类框架还应满足: (3-68)

第三章__受弯构件正截面承载力计算

第三章 钢筋混凝土受弯构件正截面承载力计算 一、填空题: 1、对受弯构件,必须进行正截面承载力 、 抗弯,抗剪 验算。 2、简支梁中的钢筋主要有丛向受力筋 、 架立筋 、 箍筋 、 弯起 四种。 3、钢筋混凝土保护层的厚度与 环境 、 混凝土强度等级 有关。 4、受弯构件正截面计算假定的受压混凝土压应力分布图形中,=0ε 0.002 、=cu ε 0.0033 。 5、梁截面设计时,采用C20混凝土,其截面的有效高度0h :一排钢筋时ho=h-40 、两排钢筋时 ho=h-60 。 6、梁截面设计时,采用C25混凝土,其截面的有效高度0h :一排钢筋时 ho=h-35 、两排钢筋时 。 7、单筋梁是指 只在受拉区配置纵向受力筋 的梁。 8、双筋梁是指 受拉区和受拉区都配置纵向受力钢筋 的梁。 9、梁中下部钢筋的净距为 25MM ,上部钢筋的净距为 30MM 和1.5d 。 10、受弯构件min ρρ≥是为了防止 少梁筋 ,x a m .ρρ≤是为了防止 超梁筋 。 11、第一种T 型截面的适用条件及第二种T 型截面的适用条件中,不必验算的条件分别为 b ξξ≤ 和 m i n 0 ρρ≥= bh A s 。 12、受弯构件正截面破坏形态有 少筋破坏 、 适筋破坏 、 超筋破坏 三种。 13、板中分布筋的作用是 固定受力筋 、 承受收缩和温度变化产生的内力 、 承受分布板上局部荷载产生的内力,承受单向板沿长跨方向实际存在的某些弯矩 。 14、双筋矩形截面的适用条件是 b ξξ≤ 、 s a x '≥2 。

15、单筋矩形截面的适用条件是 b ξξ≤ 、 min 0 ρρ≥= bh A s 。 16、双筋梁截面设计时,当s A '和s A 均为未知,引进的第三个条件是 b ξξ= 。 17、当混凝土强度等级50C ≤时,HPB235,HRB335,HRB400钢筋的b ξ分别为 0.614 、 0.550 、 0.518 。 18、受弯构件梁的最小配筋率应取 %2.0m in =ρ 和 y t f f /45m in =ρ较大者。 19、钢筋混凝土矩形截面梁截面受弯承载力复核时,混凝土相对受压区高度b ξξ ,说明 该梁为超筋梁 。 二、判断题: 1、界限相对受压区高度b ξ与混凝土强度等级无关。( ) 2、界限相对受压区高度b ξ由钢筋的强度等级决定。( ) 3、混凝土保护层的厚度是从受力纵筋外侧算起的。( ) 4、在适筋梁中提高混凝土强度等级对提高受弯构件正截面承载力的作用很大。( ) 5、在适筋梁中增大梁的截面高度h 对提高受弯构件正截面承载力的作用很大。( ) 6、在适筋梁中,其他条件不变的情况下,ρ越大,受弯构件正截面的承载力越大。( ) 7、在钢筋混凝土梁中,其他条件不变的情况下,ρ越大,受弯构件正截面的承载力越大。( ) 8、双筋矩形截面梁,如已配s A ',则计算s A 时一定要考虑s A '的影响。( ) 9、只要受压区配置了钢筋,就一定是双筋截面梁。( ) 10、受弯构件各截面必须同时作用有弯矩和剪力。( ) 11、混凝土保护层的厚度是指箍筋的外皮至混凝土构件边缘的距离。( ) 12、单筋矩形截面的配筋率为bh A s = ρ。( )

混凝土地坪承载力计算(第一版)

混凝土地坪承载力计算 对于500T吊机地面承载力计算 1.道路构造(1)——对应1#、3#支腿 2.道路基础承载力:本次重点分析混凝土路面的承载力情况及道路下卧层承载力验算。由 原设计单位设计的底基层250厚碎砾石碾压密实,30厚粗砂垫层应该符合道路基础的要求。 3.查表可得C25混凝土参数如下: 轴心抗压强度标准值fck=16.7N/mm2 抗拉强度标准值ftk=1.78N/mm2 抗剪强度ft=4N/mm2 4.假设3.5*2.5*0.3钢板为基础,以道路结构层为持力层,参照《建筑地基基础设计规范》 GB 50007-2011进行近似计算,已知吊车支腿最大荷126t,相当于1260KN,钢板重量 20.6T,相当于206KN。 ①计算混泥土地面附加应力: (1260+206)/2.5*3.5=167.5KN/M2<16700KN/M2 满足抗压要求 ②计算混泥土地面剪切应力: (1260+206)/((2.5+3.5)*2*0.2)=610KN/M2<4000KN/M2 满足抗剪要求

③下卧层承载力验算: 1)已知基础宽度b=2.5M,长度L=3.5M,基础埋深d=0M,持力层厚度 z=0.2+0.03+0.25=0.48M,下卧层承载力取fak=110kpa 2)持力层为混泥土结构,查表取其重度r=24KN/M3 3)按下卧层土性指标,对粉砂夹粉土的地基承载力修正: fa= fak+ηbγ(b-3)+ηdγm(d-0.5)=110kpa 式中:fa——修正后的地基承载力特征值(kPa); fak——地基承载力特征值(kPa),按本规范第 5.2.3 条的原则确定; ηb、ηd——基础宽度和埋深的地基承载力修正系数,按基底下土的类别查表 5.2.4 取值;γ——基础底面以下土的重度(kN/m3),地下水位以下取浮重度;

第8章受扭构件的扭曲截面承载力习题答案

第8章 受扭构件的扭曲截面承载力 8.1选择题 1.下面哪一条不属于变角度空间桁架模型的基本假定:( A )。 A . 平均应变符合平截面假定; B . 混凝土只承受压力; C . 纵筋和箍筋只承受拉力; D . 忽略核心混凝土的受扭作用和钢筋的销栓作用; 2.钢筋混凝土受扭构件,受扭纵筋和箍筋的配筋强度比7.16.0<<ζ说明,当构件破坏时,( A )。 A . 纵筋和箍筋都能达到屈服; B . 仅箍筋达到屈服; C . 仅纵筋达到屈服; D . 纵筋和箍筋都不能达到屈服; 3.在钢筋混凝土受扭构件设计时,《混凝土结构设计规范》要求,受扭纵筋和箍筋的配筋强度比应( D )。 A . 不受限制; B . 0.20.1<<ζ; C . 0.15.0<<ζ; D . 7.16.0<<ζ; 4.《混凝土结构设计规范》对于剪扭构件承载力计算采用的计算模式是:( D )。 A . 混凝土和钢筋均考虑相关关系; B . 混凝土和钢筋均不考虑相关关系; C . 混凝土不考虑相关关系,钢筋考虑相关关系; D . 混凝土考虑相关关系,钢筋不考虑相关关系; 5.钢筋混凝土T 形和I 形截面剪扭构件可划分为矩形块计算,此时( C )。 A . 腹板承受全部的剪力和扭矩; B . 翼缘承受全部的剪力和扭矩; C . 剪力由腹板承受,扭矩由腹板和翼缘共同承受; D . 扭矩由腹板承受,剪力由腹板和翼缘共同承受; 8.2判断题 1.钢筋混凝土构件在弯矩、剪力和扭矩共同作用下的承载力计算时,其所需要的箍筋由受弯构件斜截面承载力计算所得的箍筋与纯剪构件承载力计算所得箍筋叠加,且两种公式中均不考虑剪扭的相互影响。( × ) 2.《混凝土结构设计规范》对于剪扭构件承载力计算采用的计算模式是混凝土和钢筋均考虑相关关系;( × ) 3. 在钢筋混凝土受扭构件设计时,《混凝土结构设计规范》要求,受扭纵筋和箍筋的配筋强度比应不受限制( × )

(新)搅拌站基础承载力验算书

拌合站基础计算书 梁场混凝土拌合站,配备HZS120拌合机两套,每套搅拌楼设有5个储料罐,单个罐在装满材料时均按照200吨计算。经过现场开挖检查,在地表往下0.5~3米均为粉质黏土。 一.计算公式 1 .地基承载力 P/A=σ≤σ0 P—储蓄罐重量KN A—基础作用于地基上有效面积mm2 σ—地基受到的压应力MPa σ0—地基容许承载力MPa 通过查资料得出该处地基容许承载力σ0=0.18 Mpa 2.风荷载强度 W=K1K2K3W0= K1K2K31/1.6V2 W —风荷载强度Pa,W=V2/1600 V—风速m/s,取28.4m/s(按10级风考虑) 3.基础抗倾覆计算 K c=M1/ M2=P1×1/2×基础宽/ P2×受风面×力矩≥2即满足要求 M1—抵抗弯距KN?M M2—抵抗弯距KN?M P1—储蓄罐自重KN P’—基础自重KN P2—风荷载KN 二、储料罐地基承载力验算 1.储料罐地基开挖及浇筑 根据厂家提供的拌合站安装施工图,现场平面尺寸如下: 地基开挖尺寸为半径为8.19m圆的1/4的范围,宽4.42m,基础浇注厚度为

2m。基底处理方式为:压路机碾压两遍,填筑30cm建筑砖碴、混凝土块并碾压两遍。查《路桥计算手册》,密实粗砂地基容许承载力为0.55Mpa。 2.计算方案 开挖深度为2米,根据规范,不考虑摩擦力的影响,计算时按整体受力考虑,每个水泥罐集中力P=2000KN,水泥罐整体基础受力面积为95.48m2,基础浇注C25混凝土,自重P’=4774KN,承载力计算示意见下图: 粉质黏土 根据历年气象资料,考虑最大风力为28.4m/s(10级风),风的动压力P2=V2/1600=504.1N/m,储蓄罐顶至地表面距离为20米,罐身长17m,5个罐基本并排竖立,受风面积306m2,在最不利风力下计算基础的抗倾覆性。计算示意图如下 P2 罐与基础自重P1+P’ 3.储料罐基础验算过程 3.1 地基承载力 根据上面公式,已知P+P’=14774KN,计算面积A=95.48×106mm2, P/A= 14774KN/95.48×106mm2=0.15MPa ≤σ0=0.55 MPa 地基承载力满足承载要求。

混凝土柱计算

轴心受压普通箍筋柱的正截面受压承载力计算 一般把钢筋混凝土柱按照箍筋的作用及配置方式的不同分为两种:配有纵向钢筋和 普通箍筋的柱,简称普通箍筋柱;配有纵筋和螺旋式(或焊接环式)箍筋的柱,简 称螺旋箍筋柱。 最常见的轴心受压柱是普通箍筋柱,见右图。纵筋的作用是提高柱的承载力,减小 构件的截面尺寸,防止因偶然偏心产生的破坏,改善破坏时构件的延性和减小混凝土的徐变变形。箍筋能与纵筋形成骨架,并防止纵筋受力后外凸。 1.受力分析和破坏形态 1 )短柱的受力分析和破坏形态: 配有纵筋和箍筋的短柱,在轴心荷载作用下,整个截面的应变基本上是均匀分布的。当荷载较小时,混凝土和钢筋都处于弹性阶段。当荷载较大时,由于混凝土塑性变形的发展,压缩变形增加的速度快于荷载增长速度。同时,在相同荷载增量下,钢筋的压应力比混凝土的压应力增加得快,见左图。随着荷载的继续增加,柱中开始出现微细裂缝,在临近破坏荷载时,柱四周出现明显的纵向裂缝,箍筋间的纵筋发生压屈,向外凸出,混凝土被压碎,柱子即告破坏,见右图。 试验表明,素混凝土棱柱体构件达到最大压应力值时的压应变值约为0.0015 ~0. 002 ,而钢筋混凝土短柱达到应力峰值时的压应变一般在0.0025 ~0.0035 之间。其主要原 因是纵向钢筋起到了调整混凝 土应力的作用,使混凝土的塑性 性质得到了较好的发挥,改善了 受压破坏的脆性性质。 在计算时,以构件的压应变达到 0.002 为控制条件,认为此时混 凝土达到了棱柱体抗压强度 f c,相应的纵筋应力值 ;对于HRB400 级、HRB335 级、HPB235 级和RRB400 级热轧钢筋已达到屈服强度。而对于屈服强度或条件屈服强度大于400N /mm2的钢筋,在计算 f y'时,

第6章 混凝土梁承载力计算原理

6 混凝土梁承载力计算原理 6.1 概述 本章介绍钢筋混凝土梁的受弯、受剪及受扭承载力计算方法。钢筋混凝土梁是由钢筋和混凝土两种材料所组成,且混凝土本身是非弹性、非匀质材料。抗拉强度又远小于抗压强度,因而其受力性能有很大不同。研究钢筋混凝土构件的受力性能,很大程度上要依赖于构件加载试验。建筑工程中梁常用的截面形式如图6-1所示。 6.2 正截面受弯承载力 6.2.1 材料的选择与一般构造 1)截面尺寸 为统一模板尺寸以便施工,现浇钢筋混凝土构件宜采用下列尺寸: 梁宽一般为100m m、120m m、 150m m、180m m、 200m m、220m m、250和300m m,以上按 b/,50m m模数递增。梁高200~800m m,模数为50m m,800m m以上模数为100m m。梁高与跨度只比l h/,主梁为1/8~1/12,次梁为1/15~1/20,独立梁不小于1/15(简支)和1/20(连续);梁高与梁宽之比b 在矩形截面梁中一般为2~2.5,在T形梁中为2.5~4.0。 2)混凝土保护层厚度 为了满足对受力钢筋的有效锚固及耐火、耐久性要求,钢筋的混凝土保护层应有足够的厚度。混凝土保护层最小厚度与钢筋直径,构件种类、环境条件和混凝土强度等级有关。具体应符合下表规定。 表6-1 混凝土保护层最小厚度 注:(1)基础的保护层厚度不小于40mm;当无垫层时不小于70mm。 (2)处于一类环境且由工厂生产的预制构件,当混凝土强度不低于C20时,其保护层厚度可按表中规定减少5mm,但预制构件中的预应力钢筋的保护层厚度不应小于15mm;处于二类环境且由工厂生产的预制构件,当表面另做水泥砂浆抹面层且有质量保证措施时,保护层厚度可按表中一类环境数值取用。 (3)预制钢筋混凝土受弯构件钢筋端头的保护层厚度不应小于10mm,预制肋形板主肋钢筋的保护层厚度应按梁的数值采用。 (4)板、墙、壳中分布钢筋的保护层厚度不应小于10mm,梁、柱中箍筋和构造钢筋的保护层厚度不应小于15mm。 (5)处于二类环境中的悬臂板,其上表面应另作水泥砂浆保护层或采取其它保护措施。

混凝土简支梁斜截面抗剪强度

混凝土简支梁斜截面抗剪强度 1 影响混凝土抗剪强度V c 的主要参数的分析 1.1 混凝土强度的影响 试验表明,混凝土梁抗剪强度的增长与混凝土抗压强度f cu 并非直线关系, 而是按抛物线变化。图1表示前苏联学者无箍筋梁抗剪强度与混凝土强度f cu 的 关系,梁混凝土立方体强度f cu 从20kg/cm2到1000kg/cm2变化,曲线为采用f ct 为参数的V c 表达式,V c =Kf ct bh2 /a=Kf ct bh /m,m=a/h 为剪跨比;直线表示采用f c 为参数的波氏公式,V c =0.15f c bh2 /c=0.15f c bh /m。从图可明显地看出,采用f ct 为混凝土强度影响参数与试验结果比较相符合,而如果采用f cu 或f c 为参数时, 混凝土强度低时,试验值高于计算值;中等强度时,两者相接近;高强度时,试验值大大低于计算值,这是很不安全的。因此,苏联规范对波氏抗剪强度公式进 行了修改,将混凝土强度从f c 改为f ct 。CEB/FIP规范对无抗剪钢筋构件V c 计算 式实际是采用f ct 为参数。西南交大抗剪试验[2,3]表明,把混凝土抗拉强度f ct 做 为混凝土强度对V c 影响参变量是合适的。考虑到铁路桥梁多使用高强度混凝土, 而采用f ct 为参数,能更明确地反映问题的实质,并可避免单位变换时引起不同 系数的因次带来的麻烦。因此,选取f ct 为混凝土强度的影响参数。 图1 苏联无箍筋梁抗剪强度V c 与混凝土f ct 的关系 1.2 剪跨比m的影响 大量试验表明,剪跨比m是影响混凝土抗剪强度的主要参数之一。 V c 随m的增大而减小,当m>3~4,V c 基本上就不受m的影响,其变化较 小。各规范在V c 表达式中,对m影响的处理上有所不同。CEB/FIP,BS5400 和《苏联СНИПⅡ-21-75》等规范,其V c 取较低值,考虑小剪距比时,乘一个2/m(m<2)的提高系数。我国铁路、公路桥规直接取1/m,文中分析时选取1/m为参数。 1.3 预应力度的影响[2,3,5] PPC简支T梁试验结果证明,预应力大小对无箍、有箍PPC简支梁 的混凝土抗剪强度V c 有提高作用。这主要是因为预压应力推迟了斜裂缝的出现和发展,增加了梁混凝土剪压区的高度,从而提高了混凝土剪压区的抗剪能力。试验分析时,曾采用了两个与预应力度λ相关的提高系

混凝土基础承载力计算

混凝土基础承载力计算 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

浅析混凝土路面的承载力水泥混凝土(素混凝土)路面是山东地区加油站选用的主要硬化地面形式之一,由于公司部分加油站临近煤矿区或物流区,且车辆超载运输现象也较为普遍和严重,因此很多路面在使用初期就发生了严重的结构损坏,路面的使用寿命大大缩短,严重影响了加油站的经营销售、通行能力、行车安全和投资效益。因此,为解决大载重车辆地区的混凝土地面易破损问题,需要在施工开展前分析此地段的极限车辆荷载与混凝土地面的设计方法。 本文主要从混凝土地面承载力的主要影响因素入手,重点分析各因素对地面造成破坏的原因并根据破坏原因进行简单的数据测算,最后针对各破坏因素的极限值进行承载力比对,确定固定厚度的混凝土路面的极限承载力。 目的是简单清晰的确定混凝土的竖向承载力与混凝土厚度的比例关系。 混凝土地面承载力主要有四个影响因素,分别为:基础承载力,混凝土标号,混凝土厚度,及设计形式。 基础承载力(计算目标值):由于重点分析混凝土路面的承载力情况,且设计院设计的三元结构(15CM黄土垫层、15CM砂石垫层)一般情况下符合基础要求,因此计 算中的基础一律按无限宽(刚性)基础进行考虑(根据厚度进行求解)。 混凝土标号:混凝土中的标号与刚度是成正比的即标号越大,混凝土的刚度越大,因此路面选择过低标号的混凝土会导致整体路面的网裂,而选择过高标号的混凝土会导致整体路面的刚度过大,呈现脆性即易整体开裂,因此标号的正确选择也是混凝土路面能否长期保持良好情况的重要因素,所以本文中的混凝土标号一律选用设计院设计的 C30标号。

第8章___受扭构件承载力计算1

第8章 受扭构件承载力计算 一、填空题 1、 素混凝上纯扭构件的承载力t t u W f T 7.0=介于__________和__________分析结果之间。t W 是假设________ 导出的。 2、 钢筋混凝土受扭构件随着扭矩的增大,先在截面________最薄弱的部位出现斜裂缝,然后形成大体连续的 _________。 3、 由于配筋量不同,钢筋混凝土纯扭构件将发生__________破坏、________破坏、___________破坏、_________ 破坏。 4、 钢筋混凝土弯、剪、扭构件,剪力的增加将使构件的抗扭承载力___________;扭矩的增加将使构件的抗剪承载 力_____________。 5、 为了防止受扭构件发生超筋破坏,规范规定的验算条件是_____________。 6、 抗扭纵向钢筋应沿__________布置,其间距______________。 7、 T 行截面弯、剪、扭构件的弯矩由___________承受,剪力由___________承受,扭矩由__________承受。 8、 钢筋混凝土弯、剪、扭构件箍筋的最小配筋率min ,sv ρ= __________,抗弯纵向钢筋的最小筋率ρ= __________, 抗扭纵向钢筋的最小配筋率tl ρ= ___________。 9、 混凝土受扭构件的抗扭纵筋与箍筋的配筋强度比ζ应在___________范围内。 10、为了保证箍筋在整个周长上都能充分发挥抗拉作用,必须将箍筋做成________形状。,且箍筋的两个端头应 ______________________。 二、判断题 1、钢筋混凝土构件受扭时,核芯部分的混凝土起主要抗扭作用。 ( ) 2、素混凝土纯扭构件的抗扭承载力可表达为t t u W f T 7.0=,该公式是在塑性分析方法基础上建立起来的。 ( ) 3、受扭构件中抗扭钢筋有纵向钢筋和横向箍筋,它们在配筋方面可以互相弥补,即一方配置少时,可由另一方多配置一些钢筋以承担少配筋一方所承担的扭矩。( ) 4、受扭构件设计时,为了使纵筋和箍筋都能较好地发挥作用,纵向钢筋与箍筋的配筋强度比值ζ应满足以下条件:0.6≤ζ≤1.7。 ( ) 5、在混凝土纯扭构件中,混凝土的抗扭承载力和箍筋与纵筋是完全独立的变量。( ) 6、矩形截面钢筋混凝土纯扭构件的抗扭承载力计算公式cor stl yv t t A S A f W f T ζ 2.135.0+≤只考虑混凝土和箍 筋提供的抗扭计算。 ( ) 7、在纯扭构件中,当t t W f T 175.0≤时,可忽略扭矩的影响,仅按普通受弯构件的斜截面受剪承载力公式计算箍 筋用量。 ( ) 8、在弯、剪、扭构件中,当0035.0bh f V t c ≤或05 .11 .0bh f V t c +≤ λ时,可忽略剪力的影响,按纯扭构件的受 承载力公式计算箍筋用量。 ( )

第6章-混凝土梁承载力计算原理.doc

6混凝土梁承载力计算原理 6.1概述 本章介绍钢筋混凝土梁的受弯、受剪及受扭承载力计算方法。钢筋混凝土梁是由钢筋和混凝土两种材 料所组成,且混凝土本身是非弹性、非匀质材料。抗拉强度又远小于抗压强度,因而其受力性能有很大不 同。研究钢筋混凝土构件的受力性能,很大程度上要依赖于构件加载试验。建筑工程中梁常用的截面形式 如图 6-1 所示。 6.2正截面受弯承载力 6.2.1材料的选择与一般构造 1)截面尺寸 为统一模板尺寸以便施工,现浇钢筋混凝土构件宜采用下列尺寸: 梁宽一般为100 mm、120 mm、 150 mm、 180 mm、 200 mm、220 mm、 250 和 300 mm,以上按 50 mm模数递增。梁高200~800mm,模数为50mm,800mm以上模数为100 mm。梁高与跨度只比 主梁为 1/8 ~ 1/12 ,次梁为 1/15 ~ 1/20 ,独立梁不小于1/15(简支)和 1/20(连续);梁高与梁宽之比在矩形截面梁中一般为2~ 2.5 ,在 T 形梁中为 2.5 ~ 4.0 。b / l ,h / b , 2)混凝土保护层厚度 为了满足对受力钢筋的有效锚固及耐火、耐久性要求,钢筋的混凝土保护层应有足够的厚度。混凝土 保护层最小厚度与钢筋直径,构件种类、环境条件和混凝土强度等级有关。具体应符合下表规定。 表 6-1 混凝土保护层最小厚度 环境类别 板墙壳梁柱 C25~ C45 C25~ C45 C20 C50 C20 C50 一20 15 15 30 25 25 a —20 15 —30 25 二 b —25 20 —35 30 三—30 25 —40 35 注:( 1)基础的保护层厚度不小于40mm;当无垫层时不小于70mm。 (2)处于一类环境且由工厂生产的预制构件,当混凝土强度不低于C20 时,其保护层厚度可按表中规定减少5mm,但预制构件中的预应力钢筋的保护层厚度不应小于15mm;处于二类环境且由工厂生产的预制构件,当表面另做水泥砂浆抹面 层且有质量保证措施时,保护层厚度可按表中一类环境数值取用。 ( 3)预制钢筋混凝土受弯构件钢筋端头的保护层厚度不应小于10mm,预制肋形板主肋钢筋的保护层厚度应按梁的数值 采用。 ( 4)板、墙、壳中分布钢筋的保护层厚度不应小于10mm,梁、柱中箍筋和构造钢筋的保护层厚度不应小于15mm。 ( 5)处于二类环境中的悬臂板,其上表面应另作水泥砂浆保护层或采取其它保护措施。

塔吊基础承载力计算书

塔吊基础承载力计算书 编写依据塔吊说明书要求及现场实际情况,塔基承台设计为5200m×5200m×1.3m,根据地质报告可知,承台位置处于回填土上,地耐力为4T/m2,不能满足塔吊说明书要求的地耐力≥24T/m2。为了保证塔基承台的稳定性,打算设置四根人工挖孔桩。 地质报告中风化泥岩桩端承载力为P=220Kpa。按桩径r=1.2米,桩深h=9米,桩端置于中风化泥上(嵌入风化泥岩1米)进行桩基承载力的验算。 一、塔吊基础承载力验算 1、单桩桩端承载力为: F1=S×P=π×r2×P=π×0.62×220=248.7KN=24.87T 2、四根桩端承载力为: 4×F1=4×24.87=99.48T 3、塔吊重量51T(说明书中参数) 基础承台重量:5.2×5.2×1.3×2.2=77.33T 塔吊+基础承台总重量=51+77.33=128.33T 4、基础承台承受的荷载 F2=5.2×5.2×4.0=108.16T 5、桩基与承台共同受力=4F1+F1=99.48+108.16=207.64T>塔吊基础总重量=128.33T 所以塔吊基础承载力满足承载要求。 二、钢筋验算 桩身混凝土取C30,桩配筋23根ф16,箍筋间距φ8@200。 验算要求轴向力设计值N≤0.9(fcAcor+fy’AS’+2xfyAsso) 必须成立。 Fc=14.3/mm2(砼轴心抗压强度设计值) Acor=π×r2/4(构件核心截面积) =π×11002/4=950332mm2 fy’=300N/MM2(Ⅱ级钢筋抗压强度设计值) AS’=23×π×r2/4=23×π×162/4 =4624mm2(全部纵向钢筋截面积) x=1.0(箍筋对砼约束的折减系数,50以下取1.0) fy=210N/mm2 (Ⅰ级钢筋抗拉强度设计值) dCor=1100mm (箍筋内表面间距离,即核心截面直径) Ass1=π×r2/4=π×82/4=16×3.14=50.24mm2(一根箍筋的截面面积) S螺旋箍筋间距200mm A’sso=πdCorAssx/s =π×1100×50.24/200=867.65mm2(螺旋间接环式或焊接,环式间接钢筋换算截面面积)因此判断式 N≤0.9(fcAcor+fy’AS’+2xfyAsso)=0.9(14.3×950332+300×4624+2×1.0×210×867.65)=15341360.6N 248.7KN<12382.87KN 经验算钢筋混凝土抗拉满足要求。

柱子承载力计算

三、框架柱承载力计算 (一)正截面偏心受压承载力计算 柱正截面偏心受压承载力计算方法与《混凝土基本原理》中相同图所示。3规范7.)。如(混凝土即非抗震时: (3-62) (3-63) 其中: (3-64) 但考虑地震作用后,有两个修正,即: 数。调整系抗正截面承载力震◆ ◆保证“强柱弱梁”,对柱端弯矩设计值按梁端弯矩来调整。(混凝土规范11.4.2,抗震规范6.2.2, 6.2.3)即: 一、二、三级框架柱端组合的弯矩设计值为: (3-65) 一级框架结构及9度各类框架还应满足: 专业文档供参考,如有帮助请下载。. )66(3-:其中矩的合弯针方向组截面顺时针或反时下——为节点上柱端示如;图所设计值之和,设弯矩组合的时反时或顺针方向——为节点左右梁端截面值对时,绝弯梁端均为负矩大和的较者,一级框架节点左右计值之;应取0较小的弯矩配实 采用顺时针方向针点左右梁端截面按反时或——为节正算的整系数计调,且考虑承载力抗震积钢筋截面面和材料标准值公关可其按有和的较大者。之力截面抗震受弯承载所对应的弯矩值。式计算1。三级取1.1.取1.4,二级取2,级系弯——为柱端矩增大数,一分弹性可情况下按般之矩柱节得点上下端的弯设计值和后,一求。分比进行配矩端下点的所析得节上柱弯

专业文档供参考,如有帮助请下载。. 对于顶层柱和轴压比小于0.15的柱,可不调整,直接采用内力组合所得的弯矩设计值。 当反弯点不在柱的层高范围内时,柱端截面组合的弯矩设计值可直接乘以上述柱端弯矩增大系数。 一、二、三级框架底层柱下端截面组合的弯矩设计值,应分别乘以增大系数1.5,1.25,1.15,且底层柱纵筋宜按上下端的不利情况配置。 (二)斜截面受剪承载力计算 1、柱剪力设计值(混凝土规范11.4.4,抗震规范6.2.5) 为了保证“强剪弱弯”,柱的设计剪力应调整。 一、二、三级的框架柱的剪力设计值按下式调整: (3-67) 一级框架和9度各类框架还应满足: (3-68) 其中: ——柱端截面组合的剪力设计值; ——考虑地震作用组合,且经调整后的框架柱上、下端弯矩设计值,分别按顺时针和反时针进行计算,取其中较大者; 专业文档供参考,如有帮助请下载。.配按实时顺针方向下端截面反时针或——分别为柱上、面正截整系数的虑承载力抗震调标钢筋面积、材料强度准值,且考者。的较大且取两个方向矩抗震受弯承载力所对应的弯,。取1.11.2,三级级大系数,一级取1.4,二取——柱剪力增,45.112,7.范公式(混凝土规7.5.算截2、柱斜面受剪承载力计0)1,1.4.111.4.9 面截规范斜此-25%,因5受复加载将使梁的剪承载力降低1%反因。8倍作用时的0.载承受剪载力设计值取静:震时非抗 9)(3-6时:抗震 )-70(3时:心受拉)偏拉柱当中出现力(即:抗震时非 )1(3-7时:震抗 专业文档供参考,如有帮助请下载。. (3-72) 其中: 取,M宜取柱上下端考虑地震作比——计算剪跨,可用组合的弯矩设计值的较大者,V取与M 对应的剪力设计值。当框。取,可小内弯点在柱高范围时反框结架构中的 架柱的3。大于3时取取1.于0时,1.0,且压为力当力轴对值设剪—取,N

抗剪扭计算

目录 一、概述 (1) 二、主要材料 (1) (一)混凝土 (1) (二)普通钢筋 (1) (三)预应力钢材 (1) (四)锚具 (2) (五)支座 (2) 三、主桥结构描述 (2) (一)主桥箱梁构造 (2) (二)预应力体系 (2) 四、结构计算 (2) (一)主要规范标准 (2) (二)计算方法概述 (3) (三)计算条件及参数说明 (4) (四)施工阶段划分及各施工阶段应力状态 (4) (五)承载能力极限状态验算 (6) (六)箱梁抗剪扭承载力验算 (6) (七)正常使用极限状态验算 (8) 五、总结 (12)

一、概述 H匝道H03~H06号墩上部结构为(3×25)m的等截面预应力混凝土连续箱梁,单幅桥宽9m,位于半径为250m的圆曲线上。桥面横断面组成为: 0.5m(单层栏杆)+7.0m(行车道)+0.5m(单层栏杆)=8m 桥梁设计主要技术标准如下: 结构重要系数:1.1 设计计算行车速度:60Km/h; 设计荷载:城-A级;公路-Ⅰ级荷载进行验算 地震烈度:抗震设防烈度7度,地震动峰值加速度系数为0.10g。 二、主要材料 (一)混凝土 箱梁采用C50混凝土;桥面铺装为10厘米沥青混凝土+APP防水卷材+6cmC40钢筋混凝土。 (二)普通钢筋 普通钢筋采用HRB335和R235级钢筋,其技术标准应符合《GB1499-1998》及《GB13013-91》的规定。 (三)预应力钢材 箱梁纵向预应力钢束采用高强度低松驰7股捻制预应力钢绞线,公称直径为15.20毫米,公称面积139mm2,标准强度1860MPa,弹性模量为

1.95×105MPa。 (四)锚具 纵向束锚固采用OVM系列锚具,并配以相应的锚垫板及螺旋筋。千斤顶采用锚具生产厂家指定型号。预应力管道采用塑料波纹管。(五)支座 4D2号墩外偏20cm采用墩梁固接不设支座,4D1、4D5号墩采用GJZF4 450×650×93型板式橡胶支座,4D3、4D4处采用GPZ(KZ)7DX抗震型盆式橡胶支座。 三、主桥结构描述 (一)主桥箱梁构造 上部结构采用直腹板的预应力混凝土箱梁,箱梁为单箱单室断面。箱梁顶宽8米,底宽4米,悬臂长2米。箱梁梁高为1.5米,跨中顶板厚0.25米,底板厚0.20米,腹板厚0.5米。 (二)预应力体系 纵向预应力采用15-φs15.2的预应力钢束,采用两端张拉,一端锚具变形钢束回缩值0.006米,锚下张拉控制应力为0.72倍的钢绞线标准强度值。预应力管道采用塑料波纹管,孔道摩阻系数取为0.25,偏差系数取为0.0015。 四、结构计算 (一)主要规范标准

受扭构件承载力计算

第六章受扭构件承载力计算 思考题 6.1在实际工程中有哪些构件有扭矩作用? ①詹口竖向荷载作用的挑詹梁。 ②受水平作用的吊车梁。 ③现浇框架的边梁。 6.2在抗扭矩计算中如何避免少筋破坏和超筋破坏? 为了防止出现混凝土先压碎的超筋构件的脆性破坏,配筋率的上限以截面限制条件的形式给出 T≤0.2βfcWt 最小配箍率ρsumin对纯扭构件取:ρsvmin=0.28ft fyv 最小纵筋配筋率ρtl,min = 0.85 ft fyv 6.3什么是配筋强度比?配筋强度比的范围为什么要加以限制?即纵筋与箍筋的体积比和强度比的乘积 ξ=fyAstls / Fyv AstlUcor 加以限制才能保证构件破坏时纵筋和箍筋的强度都得以充分利用。 6.4《规范》抗扭承载力计算公式中βt 的物理意义是什么? Βt 称为剪扭构件混凝土强度降低系数。用来考虑剪扭构件混凝土抵抗剪力和扭矩之间的相关性。物理意义为随着同时作用的扭矩增大,物件的抗剪承受力逐渐降低;当扭矩达到纯扭构件的承载力时,其抗剪承载力下降为零。反之亦然。

6.5受扭构件中纵筋和箍筋的配置应注意哪些问题? ⑴剪扭构件中,箍筋的配筋率ρsv(ρ=Asv / Bs)不应小于0.28ft/ fyv ,箍筋间距应符合表5-1的规定。箍筋应做成封闭。箍筋末端应做成135°弯钩。其平直段长度不应小于5倍箍筋直径或50mm。当采用多肢箍筋受剪时,受扭所需箍筋应采用沿截面周面布置的封闭箍筋,受剪箍筋壳采用复合箍筋。(2)纵向钢筋的配筋率,不应小于受拉构件纵向受拉钢筋的最小 ρ之和。 配筋率和受扭纵向钢筋的最小配筋率 tl ,min

钢筋混凝土受弯构件正截面承载力的计算

钢筋混凝土受弯构件正截面承载力的计算 §1概述 1、受弯构件(梁、板)的设计内容:图3-1 ①正截面受弯承载力计算:破坏截面垂直于梁的轴线,承受弯矩作用而 破坏,叫做正截面受弯破坏。 ②斜截面受剪承载力计算:破坏截面与梁截面斜交,承受弯剪作用而破 坏,叫做斜截面受剪破坏。 ③满足规范规定的构造要求:对受弯构件进行设计与校核时,应满足规 范规定的要求。比如最小配筋率、纵向 2 ①板 ⑴板的形状与厚度: a.形状:有空心板、凹形板、扁矩形板等形式;它与梁的直观 区别是高宽比不同,有时也将板叫成扁梁。其计算与 梁计算原理一样。 b.厚度:板的混凝土用量大,因此应注意其经济性;板的厚度 通常不小于板跨度的1/35(简支)~1/40(弹性约束) 或1/12(悬臂)左右;一般民用现浇板最小厚度60mm, 并以10mm为模数(讲一下模数制);工业建筑现浇板 最小厚度70mm。 ⑵板的受力钢筋:单向板中一般仅有受力钢筋和分布钢筋,双向 板中两个方向均为受力钢筋。一般情况下互相垂直的 两个方向钢筋应绑扎或焊接形成钢筋网。当采用绑扎

钢筋配筋时,其受力钢筋的间距:当板厚度h ≤150mm 时,不应大于200mm ,当板厚度h ﹥150mm 时,不应大 于1.5h ,且不应大于250mm 。板中受力筋间距一般不 小于70mm ,由板中伸入支座的下部钢筋,其间距不应 大于400mm ,其截面面积不应小于跨中受力钢筋截面 面积的1/3,其锚固长度l as 不应小于5d 。板中弯起钢 筋的弯起角不宜小于30°。 板的受力钢筋直径一般用6、8、10mm 。 对于嵌固在砖墙内的现浇板,在板的上部应配置构造钢筋,并应符合下列规定: a. 钢筋间距不应大于200mm ,直径不宜小于8mm (包括弯起钢筋在内),其伸出墙边的长度不应小于l 1/7(l 1为单向板的跨度或双向板的短边跨度)。 b. 对两边均嵌固在墙内的板角部分,应双向配置上部构造钢筋,其伸出墙边的长度不应小于l 1/4。 c. 沿受力方向配置的上部构造钢筋,直径不宜小于6mm ,且单位长度内的总截面面积不应小于跨中受力钢筋截面面积的1/3。 ⑶板的分布钢筋:其作用是: a.分布钢筋的作用是固定受力钢筋; b.把荷载均匀分布到各受力钢筋上; c.承担混凝土收缩及温度变化引起的应力。 当按单向板设计时,除沿受力方向布置受力钢筋外,还应在垂直受力方向布置分布钢筋。单位长度上分布钢筋的截面面积不应小于单位宽度上受力钢筋截面面积的15%,且不应小于该方向板截面面积的0.15%,分布钢筋的间距不宜大于250mm ,直经不宜小于6mm ,对于集中荷载较大的情况,分布钢筋的截面面积应适当增加,其间距不宜大于200mm ,当按双向板设计时,应沿两个互相垂直的方向布置受力钢筋。 在温度和收缩应力较大的现浇板区域内尚应布置附加钢筋。附加钢筋的数量可按计算或工程经验确定,并宜沿板的上,下表面布置。沿一个方向增加的附加钢筋配筋率不宜小于0.2%,其直径不宜过大,间距宜取150~200mm ,并应按受力钢筋确定该附加钢筋伸入支座的锚固长度。 ⑷板中钢筋的保护层及有效高度:保护层厚度与环境条件及混凝 土等级有关,在一般情况下,混凝土保护层取15mm ,详见规范; 有效高度是指受力钢筋形心到混凝土受压区外边缘的距离,用 0h 表示,板通常取200-=h h mm 。

相关文档
相关文档 最新文档