文档库 最新最全的文档下载
当前位置:文档库 › 揭开换挡杆下的玄机 手动变速箱详解

揭开换挡杆下的玄机 手动变速箱详解

揭开换挡杆下的玄机 手动变速箱详解
揭开换挡杆下的玄机 手动变速箱详解

[汽车之家技术] 发动机是汽车的心脏,它为车辆的行驶提供源源不断的动力,车辆变速器的主要作用就是改变传动比,将合适的牵引力通过传动轴输出到车轮上以满足不同车辆在工况下的需求。可以说,一台变速箱的好坏,会对车辆动力性能产生直接的影响。最近20年,汽车变速箱也进入了百花争鸣的时代,市面上各式各样的变速器种类也让消费者的选择面前所未有的丰富起来,而市面上手动挡,自动挡,CVT无级变速,DSG双离合,AMT 等不同种类的变速器都拥有一定的优势和不足,我们也将陆续带大家了解市面上几种不同类型变速箱的原理和特性。

首先,我们需要先简单了解一下变速器产生的原因。一般来说,汽车的发动机是通过燃烧燃油来获取动力的,而发动机在怠速和最高转速之间时才能输出动力。而在整个转速范围内,发动机输出的扭矩和功率并不能保持一致,其相应的最大值只能在规定的转速出现。从车辆对驱动力的需求上看,单纯依靠发动机产生的扭矩不能满足汽车行驶中的各个阶段对驱

动力的需求。比如在起步阶段,需要较大的扭矩和较低的转速,但是发动机在较低的转速下却无法提供足够的扭矩输出,在高速巡航时,需要较高的转速却对扭矩要求较低,而此时发动机保持高转速运转无疑会造成燃油的无谓消耗。由于现代发动机的这种不完美的特性,变速箱便应运而生。变速器在不同的工况下使用不同的速比,从而使得车辆和发动机在各种工况下都可以发挥其最佳的动力性能。

『最常见的两轴5速手动变速箱解剖图』

下面,我们就从结构最简单最传统的手动变速器说起。一般的手动变速箱的基本结构包括了动力输入轴和输出轴这两大件,再加上构成变速箱的齿轮,这就是一个手动变速箱最基本的组件。动力输入轴与离合器相连,从离合器传递来的动力直接通过输入轴传递给齿轮组,齿轮组是由直径不同的齿轮组成的,不同的齿轮组合则产生了不同的齿比,平常驾驶中的换挡也就是指换齿轮比。输入轴的动力通过齿轮间的传递,由输出轴传递给车轮,这就是一台手动变速箱的基本工作原理。

接下来,让我们通过一个简单的模型来给大家讲讲,手动变速箱换挡的原理。下图是一个简易的3轴2档变速箱的结构模型。

输入轴(绿色)也叫第一轴,通过离合器和发动机相连,轴和上面的齿轮是一个硬连接的部件。红色齿轮轴叫做中间轴。输入轴和中间轴的两个齿轮是处于常啮合状态的,因此当输入轴旋转时就会带动中间轴的旋转。黄色则是输出轴,它也叫第二轴直接和驱动轴相连(只针对后轮驱动,前驱一般为两轴),再通过差速器来驱动汽车。

当车轮转动时同样会带着花键轴一起转动,此时,轴上的蓝色齿轮可以在花键轴上发生相对自由转动。因此,在发动机停止,而车轮仍在转动时,蓝色齿轮和中间轴出在静止状态,而花键轴则随车轮转动。这个原理和自行车后轴的飞轮很相似。蓝色齿轮和花键轴是由套筒来连接的,套筒随着花键轴转动,但同时也可以在花键轴上左右自由滑动来啮合齿轮。

说完这些,换挡的过程就很好理解了,当套筒和蓝色齿轮相连时,发动机的动力就会通过中间轴传递到输出轴上,在这同时,左边的蓝色齿轮也在自由旋转,但由于没有和套筒啮合,所以它不对花键轴产生影响。而如果套筒在两个蓝色齿轮之间时,变速箱在空挡位置,此时两个蓝色齿轮都在花键轴上自由转动,互不干涉。

一个传统的5速手动变速箱换挡的原理也是一样的,只是变速箱结构中增加了套筒和齿轮组的数目,使之拥有更多的挡位。而倒档则是通过在中间轴(红色)和输出轴(蓝色)之间增加一个齿轮来实现的。由于增加了一个啮合齿轮,因此倒挡的齿轮始终会朝其他齿轮相反的方向转动。这个齿轮由于只起到改变齿轮旋转方向的作用,因此也称为惰轮。

『5挡二轴变速器结构,输入轴与主动齿轮整合为一体,简化了结构也节省了空间』

除了上述的传统三轴手动变速箱,目前轿车上广泛使用的是二轴手动变速箱,它的结构和三轴变速箱基本类似,只是其输入轴和中间轴整合为一根轴,因此具有结构简单,尺寸小的优势,另外,它还有中间档位传动效率高,且噪音较小等特点,因此更适合一般的前置前驱家用车,是目前使用最广的轿车变速器形式,它的缺点是不能设置直接挡,且一档的传动比不能设计的太高。而在后驱车上,使用较多的仍是传统的三轴式变速箱。

『民用手动变速箱使用的都是斜齿的设计当然赛车上的手动变速箱则使用了传动效率更高

的直齿』

一般的手动变速箱的齿轮组都是处于常啮合状态的,这些常啮合状态的齿轮组分为斜齿和直齿两种,两种齿形相比较,斜齿齿轮在结构上具有天生的优势,倾斜布置的齿形能够提高两个齿轮啮合的重合度,使齿轮传动平稳,降低噪音,并且可以提高齿根的弯曲强度、齿面的接触强度,从而提高齿轮的使用寿命。与之相比,直齿齿轮也并不是一无是处,其传动效率高的特点,可以使车辆获得更强大的轮上功率,因此在赛车变速箱领域应用广泛。

『上图为推杆连接的换挡方式的4速手动挡变速箱模型』

一般的手动变速箱,都是通过推杆连接或者是拉线来控制换挡的。推杆连接的换挡控制方式,更为直接但是传递的振动会很大;而拉线式的虽然没有振动,但是挡位显得不是很清晰,可谓是各有优劣。除了这两种纯机械式的换挡控制,此外,还有使用电控装置换挡的手动变速箱,它可以很好的结合推杆和拉线换挡之间的优点。这种变速箱在换挡的时候,挡拨动变速杆到相应的挡位,在变速器里就会有电机驱动相应的拨叉控制套筒与齿轮咬合,因此不存在挡位不清晰的问题,而且换挡的行程也可以控制在很理想的范围。

手动变速器的换挡机构形式有直齿滑动齿轮,啮合套和同步器三种,在轿车变速器上,前两种形式已经很少使用,同步器换挡已经得到了非常广泛的应用。

由于换挡的时候,想要顺利的换挡,换挡前后两组主动齿轮的转速就要保持一致,就算不一致,也至少保证速度相近,但是由于前后两组齿轮比是不同的,所以在行驶过程中是不可能出现这样的情况的。如果没有同步器,司机可以采用空挡时加一脚油,两脚离合的方式来逼平两个挡位间的转速,这就是为什么以前没有同步器的手动挡车型都需要换挡时都需要两脚离合的原因了。

对于采用了同步器换挡的变速箱来说,换挡顺畅与否,很大程度需要取决于同步器优劣。同步器其实说白了就是在结合套和齿轮组上布置的摩擦片,与一般摩擦片不同的是,它的摩擦面是锥形的。这组摩擦片的作用是在直齿和圆盘的立齿相接触以前,提前进行摩擦,来将转速较大的一方的能量传递给转速较小的一方,使得转速较小的一方提升转速,达到与转速较大的一方转速同步。这样不仅可以保证正常换挡,还能起到缓冲的作用,而锥面摩擦片组的数目与材质则直接影响到了同步器性能的优劣。而大众经典的MQ200手动变速箱的同步器拥有三组锥面摩擦片,这也造就了这台变速箱出色的入挡手感。

在了解了手动变速箱的大致结构之后,我们再看看它都有什么的优缺点。优点显而易见,它结构简单,性能可靠,制造和维护成本低廉,且传动效率高(理论上会更省油),另外,由于是纯机械控制,换挡反应快,且可以更直接的表现驾驶者的意愿,因此也更富驾驶乐趣,这些都是手动变速箱的优点。不过相比自动变速箱,它操作繁琐,而且在挡位切换时顿挫明显的劣势也是无法弥补的。

『一台优秀的手动变速箱,良好的手感和合理的齿比缺一不可』

那么,一台优秀的手动变速箱需要具备哪些特点呢?首先变速箱必须要拥有良好的挂档手感,每个挡位清晰,拥有合理的横向和纵向行程,入挡的阻力小并带有吸入感。除此之外更重要的是,各挡位之间的齿比排布必须合理。因为各个挡位间的传动比分布,直接影响车辆行进中动力衔接的畅顺性,通常要求低挡能有力加速,高挡能达致高速同时省油,且各挡间的距离要均匀,不然就会很容易造成换挡时窜车的情况。

小结:在国内各大城市路况越发拥堵的今天,堵车时走走停停的状态下,手动挡的操作繁琐的劣势更为突出,因此,目前国内轿车市场上,手动挡车型的市场正在被各式各样的自动挡车型日益蚕食,而在汽车工业高度发达的欧洲,手动挡车型依旧占有很大市场份额。这说明,在许多追求纯粹驾驶乐趣的人眼里,那种离合器,油门和挡把之间无间配合的乐趣是任何自动挡都无法替代的。

『宝马的SMG(Sequential Manual Gearbox)变速箱的本质还是一台手动变速箱』

此外,在手动变速箱的基础上,目前还有两种从手动变速箱基础上衍生出两类不同的自动变速箱:分别是电控机械式变速箱也叫做AMT或者EMT变速箱,和我们熟悉的双离合变速箱,以上两者我们也将会在今后的文章中为大家详细介绍。(文/汽车之家李毅)

2011年08月19日 08:00 来源:汽车之家类型:原创编辑:任飞

[汽车之家技术讲堂] 眼下,装备液力自动变速器(以下简称AT)的车型比例越来越大,相比手动变速器(以下简称MT)车型,其便利性是非常突出的。在本文以及后续文章中,编辑会带你详细解读AT的种种知识,而作为开头的基础篇,我们先来说说AT的基本结构及其工作原理。

通常我们称之为AT的自动变速器,其核心部件为:液力变矩器、行星齿轮组、离合器/制动器及其控制机构(电磁阀、油路),外围设备即为变速器壳体、传动轴等。我们就从动力流向为顺序,先从液力变矩器开始说起。

●液力变矩器

曾有一种说法,AT上的液力变矩器相当于MT上的离合器,起到动力的连接和中断的作用。其实这种说法是错误的。AT与发动机曲轴是直接连接的,不像MT有一个动力的开关:离合器。所以从点火的瞬间开始,液力变矩器便开始转动了,对于动力的连接和中断,仍由齿轮箱内部的离合器来完成,液力变矩器唯一与MT离合器相似的地方,也就是液力变矩器“软连接”的特性,与MT离合器的“半联动”工况相近。

液力变矩器的工作原理就像两个风扇相对,一个风扇工作,然后将另一个不工作的风扇吹动。这个比喻可以很形象的解释液力变矩器中泵轮和涡轮之间的工作关系。不过详细解释其工作原理,则有些复杂。

动力输出之后,带动与变矩器壳体相连的泵轮,泵轮搅动变矩器中的自动变速箱油(以下简称ATF),带动涡轮转动,ATF在壳体中是一个循环的动作,由于泵轮旋转时的离心力,ATF会在泵轮的作用下,甩向外侧,冲向前方的涡轮,再流向轴心位置,回到泵轮一侧,如此周而复始的循环,将动力传向与齿轮箱连接的涡轮。

不过只有该零部件和传动方式,只能称为液力耦合器,若想成为液力变矩器,必然要改变涡轮叶片的形状,这样一来,ATF在经过涡轮再循环回泵轮时,会与泵轮旋转方向相反,因而造成冲击,所以为了成为液力变矩器还需另一个部件:导轮。导轮是存在于泵轮和涡轮之间的一个部件,用于调节壳体中ATF液流方向,通过单向离合器与箱体固定。

有了导轮,才有了“变矩”的灵魂所在,在泵轮与涡轮转速差较大时,动力输出的扭矩也变大了,此时的变矩器想当一个无级变速器,通过转速差来提升扭矩,此时导轮处于固定状态,用以调节ATF回流;而当转速差降低,涡轮泵轮耦合或锁止时,扭矩接近对等,无需增矩,导轮随泵轮和涡轮同向转动,避免自身搅动ATF,造成动力的损耗。

至此我们了解到了液力变矩器的最大特点——软连接,而这种动力的传输方式起到了两大功能:1、从静止到低速时的平稳起步;2、在加速过程中,较大动力输出时,起到增大扭矩的作用。如果与MT上的离合器相比较,则需注意的是,第一条起到了并优化了MT上离合器的功能,但第二条则是离合器无法实现的。

但液力变矩器这先天“软连接”特点有一个弱点,动力不是直接输出的,在扭矩输出对等是,泵轮的转速要大于涡轮这样的话在传输动力时,ATF还在壳体中循环,浪费了动力,所以目前几乎所有液力变矩器都有一个高效节能的部件:液力变矩器锁止器。锁止器的形式是一个多片离合器,其作用就是当变矩器处于耦合状态,无需增矩时,将泵轮和涡轮锁止,这样的话动力传递即为“硬连接”,全部的无损(或者说有微量的动力流失)的将从曲轴传递到了下一站:变速箱。

简单解释一下上图:i轴为转速比,表示涡轮与泵轮转速之比,左端泵轮转速远大于涡轮,右边相等。起步或大脚油门时,转速比较小,泵轮比涡轮快很多,此时泵轮输出的扭矩要比涡轮输入扭矩大很多,比较有力,但传动效率较低;轻踩油门,转速比增加,变矩比降低,传动效率也相应提高,转速比为60%时,效率最高;当稳定油门,速度较为稳定是,转速比进一步上升,变矩比接近1,但此时传动效率下降;为避免动力流失,变矩器用离合器锁止,转速比骤增至1,效率也达到最高。

●液力变矩器并非AT的特征

液力变矩器不是AT特有,一些CVT变速器也使用了液力变矩器作为优化动力的机构;AT也不是绝对使用液力变矩器来实现软连接的,例如某些奔驰AMG车型上用的Speedshift MCT自动变速器,就用一副多片离合器代替了液力变矩器。所以液力变矩器并不是AT最大的特点,与多组离合器/制动器协同工作的行星齿轮组,才是自动变速器的最大特点。

●行星齿轮以及AT齿轮箱中的行星齿轮组

在MT上,每一个档位都有一组两个常啮合齿轮副,更换档位只需要将输出轴与该档位输出齿轮的花键连接即可。而AT中,并不是这么多的齿轮在工作,而是用一种非常独特的方式来完成变换:行星齿轮组。我们先来看下,一个最基础的三元行星齿轮有着怎样的特性:

『行星齿轮组模型』

而行星齿轮的最大特性即为,在组合出不同的输入输出轮之后,齿比和输入输出的相对方向都会有变化,这种特性用作汽车变速器可是再适合不过了。而为了增加档位,汽车上的行星齿轮升级成了齿轮组、齿轮排,再通过一系列执行器便可以完成换挡了。

●AT执行器:离合器、单向离合器、制动器

上面我们了解到,一组行星齿轮有着怎样的变换形式,而负责变换,以及用来输入输出的元件,就是一系列的执行器:离合器、单向离合器、制动器。有了这些执行器,就可以将行星齿轮进行不同组合,从而配搭出不同的动力流,也有了不同的传动比。而控制这些操作的,就是与其配套的油泵、滑阀、液压活塞,以及复杂的液压线路。

『图为老别克君威4T65E自动变速器,空挡时各个部件位置以及工作情况』

相关文档