文档库 最新最全的文档下载
当前位置:文档库 › 5油气田可钻桥塞卡瓦材质选择及制造工艺

5油气田可钻桥塞卡瓦材质选择及制造工艺

5油气田可钻桥塞卡瓦材质选择及制造工艺
5油气田可钻桥塞卡瓦材质选择及制造工艺

大桥主墩施工方案

得妥大桥主墩 施工方案 第一章编制依据 1.交通部颁发的《公路桥涵施工技术规范》、《公路工程质量检验评定标准》、等; 2.两阶段施工图设计文件; 3.现场的机械设备配备现状、施工技术力量; 4.监理审批的《实施性施工组织设计》; 5.监理审批的《总体施工进度计划》; 6.本单位同类工程的施工经验。 第二章工程概况 本桥全长402.32米,全桥跨径为(6×16+63+110+63+4×16)m;主桥上部构造为主跨110m连续钢构。采用单箱单室变截面箱型梁,主桥墩身采用双肢薄壁矩形实心墩,下部采用钻孔灌注桩基础。7号、8号主墩采用钢筋混凝土双肢薄壁实体墩,与主梁固结,单肢桥墩顺桥向尺寸为1.8m,横桥向尺寸为6.5m。墩高41m、42m,采用C50混凝土。 第三章施工组织 1、施工用电 施工用电由变压器配电房处架设线路至施工现场,同时配备一台300KW发电机以备停电时用。 2、施工道路

到达施工现场没有原有道路可满足施工机械通行,为满足施工车辆通行采用两台挖机和一台装载机配合打通施工便道。大渡河左岸施工道路由S211公路与施工便道连通至6#墩,大渡河右岸修建临时便桥。 3、施工用水 根据水质分析结果,大渡河河水,对钢筋混凝土结构无腐蚀性。能够满足施工使用水的需要。 4、人员、机械及设备投入 对照工期,应投入的人员、机械及设备投入,如下: 施工人员

机械及设备 5、工期安排 计划2013年3月20日开始施工,2013年5月10日完工,工期51天,详见施工横道图。

第四章施工方案 墩柱施工按下列步骤进行:临时设施布置----墩身位置控制---施工外架安装--- 韧性骨架安装和钢筋安装绑扎----模板安装----浇注混凝土----模板拆除----混凝土养护----翻模循环施工至墩顶。 1、临时设施布置 主桥7号墩和8号墩分别配备一台5013型塔吊,并在双肢墩间搭设人行步梯,塔吊作施工设备、材料以及模板吊装作业,步梯作人员上下墩柱交通通道。主墩塔吊布置于横桥向外侧承台上,既作墩柱施工吊具,又作主梁0号块现浇段施工用吊具。塔吊和步梯在墩柱施工完成后不予拆除,供后期主梁施工。详见主墩施工示意图 2、墩身位置控制 墩身施工,对其平面位置控制主要考虑两部分,即墩身底的平面位置控制和翻模过程中的竖直度控制。墩身底平面位置的准确与否,直接关系到整个墩身的平面位置的准确度,是墩身平面位置控制的关键,必须慎重对待,其底平面位置采取全站仪放样,并经多人复核,待放样精度达到规范要求后再进行模板的安装,首节段施工完毕后,再利用全站仪检查其顶面平面位置,满足规范要求后,即可进行下节段墩身施工,并利用垂球或全站仪检查模板纵、横方向竖直度,并调整至允许误差范围内。

复合材料工艺大全

复合材料工艺大全 复合材料成型工艺是复合材料工业的发展基础和条件。随着复合材料应用领域的拓宽,复合材料工业得到迅速发展,老的成型工艺日臻完善,新的成型方法不断涌现,目前聚合物基复合材料的成型方法已有20多种,并成功地用于工业生产。如: (1)手糊成型工艺--湿法铺层成型法; (2)喷射成型工艺; (3)树脂传递模塑成型技术(RTM技术); (4)袋压法(压力袋法)成型; (5)真空袋压成型; (6)热压罐成型技术; (7)液压釜法成型技术; (8)热膨胀模塑法成型技术; (9)夹层结构成型技术; (10)模压料生产工艺; (11)ZMC模压料注射技术; (12)模压成型工艺; (13)层合板生产技术; (14)卷制管成型技术; (15)纤维缠绕制品成型技术; (16)连续制板生产工艺; (17)浇铸成型技术; (18)拉挤成型工艺; (19)连续缠绕制管工艺; (20)编织复合材料制造技术; (21)热塑性片状模塑料制造技术及冷模冲压成型工艺; (22)注射成型工艺; (23)挤出成型工艺; (24)离心浇铸制管成型工艺; (25)其它成型技术。 视所选用的树脂基体材料的不同,上述方法分别适用于热固性和热塑性复合材料的生产,有些工艺两者都适用。

复合材料制品成型工艺特点:与其它材料加工工艺相比,复合材料成型工艺具有如下特点: (1)材料制造与制品成型同时完成 一般情况下,复合材料的生产过程,也就是制品的成型过程。材料的性能必须根据制品的使用要求进行设计,因此在选择材料、设计配比、确定纤维铺层和成型方法时,都必须满足制品的物化性能、结构形状和外观质量要求等。 (2)制品成型比较简便 一般热固性复合材料的树脂基体,成型前是流动液体,增强材料是柔软纤维或织物,因此用这些材料生产复合材料制品,所需工序及设备要比其它材料简单的多,对于某些制品仅需一套模具便能生产。 ◇成型工艺层压及卷管成型工艺 1、层压成型工艺 层压成型是将预浸胶布按照产品形状和尺寸进行剪裁、叠加后,放入两个抛光的金属模具之间,加温加压成型复合材料制品的生产工艺。它是复合材料成型工艺中发展较早、也较成熟的一种成型方法。该工艺主要用于生产电绝缘板和印刷电路板材。现在,印刷电路板材已广泛应用于各类收音机、电视机、电话机和移动电话机、电脑产品、各类控制电路等所有需要平面集成电路的产品中。 层压工艺主要用于生产各种规格的复合材料板材,具有机械化、自动化程度高、产品质量稳定等特点,但一次性投资较大,适用于批量生产,并且只能生产板材,且规格受到设备的限制。 层压工艺过程大致包括:预浸胶布制备、胶布裁剪叠合、热压、冷却、脱模、加工、后处理等工序。 2、卷管成型工艺 卷管成型工是用预浸胶布在卷管机上热卷成型的一种复合材料制品成型方法,其原理是借助卷管机上的热辊,将胶布软化,使胶布上的树脂熔融。在一定的张力作用下,辊筒在运转过程中,借助辊筒与芯模之间的摩擦力,将胶布连续卷到芯管上,直到要求的厚度,然后经冷辊冷却定型,从卷管机上取下,送入固化炉中固化。管材固化后,脱去芯模,即得复合材料卷管。

单相全桥逆变电路原理

电压型全桥逆变电路可看成由两个半桥电路组合而成,共4个桥臂,桥臂1和4为一对,桥臂2和3为另一对,成对桥臂同时导通,两对交替各导通180° 电压型全桥逆变电路输出电压uo 的波形和半桥 电路的波形uo 形状相同,也是矩型波,但幅值 高出一倍,Um=Ud 输出电流io 波形和半桥电路的io 形状相同,幅值增加一倍 VD1 、V1、VD2、V2相继导通的区间,分别对应VD1和VD4、V1和V4、VD2和VD3、V2和V3相继导通的区间 + - U VD 3 VD 4

单相半桥电压型逆变电路工作波形 全桥逆变电路是单相逆变电路中应用最多的, 对电压波形进行定量分析将幅值为Uo 的矩形波 uo 展开成傅里叶级数,得 其中基波幅值Uo1m 和基波有效值Uo1分别为 上述公式对半桥逆变电路也适用,将式中的ud 换成Ud /2 d d o1m 27.14U U U == π d d 1o 9.022U U U == π O O ON u o U m - U m i o VD 1 VD 2 VD 1 VD 2 ?? ? ??+++=Λt t t U u ωωωπ5sin 513sin 31sin 4d o

uo 为正负电压各为180°的脉冲时,要改变输出电压有效值只能通过改变输出直流电压Ud 来实现 t 1时刻前V 1和V 4导通,输出电压u o 为u d t 1时刻V 3和V 4栅极信号反向,V 4截 止,因i o 不能突变,V 3不能立即导通,VD 3导通续流,因V 1和VD 3同时导通,所以输出电压为零 各 IGBT 栅极信号uG1~uG4及输出电压uo 、输出电流io 的波形 u u u u i o u o 实际就是调节输出电压脉冲的宽度 ? 各IGBT 栅极信号为180°正偏, 180°反偏,且V 1和V 2栅极信号互补,V 3和V 4栅极信号互补 ? V 3 的基极信号不是比V 1落后 180°,而是只落后 ( 0< <180°) ? V 3 、V 4 的栅极信号分别比V 2 、V 1 VD 3 VD 4 采用移相方式调节逆变电路的输出电压

龙河特大桥主墩墩身施工方案

龙河特大桥主桥墩身施工方案 编制依据: 1、重庆涪陵至丰都高速公路两阶段施工图设计(A3标段)第三册第二分册; 2、《公路桥涵施工技术规范》JTJ041 —2000。 3、《公路工程质量检验评定标准》JTG F80/1-2004。 4、重庆丰涪、丰石高速公路工程技术规范。 二、工程概况: 2.1、工程概述 龙河特大桥全长1181米(起止桩号:K49+035- K50+ 216),位于丰涪与丰石高速公路相接处,龙河西岸位于丰都县三合镇童仙寨村,东岸位于三合镇乌龙村,是丰涪高速公路A3标段控制性工程。全桥共6联:4X 40 + 3X40+ 3X 40 + (127+ 240+ 127)+ 3X 40+ 4X 40m 其中主桥127+ 240+ 127m采用变截面预应力混凝土连续刚构箱梁;引桥采用40m 预应力混凝土T梁,先简支后结构连续(刚构)。 主墩墩身采用双肢变截面矩形空心墩,墩柱双向放坡(按1:100放坡),单肢顶部截面尺寸8.5m X 4m底部截面尺寸:10.47m X 6.24m,壁厚0.8m,墩高117m墩身内部每隔27m设置一道横隔板,共3道。桥墩双壁四周每隔5m设置一道? 10cm通气孔。 过渡墩身采用横向放坡的空心墩,按1:100放坡,顶部截面尺寸为6X3.5m,壁厚0.6m,单个墩身设两道水平隔板,顺桥向墩壁上设? 10cm通气孔,间隔2-3m。 2.2、主要工程量 三、总体施工方案 龙河特大桥主桥墩身模板施工采用爬模法进行施工,准备投入8 套爬模设备,先进行主墩墩身施工,主墩墩身施工完毕后,再进行过渡墩墩身施工。爬模设备采用ZPM-100型液

压自爬模体系,模板采用木梁胶合板体系,模板高度设计6.15m,下包已浇墩身15cm。墩身施工注标准节段为6m,单肢墩身共分20个节段,墩身施工分节详见墩身浇注分层图(图1)。在横隔板处适当调整墩身施工节段高度, 以避免施工缝处于横隔板处。 第一节墩身施工高度为6.1m,施工时,采用只安装上架体的爬模模板浇注。施工平台采用爬模上架体自带操作平台。第一节墩身内模及墩身顶层内模采用异型木模板。 墩身钢筋施工时,先安装临时劲性骨架,劲性骨架设计高度为 6.05m,在钢 筋施工完毕后,由塔吊吊出,以便循环使用。钢筋等施工材料及小型机具垂直运输通过塔吊方式进行。在两主墩及过渡墩处各设一台塔吊,主墩采用JL150 型塔吊,过渡墩采用QTZ125型塔吊。人员上下采用施工电梯,操作平台使用爬模自身的操作平台。 混凝土均采取由拌和站集中拌和生产,混凝土运输罐车运送,采用混凝土输送泵泵送入模浇注,插入式振捣器振捣混凝土。混凝土输送泵输送扬程确保大于150m。

复合材料工艺与设备复习材料

复合材料工艺与设备 增强纤维(CF,GF)的生产工艺与设备(表面处理工艺与设备) 玻璃纤维在生产过程中辅助材料的作用:浸润剂的种类,作用 种类:增强型浸润剂和纺织型浸润剂; 作用:1、润滑-保护作用;2、粘结-集束作用; 3、防止玻璃纤维表面静电荷的积累;4、为玻璃纤维提供进一步加工和应用所需要的特性;5、使玻璃纤维获得与基材有良好的相容性及界面化学结合或化学吸附等性能 C纤维生产工艺中,惰性气体和张力的作用 惰性气体作用:①保护新生产的纤维不受氧化②作为传热介质③排除裂解产物(非C元素)。张力的作用:①使分子取向②使分子结构规整③产生轴向拉伸应力 增强纤维在表面处理工艺中的影响因素 玻璃纤维表面处理的影响因素:①处理剂的种类;②偶联剂的用量1~%;③处理方法(前处理法、后处理法、迁移法);④烘焙温度与时间(偶联剂与GF的硅层结构的最佳结合程度); ⑤偶联剂溶液的配制(PH值的调节,一般用5%的氨水)。 手糊成型工艺与设备 手糊工艺的特点:优点:1、守护成型不受产品尺寸和形状的限制,适宜尺寸大、批量小、形状复杂产品的生产;2、设备简单、投资少、设备折旧费低;3、工艺简单;4、易于满足产品设计要求,可以在产品不同部位任意增补增强材料;5、制品树脂含量高,耐腐蚀性好;缺点:1、生产效率低,劳动强度大,劳动卫生条件差;2、产品质量不易控制,性能稳定性不高;3、产品力学性能较低。 原材料选择原则:1、产品设计的性能要求;2、手糊成型工艺要求;3、价格便宜,材料容易取得。聚合物基体的选择原则:1、能在室温下凝胶、固化。并在固化过程中无低分子物得产生。2、能配制成粘度适当的胶液,适宜手糊成型的胶液粘度为。3、无毒或低毒;4、价格便宜。增强纤维的选择原则:以玻璃纤维为例,工艺特点:1、很好的疏松性;2、铺覆的变形性;3、纤维的均匀性。 先进手糊法的种类:喷射成型、热压釜、树脂传递模塑与反应注射模塑。 RTM(树脂传递模塑)基本工艺过程:将液态热固性树脂及固化剂,由计量设备分别从储桶

模具材料及热处理

模具材料及热处理模具材料及热处理 1.金属组织 1.1金属 具有不透明、金属光泽良好的导热和导电性并且其导电能力随温度的增高而减小,富有延性和展性等特性的物质。金属内部原子具有规律性排列的固体(即晶体)。 1.2合金 由两种或两种以上金属或金属与非金属组成,具有金属特性的物质。 相:合金中成份、结构、性能相同的组成部分。 1.3固溶体 是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态金属晶体,固溶体分间隙固溶体和置换固溶体两种。 1.4固溶强化 由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。 1.5化合物 合金组元间发生化合作用,生成一种具有金属性能的新的晶体固态结构。 1.6机械混合物 由两种晶体结构而组成的合金组成物,虽然是两面种晶体,却是一种组成成分,具有独立的机械性能。2.金属硬度 2.1硬度 金属的硬度,是指金属表面局部体积内抵抗外物压入而引起的塑性变形的抗力,硬度越高表明金属抵抗塑性变形的能力越强,金属产生塑性变形越困难。硬度试验方法简单易行,又无损于零件。实际常使用的硬度试验方法有:布氏硬度、洛氏硬度和维氏硬度三种。三种硬度试验值有大致的换算关系,见表一。 布氏硬度HB:布氏硬度是用载荷为P的力把直接D的钢球压入金属表面,并保持一定的时间,测量金属表面上的压痕直径d,据此计算出的压痕面积AB,求出每单位面积所受力,用作金属的硬度值,叫布氏硬度,记作HB。布氏硬度的使用上限是HB450,适用于测定退火、正火、调质钢、铸铁及有色金属的硬度。 2.1.1洛氏硬度HRA、HRC: 洛氏硬度是工业生产中最常用的硬度测量的方法,因为操作简便、迅速,可以直接读出硬度值,不损伤工件表面,可测量的硬度范围较宽。但洛氏硬度也有一些缺点,如因压痕小,对材料有偏析及组织不均匀的情况,测量结果分离度大,再现性较差。洛氏硬度(HR)也是用压痕的方式试验硬度。它是用测量凹陷深度来表示硬度值。洛氏硬度试验用的压头分硬质和软质两种。硬质压头为顶角为120o的金刚石圆锥体,使用于淬火钢等硬的材料。HRA硬度有效范围是>70,适用于硬质合金、表面淬火层及渗碳层;HRC硬度有效范围是20-68(相当于HB230-700,HB450-700超出了布氏硬度的使用上限),适用于淬火钢及调质钢。 2.1.2洛氏硬度HRB 洛氏硬度HRB的测量采用直径1.588mm(1/16")的钢球,适用于退火钢、有色金属等,硬度有效范围是25-100(相当于HB60-230)。 2.1.3维氏硬度HV 维氏硬度也是利用压痕面积上单位应力作为硬度值计量。维氏硬度所使用的压头是锥面夹角为136o的金刚石四方锥体。试验时,在载荷P的作用下,在试样试验面上压出一个正方形压痕。测量压痕两对角线的平均长度d,借以计算压痕面积A V,以P/A V的数值表示试样的硬度,以HV表示。维氏硬度的优缺点:维氏硬度有一个连续一致的标度;试验负荷可任意选择,所得的硬度值相同。试验时加载的压力小,压入深度浅,对工件损伤小。特别适用于测量零件的表面淬硬层及经过表面化学处理的硬度,精度比布氏、洛氏硬度精确。但是维氏硬度的试验操作较麻烦,一般在生产上很少使用,多用于实验室及科研方面。

桥塞

桥塞 桥塞的作用是油气井封层,具有施工工序少、周期短、卡封位置准确的特点,分为永久式桥塞和可取式桥塞两种。 目录 (1)永久式桥塞封层工艺 简述 工作原理: 桥塞封层工艺 该桥塞具有以下特点: 主要技术指标: 施工方式: 施工步骤: 注意事项: (2)可取式桥塞封层工艺 简介 工作原理: 结构与特点: 该桥塞具有以下特点: 主要技术指标: 适用井条件: 施工方式: 施工步骤: 注意事项: 可取式桥塞的打捞 展开 (1)永久式桥塞封层工艺 简述 工作原理: 桥塞封层工艺 该桥塞具有以下特点: 主要技术指标: 施工方式: 施工步骤: 注意事项: (2)可取式桥塞封层工艺 简介 工作原理: 结构与特点: 该桥塞具有以下特点: 主要技术指标: 适用井条件: 施工方式: 施工步骤: 注意事项:

可取式桥塞的打捞 展开 桥塞-桥塞封层工艺 编辑本段(1)永久式桥塞封层工艺 简述 永久式桥塞形成于80年代初期,由于它施工工序少、周期短、卡封位 桥塞-桥塞封层工艺 置准确,所以一经问世就在油气井封层方面得到了广泛应用,基本上取代了以前打水泥塞封层的工艺技术,成为试油井封堵已试层,进行上返试油的主要封层工艺。 目前在中浅层试油施工中出现的干层、水层、气层及异常高压等特殊层位,为方便后续试油,封堵废弃层位,通常采用该类桥塞进行封层,同时对于部分短期无开发计划的试油结束井也采用永久式桥塞封井。此外,该桥塞也用于深层气井的已试层封堵,为上返测试、压裂改造等工艺技术的成功实施提供保障。 工作原理: 利用电缆或管柱将其输送到井筒预定位置,通过火药爆破、液压坐封或者机械坐封工具产生的压力作用于上卡瓦,拉力作用于张力棒,通过上下锥体对密封胶筒施以上压下拉两个力,当拉力达到一定值时,张力棒断裂,坐封工具与桥塞脱离。此时桥塞中心管上的锁紧装置发挥效能,上下卡瓦破碎并镶嵌在套管内壁上,胶筒膨胀并密封,完成坐封。 结构与特点: 永久式桥塞外观图见图1,结构有如图2所示几个部分组成: 桥塞封层工艺 1-销钉;2-锁环;3-上压外套;4卡瓦;5上坐封剪钉;6-保护伞;7- 桥塞-桥塞封层工艺 封隔件;8-中心管;9-锥体;10-下坐封剪钉 该桥塞具有以下特点:

单相全桥逆变电路原理

单相全桥逆变电路原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

单相全桥型逆变电路原理 电压型全桥逆变电路可看成由两个半桥电路组合而成,共4个桥臂,桥臂1和4为一对,桥臂2和3为另一对,成对桥臂同时导通,两对交替各导通180° 电压型全桥逆变电路输出电压uo 的波形和半桥 电路的波形uo 形状相同,也是矩型波,但幅值 高出一倍,Um=Ud 输出电流io 波形和半桥电路的io 形状相同,幅值增加一倍 VD1 、V1、VD2、V2相继导通的区间,分别对应VD1和VD4、V1和V4、VD2和VD3、V2和V3相继导通的区间 + - VD 3 VD 4

单相半桥电压型逆变电路工作波形 全桥逆变电路是单相逆变电路中应用最多的, 对电压波形进行定量分析将幅值为Uo 的矩形波 uo 展开成傅里叶级数,得 其中基波幅值Uo1m 和基波有效值Uo1分别为 上述公式对半桥逆变电路也适用,将式中的ud 换成Ud /2 uo 为正负电压各为180°的脉冲时,要改变输出电压有效值只能通过改变输出直流电压Ud 来实现 O ON u o U - U m i o VD 1 VD 2 VD 1 VD 2 采用移相方式调节逆变电路的输出电压

t 1时刻前V 1和V 4导通,输出电压u o 为u d t 1时刻V 3和V 4栅极信号反向,V 4截止,因i o 不能突变,V 3不能立即导通,VD 3导通续流,因V 1和VD 3同时导通,所以输出电压为零 各IGBT 栅极信号uG1~uG4及输出电压uo 、输出电流io 的波形 u u u u u i o o 实际就是调节输出电压脉冲的宽度 ? 各IGBT 栅极信号为180°正偏, 180°反偏,且V 1和V 2栅极信号互补,V 3和V 4栅极信号互补 ? V 3的基极信号不是比V 1落后 180°,而是只落后 ( 0< <180°) ? V 3、V 4的栅极信号分别比V 2、V 1 的前移180°- ? VD 3 VD 4

复合材料制造工艺

复合材料制造工艺 第一章概述 材料是人类赖以生存和发展的物质基础。20世纪70年代人们把材料、信息、能源作为社会文明的支柱;80年代以高技术群为代表的新技术革命,又把新材料与信息技术和生物技术并列为新技术革命的重要标志。这主要是因为材料是国民经济建设、国防建设与人民生活所不可须臾缺少的重要组成部分。复合材料作为材料科学中一枝独立的新的科学分支,已经得到了广泛的重视,正日益发展并在许多工业部门中得到广泛运用,成为当今高科技发展中新材料开发的一个重要方面。 鉴于材料的重要的基础地位和作用,每一次科学技术的突飞猛进,都对材料的性能提出了越来越高、越来越严和越来越多的要求。现如今在许多方面,传统的单一材料已经不能满足实际需要,在这种情况下,人们以其充满智慧的头脑将材料的新的发展方向伸向一个更加广阔的领域——复合材料。 本文就将对复合材料的基本概念、加工中的理论问题、制备工艺与方法和典型的应用加以阐述,希望能够比较全面的对复合材料做一个介绍。 首先我们来给复合材料下一个明确的定义。根据国际标准化组织(International Organization for Standardization, ISO)为复合材料下的定义,复合材料(Compose Material)是由两种或者两种以上物理和

化学性质不同的物质组合而成的一种多相固体材料。复合材料的组份材料虽然保持其相对独立性,但是复合材料的性能却不是组份材料性能的简单加和,而是有着重要的改进。在复合材料中通常有一相为连续相(称为基体),而另一相为分散相(增强材料)。分散相是以独立的形态分布在整个连续相中的。两相之间存在着相界面,分散相可以是增强纤维,也可以是颗粒状或弥散的填料。 复合材料的出现和发展,是现代科学技术不断进步的结果,也是材料设计方面的一个突破。它综合了各种材料如纤维、树脂、橡胶、金属、陶瓷等的优点,按照需要设计,复合成为综合性能优异的新型材料。可以预见,如果用材料作为历史分期的依据,那么,继石器、青铜、铁器、钢铁时代之后,在21世纪,将是复合材料的时代。 在概述的余下一些篇幅中,我们来大致了解一下关于复合材料的一些基本内容。 一、复合材料的命名和分类 复合材料可根据增强材料与基体材料的名称来命名。将增强材料的名称放在前面,基体材料的名称放在后面,再加上“复合材料”即为材料名。为书写简便,也可仅写增强材料和基体材料的缩写名称,中间加一条斜线隔开,后面再加“复合材料”。有时为了突出增强材料或者基体材料,视强调的组份不同也可将不需强调的部分加以省略或简写。 复合材料的分类方法很多,常见的分类方法有以下几种:

桥塞

可取式桥塞 (Retrievablebridge plug )说明书 专利号:00 2 20245.X 200320110198.6

目录 一、简介2 二、基本原理2 三、结构分类3 四、技术指标5 五、技术特点5 六、适用范围6

一、简介 可取式桥塞是一种油田用井下封堵工具。主要由座封机构、锚定机构、密封机构等部份组成。采用独特的自锁定结构,具有可靠的双向承压功能,无需上覆灰面,即可实现可靠密封。可取式桥塞用电缆座封工具或液压座 封工具座封,需要时可解封回收、重复使用。它可以进行临时性封堵、永 久性封堵、挤注作业等,还可与其它井下工具配合使用,进行选择性封堵 和不压井作业等。可取式桥塞是一种安全可靠、成本低廉、功能齐全,适 用范围广的井下封堵工具。 二、基本原理 座封: 用电缆座封工具座封:将可取式桥塞与座封工具正确连接并下至井下预定位置,校准深度。将电缆接通电源,引燃桥塞座封工具中的火药柱,使之产生高温高压气体,迫使座封工具的活塞与芯轴产生相对运动,推动桥塞卡瓦咬紧套管内壁,压缩桥塞胶筒密封套管环空。在此同时,桥塞内部结构自锁,拉断张力棒(环),座封工具随电缆起出井口,桥塞牢牢卡封在井下预定位置。 用液压座封工具座封:将可取式桥塞与座封工具正确连接并下至井下预定位置,校准深度。在地面用泵车向油管加内压,迫使座封工具的活塞 与芯轴产生相对运动,推动桥塞卡瓦咬紧套管内壁,压缩桥塞胶筒密封套 管环空。在此同时,桥塞内部结构自锁,拉断张力棒(环),座封工具随油管起出井口,桥塞牢牢卡封在井下预定位置。

解封:用油管和钻杆下入专门的解封工具,抓住桥塞解封套,上提管柱,解除桥塞自锁,胶筒收缩,卡瓦退回卡瓦筒内,桥塞解封,其总成随油管 起至地面。 三、结构及分类 (一)桥塞分类 1、常规型桥塞( YJH-A 型):常规型封堵工具,主要用于临时性封堵、 永久性封堵。 2、挂壁型桥塞( YJH-B 型):选择性封堵工具,主要用于选择性封层以 及卡封套管破漏段等。 3、挤注型桥塞( YJH-C 型):挤注型封堵工具,挤灰作业后,可根据需 要将桥塞解封取出。主要用于挤注作业、不压井作业、油气井测试等。

单相全桥逆变器matlab仿真

用MATLAB 仿真一个单相全桥逆变器,采用单极性SPWM 调制、双极性SPWM 调制或者单极倍频SPWM 调制的任意一种即可,请注明仿真参数,并给出相应的调制波波形,载波波形,驱动信号波形、输出电压(滤波前)波形。 本文选用双极性SPWM 调制。 1双极性单相SPWM 原理 SPWM 采用的调制波的频率为s f 的正弦波t U U s sm S ωsin =,s s f πω2=;载波c u 是幅值为cm U ,频率为c f 的三角波。载波信号的频率与调制波信号的频率之比称为载波比,正弦调制信号与三角波调制信号的幅值之比称为深度m 。通常采用调制信号与载波信号相比较的方法生成SPWM 信号.当Us>Uc 时,输出电压Uo 等于Ud,当Us

跨海大桥主墩承台施工技术方案

浙江省乐清湾大桥及接线工程 乐清湾1号桥项目 主墩承台施工技术方案 XXXXXX 有限公司 浙江省乐清湾大桥及接线工程乐清湾1号桥项目部 年月

目录 1、编制说明 ...................................................................................................................................... - 1 -1.1、编制依据 ................................................................................................................................................. - 1 -1. 2、编制原则 ................................................................................................................................................. - 1 - 1.3、适用范围 ................................................................................................................................................. - 1 - 2、工程概况 ...................................................................................................................................... - 2 -2.1、工程简介 ................................................................................................................................................. - 2 - 2.2.1、水文特征 ......................................................................................................................................... - 2 - 2.2.2、工程地质 ......................................................................................................................................... - 2 - 2.2.3、气象 ................................................................................................................................................. - 3 - 2.2.4、风况 ................................................................................................................................................. - 3 -2.3、施工平面布置 ......................................................................................................................................... - 3 -2.4、施工准备情况 ......................................................................................................................................... - 6 - 2.4.1、人员准备 ......................................................................................................................................... - 6 - 2.4.2、技术准备 ......................................................................................................................................... - 6 - 2.4.3、材料准备 ......................................................................................................................................... - 7 - 2.4.4、测量、试验准备.............................................................................................................................. - 7 - 3、施工工艺 ...................................................................................................................................... - 8 -3.1、主要技术方案 ......................................................................................................................................... - 8 -3.2、工艺流程 ................................................................................................................................................. - 8 -3. 4、主墩承台施工工艺 ............................................................................................................................... - 10 - 3.4.1、施工方案特点 ............................................................................................................................... - 10 - 3.4.2、钢套箱加工拼装............................................................................................................................ - 12 -3.4.2.1 钢套箱构造及施工工艺概述 ........................................................................................................... - 12 -3.4.2.2 套箱加工........................................................................................................................................... - 13 -3.4.2.3 套箱防腐涂装................................................................................................................................... - 16 -3.4.2.4 套箱预拼........................................................................................................................................... - 17 -3.4.2.5 套箱运输........................................................................................................................................... - 17 -3.4.2.6 套箱拼装........................................................................................................................................... - 17 -3.4.2.7 套箱拼装过程测量控制................................................................................................................... - 21 -

单相全桥逆变电路原理

单相全桥型逆变电路原理 电压型全桥逆变电路可瞧成由两个半桥电路组合而成,共4个桥臂,桥臂1与4为一对,桥臂2与3为另一对,成对桥臂同时导通,两对交替各导通180° 电压型全桥逆变电路输出电压uo 的波形与半桥 电路的波形uo 形状相同,也就是矩型波,但幅值 高出一倍,Um=Ud 输出电流io 波形与半桥电路的io 形状相同,幅值增加一倍 VD1 、V1、VD2、V2相继导通的区间,分别对应VD1与VD4、V1与V4、VD2与VD3、V2与V3相继导通的区间 + - VD 3 VD 4

单相半桥电压型逆变电路工作波形 全桥逆变电路就是单相逆变电路中应用最多的, 对电压波形进行定量分析将幅值为Uo 的矩形波 uo 展开成傅里叶级数,得 其中基波幅值Uo1m 与基波有效值Uo1分别为 上述公式对半桥逆变电路也适用,将式中的ud 换成Ud /2 uo 为正负电压各为180°的脉冲时,要改变输出电压有效值只能通过改变输出直流电压Ud 来实现 d d o1m 27.14U U U == π d d 1o 9.022U U U == π O ON u o U - U m i o VD 1 VD 2 VD 1 VD 2 ?? ? ??+++= t t t U u ωωωπ5sin 513sin 31sin 4d o

t 1时刻前V 1与V 4导通,输出电压u o 为u d t 1时刻V 3与V 4栅极信号反向,V 4截止,因i o 不能突变,V 3不能立即导通,VD 3导通续流,因V 1与VD 3同时导通,所以输出电压为零 各 IGBT 栅极信号uG1~uG4及输出电压uo 、输出电流io 的波形 u u u u u i o o ? 各IGBT 栅极信号为180°正 偏,180°反偏,且V 1与V 2栅极信号互补,V 3与V 4栅极信号互补 ? V 3的基极信号不就是比V 1落后 180°,而就是只落后θ ( 0< θ <180°) ? V 3、V 4的栅极信号分别比V 2、V 1 采用移相方式调节逆变电路的输出电压

浅谈山区路桥设计要点

浅谈山区路桥设计要点 发表时间:2012-12-17T14:09:34.403Z 来源:《建筑学研究前沿》2012年8月Under供稿作者:颜宏 [导读] 基于山区特殊的地理位置,在修建路桥的过程中,存在着许多问题。 颜宏(浙江省交通规划设计研究院,浙江杭州 310006) 摘要:基于山区特殊的地理位置,在修建路桥的过程中,存在着许多问题。由此就需要相关人员在设计的过程中,能够结合着山区的地理位置进行设计。在此,本文针对山区路桥设计中的要点,做以下论述。 关键词:山区路桥;设计要点;桥梁选型;桥跨布置 一.桥梁选型 桥梁选型不仅关系着桥梁今后的使用,还关系着山区的交通发展。在桥梁选型的过程中,设计人员必须结合着山区的地理形势,选出合适的桥梁选型,在节省投资的同时,还能最大限度的实现桥梁的作用。在桥梁选型的过程中,在规范所允许的范围内,设计人员需要结合着地形,考虑考虑土石方挖填平衡,路线平纵线形较平原地区差,造成山区桥梁与平原地区的桥梁相比,弯桥、斜桥及坡桥所占的比重较大。针对山区桥梁的这些特点,考虑不同桥梁形式的力学特点、施工方法等,山区桥梁选用预制安装简支梁桥、现浇连续梁桥为宜。 山区桥梁在设计的过程中,结合着山区的地位形势,设计人员应充分考虑到桥梁的位处曲线半径。如果桥位所在地的曲线半径较大,地形比较平坦,则可以选用简支梁桥。在简支梁桥型选择的过程中,需要设计人员结合着施工项目的实际状况,根据山区的实际状况进行选型,针对跨径在20m左右的地带,一般采用小箱梁(空心板);而针对跨径在25m——40m的地形,则采用T梁。当桥位处曲线半径较大时,设计人员可以结合着具体数据,对桥梁的预支长度进行调整,而梁长度可通过调节预制模板的长度,或者将模板做成长度易改变的活动模板,即可实现用一套模板预制出不同长度的梁,以降低造价;但当曲线半径较小,如:小于250 m的曲线需设置加宽,预制模板难于拟合曲线线性,造成预制难度加大;而且其超高值也较大,仅靠盖梁、台帽、支座垫石的横坡及高度来实现桥面横坡,最终会因为施工时的误差和曲线梁桥在弯扭耦合作用下,造成支座悬空甚至破坏,严重影响桥的使用寿命甚至造成梁体开裂。然而在简支梁桥施工的过程中,同时具备较多的伸缩缝,因而对车辆行驶造成相应的影响。在解决这一状况的过程中,设计人员可以使用先简支后连续的桥梁结构形式,通过这种设计形式,能够在一定程度上改善车辆的行驶状况,节能桥梁的经济投资,在提高桥梁耐用度的同时,还能广泛运用到山区路设计中。 针对半径较小的桥梁,设计人员在选用桥型的过程中,可以在条件允许的状况下,采用现浇连续梁桥。这种桥在建筑的过程中,能够凭借自身完整的外观及行车舒适等优势,成为首先考虑的桥梁结构形式。在闭合箱梁建筑的过程中,其最大的优势在于抗扭能力强,即使是面积最大的顶板与底板,在投入使用的过程中抗弯能力也比较强,因而在山区路桥设计的过程中,针对连续桥梁的截面,箱形桥梁设计成为最明智的选择。 在现浇桥梁施工的过程中,主要施工方法包括搭架、移动滑模逐孔浇筑以及悬臂浇筑等几个方面。在采用满堂式支架施工的现浇箱梁时,最大的难题在于解决深沟地段的搭架,在搭架的过程中,面对水流湍急的桥位,贸然搭架不仅存在一定的危险,同时还对施工人员的生命安全造成影响。因而在使用搭架的过程中,建议选在地形比较平坦、跨径不打、施工期短以及河流干扰较小的地段。而针对中等跨径的多孔桥梁设计,在设计的过程中可以采用移动滑膜逐孔浇筑。在该方案桥梁设计的过程中,箱梁可先在预制场或者桥头预制好后在进行移位就位,这种桥梁设计在使用的过程中,能够充分体现出预制和现浇的优势;然而在设计的过程中,针对半径较小的曲线,也会在一定程度上增加该方法的难度。对于跨度较大的连续梁桥,设计人员应结合着山区的实际地理形势及力学特点进行设计,在保障施工质量的同时,还能确保桥梁今后的投入使用。 二.桥跨布置:山区桥梁跨度选择主要控制因素个人认为是地形、排洪(如有)双重控制的 在桥跨布置的过程中,设计人员需要结合着河桥的实际跨度进行设计,在该来桥梁设计的同时,桥梁的总跨径必须保证桥下有足够的排洪面积;上跨其他道路的桥梁跨径的确定则要结合其下穿道的位置及宽度等确定。在桥梁设计的过程中,设计人员在确定桥梁总跨径后,还需要根据河流的实际状况进行分孔,桥梁跨径越大,则孔数越少,桥梁上部的造价也就越高;反之桥梁下部的造价比较高;由此就需要设计人员能够对结合着多个方案进行比较,以便选择经济实惠的设计方案。此外,在桥跨布置的过程中,还需要结合着桥墩的实际状况。当桥墩出现较高或地质不良时,基础工程在施工的过程中则会存在较大的难度,这时,则可以适当的加大桥梁跨径,相反,选择小跨径更为合适。 三.其他应注意的问题 在山区经济路桥设计的过程中,除了需要考虑以上几种设计要点外,还需要结合着山区的实际发展状况,以便设计出的桥梁在满足山区发展需求的同时,还能真正发挥路桥的作用。针对山区路桥设计中仍需注意的问题,主要包括以下几个方面:(一)经济问题 在山区桥梁设计的过程中,除了结合着山区的地理特征外,还需要结合着山区的实际发展状况,将经济、安全以及美观等多种因素。以便设计出来的桥梁在符合经济实惠的同时,还能真正发挥出桥梁的作用,以此来推动山区经济的发展。 (二)设计问题 在山区路桥设计的过程中,基于山区横坡陡,在设计宽度较宽的桥梁时,设计人员有时会采用分幅错孔的设计方式,然而在整个桥梁设计的过程中,除了考虑桥台与路基的衔接方式外,左右的幅桥的衔接方式也必须引起重视。这样就能保障山区路桥设计的完整性,避免因设计失误而引起安全事故的发生。 (三)受力问题 在山区路桥设计的过程中,对于曲线上的现浇箱梁桥,箱梁顶板、桥墩盖梁和桥台台帽宜与该处的桥面同横坡,箱梁腹板须竖直,支座鹅石顶面必须保持水平,在梁体下缘需预埋调平钢板,以保证支座均匀受力。 (四)技术问题 在整个山区路桥设计的过程中,设计人员除了结合当地的地理状况外,还需要结合着路桥的实际造价及相应的技术问题,确保路桥的全寿命周期成本,在全寿命周期成本中,既包括桥梁建设的前期、建设期、运营期的养护成本,同时还要考虑到桥梁施工中涉及的各个方

相关文档