文档库 最新最全的文档下载
当前位置:文档库 › 聚酰胺酸合成工艺研究

聚酰胺酸合成工艺研究

聚酰胺酸合成工艺研究
聚酰胺酸合成工艺研究

 第14卷 第2期强激光与粒子束V o l.14,N o.2 2002年3月H IGH POW ER LA SER AND PA R T I CL E B EAM S M ar.,2002 文章编号: 100124322(2002)022*******

聚酰胺酸合成工艺研究Ξ

张占文1, 王朝阳1, 钟发春2, 李 波1, 余 斌1, 魏 胜1, 黄 勇1

(1.中国工程物理研究院激光聚变研究中心,四川绵阳621900; 2.中国工程物理研究院化工材料研究所,四川绵阳621900)

摘 要: 采用超声波在线测量溶液粘度的方法,研究了合成聚酰胺酸过程中实验条件的影响,并

对实验结果进行分析,由此确定了合成高分子量聚酰胺酸的最佳实验条件。研究表明:在加料次序为先

加二胺后加二酐(二酐与二胺的摩尔比为1.01~1.02:1)、试剂中含水量尽可能少,反应温度0~5℃、反

应时间以溶液粘度到达最大值为止的条件下,所合成的聚酰胺酸溶液粘度最大,可满足惯性约束聚变

(I CF)充气腔靶端口膜的需要。

关键词: 柱腔充气靶; 聚酰亚胺; 聚酰胺酸

中图分类号: TL639 文献标识码: A

在惯性约束聚变(I CF)研究中,制备好的实验用靶具有非常重要的意义[1~3]。柱腔充气靶已被列为美国国家点火装置上的基本靶型[4],它的研制对于开展激光等离子体耦合、X光的产生和内爆物理等方面的研究具有重要意义。为了满足柱腔充气靶动态充气的需要,在柱腔端口应有阻气薄膜。该薄膜具有一定的阻气能力,并且应尽量减少激光能量的损失。聚酰亚胺薄膜抗张强度大,当薄膜转变成等离子体时,对腔内产生的影响较少,因此它是最理想的端口膜。理论上预计聚酰亚胺薄膜膜厚在0.3Λm时,可以满足制靶的需要。随着薄膜厚度增加,产生的不利影响也增大,因此,必须制备亚微米厚的超薄聚酰亚胺薄膜。

聚酰亚胺薄膜现已大量生产,制备技术已日趋成熟,但商用薄膜与实验所需相差很大。商用薄膜通常较厚,一般都在10~100Λm左右。随着薄膜厚度减少,保持其原有的抗张强度和脱膜都变得很困难,因此,自支撑的亚微米厚聚酰亚胺薄膜国内外均无厂家生产,只能在实验室制备。制备的关键是:其一,薄膜强度不能降低;其二,可以脱膜。薄膜的强度和脱膜都与聚酰亚胺分子量有关,只有分子量足够高才能保证薄膜强度和容易脱膜。而影响聚酰亚胺分子量的主要因素是环化前聚酰胺酸的分子量,高分子量的聚酰胺酸才可能得到高分子量的聚酰亚胺薄膜,以满足柱腔充气靶端口膜的需要。

1 实验

1.1 实验原理

合成聚酰亚胺的通用方法是利用二胺和二酐反应生成聚酰胺酸,然后再热环化生成聚酰亚胺[5,6]。二酐和二胺分别采用均苯四羧酸二酐(PM DA,pyrom ellitic dianhydride)和4,42二氨基二苯醚(ODA, oxydian iline)。PM DA和ODA生成聚酰亚胺的反应过程为

第一步生成聚酰胺酸,第二步热环化生成聚酰亚胺。决定聚酰亚胺分子量的主要是第一步合成聚酰胺酸

Ξ收稿日期:2001208227; 修订日期:2001211229

基金项目:国家863激光惯性约束聚变领域资助课题(863241623)

作者简介:张占文(19732),男,助研,硕士,主要从事靶制备与研究方面的工作;绵阳市919信箱987分箱。

的反应。聚酰胺酸不溶于常用试剂,分子量很难测定,但高分子材料的分子量与高分子溶液的粘度有一定关系,在相同溶剂、温度和浓度条件下,溶液粘度越大,其所溶解的高分子材料分子量相对越高,所以,实验采用相同测量条件下的溶液粘度进行表征。

1.2 原料试剂及仪器设备

PM DA ,分析纯,上海合成树脂研究所;ODA ,分析纯,上海合成树脂研究所;N ,N 2二甲基乙酰胺(DM A c ),分析纯,成都市联合化工试剂研究所;IKA 搅拌器,huber po lystat CCS (德);N C 24型超声波粘度计,成都仪器厂;微量水分测定仪,M ET TL ER DL 37(日)。

1.3 实验内容

按一定比例称量ODA 和PM DA ,加入三口瓶中,同时加入溶剂DM A c 。控制反应温度,反应过程中不断搅拌,转速是100H z m in ,并在线监测溶液粘度,直到反应结束为止。将溶液温度恒定到0℃,测定溶液粘度值,测量条件均为溶液浓度3w t %,温度0℃。

2 结果及讨论

2.1 实验结果

F ig .1 Effect of m aterial o rder on visco sity of po lypyrom ellitam ic acid so luti on 图1 加料次序对溶液粘度的影响

2.1.1 加料次序的影响

合成时聚酰胺酸原料的加料次序有三种。方案

A :先加二胺,再加二酐;方案

B :先加二酐,再加二

胺;方案C :二胺和二酐同时加入。研究表明在其它

条件相同的情况下,加料次序对实验结果影响很大

(实验结果见图1)。方案A 得到的溶液粘度最大,其

次是方案C ,在先加二酐的情况下,基本得不到高分

子量的聚酰胺酸溶液。

2.1.2 原料配比的影响

原料摩尔配比(PM DA :ODA )分别为:0.980,

0.985,0.990,0.995,1.00,1.005,1.010,1.015,1.

020,1.025,1.030,反应温度控制在0℃。实验结果见图2。从图上可知,当二酐与二胺配比小于1时,溶液粘度值很低;随着二酐配比的增加,溶液粘度值逐渐增大;当二酐稍过量约2%(摩尔配比)时溶液粘度值可达最大;此后,随着二酐配比的增加,溶液粘度开始下降

F ig .2 Effect of m aterial p ropo rti on on visco sity

of po lypyrom ellitam ic acid so luti on 图2

 原料配比对溶液粘度的影响F ig .3 Effect of w ater on visco sity of po lypyrom ellitam ic acid so luti on

图3 试剂含水量对溶液粘度的影响

2.1.3 试剂含水量的影响

称量摩尔配比(∶)为1.02∶1的和,待全部溶解后加入,试

262 强激光与粒子束 第14卷

剂的含水量分别为0.05w t %,0.3w t %,0.6w t %,1.0w t %。实验结果见图3。

由图上可知,试剂含水量对实验结果影响很大。当试剂含水量比较多时,合成的溶液粘度值很低;随着试剂含水量减少,合成的溶液粘度值急剧增加。所以,采取有效措施去除试剂中的水分,将使合成的聚酰胺酸分子量大幅度提高。

2.1.4 反应温度的影响

反应温度是化学反应的另一个重要影响因素,增加反应温度可以缩短平衡时间,但却影响平衡常数。称量摩尔配比(PM DA ∶ODA )为1.02∶1的ODA 和PM DA ,控制反应温度分别为-10℃,0℃,10℃,20℃,30℃,40℃和50℃。反应结束后,将溶液温度恒定到0℃,测定溶液粘度值。实验结果见图4,在-10℃时溶液的粘度值最大。由于本合成反应是放热反应,

所以低温有利于正反应进行。

F ig .4 Effect of reactive temperature on

visco sity of po lypyrom ellitam ic acid so luti on 图4 反应温度对溶液粘度的影响F ig .5 Effect of reactive ti m e on visco sity of po lypyrom ellitam ic acid so luti on

图5 反应时间对溶液粘度的影响

2.1.5 反应时间

称量摩尔配比(PM DA ∶ODA )为1.02∶1的ODA 和PM DA ,待ODA 全部溶解后加入PM DA ,控制反应温度0℃。实验结果见图5。从图上可知,在初始反应阶段,溶液粘度增长较慢,随着反应进行溶液粘度迅速增大,直到达到最大值。然后,溶液粘度开始略微下降。

2.2 讨论

利用均苯二酐和二胺在非质子极性溶剂中形成聚酰胺酸的主要反应过程见图6。k 1是正反应速率,其它是副反应。根据反应式(1)知,合成聚酰胺酸的反应是逐步聚合反应。聚合物分子链增长速度缓慢,聚合物分子量随时间增加而增长。这一链增长过程见图5,最初随时间的增加溶液粘度增长很慢,在接近反应完成前,溶液粘度迅速增大。当正副反应速率相同时,溶液粘度到达最大值。此后,因溶液吸水而促进副反应,溶液粘度开始降低。

F ig .6 M ain reacti on schem e in synthetic p rocess 图6 反应时间对溶液粘度的影响

要想获得高分子量的聚酰胺酸溶液,就是使实

验条件促进正反应进行和抑制副反应进行。k 2是聚

酰胺酸脱掉一分子水的成环反应,生成的水分子促

进副反应k 3和k 4,这正是聚酰胺酸溶液粘度达到最

大值后降低的原因之一。

对于副反应k 3和k 4,是原料及产物的水解过

程。均苯二酐的水解导致原料配比失衡,不能形成高分子链;聚酰胺酸的水解则导致高分子链的断裂,两

者的作用结果不能合成高分子量的聚酰胺酸。加料次序选用方案B 时,由于溶液中没有二胺,二酐严

重水解,基本得不到高分子量的聚酰胺酸溶液。二酐与二胺的合适配比通常都是二酐稍过量,主要原因

362第2期 张占文等:聚酰胺酸合成工艺研究

462 强激光与粒子束 第14卷

也是二酐的部分水解。

从图4知低温有利于正反应进行,但温度低时平衡时间增长,原料及产物水解以及产物的成环效应增强,故实验温度不可太低,实验温度在0~5℃比较合适。

2.3 应用

利用以上实验结果合成的聚酰胺酸溶液制备聚酰亚胺薄膜,可获得亚微米厚的自支撑薄膜,并利用此薄膜作为阻气薄膜制备出柱腔充气靶,在I CF实验中靶内充入1×105Pa气体,外部是真空,在此压差下薄膜保持完好。

3 结 论

本文采用超声波在线测量合成聚酰胺酸过程中的溶液粘度变化,由此确定合成高分子量聚酰胺酸的最佳实验条件。研究表明合成的最佳条件为:其一,加料次序为先加二胺后加二酐;其二,二酐与二胺的摩尔为以1.01~1.02∶1;其三,试剂中的含水量越少越好;其四,反应温度在0~5℃;其五,反应时间应以溶液粘度到达最大值为止。

参考文献:

[1] 吴卫东,罗江山,黄 勇,等.H2及H+对C x H1-x薄膜表面状态的影响[J].强激光与粒子束,2000,12(5):593.(W u W D,L uo J

S,H uang Y,et al.T he effect of H2and H+on C x H1-x fil m surface state.H ig h p o w er laser and p a rticle beam,2000,12(5): 593)

[2] 游 丹,李 波,张 林,等.界面缩聚法PS2PVA双层聚合物空心微球的研制[J].强激光与粒子束,2000,12(4):463.(You D,

L i B,Zhang L,et al.P reparati on of PS2PVA double2layered po lym er ho llow m icro shells by interface po ly2condensati on technique.

H ig h p o w er laser and p a rticle beam,2000,12(4):463)

[3] 张占文,吴卫东,许 华,等.埋点靶中CH薄膜的制备工艺研究[J].强激光与粒子束,2001,13(1):68.(Zhang ZW,W u W D,

Xu H,et al.Study on the fabricati on techno logy of CH fil m in m icro spo t targets.H ig h p o w er laser and p a rticle beam,2001,13

(1):68)

[4] Kauffm an R L,Suter L J,Ko rnblum H N,et al.X2ray p roducti on in laser2heated Xe gas targets[R].U CRL2L R210582129622,

L aw rence L iver mo re N ati onal L abo rato ry,U SA,1996.

[5] D ing2H art R A,W righ t W W.P reparati on and fabricati on of arom atic po lyi m ides[J].J A pp l P olym er S ci,1967,11:609.

[6] Perry R J,T unney S E,W ilson B D.Po lyi m ide fo r m ati on th rough the palladium2m ediated carbonylati on and coup ling of bis(o2i odo

am ides)and D iam ines[J].M acro m olecu les,1996,29:1014.

I nvestiga tion on the technology of syn thetic polypyrom ell itam ic ac id

ZHAN G Zhan2w en1, ZHON G Fa2chun2, WAN G Chao2yang1, L IBo1,

YU B in1, W E I Sheng1, HUAN G Yong1

(1.R esearch Center of L aser F usion,CA E P,P.O.B ox9192987,M iany ang621900,Ch ina;

2.Institu te of Che m ical M aterials,CA E P,P.O.B ox9192311,M iany ang621900,Ch ina)

Abstract: In develop ing gas2filled hoh lraum targets,fabricati on of po lyi m ide w ith th ickness no mo re than1Λm p lays an i m po rtant ro le,and its kernel techno logy is synthetic po lypyrom ellitam ic acid.T he so luti on visco sity is m easured during the synthetic p rocess by the m ethod of supersonic w ave.P reli m inary experi m ents have been perfo r m ed to deter m ine the effects of reacti on conditi ons in o rder to get h igh mo lecular w eigh t in the so luti on.T he best synthetic conditi on is concluded as fo llow s:so lid pyrom ellitic dianhydride should be added to diam ine so luti ons,mo le rati o of dianhydride and diam ine should be1.01~1.02∶1,the reacti on temperature should be0~5℃,w ater in so lvent should be least and reacti on should be stopped in suitable ti m e.

Key words: gas2filled hoh lraum targets; po lyi m ide; po lypyrom ellitam ic acid

聚酰亚胺的合成方法2

聚酰亚胺的合成方法 聚酰亚胺是一类环链化合物,根据其结构和制备方法,可分成主链含有脂肪链的聚酰亚胺和主链中含有芳环链的聚酰亚胺2大类。其通式为: 聚酰亚胺由四酸二酐与二胺聚合而成,合成方法有一步法、二步法、三步法和气相沉积法。 2.1一步法 一步法是二酐和二胺在高沸点溶剂中直接聚合生成聚酰亚胺,即单体不经由聚酰胺酸而直接合成聚酰亚胺。该法的反应条件比热处理要温和得多,关键要选择合适的溶剂。为提高聚合物的相对分子质量,应尽量脱去水份。通常采用带水剂进行共沸以脱去生成的水,或用异氰酸酯替代二胺和生成的聚酰胺酸盐在高温高压下聚合。此法的控制工艺尚需完善,并正向实用化迈进。反应方程式如图1。 2.2二步法 二步法是先由二酐和二胺获得前驱体聚酰胺酸,再通过加热或化学方法,分子内脱水闭环生成聚酰亚胺。化学亚胺化法,即用脱水剂处理聚酰胺酸;化学环化后生成的聚酰亚胺中含有大量异酰亚胺,该法制得的聚酰亚胺与用加热方法制得的聚酰亚胺,物理和化学性能有差异,特别是异酰亚胺环具有较低的热稳定性和高化学反应活性;应用不同的脱水剂,环化产物中亚胺/异酰亚胺的比例不同,可认为是互变异构的高度不稳定所引起的。 二步法工艺成熟,但聚酰胺酸溶液不稳定对水汽很敏感,储存过程中常发生分解,所以又出现聚酰胺酸烷基酯法、聚酰胺酸硅烷基酯法等改进方法 聚酰亚胺的另一种前驱体聚酰胺酯,是一种相对稳定的聚合物,能以固态或溶液形式长期存放高相对分子质量的聚酰胺酯通常是由芳香二酸二酯经酰氯化后,与芳香二胺进行溶液缩聚或界面缩聚制得;聚酰胺酯受热或在有机碱的催化下发生酰亚胺化反应生成聚酰亚胺,但脱掉的小分子化

合物是醇或α-烯烃而不是水。中间体聚酰胺酯的溶解性好于聚酰胺酸,可溶于常用低沸点有机溶剂,如二氯甲烷、四氢呋喃等,并可获得高浓度溶液而且可通过改变酯基结构使聚酰胺酯性能各异,可用于制备高强高模材料,是合成聚酰亚胺的典型方法。但其酰亚胺化反应活性低,工艺复杂,制造成本高,有待优化。反应方程式如图2。 2.3三步法 三步法是经由聚异酰亚胺得到聚酰亚胺的方法。聚异酰亚胺结构稳定,作为聚酰亚胺的先母体,由于热处理时不会放出水等低分子物质,容易异构化成酰亚胺,能制得性能优良的聚酰亚胺。聚异酰亚胺是由聚酰胺酸在脱水剂作用下,脱水环化为聚异酰亚胺,然后在酸或碱等催化剂作用下异构化成聚酰亚胺,此异构化反应在高温下很容易进行。聚异酰亚胺溶解性好,玻璃化转变温度较低,加工性能优良。聚酰亚胺为不溶、不熔性材料,难于加工,通常采用先在预聚物聚酰亚胺阶段加工,但由于在高温下进行,亚胺化时闭环脱水易使制品产生气孔,导致制品的机械性能和电性能下降,难以获得理想的产品,作为聚酰亚胺预聚的聚异酰亚胺,其玻璃化温度低于对应的聚酰亚胺,热处理时不会放出水分,易异构化成聚酰亚胺,因此用聚异酰亚胺代替聚酰胺酸作为聚酰亚胺的前身材料,可制得性能优良的制品。该法较新颖,正受到广泛关注。 2.4气相沉积法 气相沉积法主要用于制备聚酰亚胺薄膜,反应是在高温下使二酸酐与二胺直接以气流的形式输送到混炼机内进行混炼,制成薄膜,这是由单体直接合成聚酰亚胺涂层的方法。

11、肉桂酸的制备

有机化学实验报告 实验名称:肉桂酸的制备 学院:化学工程学院 专业:化学工程与工艺 班级: 姓名:学号: 指导教师: 日期:

1、了解肉桂酸制备的原理和方法; 2、掌握回流、抽滤等基本操作; 3、熟悉水蒸气蒸馏的原理和操作方法; 二、实验原理 1、肉桂酸又名β-苯丙烯酸,肉桂酸的合成方法有多种,实验室以苯甲醛和醋酐为原料,在无水碳酸钾的存在下,发生缩合反应,即得肉桂酸。 2、PerKin反应:芳醛与酸酐的缩合反应。催化剂一般为酸酐对应的羧酸钠盐或钾盐,用无水碳酸钾代替醋酸钾,可缩短反应时间,产率也有所提高。 三、主要试剂及物理性质 1、主要试剂:苯甲醛、乙酸酐、无水碳酸钾、氢氧化钠水溶液、盐酸(1:1)、活性炭、试剂水 2、试剂的物理性质 名称分子量性状熔点(℃)沸点(℃)溶解度 肉桂酸148白色单斜棱晶135-1363000.0418 苯甲醛106无色液体-26178.10.3 碳酸钾102白色结晶粉末-73.1138.6253(20℃) 乙酸酐102无色透明液体-73.1140.012(冷) 四、试剂用量规格 试剂用量 苯甲醛 5.0ml(0.05mol) 乙酸酐14.0ml(0.145mol) 碳酸钾7.00g 10%NaOH水溶液40ml 盐酸(1:1)25ml 水110ml 活性炭3小勺

主要仪器:150ml三颈烧瓶、量筒(10ml) 、量筒(100ml)、球形冷凝管、直形冷凝管、水蒸气发生器、玻璃棒、250ml锥形瓶、布氏漏斗、吸滤瓶、表面皿、电炉等 5-1 肉桂酸制备的回流装置 5-2 水蒸汽蒸馏法装置图 六、实验步骤及现象 时间步骤现象 1、取5ml苯甲醛,14ml乙 酸酐和7g碳酸钾放入 150ml三颈烧瓶。 无色透明液体。 14:00-14:06 14:07-14:502、将此混合物进行加热回 流45ml,并观察颜色。 起初冒白烟,出现大量泡沫。 泡沫完全消失(14:06),液体 变成乳黄色混浊状。 液体渐渐澄清,微沸,橙红色 慢慢加深,最后为红褐色溶液。 温度172℃。

柠檬酸及生产工艺

柠檬酸及生产工艺 一.柠檬酸的简介 1. 柠檬酸的理化性质 柠檬酸(Citric acid),又称枸椽酸,是一种三元羧酸,其学名为3-羟基-3-羧基戊二酸,分子式C6H8O7(无水物),在自然界中存在于柠檬、柑桔、梅、子、梨、桃、无花果等水果中。柠檬酸具有无毒,无色,无臭特性,一般为半透明结晶或白色粉末,易溶于水、乙醇、乙腈、乙醚等[1],不溶于苯,微溶于氯仿。相对密度1.542g/cm3,熔点153℃(失水)。柠檬酸结晶形态因结晶条件不同而不同,有无水柠檬酸,也有含结晶水的柠檬酸。在干燥空气中微有风化性,在潮湿空气中有潮解性,175℃以上分解放出水及二氧化碳。柠檬酸是一种较强的有机酸,有3个H+可以电离;水溶液呈酸性,加热可以分解成多种产物,与酸、碱、甘油等发生反应。 2. 柠檬酸的用途 柠檬酸具有令人愉悦的酸味,入口爽快,无后酸味,安全无毒,被广泛用作食品和饮料的酸味剂;能与二价或三价的阳离子形成络合物,被用作金属加工的鳌合剂和洗净剂(起软化水作用的洗净力补充剂);还能衍生形成许多衍生物,可用作有机化学工业的原料。因此被广泛用于食品饮料、医药化工、清洗与化装品、有机材料等领域,是目前世界需求量最大的一种有机酸[2],到目前还没有一种可以取代柠檬酸的酸味剂。 二.生产技术 柠檬酸的生产方法共可分为 3 种: 水果提取法,化学合成法, 生物发酵法三种[17],目前以发酵法生产柠檬酸为主[18]。发酵法又分为固体发酵法和液体深

层发酵法。固态发酵能耗小但劳动力大,占地面积大,不适合大规模的生产应用。深层通风发酵法采用不锈钢罐体,机械搅拌通风,微生物在液体相中分布均匀,发酵时不生成孢子,全部菌体细胞用于代柠檬酸,发酵速度高,实现了机械化或自动化操作,利于大规模生产。 三.生物发酵法制取柠檬酸 1.本工艺选择的原料及生产方法 本次生产工艺设计以薯干为原料,采用直接粉碎、调浆、液化,进行好气液体深层发酵,钙盐法提取,最后结晶、干燥得到柠檬酸 2.工艺流程 接收糖浆后,根据糖浆组成作适当的处理或配制,配成发酵原料,进行连续杀菌并冷却后,进入发酵罐,加入菌种和净化压缩空气后进行发酵;发酵液经升温、过滤处理后,进入中和罐,用中和处理;再经过过滤洗涤,得到柠檬酸钙固体,送入酸解罐,再添加酸解,并加入活性炭进行脱色;然后,通过带式过滤机过滤、酸解过滤,除去及废炭;酸解过滤液经离子交换处理后,进行蒸发、浓缩,再进行结晶;结晶后,用离心机进行固液分离,对得到的湿柠檬酸晶体进行干燥与筛选,最后得到成品柠檬酸。

尼龙66国内外生产现状及发展建议精

专论综述 弹性体 , 2010 12 25, 20(6 :78~82 CH IN A EL A ST O M ERICS 收稿日期 :2010 10 22 作者简介 :华阳 (1976 , 女 , 吉林省吉林市人 , 经济师 , 主要从事化工营销工作。 尼龙 66国内外生产现状及发展建议 华阳 1, 刘振明 2, 刘权毅 3, 张立 4, 张炜 5 (1. 中国石油吉林石化公司销售管理部 , 吉林吉林 132021; 2. 中国石油 吉林石化公司研究院 , 吉林吉林 132021; 3. 中国石油吉林石化公司电子商务 部 , 吉林吉林 132021; 4. 吉林省电力有限公司四平供电公司 , 吉林四平 136000; 5. 吉林梦溪工程管理有限公司 , 吉林吉林 132021 摘要 :介绍了国内外尼龙 66的生产和市场现状 , 阐述了尼龙 66生产技术及其工艺 , 并结合我国实际情况 , 提出了尼龙 66的发展建议。 关键词 :尼龙 66; 生产 ; 市场 ; 生产技术 ; 发展建议 中图分类号 :T Q 342+. 1 文献标识码 :A 文章编号 :1005 3174(2010 06 0078 05 尼龙 (Nylon 又称聚酰胺 , 英文名称 Poly am ide(简称 PA , 是分子主链上含有重复酰胺基团 NH CO 的热塑性树脂总称 , 其包括脂肪族 PA 、脂肪芳香族 PA 和芳香族 PA 。其中 , 脂肪族 PA 品种多 , 产量大 , 应用广泛 , 其命名由合成单体 具体的碳原子数而定。 尼龙纤维和树脂是合成材料中的一大系列产品。尼龙纤维主要是由己内酰胺(CPL 开环聚合制得的尼龙 6和尼龙 66盐缩聚合而成的尼龙 66生产的 , 在我国又

肉桂酸的制备

肉桂酸的制备 课时数:5学时 教学目标: 了解肉桂酸制备的原理和方法,掌握回流、水蒸汽蒸馏等操作。 教学内容: 一、实验目的: ⑴掌握用珀金反应制备肉桂酸的原理和方法; ⑵掌握回流、水蒸气蒸馏等操作 二、实验试剂 【物理常数】 二、反应原理 肉桂酸又名β-苯丙烯酸,有顺式和反式两种异构体。通常以反式形式存在,为无色晶体,熔点133℃。肉桂酸是香料、化妆品、医药、塑料和感光树脂等的重要原料。肉桂酸的合成方法有多种,实验室里常用珀金(Pe-ruin)反应来合成肉桂酸。以苯甲醛和醋酐为原料,在无水醋酸钾(钠)的存在下,发生缩合反应,即得肉桂酸。

反应时,酸酐受醋酸钾(钠)的作用,生成酸酐负离子;负离子和醛发生亲核加成生成β-羧基酸酐;然后再发生失水和水解作用得到不饱和酸 PerKin反应:芳醛与酸酐的缩合反应。催化剂一般为酸酐对应的羧酸钠盐或钾盐,用无水碳酸钾代替醋酸钾,可缩短反应时间,产率也有所提高。 反应机理如下:乙酐在弱碱作用下打掉一个H,形成CH3COOCOCH2-,然后 用K2CO3代替CH3CO2K,碱性增强,因此产生碳负离子的能力增强,有利于碳负离子对醛的亲核加成,所以反应时间短,产率高。 三、实验步骤 1.合成: ①在100 mL干燥的圆底烧瓶中加入1.5mL (1.575 g,15 mmol) 新蒸馏过的苯甲醛,4 mL (4.32 g,42 mmol) 新蒸馏过的醋酐以及研细的2.2 g无水碳酸钾,2粒沸石,按装置图按好装置。 ②加热回流(小火加热)40 min,火焰由小到大使溶液刚好回流。(也可将烧瓶置于微波炉中,装上回流装置,在微波输出功率为450W下辐射8min) 。 ③停止加热,待反应物冷却。 2.后处理: 待反应物冷却后,往瓶内加入20 mL热水,以溶解瓶内固体,同时改装成水蒸气蒸馏装置(半微量装置)。开始水蒸气蒸馏,至无白色液体蒸出为止,将蒸馏瓶冷却至室温,加入10 %NaOH(约10 mL)以 图1. 产物制备装置

酸法生产氧化铝

酸法生产氧化铝 酸法生产氧化铝(acid process for alumina production) 用无机酸溶出铝硅酸盐原料中的铝的氧化铝生产方法。 20世纪20年代以来,人们对用酸法溶出处理粘土等原料生产氧化铝的各种方法进行了深入的研究,有的已发展到工业试验或生产阶段。60年代期间,由于铝土矿开采增加,储量减少,曾引起一些产铝国家对用酸法处理其非铝土矿资源的重视,促使酸法生产氧化铝的技术得到进一步发展。但酸法生产氧化铝在经济上无法和拜耳法竞争;加之60年代后,世界一些国家又陆续发现了大型的铝土矿矿床,所探明的铝土矿储量足够用拜耳法处理百年之用。因此,酸法生产氧化铝在现在或是不久的将来还不能用于大规模工业生产。 工艺用各种无机酸溶出处理含铝原料时,原料中的氧化硅基本上不与酸反应留在渣中。而得到含铁的铝盐酸性水溶液。经除铁净化后的铝盐酸性溶液可通过不同的方法得到铝盐水合物结晶或氢氧化铝结晶。煅烧这些结晶便得到氧化铝。按溶出所用的无机酸,酸法生产氧化铝又有硫酸法、盐酸法和硝酸法之分。 硫酸法硫酸便宜,挥发性和腐蚀性都较小,所以对硫酸法的研究较多。从硫酸铝溶液中结晶析出的硫酸铝带有18~24个结晶水,Al2O3含量仅占13%~15%。煅烧这种结晶产物,热耗大、易熔化,而且所得废气中的SO2和SO3浓度低,不利于回收用来生产硫酸。澳大利亚墨尔本的联邦科学与工业研究组织在20世纪60年代提出了碱式硫酸铝法,也称为C.S.I.R.O.法。此法用SO3与Al2O3质量比为2.6的含铁的硫酸铝溶液,在403K温度下溶出过量的焙烧过的高硅铝土矿,得到SO3与Al2O3质量比为1.8~1.9的硫酸铝溶液和吸附了铁的残渣。往分离残渣后的硫酸铝溶液中通入SO2,将Fe3+还原为Fe2+,再在573K 要的碱式硫酸铝,Fe2+温度左右使硫酸铝水解析出分子式为Al2(OH)n(SO4) 3一n/2 留在水解母液中。碱式硫酸铝在1423K温度下煅烧即得成品氧化铝和含SO3较高的气体。后者用水解母液吸收后,在453K温度下将上述吸附了铁的残渣中的 Al2O3充分地溶出后,得到SO3与Al2O3的质量比为2.6的硫酸铝溶液,再用于溶出下一批矿石,泥渣则弃去。此法无需单独除铁,硫酸为闭路循环,碱式硫酸铝含Al2O3 40%以上,含水20%左右,有利于煅烧出成品Al2O3 和回收硫酸。但目前难以解决硫酸铝在573K温度下水解的耐酸设备问题。 盐酸法盐酸腐蚀性大且易分解,所以盐酸法的溶出温度不能太高,而且难以制取Al3+含量高的溶液。溶出后的渣难以分离和洗涤,单位产品的物料流量大。但因盐酸不会像硫酸和硝酸那样在加热时分解,而AlCl3在酸溶液中的溶解度又

肉桂酸的合成

肉桂酸的合成 广东药学院 摘要: 采用醋酸铵为催化剂,在无溶剂微波辐射下以苯甲醛和丙二酸为原料发生Knoevenagel缩合反应,合成肉桂酸,测定了产物的熔点;同时对微波加速反应的机理进行了探讨。该方法不但化学选择性好、反应时间短(3-6min)、产率高,而且产物易处理,对环境污染小。 关键词:肉桂酸、Perkin合成、Knoevenagel缩合、微波辐射 肉桂酸,又名β-苯丙烯酸、3-苯基-2-丙烯酸,是一种重要的有机化工中间体,广泛用作医药、香料、塑料、感光材料、缓蚀剂、聚氯乙烯热稳定剂、多胺苯甲酸酯的交联剂、己内酰胺。 肉桂酸的作用 肉桂酸及其系列产品是十分重要的精细化工产品,已被广泛应用于药物,香料和感光树脂领域,研究这些个化合物的合成具有十分重要的意义。 在香料行业,肉桂酸是试羧酸类香料,有良好的保香作用。 在日化行业。肉桂酸用于设置香皂和日用化妆品用的香料。 在农药行业,肉桂酸可用于植物生长增进剂、长效杀菌剂果蔬保鲜防腐剂和除草剂的制备。 在医药工业中,可用于合成治疗冠心病的重要药物,还可用作脊锥骨骼松弛剂和镇痉剂,主要用于脑血栓,脑动脉硬化,冠状动脉硬化等病症。对于肺腺癌细胞增殖有明显抑制作用。肉桂酸是A-5491人肺腺癌细胞有效的抑制剂,在抗癌方面具有极大的应用价值。 由于肉桂酸份子中存在烯类双键,因而可形成多种聚合物,且所形成的聚合物有耐热、耐冲击、耐化学性、防水性、高分解温度、导电性、透明性、光敏性、抗光蚀等优点,是优良的涂层材料。 肉桂酸可作为镀锌板的缓释剂,聚氯乙烯的热稳定剂,多氨基甲酸脂的交联剂,乙内酰和聚己内酰胺的阻燃剂,化学分析试剂。也是测定铀、钒分离的试剂;它还是负片型感光树脂的最主要合成原料。主要合成桂酸酯、聚乙烯醇肉桂酸酯、聚乙烯氧肉桂酸乙酯和侧基为肉桂酸酯的环氧树脂。 肉桂酸还可应用于美容方面,酪氨基酸酶是黑色素合成关键酶,它启动了由酪氨酸转化为黑色素生物聚合体的级链反应,肉桂酸有抑制形成黑色酪氨酸酶的作用,对紫外线有一定的隔绝作用,能使褐斑变浅,甚至消失,是高级防晒霜中必不可少的成分之一。肉桂酸显著的抗氧化功效对于减慢皱纹的出现有很好的疗效。 肉桂酸的合成方法 肉桂酸的合成方法有Perkin,苄叉二氯%无水冰醋酸法,甲醛%丙酮法,这些方法工艺上尚有许多缺点。如流程长、反应温度高、能耗高、收率低、副产物多、分离困难和对环境污染严重等;而肉桂醛氧化法,要以浓度达到90%—100%的过氧化氢和NaClO2等无机氧化剂进行氧化,如此高浓度的过氧化氢是危险品,还需要大量的有机溶剂如丙腈、苯等,也不利于工业化生产。而最绿色的合成方法就是利用无溶剂微波辐射醋酸铵催化合成肉桂酸法。无溶剂微波辐射条件下的反应操作简便,减少了溶剂对环境的污染[1]。反应方程如下:

聚酰胺是什么材料

聚酰胺也就是所谓的尼龙,由内酸胺开环聚合制得,也可由二元胺与二元酸缩聚等得到的。亦是分子主链上含有重复酰胺基团—[NHCO]—的热塑性树脂总称,因此,不仅品种多,产量大,且应用广泛,但如根据分子结构来分,则一般为两大类: 一类是由二胺和二酸缩聚而得的聚己二酸己二胺,其长链分子的化学结构式为: H-[HN(CH2)XNHCO(CH2)YCO]-OH 这类锦纶的相对分子量一般为17000-23000根据所用二元胺和二元酸的碳原子数不同,可以得到不同的锦纶产品,并可通过加在锦纶后的数字区别,其中前一数字是二元胺的碳原子数,后一数字是二元酸的碳原子数。例如锦纶66,说明它是由己二胺和己二酸缩聚制得;锦纶610,说明它是由己二胺和癸二酸制得。 另一类是由己内酰胺缩聚或开环聚合得到的,其长链分子的化学结构式为:H-[NH(CH2)XCO]-OH

根据其单元结构所含碳原子数目,可得到不同品种的命名。例如锦纶6,说明它是由含6个碳原子的己内酰胺开环聚合而得。 锦纶6、锦纶66及其他脂肪族锦纶都由带有酰胺键(-NHCO-)的线型大分子组成。锦纶分子中有-CO-、-NH-基团,可以在分子间或分子内形成氢键结合,也可以与其他分子相结合,所以锦纶吸湿能力较好,并且能够形成较好的结晶结构。 锦纶分子中的-CH2-(亚甲基)之间因只能产生较弱的范德华力,所以-CH2-链段部分的分子链卷曲度较大。各种锦纶因今-CH2-的个数不同,使分子间氢键的结合形式不完全相同,同时分子卷曲的概率也不一样。另外,有些锦纶分子还有方向性。分子的方向性不同,纤维的结构性质也不完全相同。 以上就是有关聚酰胺是哪种材料的一些简单分析,希望对大家进一步的了解有所帮助。

聚酰胺酸的合成及其酰亚胺化研究_李焱

聚酰胺酸的合成及其酰亚胺化研究 李焱,于俊荣,刘兆峰 (东华大学纤维材料改性国家重点实验室,上海200051) 摘要:采用均苯四酸二酐(PMDA)和4,4'-二氨基二苯醚(ODA)为单体,N,N-二甲基乙酰胺(DMAc)为溶剂,合成聚酰亚胺的前驱体聚酰胺酸(PAA)。研究了溶剂体系、反应温度、时间、投料比和总固含量等因素对所得聚酰胺酸特性黏度的影响。试制了聚酰胺酸和聚酰亚胺(PI)薄膜,对其进行了红外光谱分析及力学性能测试。 关键词:聚酰亚胺;聚酰胺酸;缩聚;特性黏度 中图分类号:TQ342.731文献标识码:A文章编号:1001-7054(2006)04-0006-04 1引言 聚酰亚胺(PI)具有独特的化学、物理性能,包括:优异的耐热性能,优良的力学性能,良好的尺寸和氧化稳定性,耐化学药品性和耐辐照性能,较好的绝缘性和介电性能以及突出的韧性和柔软性[1,2]。聚酰亚胺的制备方法,通常有一步法和两步法[3]。本论文采用两步法,首先合成聚酰亚胺的前驱体聚酰胺酸(PAA),即将芳香族二胺溶于非质子极性溶剂,然后加入均苯四酸二酐,在氮气保护下完成低温溶液缩聚,制得PAA预聚体溶液,然后对其进行酰亚胺化初步研究。 2实验 2.1试剂 4,4'-二氨基二苯醚(ODA):二胺,上海试剂厂,化学纯;均苯四酸二酐(PMDA):二酐,上海试剂厂,化学纯;N,N-二甲基乙酰胺(DMAc):上海试剂厂;N-甲基吡咯烷酮(NMP):巴斯夫公司。 2.2聚酰胺酸溶液的制备 聚酰胺酸的合成反应在氮气保护下进行,以保持反应物不被氧化且保持干燥。先按一定比例将二胺和溶剂加入三口烧瓶中,在搅拌下使二胺完全溶解,然后分批加入二酐,在低温下搅拌反应得到淡黄色透明的聚酰胺酸溶液,低温保存待用。2.3聚酰胺酸溶液特性黏度的测定 聚酰胺酸的特性黏度用乌式黏度计测定[4]。通过测定聚酰胺酸溶液的流出时间t和纯溶剂的流出时间t0,计算溶液的相对黏度ηr=t/t0和增比黏度ηsp=(t-t0)/t0,并计算PAA的特性黏度[η]:[η]=lnηr/c(1) 式中:c为待测溶液浓度。实验中,根据投料量计算所得PAA的理论浓度,然后采用稀释法将合成所得PAA溶液稀释至c为0.5g/dL左右。实验温度25℃,采用乌氏黏度计,毛细管直径为0.5 ̄0.6mm。 2.4聚酰胺酸薄膜的制备及其酰亚胺化过程取少量PAA溶液,在玻璃板上推膜后,放入烘箱,在60℃下烘2h,得到PAA薄膜。将PAA膜置于马福炉中,直接将温度升至300℃保持1h,得到PI薄膜(Ⅰ);采用程序升温的方法,在100℃下烘1h,200℃下烘1h,然后调至300℃再烘干0.5h,得到PI薄膜(Ⅱ)。 2.5薄膜的力学性能测试 收稿日期:2005-09-20 作者简介:李焱(1981 ̄),男,出生于吉林省,硕士研究生。

柠檬酸生产工艺

柠檬酸及生产工艺 摘要:柠檬酸广泛应用于食品工业、医药工业和化学工业等方面。它可利用糖质原料如土豆、地瓜中的淀粉等,在多种霉菌及黑曲菌的作用下,控制较低的温度和pH值、较高的通气量和糖浓度,用发酵法制得。 关键词:柠檬酸化工产品发酵法 1 产品说明 柠檬酸又名枸橼酸,学名3-羟基-3-羧基戊二酸,分子式C6H8O7为无色、无臭、半透明结晶或白色粉未,易溶于水及酒精。加热可以分解成多种产物,与酸、碱、甘油等发生反应。 柠檬酸主要应用于食品工业,因为柠檬酸有温和爽快的酸味,普遍用于各种饮料、汽水、葡萄酒、糖果、点心、饼干、罐头果汁、乳制品等食品的制造。柠檬酸在化学工业上可作化学分析用试剂,用作实验试剂、色谱分析试剂及生化试剂,用作络合剂,掩蔽剂,配制缓冲溶液。采用柠檬酸或柠檬酸盐类作助洗剂,可改善洗涤产品的性能,可以迅速和沉淀金属离子,防止污染物重新附着在织物上,保持洗涤必要的碱性,使污垢和灰分散和悬浮,提高表面活性剂的性能,是一种优良的鳌合剂。 2 生产原理 2.1 生产方法简介 中国现有柠檬酸生产厂近百家,总年产能力约80万吨,是全球最大的柠檬酸生产国和出口国。目前,柠檬酸生产方法有水果提取法,

化学合成法和生物发酵法三种。水果提取法是指柠檬酸从柠檬、橘子、苹果等柠檬酸含量较高的水果中提取,此法提取的成本较高,不利于工业化生产。化学合成法的原料是丙酮,二氯丙酮或乙烯酮,此法工艺复杂,成本高,安全性低。而发酵法发酵周期短,产率高,节省劳动力,占地面积小,便于实现仪表控制和连续化,现已成为柠檬酸生产的主要方法。 2.2 反应方程式 C12H22011 +H20+302→2C6H8O7+4H2O (蔗糖) (柠檬酸) 3 工艺过程及流程图 3.1工艺过程 3.1.1菌种培养 在4~6波美度的麦芽汁内加入25%至30%的琼脂,然后接入黑曲霉菌种(无茵操作),在30~32℃条件下培养4天左右。这种培养方法称为“斜面培养”。将麸皮和水以1:1的比例掺拌,再加入10%的碳酸钙、0.5%的硫酸铵,拌匀后装入容量为250毫升的三角瓶中,用1.5公斤压力灭菌60分钟。接人斜面培养法培养出的菌种,培养96~120小时后即可使用。 3.1.2原料处理 湿粉渣必须经过压榨脱水,使含水量在60%左右;干粉渣含水量低,应按60%的比例补足水分;结块的粉渣需粉碎成二至四毫米颗粒。然后加入2%碳酸钙、10%至11%的米糠,掺匀后,堆放2小时,

聚酰胺酸粘度受哪些因素影响呢

聚酰胺酸作为聚酰亚胺的前躯体,其具体的粘度是很重要的数据之一。但是,总是有因素可能会对其粘度有着一定的影响效果。为了解开这个疑惑,下面我们就来看看是怎么样的吧。 1、加料顺序对聚酰胺酸粘度的影响 合成聚酰胺酸溶液的加料方式按单体加料顺序分为二种:正加料法;反加料法。 为了确定正加料法和反加料法对聚酰胺酸溶液粘度的影响,在反应条件相同,采用此两种加料法,测定其各自粘度,通常情况下是正加料法得到的聚酰胺酸粘度较大,因为二酐容易与水反应,防止溶剂中水对实验的影响先溶解二胺,再加入二酐后其能优先于二胺反应,能减小水对于实验的影响,故通常正加料法得到聚合物的粘度较大。 2、单体摩尔比对聚酰胺酸粘度的影响 在合成聚酰胺酸溶液的反应中,必须严格的保证单体的等当量,才能得到高分子量的聚合物,任何因素引起的单体当量的偏离必然会导致聚合物分子量的降低。引起单体当量偏离的原因有单体的纯度、实验的精度、及体系中存在的副反应。在这几个因素中前两个可以通过单体提纯和提高实验精度来加以避免。而体系中存在以下几个副反应,以及二酐和溶剂络合的副反应。这些副反应的存在破

坏了单体的等当量。 3、反应温度对聚酰胺酸粘度的影响 二酐与二胺的开环缩聚反应是放热反应,反应温度低有利于提高聚酰胺酸溶液粘度。二酐是反应活性较高的单体,易与含活泼氢的官能团发生缩聚反应,二胺的活性也较高,在聚合前易发生氧化,因此在合成过程中加料应在较低的温度下进行。 4、反应时间对聚酰胺酸粘度的影响充分的反应时间是得到高聚合度的聚酰胺酸溶液的重要条件。本实验采用正加料法,在反应时间分别为1,2,3,4,5,6h的条件下进行缩聚反应,其他反应条件相同:反应初始温度-15℃,质量分数13%,二酐与二胺的摩尔配比为1.00。 以上这些就是影响聚酰胺酸粘度的一部分因素,大家可以稍微作为参考,可以更好地提高粘度,材料得到更好地运用。 卓祥科技的团队专注于自动乌式粘度分析行业至少七年以上,且一直拥有几十位专业的高分子材料研发/生产/实验人员的鼎力支持。同时也一直专注于研发高分子材料等领域的采用粘度分析仪器,设计灵感凝聚了几十家高分子材料生产商的实验人员和科研院所研发人员的智慧。应不同市场所需,公司已先后成功研发推出了AVM系列全自动粘度仪、IV6000系列全自动乌式粘度仪等多种系列产品。

肉桂酸的制备

CH COOH CH n CH 2 CH CH CH []n 2 肉桂酸的制备 一、实验目的 1、学习肉桂酸的制备原理和方法。 2、巩固水蒸气蒸馏的装置及操作方法。 二、实验原理 芳香醛与具有α-H 原子的脂肪酸酐在相应的无水脂肪酸钾盐或钠盐的催化下共热发生缩合反应,生成芳基取代的α ,β-不饱和酸,此反应称为Perkin 反应。反应式如下: H 3C O CH 3 O O K 2CO 3CHO + 150~170℃ CH CHCOOH +CH 3COOH 副反应: Perkin 反应的催化剂通常是相应酸酐的羧酸钾或钠盐,有时也可用碳酸钾或叔胺代替。反应时,可能是酸酐受碳酸钾的作用,生成一个酸酐的负离子,负离子和醛发生亲核加成,生成中间物 -羟基酸酐,然后再发生失水和水解作用而得到不饱和酸。反应机理如下: H 3C O CH 3 O O K 2CO 3 H 3C O O O H 3C O O O C 6H 5 O _H 3C O O O C 6H 5 OH H 2O 2_ 水解 C 6H 5 CH 3 O + CH 3COOH H 3C O O O C 6H 5 三、仪器及试剂 药品:苯甲醛,乙酸酐,无水醋酸钾,饱和碳酸钠溶液,浓盐酸,活性炭 仪器:150 mL 三口烧瓶,空气冷凝管,水蒸气蒸馏装置,锥形瓶,量筒,烧杯,布氏漏斗,抽滤瓶,表面皿,红外干燥箱 四、实验步骤

在150mL三颈烧瓶中加入4.1g(0.03mol)无水碳酸钾,3mL苯甲醛(3.2g,0.03mol)和5.5mL醋酸酐(6.0g,0.06mol),其一装上温度计,另一个用塞子塞上。反应液始终保持在150~170℃加热回流45min。 反应混合物稍冷后,加入20mL热水,进行水蒸气蒸馏,直至无油状物蒸出为止。待烧瓶冷却后,加入20mL10%氢氧化钠水溶液,使生成的肉桂酸形成钠盐而溶解。加热煮沸后加入少量活性炭脱色,趁热过滤。待滤液冷至室温后,在搅拌下慢慢滴加浓盐酸至刚果红试纸变蓝。冷却结晶,抽滤析出的晶体,并用少量冷水洗涤,干燥后称重。可用3:1的稀乙醇重结晶。纯净的肉桂酸为白色晶体,可以通过测熔点、做红外光谱图来表征其结构,熔点为132~134℃。 4.1g无水碳酸钾 3mL苯甲醛 5.5mL醋酸酐150-170℃反应液 冷却 <100℃ 加入20mL热水 捣碎固体 水蒸气蒸馏 滤液 浓HCl 混合液 冷却结晶 洗涤 干燥 粗产物肉桂酸 五、实验注意事项 1.久置的苯甲醛含苯甲酸,故需蒸馏提纯。苯甲酸含量较多时可用下法除去:先用10%碳酸钠溶液洗至无CO2放出,然后用水洗涤,再用无水硫酸镁干燥,干燥时加入1%对苯二酚以防氧化,减压蒸馏,收集79℃/25mmHg或69℃/15mmHg,或62℃/10mmHg的馏分,沸程2℃,贮存时可加入0.5%的对苯二酚。 2、无水碳酸钾必须无水,反应之前做烘干处理。 3、加热回流反应系统必须无水,玻璃仪器预先烘干。 4、冷凝管的上方要加干燥管,防止空气中的水汽进入反应体系。 5、反应过程中体系的颜色会逐渐加深,有时会有棕红色树脂状物质出现。 六、思考题 1.在肉桂酸的制备实验中,水蒸气蒸馏除去什么? 答:水蒸气蒸馏主要蒸出未反应的苯甲醛。 2.加入10%氢氧化钠溶液的目的是什么? 答:中和反应中产生的副产品乙酸,使肉桂酸以盐的形式溶于水中。

热法酸工艺综述

热法酸生产工艺优化及应用研究 前言 磷酸是制取各种工业和农业用磷制品的基础原料,目前国内外磷酸的生产工艺主要有“热法”和“湿法”两种。二者相比较,湿法磷酸的工艺特点是产品成本相对较低,但是质量较差,且对磷矿的品位和杂质含量都有较高的要求,目前国际上制备工业磷酸主要采用湿法,我国湿法磷酸主要用于生产农业用化肥。热法磷酸的工艺特点是产品质量好,但价格较贵,而且属高能耗技术,电力能源在热法磷酸总的制造链中权重达60%。随着能源短缺日趋严重,电价节节攀升,热法磷酸的价格也随之上涨,造成以其为原料的磷化工产品逐渐丧失市场竞争能力。在这种形势下,磷酸工业不断改进生产工艺,以期降低能耗和生产成本 1热法磷酸概述 1.1 热法磷酸生产工艺的发展 热法磷酸的开发始于1915年,美国农业局进行了电炉法制磷酸的中间试验,在第一次世界大战期间,美国农业局与P. B. Davis公司合作在英国的泽西岛建设了一个电炉法制磷酸的实验工厂,用以生产高纯度的磷酸,同时在美国Charlotte 附近建设了第一个电炉法制磷酸的生产工厂。美国从1933年开始致力于热法生产的研究,完成了从小试、中试到大型装置的试验与建设,并首先建设了全不锈钢二步法生产装置,为热法磷酸大型化及黄磷燃烧热的回收利用奠定了基础。我国热法磷酸于1958年由上海化工研究院完成了以元素磷为起点采用酸冷流程和水冷流程的中间试验;996年云南省化工研究院在国内建设了第一套全不锈钢二步法生产装置。经过多年研究、改进,国内热法磷酸生产工艺技术已经趋于成熟。 1.2热法磷酸生产工艺现状 世界各国的热法磷酸生产工艺包括磷的氧化燃烧、磷酐水合、酸雾分离3个部分。而其具体的生产工艺有:燃烧水合一步法流程和燃烧—水合二步法流程。顾名思义,一步法流程的特点是磷的燃烧与五氧化二磷的水化在同一设备中进行;二步法流程的特点是磷的燃烧与五氧化二磷的水化分别在燃烧塔与水化塔中

聚酰胺酸粘度的影响因素

聚酰胺酸粘度的影响因素 聚合物的分子量对聚合物的机械强度影响较大。聚酰胺酸作为聚酰亚胺的前躯体,其分子量的大小直接影响聚酰亚胺的机械强度。只有合成了高分子量的聚酰胺酸才能得到性能优良的聚酰亚胺。聚合物的分子量可以由聚合物的粘度进行表征,因此合成高粘度的聚酰胺酸溶液是制备高强度聚酰亚胺的第一步。影响聚酰胺酸分子量的因素很多,本实验通过对聚酰胺酸粘度的测定,讨论分析了加料顺序、单体摩尔比、反应温度、反应体系质量分数、反应时间,贮存条件六个因素对聚酰胺酸粘度的影响,确定了聚酰胺酸合成的较优的工艺条件,为制备聚酰亚胺材料奠定基础。 1、加料顺序对聚酰胺酸粘度的影响 合成聚酰胺酸溶液的加料方式按单体加料顺序分为二种: (1)正加料法(二胺溶于溶剂中,向反应混合物中加入二酐); (2)反加料法(二酐溶于溶剂中,向反应混合物中加入二胺)。 为了确定正加料法和反加料法对本实验聚酰胺酸溶液粘度的影响,在反应条件相同,采用此两种加料法,测定其各自粘度,通常情况下是正加料法得到的聚酰胺酸粘度较大,因为二酐容易与水反应,防止溶剂中水对实验的影响先溶解二胺,再加入二酐后其能优先于二胺反应,能减小水对于实验的影响,故通常正加料法得到聚合物的粘度较大。 加料方式确实对聚酰胺酸溶液分子量有着很大的影响。在相同反应条件下,正加料所得聚酸胺酸溶液的粘度η大于反加料法所得聚酸胺酸溶液的粘度η。这主要是因为在反加料法中,由于二酐过量,聚酰胺酸溶液中带有孤对电子的N 有向二酐中的电子吸收体C 进攻的趋势,这样会使聚酰胺酸溶液分子链发生断裂,得不到高分子量的聚酰胺酸溶液。其过程如图3-1所示:

2、单体摩尔比对聚酰胺酸粘度的影响 在合成聚酰胺酸溶液的反应中,必须严格的保证单体的等当量,才能得到高分子量的聚合物,任何因素引起的单体当量的偏离必然会导致聚合物分子量的降低。引起单体当量偏离的原因有单体的纯度、实验的精度、及体系中存在的副反应。在这几个因素中前两个可以通过单体提纯和提高实验精度来加以避免。而体系中存在以下几个副反应,如图3-2所示,以及二酐和溶剂络合的副反应。这些副反应的存在破坏了单体的等当量。 合成条件相同的情况下:反应初始温度-15℃,反应时间4 h,质量分数13%进行缩聚反应,二酐与二胺的摩尔配比分别为0.97,0.98,0.99,1.00,1.01,1.02,1.03,进行缩聚反应测得的二酐与二胺摩尔配比与聚酰胺酸溶液粘度η的关系如图3-3所示。结果表明,当二酐与二胺摩尔比为1时得到聚酰胺酸的粘度最大。

聚酰胺树脂纯化

第一章前言 1.1 甘草简介 甘草 (Licorice)是豆科(Leguminosae)蝶形花亚科(Papiliantae Taub)甘草属植物,是一种应用极广的中药,素有“十方九草”之称[1]。深秋,荚果裂开,籽粒随风散步大地上,天然繁殖。茎挺拔直立,根如圆柱,直径三四厘米,大的五六厘米,长一米多,最长者达三四米。甘草多生长在干旱、半干旱的荒漠草原、沙漠边缘和黄土丘陵地带,在引黄灌区的田野和河滩地里也易于繁殖。它适应性强,抗逆性强,不愧是植物界抗干旱的能手,斗风沙的先锋。 甘草在中草药中具有“众药之王”的美誉,是重要市用中药, 来源于豆科(leguminosae) 植物甘草、欧甘草、胀果甘草的干燥根和茎。国产甘草主要有:乌拉尔甘草(Glycyrrhiza uralensis Fisch)、胀果甘草(G. inflata Batal)、光果甘草(Glucyrrhizic acid)、黄甘草(G. eurycarpa P.C.Li)、粗毛甘草(Glycyrrhiza aspera Pall.)、云南甘草(Glycyrrhiza yunnanensis Cheng f.et L.K.Ti)、园果甘草(G. squamulosaFranch)、刺果甘草(G. pallidifloraMaxim)、欧甘草(Glycyrrhiza glabra L.)和欧甘草变种(G. glabra var.glandalifera)等。其中以乌拉尔甘草(Glycyrrhiza uralensis Fisch)分布最广、产量最大[2]。甘草具有补脾益气,清热解毒,祛痰止咳,缓急止痛,调和诸药的功效。用于脾胃虚弱,倦怠乏力,心悸气短,咳嗽痰多,脘腹,四肢疼痛,痈肿疮毒,缓解药物毒性、烈性[3]。 1.2 主要有效成分及药理作用 国内外学者对甘草的化学成分和药理作用进行了许多研究,主要有效成分是黄酮类化合物和三萜皂苷。据现有资料报道,甘草的化学组成极为复杂,已从甘草中分离得到100多种黄酮类化合物,60多种三萜类化合物以及香豆素类、18种氨基酸、多种生物碱、雌性激素和多种有机酸等[4]。其中,黄酮类成分具有明显的抗溃疡、解痉、抗炎、降血脂、镇痛和雌性激素样作用[5]。近年来还发现甘草黄酮对艾滋病毒(HIV)有很强的抑制增殖作用,对甘草黄酮的研究应用已经引起人们的重视[6]。 1.2.1 甘草黄酮的化学成分 近年来的研究表明,甘草中存在着一种重要的生理活性物质,即黄酮类化合物。黄酮类化合物的基本母核早期是指2-苯基色原酮,近年来泛指两个苯基通过三碳链相连形成的化合物,即具有 C6-C3-C6 基本骨架,包括黄酮、黄酮醇、异黄酮、查尔酮及它们的二氢衍生物和黄烷醇、花青素等。甘草黄酮(Glycyrrhiza flavonoids ,FG) 是从甘草提取物中得到的一类生物活性较强的成分,许多学者对其化学成分进行了大量的研究工作。邢国秀等人[7]在文章中给出甘草黄酮类150 多个化合物的结

醋酸的生产工艺

甲醇低压羰基合成工艺 成熟的醋酸生产工艺有乙炔乙醛法、乙醇乙醛法、乙烯乙醛法、丁烷氧化法和甲醇低压羰基合成法。乙炔乙醛法由于存在严重的汞污染已被淘汰;乙醇乙醛法因生产工艺落后、成本高,国外也已淘汰,国内尚有少量生产;乙烯乙醛法因需消耗乙烯资源,产品成本较高,国外已淘汰,但在我国目前还是主要生产工艺;丁烷氧化法仅适用于轻油比较丰富的地区,不具推广性。目前应用较广泛的为甲醇低压羰基合成法,依据催化剂体系不同,各公司开发出各具特色的甲醇低压羰基合成工艺技术: ★BP Cative工艺 BP公司在其传统工艺技术上,将铑系催化剂改为铱系催化剂,即为BP Cative工艺。该工艺采用铼、钌、锇等多种稀有金属为助催化剂,铱系催化剂的催化活性明显高于铑系,水含量较低时,铱系催化剂稳定性高,能耗低,丙烯等副产物少,并可在水含量≤5%(Vol,下同)下操作,可大大改进传统的甲醇羰基化过程,降低生产费用和投资。此外,因水含量降低,CO的利用效率提高,蒸汽消耗减少。Cative工艺首先在韩国三星公司的醋酸装置应用成功,目前重庆扬子江乙酰化工有限公司和南京也拟采用该工艺。 ★塞拉尼斯AO Plus工艺 1980年,美国塞拉尼斯公司推出AO Plus工艺(酸优化法)。该工艺通过加入高浓度的无机碘(主要是碘化锂)改变催化剂的组成,使反应器在低水含量4%~5%下运行,提高了羰基化反应的产率和精制能力。该工艺采用特殊的专利技术,可使醋酸的产率达99%,反应速率也非常快,产品残留的总碘含量低于5×10-12。 ★塞拉尼斯Silverguard工艺 塞拉尼斯公司针对AO Plus工艺在高碘含量下易造成设备腐蚀、产品中碘残留量高、会引起下游应用中催化剂中毒的缺陷,开发了Silverguard工艺。该工艺采用银离子交换树脂为铑催化剂载体,可将产品中残留碘降至2μg/g;而采用传统方法,产品中残留碘一般为10μg/g。 ★千代田Acetica工艺

聚酰胺酸合成工艺研究

第14卷 第2期强激光与粒子束V o l.14,N o.2 2002年3月H IGH POW ER LA SER AND PA R T I CL E B EAM S M ar.,2002 文章编号: 100124322(2002)022******* 聚酰胺酸合成工艺研究Ξ 张占文1, 王朝阳1, 钟发春2, 李 波1, 余 斌1, 魏 胜1, 黄 勇1 (1.中国工程物理研究院激光聚变研究中心,四川绵阳621900; 2.中国工程物理研究院化工材料研究所,四川绵阳621900) 摘 要: 采用超声波在线测量溶液粘度的方法,研究了合成聚酰胺酸过程中实验条件的影响,并 对实验结果进行分析,由此确定了合成高分子量聚酰胺酸的最佳实验条件。研究表明:在加料次序为先 加二胺后加二酐(二酐与二胺的摩尔比为1.01~1.02:1)、试剂中含水量尽可能少,反应温度0~5℃、反 应时间以溶液粘度到达最大值为止的条件下,所合成的聚酰胺酸溶液粘度最大,可满足惯性约束聚变 (I CF)充气腔靶端口膜的需要。 关键词: 柱腔充气靶; 聚酰亚胺; 聚酰胺酸 中图分类号: TL639 文献标识码: A 在惯性约束聚变(I CF)研究中,制备好的实验用靶具有非常重要的意义[1~3]。柱腔充气靶已被列为美国国家点火装置上的基本靶型[4],它的研制对于开展激光等离子体耦合、X光的产生和内爆物理等方面的研究具有重要意义。为了满足柱腔充气靶动态充气的需要,在柱腔端口应有阻气薄膜。该薄膜具有一定的阻气能力,并且应尽量减少激光能量的损失。聚酰亚胺薄膜抗张强度大,当薄膜转变成等离子体时,对腔内产生的影响较少,因此它是最理想的端口膜。理论上预计聚酰亚胺薄膜膜厚在0.3Λm时,可以满足制靶的需要。随着薄膜厚度增加,产生的不利影响也增大,因此,必须制备亚微米厚的超薄聚酰亚胺薄膜。 聚酰亚胺薄膜现已大量生产,制备技术已日趋成熟,但商用薄膜与实验所需相差很大。商用薄膜通常较厚,一般都在10~100Λm左右。随着薄膜厚度减少,保持其原有的抗张强度和脱膜都变得很困难,因此,自支撑的亚微米厚聚酰亚胺薄膜国内外均无厂家生产,只能在实验室制备。制备的关键是:其一,薄膜强度不能降低;其二,可以脱膜。薄膜的强度和脱膜都与聚酰亚胺分子量有关,只有分子量足够高才能保证薄膜强度和容易脱膜。而影响聚酰亚胺分子量的主要因素是环化前聚酰胺酸的分子量,高分子量的聚酰胺酸才可能得到高分子量的聚酰亚胺薄膜,以满足柱腔充气靶端口膜的需要。 1 实验 1.1 实验原理 合成聚酰亚胺的通用方法是利用二胺和二酐反应生成聚酰胺酸,然后再热环化生成聚酰亚胺[5,6]。二酐和二胺分别采用均苯四羧酸二酐(PM DA,pyrom ellitic dianhydride)和4,42二氨基二苯醚(ODA, oxydian iline)。PM DA和ODA生成聚酰亚胺的反应过程为 第一步生成聚酰胺酸,第二步热环化生成聚酰亚胺。决定聚酰亚胺分子量的主要是第一步合成聚酰胺酸 Ξ收稿日期:2001208227; 修订日期:2001211229 基金项目:国家863激光惯性约束聚变领域资助课题(863241623) 作者简介:张占文(19732),男,助研,硕士,主要从事靶制备与研究方面的工作;绵阳市919信箱987分箱。

丙酮酸合成工艺的研究进展

科技专论 丙酮酸合成工艺的研究进展 陕西国际商贸学院(陕西咸阳) 王飞娟 张爽 王燕 【摘 要】丙酮酸是药物合成与有机合成的重要中间体。本文本要阐述其化学合成法和生物技术法合成的现状、研究进展及其发展前景,并将各种方法进行对比,目的为以后的生产、研究提供参考。 【关键词】丙酮酸;化学合成;生物技术;酶催化法;生物工程;微生物发酵法 丙酮酸[1],又称a-氧代丙酸,结构为CH 3 COCOOH,是所有生物细胞糖代谢及体内多种物质相互转化的重要中间体,因分子中包含活化酮和羧基基团,所以作为一种基本化工原料广泛应用于化学、制药、食品、农业及环保等各个领域中[2]。丙酮酸可通过化学合成和生物技术多种方法制备。 1、化学合成法 1.1 酒石酸脱水脱羧法 此法工艺简单易行:将酒石酸与硫酸氢钾混合物在220℃下蒸馏,馏出物再经真空精馏即得丙酮酸。此法的特点是加入导热油之后,在一个均匀体系中进行反应,降低了反应温度,减少氧化程度,可操作性大幅度提高,适合继续反应生成丙酮酸系列产品。其缺点是丙酮酸产率较底,得1g丙酮酸需消耗5g硫酸氢钾。仅原料成本就达8万元每吨,因成本过高而无法为大多数厂家所接受。 1.2 乳酸氧化法 以乳酸为原料,氧化脱氢一步法生产丙酮酸[3]。但乳酸直接制取丙酮酸非常困难,根据工艺不同必须选用合适的催化剂。可以选择的催化剂有磷酸铁、钼酸碲盐、银、钒等[4]。此法酒石酸的氧化脱羧法相比,具有能耗低、污染小、产率高等优点,适合工业化生产。其缺点是成本也较高,约6万元每吨。 2、生物技术法 生物技术法生产丙酮酸,由于成本较低、产品质量较高、对环境污染小而得到发展,主要有酶催化法和微生物发酵法。 2.1 酶催化法 用酶或微生物细胞作催化剂,使葡萄糖或三羧酸循环的某些中间代谢产物,在一定条件下,转化为丙酮酸的技术,称为酶催化法。其主要过程是先进行小规模的微生物培养,菌体收集,直接转化或用载体包埋成固定化酶,然后转化生成丙酮酸[5]。酶催化法设备投资小,能耗低,转化率高,但底物来源较窄、成本比较高约5万元每吨,因此其进一步推广受到限制。 2.2 基因工程技术 利用基因重组技术构建高表达乙醇酸氧化酶、过氧化氢酶等的基因工程菌,用于生产丙酮酸的技术。这些酶能催化乳酸与氧反应生成丙酮酸。其技术是先将乙醇酸氧化酶基因和过氧化氢酶基因分别与DNA载体重组,构成重组子,并分别转入宿主细胞,分别获得两种酶高表达的基因工程酵母,按0.713mol/LL-乳酸钠溶液每100ml加湿重转化体5g,同时加一定量渗透剂,在5个大气压下,以70psig氧压通入氧气,5℃搅拌转化4小时,丙酮酸产率大97.7%[6]。本技术底物转化率高,但技术难度大。 2.3 微生物发酵法 微生物代谢过程中,利用葡萄糖积累丙酮酸的过程称为微生物发酵法。微生物发酵法生产丙酮酸研究已有50年历史,但因丙酮酸高产菌株选育十分困难,虽有一些微生物能够积累丙酮酸,但其产量无法达到工业化要求[7]。该法生产丙酮酸真正取得突破,是在1988年时,日本东丽工业株式会社的研究人员宫田令子和米原辙选育出一系列丙酮酸产量超过50g/L的球拟酵母菌株,使微生物发酵法生产丙酮酸的工业化成为可能。1992年,日本开始采用微生物发酵法生产丙酮酸[8]。产量为400吨每年,成本约为2-3万元每吨。 与化学合成法和酶转化法相比,微生物发酵法因原料来源广,能耗低,污染少,成本低而更具有优越性[9]。但微生物发酵法缺点是转化率比较低,这是因为丙酮酸是糖酵解途径的关键中间产物,在细胞中,丙酮酸作为一种重要的中间代谢产物连接了EMP和TCA中心代谢途径,又与多条分支代谢途径相关联,可转化为多种发酵产物而无法在体内积累。因此需要切断或弱化其进一步代谢,才能使其在细胞中大量积累。即加快葡萄糖向丙酮酸的转化率,减弱向TCA循环的通量,切断或减弱其分支代谢途径,促进分泌,减弱丙酮酸的再利用,最终实现丙酮酸的大量积累。为达此目的,就必须对微生物发酵法生产丙酮酸的影响因素进行研究。 微生物发酵法生产丙酮酸的影响因素有:菌种选育,营养条件,维生素水平,供氧模式,葡萄糖的质量浓度等等,其最关键的是菌种选育和营养条件[10]。 为了提高微生物发酵法生产丙酮酸的竞争力,对微生物发酵生产丙酮酸的工业化在发酵部分还需要:①进一步改善丙酮酸生产菌的产酸能力和遗传稳定性,提高糖酸转化率,缩短发酵时间;②提高生产菌对高浓度丙酮酸的耐受性,以期进一步提高丙酮酸浓度,便于下游处理;③目前原料成本中葡萄糖的费用占了很大的比例,因此,要提高生产菌株对廉价底物(如糖蜜、淀粉糖)等的利用能力。 今后的研究工作应集中在:①在保证细胞正常代谢的前提下,尽可能减少丙酮酸的降解或转化,这是获得丙酮酸高产量和高产率的必要条件;②加快从葡萄糖到丙酮酸的代谢速度,以确保获得丙酮酸的高生产强度。 随着人民生活水平的不断提高,丙酮酸的应用范围日渐扩大,需求不断增长,但丙酮酸系列产品大多需要进口且价位较高。其生产工艺的改革并实现工业化势在必行。传统工艺生产的产品质量差、成本高且对环境污染大。而生物技术法的工艺更为绿色,更为对环境友好,生物技术法新工艺取代传统工艺指日可待,前景广阔,值得进一步研究。 参考文献 [1] 胡兵,龙化云,黄光斗.丙酮酸的合成研究进展[J].化工时刊,2003,17:18-20 [2] 刘立明,李寅,陈坚.光滑球拟酵母发酵生产丙酮酸[J].精细与专用化学品,2003,23:15-18 [3] 顾劲松,许平,李铁林,等.乳酸氧化酶转化乳酸产丙酮酸[J].应用与环境生物学报,2001(6): 617-620 [4] 杨辉琼,易翔,郭贤烙.乳酸氧气氧化法制备丙酮酸[J].化工世界,2002,6:307-309 [5] 穆晓清.酶促生物转化丙酮酸生产的研究[J].工业微生物,2004,34(4),38-41 [6] Davad L A,Robert D,Vincent G W.US5,538,875[J].1996 [7] 牟弈,诸葛健.发酵法生产丙酮酸[J].中国酿造,2000(5): 1-3 [8] 占桂荣,高年发.不利用丙酮酸的丙酮酸生产菌的选育[J].生物加工过程,2006,4(4): 32-36 [9] 李寅,陈坚,伦世仪.维生素在丙酮酸过量合成中的重要作用[J].微生物学报,2000,40(5): 528-534 [10] 袁辉,华子春.丙酮酸野生酵母菌的筛选及其生理生化特性研究[J].微生物学杂志,2001,21: 12-14 192 《科技与企业》杂志 2012年1月(下)

相关文档