文档库 最新最全的文档下载
当前位置:文档库 › 过滤器内件设计计算

过滤器内件设计计算

过滤器内件设计计算
过滤器内件设计计算

过滤器内件设计计算

共9 页

新乡市环宇滤器制造有限责任公司

2006年1月

签字页

设计:校对:审定:

1 BWA-F-765/775

滤网面积计算

有效过滤面积S 1=()493636804493

2

??--+?ππ

= 1229514mm 2

空隙截面积S 2= S 1×滤网截面率

=307378 mm 2

注:180目网截面率为25%。

支撑架及底板面积计算

滤网面积S 3=(16500+1020)452

?

π

= 343830mm 2

进出口截面积计算

S 4=46.3552

?

π

=99264mm 2

S 2=307378 mm 2>3 S 4=297792 mm 2

,设计合理。 压降计算

单层网压降计算公式:

△ P=ρζ??

? ??S Q 2

=432Pa

其中:阻力系数ζ取10;密度ρ取1000kg/m 3;Q 流量

m 3/s ;S 网孔面积m 2。

公式取出HB6779-93航空液压过滤器设计指南

液压过滤器选型设计

液压过滤器选型设计指南 1 范围 本指南规定了液压过滤器的设计原则、注意事项、液压过滤器各项参数的选择,以及例举了液压过滤器选型设计的案例。 2 规范性引用文件 下列文件的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 20079 液压过滤器技术条件 Q/SY 012 015 液压过滤器选用规范 3 术语、符号及定义 GB/T 20079确定的术语、符号和定义适用于本文件。 3.1 过滤精度 指油液通过过滤器时,能够穿过滤芯的球形污染物的最大直径,以微米(μm)表示。 过滤器最大流量 由制造商所推荐的在规定运动粘度下通过被试过滤器的最大流量,以单位L/min表示。 纳污容量 指过滤器的压力降达到极限值时,滤芯所容纳的污染物重量,以单位kg表示。 过滤比 过滤器上游大于等于某一给定尺寸χ的颗粒污染物数量与下游大于等于同一给定尺寸的颗粒污染物数量之比,用βχ表示。

洁净过滤器总成压降△P总 被试元件为装有洁净滤芯的洁净过滤器,其测得的入口与出口压力之差。 壳体压降△P壳体 过滤器不装滤芯时的压降。 洁净滤芯压降△P滤芯 洁净滤芯所产生的压降,其值等于洁净过滤器总成压降减少壳体压降。 4 工作原理与结构型式 4.1 过滤器的工作原理与结构 过滤器的典型结构见图1。 图1 液压过滤器典型结构 油液从进油口进入过滤器,沿滤芯的径向由外向内通过滤芯,油液中颗粒被滤芯中的过滤层滤除,进入滤芯内部的油液即为洁净的油液。过滤后的油液从过滤器的出油口排出。 4.2 过滤器的分类 过滤器按其用途及安装部位,可分为如图2所示的5种不同类型。

过滤器选型计算

精心整理篮式粗过滤器选型计算 粗过滤器工艺计算 1.总则 本工艺计算依据石油化工管道、泵用过滤器标准计算,参考标准SH/T3411-1999《石油化 工泵用过滤器选用、检验及验收》、HG-T21637-1991《化工管道过滤器》。本计算仅适用 于过滤器内过滤面积及起始压降计算,过滤器壳体执行GB150标准,不在本计算内。 2.过滤面积计算 依据SH/T3411-1999标准,其规定的有效过滤面积定义为:过滤器内支撑结构开孔总面积 减去开孔处滤网占据面积的净面积。因此计算有效过滤面积时考虑支撑结构的有效面积以及 滤网的有效面积。根据标准要求,永久性过滤器的有效过滤面积与管道截面积之比不小于1.5。 本项目的过滤器按照临时过滤器要求,有效过滤面积与管道截面积之比取不小于3.0。 2.1管道截面积计算S1: 本项目过滤器进出口管道工程直径DN200,S1=(0.2/2)2×3.14=0.0314m2 2.2过滤器有效过滤面积计算S2: 按照标准要求面积比取3,即S2/S1=3,即S2=S1×3=0.0314×3=0.0942m2 2.3过滤器过滤网面积计算 按照项目要求,过滤网要求0.8mm,表面积0.45m2。 本过滤器选择蓝式滤芯的表面积为0.56m2,滤篮支撑结构开孔率取50%,滤网选24目(可 拦截0.785mm以上颗粒),其有效开孔率为56%。因此本项目所选过滤器滤篮的有效过滤 面积为S=0.56×0.5×0.56=0.157m2,有效过滤面大于2.2计算结果0.0942m2,因此 在过滤面积上满足要求。 3.起始压降计算 压降计算按照标准所提供的参考公式计算,其中涉及到的物理量有雷诺数、当量长度、流体 密度、黏度等。 计算公式: 符号说明:

多介质过滤器操作规程

多介质过滤器操作步骤: 1.设备制水: 1.1 正洗(当该过滤器一段时间不用,又投运时,需要进行正洗一下) 开正洗排水阀。 开进水阀。 当出水浊度小于3 度时正洗合格。 1.2 制水 开出水阀。 关正洗排水阀。 开始制水。 系统运行巡检。 2、设备反洗

2.1 排水 关闭进水阀、出水阀。 开上排阀。 开正洗排水阀,观测过滤器视镜,使排水至滤层面10-20cm。 关闭正洗排水阀。 2.2 空气擦洗 启动罗茨风机。 开进气阀。 气擦洗2-3 分钟。 关闭进气阀,关闭罗茨风机。 注:先开风机,再开进气阀;停止时先关进气阀,再停风。否则可能会造成水倒灌而损坏风机。 2.3 反洗 检查反洗水箱是否在高液位。 启动反洗泵。 开反洗进水阀,反洗5-1 2 分钟 2.4 静置 关反洗出水阀。 关反洗进水阀。 关反洗泵。 2.5 正洗 开进水阀门、下排阀。

当出水浊度小于3 度时正洗合格。 关下排阀、进水阀。 设备处于备用状态。 3、设备切换: 当多介质过滤器需要反洗时,备用过滤器依次按“1、设备制水”的序启动投用。原备用过滤器运行正常后,原运行过滤器按“2、设备反洗”的次序进行反洗,最后进入备用状态。 连续运行时间: 系统的设计运行时间12-24 小时,随后应对多介质过滤器进行反洗,并应依据季节不同、水质的变化等调整反洗周期,确保出水浊度小于3 度。当多介质过滤器进出压差达到0.05Mpa 时,应反洗。 反洗流量: 反洗的目的在于使石英砂和无烟煤反向松动,并将滤层上所截留的截留物冲走,达到清洁滤层的作用,通常控制反洗强度控制在10L/m2.s 左右,以颗粒多孔陶瓷不被冲跑为宜。 反洗时间: 反洗时间的长短和填料层的截污量有关。反冲洗时间可根据反洗排水浊度而定。一般情况下反洗浊度应小于3NTU,且时间不少于5 分钟,可根据运行情况进行适当调整。 运行时间:24 小时反洗一次(按实际调整) 反洗时间:约40min/次(包括气洗、正洗,按实际调整) 浊度:进水<20NTU;出水<3NTU

液压过滤器选型设计

液压过滤器选型设计指南 1范围 本指南规定了液压过滤器的设计原则、注意事项、液压过滤器各项参数的选择,以及例举了液压过滤器选型设计的案例。 2规范性引用文件 下列文件的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 20079 液压过滤器技术条件 Q/SY 012 015 液压过滤器选用规范 3术语、符号及定义 GB/T 20079确定的术语、符号和定义适用于本文件。 3.1 过滤精度 指油液通过过滤器时,能够穿过滤芯的球形污染物的最大直径,以微米(μm)表示。 过滤器最大流量 由制造商所推荐的在规定运动粘度下通过被试过滤器的最大流量,以单位L/min表示。 纳污容量 指过滤器的压力降达到极限值时,滤芯所容纳的污染物重量,以单位kg表示。 过滤比 过滤器上游大于等于某一给定尺寸χ的颗粒污染物数量与下游大于等于同一给定尺寸的颗粒污染物数量之比,用βχ表示。 洁净过滤器总成压降△P总 被试元件为装有洁净滤芯的洁净过滤器,其测得的入口与出口压力之差。 壳体压降△P壳体 过滤器不装滤芯时的压降。 洁净滤芯压降△P滤芯 洁净滤芯所产生的压降,其值等于洁净过滤器总成压降减少壳体压降。

4工作原理与结构型式 4.1过滤器的工作原理与结构 过滤器的典型结构见图1。 图1液压过滤器典型结构 油液从进油口进入过滤器,沿滤芯的径向由外向内通过滤芯,油液中颗粒被滤芯中的过滤层滤除,进入滤芯内部的油液即为洁净的油液。过滤后的油液从过滤器的出油口排出。 4.2过滤器的分类 过滤器按其用途及安装部位,可分为如图2所示的5种不同类型。 图2过滤器安装位置示意图 设计系统时采用哪种或哪几种过滤方式的组合应根据系统液压元件类型,工况,成本和整机布置综合考虑,可参考表1所示优缺点设计最优的系统过滤方案,其中,吸油过滤容易导致液压泵吸空,建议尽量不采用高精度吸油过滤方案。 表1不同过滤方式的优缺点 优点缺点 压油过滤1)安装于泵出口,直接保护下游精密液压元件; 2)对压降相对来说不太敏感,因此过滤器体积可 做的比较小; 1)要求过滤耐高压,价格贵; 2)泵未受保护; 3)控制、执行元件磨损污染物直接回油箱; 回油过滤1)液压系统回油过滤后回油箱,油箱油液清洁; 2)压力等级低,价格偏移; 1)在精密液压元件上游须单独另加压油过滤器保护; 2)回油脉动大,影响过滤精度,并使滤芯容易损坏;

Y型过滤器强度计算书.

1、计算厚度t s t s :计算厚度;mm 1.733599D o :外径;mm 377[σ]t :在设计温度下材料的许用应力;MPa 130E j :焊接接头系数; 1P:设计压力;MPa 1.2Y:系数;按表6. 2.1选取。0.4 2、开孔补强计算 (1主管开孔所需补强面积 A A:主管开孔所需补强面积;m㎡1163.6187d 1:扣除厚度附加量后主管上斜开孔的长径;mm 519.1578 d:扣除厚度附加量后支管的内径;mm 367.1a:主管轴线与斜管轴线的夹角;

45°(2开孔补强有效补强范围 有效补强宽度 B=2d 11038.3156B=d 1+2(2t n -2(2C 1+2C 2 538.9578取较大值B mm 900 Y型过滤器强度计算书 [](2PY E PD t j t o s +=σ sin 2(1a d t A s -=a d d sin /1= 有限补强高度h=2.5(t n-C1-C212.375 t n:管子名义厚度;mm7 C1:厚度负偏差;mm 1.05 C2:腐蚀余量;mm1 (3补强范围内主管多余金属补强面积A1 A1=(B-d1(t n-t s-C1-C21224.9412 (4补强范围内支管多余金属补强面积A2 A2=2h(t n-t s-C1-C2/sina112.57978 (5角焊缝金属补强面积A3 A3=H236 H:角焊缝高度;mm6 3、结论 A1+A2+A3=1373.521大于A=1163.6187 计算通过 注:按GB50316-2000《工业金属管道设计规范》(2008版计算

计算:校对:审核: 日期: `

常用多介质过滤器用户使用手册(全)

用户手册

一、工艺原理: 多介质过滤器为水处理系统的预处理设备,适用于浊度在 1-10NTU的进水;目的除去水中的悬浮物、颗粒和胶体,降低进水的浊度和SDI 值,满足除盐装置 后续设备的进水要求;设备可以通过周期性的清洗来恢复它的截污能力。 二、技术参数: 1.进水浊度:< 10 NTU 2.出水浊度:<1NTU 3.工作压力 : < 0.6MPa 4.工作温度 : 5-50℃ 5.运行流速 : 6-12m/h 6.水反洗强度 : 20-30m/h 7.气擦洗强度 : 15L/m 2.s 8.填料高度 :无烟煤400/石英砂600 9.石英砂规格: 0.4 ~ 0.65mm (不均匀系数< 2) 无烟煤规格: 0.8 ~1.6mm(不均匀系数<1.7 ) 10.承托层:(如设备要求) 层次尺寸厚度层次尺寸厚度(自下向上)(mm)(mm)(自下向上)(mm)(mm)12~ 410038~16100 24~ 8100416~ 32100注:最下一层承托层的顶部至少应高于配水孔眼100 mm。 三、结构形式: 设备由本体、布水装置、集水装置、外配管及仪表取样装置等组成。进水装 置为上进水、挡板布水,集水装置为多孔板滤水帽集水或穹形多孔板加承托层 结构;设备的本体外部配管配带阀门并留有压力取样接口,便于用户现场安装和实 现装置正常运行。 四、设备的安装 1)安装前检查土建基础是否按设计要求施工。 2)设备按设计图纸进行就位,调整支腿垫铁并检查进出口法兰的水平度和垂直度。 3)将设备和基础预埋铁板焊接固定,固定后再次校验进出口法兰的水平度

和垂直度。 4)将设备本体配管按编号区分后依设计图纸进行组装,每段管道组装前应用干净抹布对内壁进行清洁工作,组装后应保持配管轴线横平竖直,阀 门朝向合理(手动阀手柄朝前,气动阀启动头朝上)。 5)检查本体阀门开关灵活,有卡壳的情况及时整改。 6)设备本体配管完成后应对阀组进行必要的支撑工作等。 7)安装设备上配带的进出水压力表、取样阀等;进出水管道上如有流量探头座应用堵头堵住。 五、初次开车 1)冲洗 考虑到设备和管道连接时的电焊残渣、管道初次投用时的表面污物,设备初次投入运行时应进行冲洗。 A、打开设备的人孔法兰将设备内的零件重新紧固,并确认罐内部件(如水 帽等)不缺少;封闭人孔法兰。 B、打开设备的下排阀,确认设备的出水阀关闭。 C、打开设备进水阀、排气阀,开启生水泵,至设备排气口出水后关闭排气阀,冲洗设备至出水清晰为冲洗终点。关闭生水泵。 2)装填滤料 打开人孔,按所设计的填料高度,依次装入各种规格的填料,每填完一种均要人工扒平方可填上一层 ; 石英砂填装完毕,反洗至排水清澈;再装填无烟煤。滤料装填完毕后封闭人孔。 3)开启反洗泵,至排气阀出水后静止 30 分钟或适时开启生水泵以完全浸泡滤料,再开启反洗泵至设备出水清晰,检测 SDI 值〈4 为冲洗终点。设备进入备用状态。4)设备正常运行后应检测进出水压差不大于 0.5bar,检验进出水的流量显示。 六、操作说明: 本说明叙述的为该设备的常规操作,其在水站系统工作中的操作程序请以“运行说明”为准。 6.1正洗 打开进水阀、下排阀,开启生水泵和预处理加药系统,进入正洗阶段,滤速 控制在 6-10m/h,当出水水质达到要求后,打开出水阀,关闭下排阀,进入制水

过滤器选型标准

过滤器选型标准 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

1. 过滤器(英文filter)介绍 根据过滤器的使用位置以及用途,可以分为两类:粗过滤器(英文strainer)和精细过滤器 粗过滤器主要应用于泵、流量计、阀门前,以保护设备不受大的金属颗粒磨碎,其精度基本是几百微米以上。精细过滤主要是净化流体,保护工艺安全。其精度范围基本在1微米到30微米之间。 按照制造设计要求可以分:压力容器和非压力容器 按照压力容器设计和制造的过滤器壳体执行GB150或者ASME标准。非压力容器执行 SH/T3411或HGT 21637标准执行。 根据使用介质可分为:气体过滤器和液体过滤器 气体过滤器适用于气-固分离流域,可用于气体净化、分成回收等。液体过滤器适用于液-固分离领域,如润滑油过滤、石油化工行业过滤以及污水处理等。 2. 精细过滤器过滤面积: 粗过滤器国内有三部行业标准,因此,只要按照标准选型既可满足要求。 精细过滤器的过滤面积计算基本上不用公式计算,选形时主要依据的是实验数据,因此,过滤器的选择建议还是让生产厂家来选。

过滤三大曲线: 流量压差曲线(ΔP-Q),粒径与过滤比曲线(μ-β),时间与压将曲线(T-ΔP) 因此,计算过滤面积时要依据这三个曲线,其中最主要的的是流量压差曲线,这个曲线由有实力的过滤器制造厂进行试验测得。 目前最权威的测试方法是多次通过试验:ISO 4572 多次通过试验标准。此试验台价格昂贵,目前国内仅有2-3台。目前国内的小厂家过滤器公司滤芯检测是单次通过实验。 过滤面积计算步骤: 1. 确定过滤精度为25微米的过滤比,如200(过滤效率),确定何时滤材 2. 根据给定压降,对滤材进行流量压差测试。得出合适流量(L/min) 3. 根据所得流量,除以试验滤材的面积,计算流速(L/)。 4. 根据流速,和实际应用的流量,确定过滤面积,流量/流速=过滤面积 5. 根据所选用的过滤面积和滤材确定滤芯结构形式,折叠式或圆筒卷绕式 篮式粗过滤器选型计算 粗过滤器工艺计算 1. 总则 本工艺计算依据石油化工管道、泵用过滤器标准计算,参考标准SH/T 3411-1999《石油化工泵用过滤器选用、检验及验收》、HG-T 21637-1991 《化工管道过滤器》。本

过滤器常用计算公式

过滤器常用计算公式 缠丝管过水面积计算公式: P:缠丝面孔隙率 d 1:垫筋宽度或直径(mm ) d 2:缠丝直径或宽度(mm ) m 1:垫筋中心距离(mm ) m 2:缠丝中心距离(mm ) 石英砂滤料水头损失: 2014m 11h H ))(γ γ(--= γ1:滤料的相对密度(石英砂为) γ:水的相对密度 m 0:滤料膨胀前的孔隙率(石英砂为) H 2:滤层膨胀前厚度(m ) 滤料高度为直筒高度的2/3;筒体高度=膨胀高度+填料高度 膨胀率:单层石英砂:45%;双层滤料:50%;三层滤料:55% 清洁滤层水头损失: V l d m m g h 02030200)1()1(180φν-= )1)(1(2211m d m d P --=

ν:运动粘滞系数(cm 2/S )() g :水的重力加速度(981cm/s 2) m 0:滤料孔隙率( ) d 0:与滤料体积相同的球体直径(cm ) l 0:滤层深度(cm ) v :滤速(cm/s ) φ:滤料球度系数() 过滤器反冲洗强度计算: 单位时间单位滤池面积通过的反冲洗水量称为反冲洗强度q ,通常用L/()表示,其值与滤料粒径水温孔隙率和要求的膨胀率有关,可用下式进行计算,也可以用试验方法确定。 )() ε()()ε(μs .m /11e e 100254.0077.1231054.0131L d q c +++= d c :滤料当量直径(cm) μ:水的动力粘度,g/ ε0:干净滤层的孔隙率 根据经验,过滤一般的悬浮物时,要求q 约为12-15L/()之间,如果过滤油质悬浮物,则要求q 增大至20L/()或更大。 反洗强度测定: )冲洗时间()滤池面积()冲洗水量(s m 2?=L w

离子交换设计计算书..

混合离子交换器 详 细 设 计 计 算 书 宜兴市华电环保设备有限公司

1工艺流程的设计 由于原水水质较好,水中TDS含量较低。因此,本项目推荐选用传统的成熟工艺离子交换器作为系统的主脱盐设备;系统初期投资成本低、易于实现自动化。离子交换器采用双床浮动床工艺,它具有处理水量大、占地面积小、交换容量高等优点。 根据计算,一级阳阴离子脱盐后的产水尚未达到生产工艺用水的要求,所以,在一级除盐装置之后,设置混合离子交换器,其出水水质完全满足设备采购方出水要求。 为保证关键设备离子交换器的长期可靠稳定运行,则必须设置符合水质特点的预处理系统,满足离子交换器进水指标:SS<3mg/L。 2工艺流程总述 2.1工艺流程: 由净化水场来的原水经过水处理系统后到达超高压锅炉给水的要求后,通过管道送到除氧水站供超高压和高压锅炉使用。 原水由全厂新鲜水管网送入除盐水站后,部分去凝结水换热后进生水罐,生 -含量为水经新鲜水泵加压后,先经过滤器后进入阳离子交换器,因原水中HCO 3 器除去重碳酸20-42.1mg/L,为减少后级阴离子交换器的负荷,经过除 CO 2 根后,由中间水泵经阴离子交换器和混合离子交换器后,去除盐水罐,最后由除盐水泵加压进除盐水管网供各用户使用。主体设备为单元式运行排列,同时也考虑母管式的连接组合。为了减少设备的台数、减少再生次数和酸碱耗量,增加运行时间。 工艺如下: (原水箱)→原水泵→多介质过滤器→阳离子交换器→脱塔碳→中间水箱

→阴离子交换器→混合离子交换器→除盐水箱→除盐水泵→使用点 2.2为了保证除盐水系统供应的可靠性,选择了五个系列;正常情况下,三个系列运行,一个系列再生,一个系列备用。其中设备包括: 10台150吨/小时的纤维球过滤器(?2600mm),5套300吨/小时阳离子交换器(?3000mm),5套300吨/小时阴离子交换器(?3000mm),5套300吨/小时混合离子交换器(?2800mm)及其它辅助设备等组成。 2.3本套水处理设备的原水水质按提供的水质报告设计,而最终制出900吨/小时除盐水。 设计进水水质及出水水质 1进水水质 1.1 除盐水物流特性 本项目的原水来自于菱溪水库,其水质(供参考)为:

多介质过滤器说明书

多介质过滤器说明书

————————————————————————————————作者: ————————————————————————————————日期: ?

? 多介质过滤器 使 用 说 明 书 北京筑恒科技有限公司

多介质过滤器操作维护手册 1、概述: 多介质过滤器学名:浅层介质过滤器,它是利用石英砂、无烟煤等滤料作为过滤介质,在一定的压力下,把浊度较高的水通过一定厚度的粒状或非粒的石英砂过滤,有效的截留除去水中的悬浮物、有机物、胶质颗粒、微生物、氯、嗅味及部分重金属离子等,最终达到降低水浊度、净化水质效果的一种高效过滤设备。常用滤料有石英砂、活性碳、无烟煤、锰砂等。广泛运用到农业灌溉、化工、石油、冶金、工矿等各行业。 SJL全自动多介质过滤器的特点: (1)多介质过滤的作用 多介质滤器是一种压力式过滤器,利用过滤器内所填充的精制石英砂滤料,当进水自上而下流经滤层时,水中的悬浮物及粘胶质颗粒被去除,从而使水的浊度降低。 (2)SJL多介质过滤器的主要特点 ?多介质过滤器设备结构简单、运行可以实现自动控制、处理流量大、反 冲次数少、过滤效率高、阻力小、操作维修方便等特点。 ?本产品可分为手动型和全自动型。手动型主要是通过阀门的调节来控制过滤器的运行、正洗、反洗;而全自动型是通过自动头来进行对过滤器运行,正洗、反洗等状态的控制,罐体材质可分为玻璃钢罐、碳钢罐、不锈钢罐,也可根据用户要求制作。 ?结构紧凑:该设备集混凝反应、过滤、连续清洗于一体。简化了水处理工艺流程、占地面积小、结构简单、安装操作灵活方便。降低了原水处理工艺多环节的能耗和人工管理费用,减轻了操作难度

流砂过滤器设计说明书

流砂过滤器设计说明书

目录 1流砂过滤器设计说明书 (1) 1.1滤料粒径 (3) 1.2滤层高度 (3) 1.3滤速 (3) 1.4砂循环速率 (4) 1.5压缩空气气压、气量对出水水质的影响 (4) 1.6 反冲洗水量确定[5] (4) 2.流砂过滤器设计计算书 (5) 2.1 流砂过滤器选择 (5) 2.2 内循环流砂过滤器主体尺寸计算 (5) 2.2.1 砂滤器直径和截面积计算 (5) 2.2.2 流砂过滤器高度计算 (5) 2.3 进、出水管线、反洗出水管线及环空流道设计及计算 (12) 2.3.1 进、出水管线及反洗出水管线设计 (12) 2.3.2 提砂管及环空流道设计 (12) 2.4 布水器设计计算 (13) 2.4.1 干管 (13) 2.4.2 支管 (14) 2.4.3 布水孔设计及计算 (14) 2.5 空压机及气管线设计计算 (17) 2.5.1 空压机选择 (17) 2.5.2 气管线设计 (17) 3 材料表 (17) 4 设备表 (18) 5 图纸 (19) 6参考文献 (19)

已知条件:来水流量Q=1m3/h,来水含油≤100mg/L,含悬浮物≤100mg/L,处理后出水含有≤20mg/L,含悬浮物≤ 20mg/L[1]。 1.1滤料粒径 滤料粒径对连续式砂滤器的处理效果有重要影响,连续式砂滤器一般采用单一粒径的石英砂滤料。根据相关文献[2],处理含油废水及含有易粘结物质的原水时,通常使用有效直径为1.2mm、均质系数为1.4的均质石英砂。 1.2滤层高度 砂层过低会导致一些微絮体及与滤料结合力较弱的物 质不能被砂层截留,随出水流出;砂层过高易形成沙锥,堵住洗沙器的出砂口,反应器内的砂冲洗不完全,后期出水SS 浓度偏高。为达到有效的过滤高度,滤床厚度可取0.8-1.4m。 [1]本设计选择0.8m。 1.3滤速 根据相关文献[2] [3],建议内循环连续式砂滤器的过滤速度小于12m/h。本设计选择滤速ν=8 m/h。

机械过滤器设计计算

机械过滤池的设计 设计参数 设计水量Qmax=3825 m 3/h =91800m 3/d 采用数据:滤速v=14m/h,冲洗强度q=15L/(s ?m 2),冲洗时间为6min 机械过滤池的设计计算 (1) 滤池面积及尺寸:滤池工作时间为24h ,冲洗周期为12h , 实际工作时间T=h 8.2312241.024=?- 滤池面积为,F=Q/vT=91800/14?23.8=275.5 m 2 采用4个池子,单行排列 f=F/N=275.5/4=68.9m 2 分成4个半径为5m1的圆柱形构筑物 校核强制滤速,v'=Nv/(N-1)=18.7m/h (2) 滤池高度: 支撑层高度: H1=0.45m 滤料层高度: H2=0.7m 砂面上水深: H3=1.7m 保护高度: H4=0.3m 总高度: H=3.15m (3)配水系统 1.配水干管流量: qg=fq=78.5×15=1178L/s 干管长度:10m 断面尺寸:850mm ×850mm 采用管径dg= 1000 mm,始端流速1.453m/s 2.支管: 支管中心距离:采用 ,m 25.0a j =5 支管长度: 每池支管数:根480.25 62a 2n j =?=?=L nj=D/a=2×8.5/0.25=68 m/s 6.1mm 75L/s 04.784/336n q q j g j ,流速,管径每根支管入口流量:==

每根支管入口流量:qj=qg/nj=805.76/68=11.85L/s,管径150mm,流速v=0.67m/s 3.孔眼布置: 支管孔眼总面积占滤池总面积的0.25% 孔眼总面积:2k m m 6000024%25.0Kf F =?== 孔眼总面积 Fk=Kf=0.25%×50.36=125900mm 2 采用孔眼直径m m 9d k = 每格孔眼面积:22 k mm 6.634d f ==π fk=πdk 2/4=63.6mm 2 孔眼总数9446 .6360000f F N k k k === Nk=Fk/fk=125900/63.6=1979 每根支管空眼数:个2048/944n n j k k ===N 支管孔眼布置成两排,与垂线成45度夹角向下交错排列, 每根支管长度:m 7.16.042 1d 21l g j =-=-=)()(B 每排孔眼中心数距:17.020 5.07.1n 21l a k j k =?=?= 4.孔眼水头损失: 支管壁厚采用:mm 5=δ 流量系数:68.0=μ 水头损失:h m 5.3K 101g 21h 2k ==)(μ 5.复算配水系统: 管长度与直径之比不大于 60,则6023075 .07.1d l j j <== lmax/dj=4250/150=28.3<60 孔眼总面积与支管总横面积之比小于0.5,则

过滤器设计计算书

设计计算书产品/项目名称:过滤器 编制人/日期: 审核人/日期: 批准人/日期:

1. 滤芯截面尺寸的确定 为了不增加水流水阻,滤芯过水截面积应等于管子的截面 积,即滤芯的直径应等于公称通径(D DN )。如右图所示阴影部分的面积为管子公称通径的截面积。 8寸管的公称通径为 200mm ,滤芯的直径为200mm 8吋过滤机公称通径的截面积 242 21014.34 2004 mm D A DN DN ?=?= = ππ 2. 滤芯长度的确定 2.1. 根据SH/T3411-19991.6倍公称通径截面积,本项目取1.6。样机有一个圆过滤面,如右图所示: DN DN A K L D 6.1=???π 式中: K--------方孔筛网的开孔率为10% ∴80010 .020014.31014.36.16.14 ≈????=??=K D A L DN DN π 经画图,调整比例,L 取700mm 。 则mm L A D DN DN 228700 10.014.310 14.36.1πK 6.14 ≈????==' 滤芯直径圆整取230mm 。 3. 主管的确定

参考中国建筑标准设计研究所的标准图集《除污器》,刷式全自动过滤机主管与进出 3.2主管壁厚的确定 参考《压力容器与化工设备使用手册》上册,第2章:压力容器壳体与封头 ??φ σ2i PD S = (2-1-6) 式中:--计算厚度S ,mm D i ――圆筒的内直径,mm P ――设计压力,MPa ;设计压力取最大级别工作压力P=1.6 MPa φ――焊缝系数,取φ=0.85 [σ]――材料的许用应力,主管材料采用Q235-A ,[σ]=n s σ n ――安全系数,取n=1.5 出入水管:4.285 .06.12352200 6.108≈???= S mm 主管: 21.485 .023523506.1' 08≈???=S mm

多介质过滤器说明书1

多介质过滤器 使 用 说 明 书 筑恒科技

多介质过滤器操作维护手册 1、概述: 多介质过滤器学名:浅层介质过滤器,它是利用石英砂、无烟煤等滤料作为过滤介质,在一定的压力下,把浊度较高的水通过一定厚度的粒状或非粒的石英砂过滤,有效的截留除去水中的悬浮物、有机物、胶质颗粒、微生物、氯、嗅味及部分重金属离子等,最终达到降低水浊度、净化水质效果的一种高效过滤设备。常用滤料有石英砂、活性碳、无烟煤、锰砂等。广泛运用到农业灌溉、化工、石油、冶金、工矿等各行业。 SJL全自动多介质过滤器的特点: (1)多介质过滤的作用 多介质滤器是一种压力式过滤器,利用过滤器所填充的精制石英砂滤料,当进水自上而下流经滤层时,水中的悬浮物及粘胶质颗粒被去除,从而使水的浊度降低。 (2)SJL多介质过滤器的主要特点 ?多介质过滤器设备结构简单、运行可以实现自动控制、处理流量大、反冲次数少、过滤效率高、阻力小、操作维修方便等特点。 ?本产品可分为手动型和全自动型。手动型主要是通过阀门的调节来控制过滤器的运行、正洗、反洗;而全自动型是通过自动头来进行对过滤器运行,正洗、反洗等状态的控制,罐体材质可分为玻璃钢罐、碳钢罐、不锈钢罐,也可根据用户要求制作。 ?结构紧凑:该设备集混凝反应、过滤、连续清洗于一体。简化了水处理工艺流程、占地面积小、结构简单、安装操作灵活方便。降低了原水处理工艺多环节的能耗和人工管理费用,减轻了操作难度 ?混凝反应效果明显:应用混凝反应机理和沉降机理,有效地去除水中的

悬浮物和胶体物质,有利于在砂滤区进一步降胝出水浊度。 ?连续自清洗过滤:过滤介质自动循环,连续清洗,无需停机进行反冲洗?降低原水的悬浮物(SS)含量:配合微絮凝装置,进水最高SS≤mg/L的各种工业用水、城市生活污水、工业用水作为回用水,去除率≥90%,达到完美过滤效果 (3)SJL多介质过滤器工作原理 多介质过滤器是利用一种或几种过滤介质,常温操作、耐酸碱、氧化,PH 适用围为2-13。系统配置完善的保护装置和监测仪表,且具有反冲洗功能,泥垢等污染物很快被冲走,耗水量少,按用户要求可设置全自动功能。在一定的压力下,使原液通过该介质的触絮凝、吸附、截留,去除杂质,从而达到过滤的目的。其装的填料一般为:石英砂、无烟煤、颗粒多孔瓷、锰砂等,用户可根据实际情况选择使用。其过滤精度在0.005-0.01m之间,可有效去除胶体微粒及高分子有机物。 当除多介质过滤器因截留过量的机械杂质而影响其正常工作,则可用反冲洗的方法来进行清洗。利用逆向进水,同时通入压缩空气,进行气水混合擦洗,使过滤器砂滤层松动,可使粘附于石英砂表面的截留物剥离并被反冲水流带走,有利于排除滤层中的沉渣、悬浮物等,并防止滤料板结,使其充分恢复截污能力,从而达到清洗的目的。反洗以进出口压差参数设置来控制反冲洗周期,经验得知一般为一天,具体须视原水浊度而定。 多介质过滤器利用操作阀组,过滤器的启运、正洗、反洗、停机等工序均是手动控制操作。 当除铁锰装置运行至进出口压差为0.07MPa时,必须进行反洗。 2、结构特点 设备本体是带上下椭圆封头的圆柱形钢结构,过滤器材质为玻璃钢,衬PVC 胆体,部在进水口设有布水器,下部设有集水装置,集水装置上填装1000 mm

过滤器选型计算

过滤器选型计算 Final revision by standardization team on December 10, 2020.

篮式粗过滤器选型计算 粗过滤器工艺计算 1. 总则 本工艺计算依据石油化工管道、泵用过滤器标准计算,参考标准SH/T 3411-1999《石油化工泵用过滤器选用、检验及验收》、HG-T 21637-1991 《化工管道过滤器》。本计算仅适用于过滤器内过滤面积及起始压降计算,过滤器壳体执行GB150标准,不在本计算内。 2. 过滤面积计算 依据SH/T 3411-1999标准,其规定的有效过滤面积定义为:过滤器内支撑结构开孔总面积减去开孔处滤网占据面积的净面积。因此计算有效过滤面积时考虑支撑结构的有效面积以及滤网的有效面积。根据标准要求,永久性过滤器的有效过滤面积与管道截面积之比不小于1.5。本项目的过滤器按照临时过滤器要求,有效过滤面积与管道截面积之比取不小于3.0。 2.1 管道截面积计算S1: 本项目过滤器进出口管道工程直径DN200,S1=(0.2/2)2×3.14=0.0314 m2 2.2 过滤器有效过滤面积计算S2: 按照标准要求面积比取3,即S2/ S1=3,即S2= S1×3=0.0314×3=0.0942 m2 2.3 过滤器过滤网面积计算 按照项目要求,过滤网要求0.8mm,表面积0.45m2。 本过滤器选择蓝式滤芯的表面积为0.56 m2,滤篮支撑结构开孔率取50%,滤网选24目(可拦截0.785mm以上颗粒),其有效开孔率为56%。因此本项目所选过滤器滤篮的有效过滤面积为S=0.56×0.5×0.56=0.157 m2,有效过滤面大于2.2计算结果0.0942 m2,因此在过滤面积上满足要求。

过滤器设计计算书

过滤器设计计算书

设计计算书产品/项目名称:过滤器 编制人/日期: 审核人/日期: 批准人/日期:

1. 滤芯截面尺寸的确定 为了不增加水流水阻,滤芯过水截面积应等于管子的截面 积,即滤芯的直径应等于公称通径(D DN ) 分的面积为管子公称通径的截面积。 8寸管的公称通径为 200mm ,滤芯的直径为 8吋过滤机公称通径的截面积 242 21014.34 2004 mm D A DN DN ?=?= = ππ 2. 滤芯长度的确定 2.1. 根据SH/T3411-1999《石油化工泵用过滤器选用、检验及验 收》:滤网流通面积取值 1.6倍公称通径截面积,本项目取1.6。样机有一个圆过滤面,如右图所示: DN DN A K L D 6.1=???π 式中: K--------方孔筛网的开孔率为10% ∴80010 .020014.31014.36.16.14 ≈????=??=K D A L DN DN π 经画图,调整比例,L 取700mm 。 则mm L A D DN DN 228700 10.014.31014.36.1πK 6.14 ≈????==' 滤芯直径圆整取230mm 。 同理可计算3~24寸滤芯直径和长度

3. 主管的确定 3.1主管内径的确定: 参考中国建筑标准设计研究所的标准图集《除污器》,刷式全自动过滤机主管与进出水口的尺寸与除污器主管与进出水口的尺寸一致。 3.2主管壁厚的确定 参考《压力容器与化工设备使用手册》上册,第2章:压力容器壳体与封头 ??φ σ2i PD S = (2-1-6) 式中:--计算厚度S ,mm D i ――圆筒的内直径,mm

机械过滤器设计计算

机械过滤池的设计 设计参数 设计水量Qmax=3825 m3/h =91800m3/d 采用数据:滤速v=14m/h,冲洗强度q=15L/(s ?m2),冲洗时间为6min 机械过滤池的设计计算 (1) 滤池面积及尺寸:滤池工作时间为24h ,冲洗周期为12h , 实际工作时间T=h 8.2312241.024=?- 滤池面积为,F=Q/vT=91800/14?23.8=275.5 m2 采用4个池子,单行排列 f=F/N=275.5/4=68.9m2 分成4个半径为5m1的圆柱形构筑物 校核强制滤速,v'=Nv/(N-1)=18.7m/h (2) 滤池高度: 支撑层高度: H1=0.45m 滤料层高度: H2=0.7m 砂面上水深: H3=1.7m 保护高度: H4=0.3m 总高度: H=3.15m (3)配水系统 1.配水干管流量: qg=fq=78.5×15=1178L/s 干管长度:10m 断面尺寸:850mm ×850mm 采用管径dg= 1000 mm,始端流速1.453m/s 2.支管: 支管中心距离:采用, m 25.0a j = 5 支管长度: 每池支管数:根480.25 62a 2n j =?=? =L nj=D/a=2×8.5/0.25=68 m/s 6.1mm 75L/s 04.784/336n q q j g j ,流速,管径每根支管入口流量:==

每根支管入口流量:qj=qg/nj=805.76/68=11.85L/s,管径150mm,流速v=0.67m/s 3.孔眼布置: 支管孔眼总面积占滤池总面积的0.25% 孔眼总面积:2k m m 6000024%25.0Kf F =?== 孔眼总面积 Fk=Kf=0.25%×50.36=125900mm2 采用孔眼直径m m 9d k = 每格孔眼面积:22 k mm 6.634 d f == π fk=πdk 2/4=63.6mm 2 孔眼总数9446 .6360000 f F N k k k === Nk=Fk/fk=125900/63.6=1979 每根支管空眼数:个2048/944n n j k k === N 支管孔眼布置成两排,与垂线成45度夹角向下交错排列, 每根支管长度:m 7.16.042 1 d 21l g j =-=-=)()(B 每排孔眼中心数距:17.020 5.07 .1n 2 1 l a k j k =?= ?= 4.孔眼水头损失: 支管壁厚采用:mm 5=δ 流量系数:68.0=μ 水头损失:h m 5.3K 101g 21h 2k == )(μ 5.复算配水系统: 管长度与直径之比不大于60,则 6023075 .07 .1d l j j <== lmax/dj=4250/150=28.3<60 孔眼总面积与支管总横面积之比小于0.5,则

过滤器设计流程

过滤器的选型计算原则 1. 过滤器(英文filter)介绍 1.1 根据过滤器的使用位置以及用途,可以分为两类:粗过滤器(英文strainer)和精细过滤器 粗过滤器主要应用于泵、流量计、阀门前,以保护设备不受大的金属颗粒磨碎,其精度基本是几百微米以上。精细过滤主要是净化流体,保护工艺安全。其精度范围基本在1微米到30微米之间。 1.2 按照制造设计要求可以分:压力容器和非压力容器 按照压力容器设计和制造的过滤器壳体执行GB150或者ASME标准。非压力容器执行SH/T3411或HGT 21637标准执行。 1.3 根据使用介质可分为:气体过滤器和液体过滤器 气体过滤器适用于气-固分离流域,可用于气体净化、分成回收等。液体过滤器适用于液-固分离领域,如润滑油过滤、石油化工行业过滤以及污水处理等。 2. 精细过滤器过滤面积: 粗过滤器国内有三部行业标准,因此,只要按照标准选型既可满足要求。 精细过滤器的过滤面积计算基本上不用公式计算,选型时主要依据的是实验数据,因此,过滤器的选择建议还是让生产厂家来选。 过滤三大曲线: 流量压差曲线(ΔP-Q),粒径与过滤比曲线(μ-β),时间与压降曲线(T-ΔP) 因此,计算过滤面积时要依据这三个曲线,其中最主要的的是流量压差曲线,这个曲线由有实力的过滤器制造厂进行试验测得。 目前最权威的测试方法是多次通过试验:ISO 4572 多次通过试验标准。此试验台价格昂贵,目前国内仅有2-3台。目前国内的小厂家过滤器公司滤芯检测是单次通过实验。 过滤面积计算步骤: 1. 确定过滤精度为25微米的过滤比,如200(过滤效率),确定何时滤材 2. 根据给定压降0.05MPa,对滤材进行流量压差测试。得出合适流量(L/min) 3. 根据所得流量,除以试验滤材的面积,计算流速(L/min.m2)。 4. 根据流速,和实际应用的流量,确定过滤面积,流量/流速=过滤面积 5. 根据所选用的过滤面积和滤材确定滤芯结构形式,折叠式或圆筒卷绕式*—*—*—*—*—*—*—*—*—*—*—

过滤器的原理及参数选型及计算

阿速德叠片过滤系统

阿速德凹槽式叠片使表面过滤和深层过滤有效结合结合,,过滤效果达到高度安全性和可靠性过滤效果达到高度安全性和可靠性。。 颗粒沿水路凹槽被拦截颗粒沿水路凹槽被拦截。。叠片水路形状的设计使被过滤水和过滤元件更大面积接触使被过滤水和过滤元件更大面积接触,,以增加有效过滤面积过滤面积。。 叠片质量决定过滤质量 凹槽式叠片过滤凹槽式叠片过滤::高度的准确性和可靠性 过滤叠片 叠片过滤的优势

阿速德在过滤工业的发展着眼于叠片过滤器的开发与制造。 深层三维过滤 离心效果保护 过滤安全可靠 高抗压性 长时间运行安全 维护简便 精密模具工艺的沟槽保障高质量叠片 独特的过滤元件设计 精益求精的加工技术 多种供选择的过滤精度 叠片对所有过滤器的兼容可换性:手动过滤器和自动过滤器阿速德叠片过滤 过滤精度 200微米 130微米 100微米 50微米 根据所需可提供其它过滤精度 20微米 叠片过滤优势

第二过滤第二过滤阶段阶段-叠片表面过滤深层三维过滤 第一过滤第一过滤阶段阶段 -叠片横截面过滤表面二维过滤1个过滤阶段-网式过滤器进水口出水口 。 杂质颗粒在叠片表面被阻挡 叠片过滤优势:更大的有效过滤面积 当水穿过沟槽时被过滤,杂质颗粒被截留在叠 片的凹槽中。 被过滤水从外面进入到压紧叠片层的内部,叠片两面为沟槽水路。

叠片过滤器对于不同水质中的不同杂质颗粒都具有效性。 叠片过滤器特殊设计的沟槽表面尤其对于容易变形的异形杂质颗粒具有特殊的拦截效果。 适用于不同水质 阿速德叠片过滤器对于其标明过滤精度以上粒径的杂质截留能力(去除率)为100%,同时,也可以截流部分粒径大小小于其标明过滤精度的杂质,此去除率取决于以下因素: ?与水路尺寸相关的杂质颗粒尺寸形状与叠片横断面积及长度的关系 ?颗粒的种类 ?其他已经截留在叠片表面的杂质颗粒对新截留杂质颗粒所形成的随机性拦截效果。如图所示 叠片过滤优势:截留不同杂质颗粒的能力

过滤器选型计算

篮式粗过滤器选型计算 粗过滤器工艺计算 1. 总则 本工艺计算依据石油化工管道、泵用过滤器标准计算,参考标准SH/T 3411-1999《石油化工泵用过滤器选用、检验及验收》、HG-T 21637-1991 《化工管道过滤器》。本计算仅适用于过滤器内过滤面积及起始压降计算,过滤器壳体执行GB150标准,不在本计算内。 2. 过滤面积计算 依据SH/T 3411-1999标准,其规定的有效过滤面积定义为:过滤器内支撑结构开孔总面积减去开孔处滤网占据面积的净面积。因此计算有效过滤面积时考虑支撑结构的有效面积以及滤网的有效面积。根据标准要求,永久性过滤器的有效过滤面积与管道截面积之比不小于1.5。本项目的过滤器按照临时过滤器要求,有效过滤面积与管道截面积之比取不小于3.0。 2.1 管道截面积计算S1: 本项目过滤器进出口管道工程直径DN200,S1=(0.2/2)2×3.14=0.0314 m2 2.2 过滤器有效过滤面积计算S2: 按照标准要求面积比取3,即S2/ S1=3,即S2= S1×3=0.0314×3=0.0942 m2 2.3 过滤器过滤网面积计算 按照项目要求,过滤网要求0.8mm,表面积0.45m2。 本过滤器选择蓝式滤芯的表面积为0.56 m2,滤篮支撑结构开孔率取50%,滤网选24目(可拦截0.785mm以上颗粒),其有效开孔率为56%。因此本项目所选过滤器滤篮的有效过滤面积为S=0.56×0.5×0.56=0.157 m2,有效过滤面大于2.2计算结果0.0942 m2,因此在过滤面积上满足要求。 3. 起始压降计算 压降计算按照标准所提供的参考公式计算,其中涉及到的物理量有雷诺数、当量长度、流体密度、黏度等。 计算公式: 符号说明: Δp——压力降(Pa) λ——摩擦系数(无因次) L——当量直管段长度(mm) D——管道内径(mm) Re——雷诺数 ω——流体线速度(m/s) μ——流体粘度(cP) ρ——流体密度(kg/m3) 本项目所给定的参数进行计算如下: ω=(120644/780)/0.0314/3600=1.37 m/s Re=780×200×1.37/0.45=474933 λ=64/ Re=64/474933=0.00014 当量长度L取55×103(当量长度根据标准取)

相关文档