文档库 最新最全的文档下载
当前位置:文档库 › An HI interstellar bubble surrounding WR85 and RCW118

An HI interstellar bubble surrounding WR85 and RCW118

An HI interstellar bubble surrounding WR85 and RCW118
An HI interstellar bubble surrounding WR85 and RCW118

a r X i v :a s t r o -p h /0507481v 1 20 J u l 2005

Mon.Not.R.Astron.Soc.000,1–??(2002)Printed 5February 2008

(MN L A T E X style ?le v2.2)

An H i interstellar bubble surrounding WR 85and

RCW 118

J.Vasquez 1?,C.Cappa 1,2?and N.M.McClure-Gri?ths 3

1

Instituto Argentino de Radioastronom′?a,C.C.5.1894,Villa Elisa,Argentina

2Facultad

de Ciencias Astron′o micas y Geof′?sicas,Universidad Nacional de La Plata,La Plata,Argentina

3Australia Telescope National Facility,CSIRO;P.O.Box 76,Epping NSW 1710,Australia

Accepted 2005June 23,Received 2005June 22;in original form 2005March 23

ABSTRACT

We analyze the distribution of the interstellar matter in the environs of the Wolf-Rayet star LSS 3982(=WR 85,WN6+OB?)linked to the optical ring nebula RCW 118.Our study is based on neutral hydrogen 21cm-line data belonging to the Southern Galactic Plane Survey (SGPS).

The analysis of the H i data allowed the identi?cation of a neutral hydrogen in-terstellar bubble related to WR 85and the 25′-diameter ring nebula RCW 118.The H i bubble was detected at a systemic velocity of –21.5km s ?1,corresponding to a kinematical distance of 2.8±1.1kpc,compatible with the stellar distance.The neutral

stucture is about 25′

in radius or 21±8pc,and is expanding at 9±2km s ?1.The asso-ciated ionized and neutral masses amount to 3000M ⊙.The CO emission distribution depicts a region lacking CO coincident in position and velocity with the H i structure.

The 9.′

3-diameter inner optical nebula appears to be related to the approaching part of the neutral atomic shell.The H i void and shell are the neutral gas counterparts of the optical bubble and have very probably originated in the action of the strong stellar wind of the central star during the O-type and WR phases on the surrounding interstellar medium.The H i bubble appears to be in the momentun conserving stage.Key words:ISM:bubbles –stars:Wolf-Rayet –ISM:H ii regions

1INTRODUCTION

Wolf-Rayet (WR)stars are the evolutionary descendents of massive O-type stars.With mass loss rates in the interval (1-5)×10?5M ⊙yr ?1and terminal velocities of 1000-3000km s ?1(van der Hucht 2001;Cappa et al.2004),these hot and luminous stars are one of the most powerful stellar wind sources in our Galaxy.Of-type stars are also characterized by high mass loss rates and terminal velocities (Lamers &Leitherer 1993;Prinja,Barlow &Howarth 1990).

The mechanical energy released to the interstellar

medium (ISM)during the WR phase only (t W R

yr,Meynet &Maeder 2003)is in the range (1-30)×1050erg,comparable to the mechanical energy injected during a su-pernova explosion.Both the mass ?ow from the WR star and the previous O-type star phases strongly modify the energetics,the morphology and the chemical abundances of the ISM in the environs of the star.

The interaction of the strong stellar winds with the

?

Fellow of CONICET,Argentina E-mail:pete@https://www.wendangku.net/doc/fb18218716.html,.ar

?Member of Carrera del Investigador,CONICET,Argentina

surrounding interestellar matter has been analyzed by sev-eral authors,taking into account di?erent enviroments (e.g.Garc ′?a-Segura &Mac Low 1995).The stellar ?ow sweeps up the surrounding material creating interstellar bubbles ,which are detected at di?erent wavelengths from the UV to the ra-dio range.In the optical regime,these structures are gener-ally observed as ?lamentary ring nebulae in the light of H αand [O iii ](e.g.Chu et al.1983;Marston et al.1994).They are related to many WR stars and to a relatively large num-ber of O and Of stars.Shell-shaped structures created by stellar winds from massive stars are also identi?ed in the far infrared and in the thermal radio continuum emission (e.g.Mathis et al.1992;Cappa,Goss &Pineault 2002).

Interstellar bubbles appear as cavities and expanding shells in the neutral hydrogen 21cm line emission distri-bution (e.g.Cappa et al.2003and references therein).H i bubbles are external to their optical and radio continuum counterparts,and expand at relatively low velocities (

km s ?1

).In most of the cases the derived dynamical ages are larger than the duration of the WR phase,suggesting that the stellar winds of the massive O-type star progenitor has also contributed to creating the structures.

As part of a systematic search for neutral gas bubbles

2J.Vasquez,C.Cappa and N.

McClure-Gri?ths

Figure 1.H αimage in (α,δ)coordinates showing the two con-centic rings around WR 85(taken from Marston et al.1994).North is up and East is to the left.

around massive stars,we present here a study of the ISM sur-rounding WR 85(=HD 155603B =LSS 3982)based mainly on H i 21cm-line data belonging to the Southern Galactic Plane Survey (SGPS)and additional molecular and radio continuum data.

WR 85is classi?ed as WN6h +OB?.Di?erent distance estimates have been published for this star.WR 85belongs to the HD 155603group,for which Mo?at &FitzGerald (1977)?nd a distance of 1.8kpc.Conti &Vacca (1990)and van der Hucht (2001)locate the star at d =3.7±1.3and 4.7±2.3kpc,respectively,while Hipparcos measure-ments indicate 1.7kpc.The X-ray point like source 1WGA J1714.4-3949coincides in position with the WR star (Pfe?ermann &Aschenbach 1996).

HD 155603B is associated with the optical ring nebula

RCW 118,of about 25′

in diameter (Chu &Tre?ers 1981;Heckathorn,Bruhweiler &Gull 1982,Marston et al.1994;Marston et al.1994b).Chu et al.1983observed RCW 118with the Curtis-Schmidt-0.6m telescope at CTIO in H α,[O iii ]λ5007and [S ii ]λ6730.These authors found that the ionized gas in the nebula has a LSR velocity of –15km s ?1,

and derived an expansion velocity <=

10km s ?1and a dy-namical age of 6.7×105yr,compatible with the duration of the WR phase.Based on the velocity of the ionized gas and on standard galactic rotation models,they estimated a kinematical distance d k ~2.3kpc.

Marston et al.(1994)reobserved the nebula using the same telescope.Their H αimage reveals the presence of two

semi-circular rings.The inner ring has a diameter of 9.′

3and is centered on the WR star,whereas the outer one,25′in diameter,is centered slightly to the south and south-east of the star.The two concentric structures can be clearly identi?ed in the H αimage displayed in Figure 1.

RCW 118is in the same line of sight to the SNR G347.3–0.5,discovered in the rosat All Sky Survey (RASS)by Pfe?ermann &Aschenbach (1996).This SNR,1?in diame-ter,is located at ≈6kpc (see Lazendic et al.2004).

Table 1.H i data:main observational parameters

2DATABASES

The H i 21cm-line emission data used in this paper be-long to the Southern Galactic Plane Survey (SGPS)(McClure-Gri?ths et al.2005)obtained with the Autralia Telescope Compact Array (ATCA)and the Parkes radiote-lescope (short spacing information).The H i data cube is centered at (l,b,v )=(347?14′,–0?29′,–40km s ?1),covers a region of about 2?×2?around the WR star,and has a

synthesized beam of 2.′6×2.′

1.To improve the S/N ratio we applied a Hanning smoothing to the individual line images.Consequently,the original rms noise level of

2.4K was low-ered to 1.3K and the channel velocity resolution was dou-bled.The main observational parameters of the ?nal data cube are summarized in Table 1.

Additional infrared,radio continuum and molecular data were also analyzed.High resolution infrared images (HIRES)were obtained from IPAC 1.The iras data,ob-tained at 12,25,60and 100μm,have angular resolutions

in the range 0.′

5to about 2′.Radio continuum data at 2.4GHz were obtained from the survey by Duncan et al.(1995)

with an angular resolution of 10.′

4.The molecular data cor-responds to the CO (J =1→0)line at 115GHz and belong to the CO survey by Dame et al.(2001),with angular and velocity resolutions of 9′and 1.3km s ?1,respectively,and a rms noise of 0.3K.

3IONIZED AND NEUTRAL GAS DISTRIBUTION TOW ARDS WR 853.1

H i line emission distribution

The strong stellar winds from massive stars are expected to sweep-up the interstellar material around the wind source and to create a highly evacuated region surrounded by an expanding shell.If the ionizing front is trapped within the envelope,the void and the surrounding shell are expected to appear as a region lacking neutral material encircled by regions of enhanced H i emission.The analysis of the neu-tral gas emission distribution in the environs of these stars allows identi?cation of such cavities and surrounding shells associated with the wind sources.

The criteria adopted to relate an H i cavity and shell to a certain star are:(i)the star should be located close to the centre of the void or within the inner border of the H i surrounding shell;(ii)the ionized ring nebula,if present,should appear projected within the cavity or close to the inner border of the neutral shell;and (iii)the kinematical

1

IPAC is fouded by NASA as part of the IRAS extended mission under contract to Jet Propulsion Laboratory (JPL)and California Intitute of Technology (Caltech).

H i bubble around WR 85and RCW 118

3

distance to the H i structure should be compatible,within errors,with the stellar distance.

To facilitate the visualization of the general character-istics of the H i emission in the line of sight to this region of the Galaxy,we show the average H i pro?le corresponding to an area of 1?×1?centered at the position of WR 85in the top panel of Figure 2.The bottom panel shows a plot of the kinematical distance d k versus the LSR radial velocity for the galactic longitude l =

347?,as obtained from the circular galactic rotation model by Brand &Blitz (1993)

Brightness temperatures higher than a few K are ob-served for velocities spanning the range –130to +50km s ?1.According to the quoted circular galactic rotation model,gas at negative velocities is placed at kinematical distances d k ≈0?7kpc or d k >=9kpc,while positive velocities are for-bidden for distances closer than 17kpc.Gas within the near distance range is most probably related to the Local and the Carina-Sagittarius arms (Georgelin &Georgelin 1976).

To analyze in some detail the neutral atomic gas distri-bution in the environs of the WR star,we obtained a series of H i line images at constant velocities,paying particular attention to the gas distribution at negative velocities.The analysis of the neutral atomic gas distribution within the velocity range –150to 0km s ?1shows a clear void with the star projected close to its centre at velocities of about –21km s ?1.

The top panel of Figure 3displays the H i column den-sity distribution within the velociy interval –28.0to –16.5km s ?1,where the void clearly detected.The void appears surrounded by an almost circular shell.The centroid of the structure,de?ned following the maxima in the shell,is

placed at (l,b )=(347?26′,–0?37′

),close to the position of WR 85(indicated by the star symbol).The brightness tem-perature gradient of the structure is slightly steeper towards the galactic plane than towards the other sections of the shell,indicating the presence of higher density regions close to b =0?.

The bottom panel of Fig.3displays a superposition of the H αimage of the region obtained from the Southern H-alpha Sky Survey Atlas (SHASSA)(Gaustad et al.2001)(greyscale )and the same H i contours of the top panel.The 25′

-diameter outer nebula is clearly detected in the optical

image (see Fig.1for a comparison),while the 9.′

3-diameter inner nebula is barely identi?ed.The bottom panel of Fig.3shows that the 25′-diameter optical nebula is projected onto the H i cavity and close to the inner border of the H i shell.

The systemic velocity of the structure,de?ned as the velocity at which the H i cavity presents its largest dimen-sions and deepest temperature gradient,is v sys ≈?21km s ?1.This value is compatible,within errors,with the veloc-ity of the ionized gas found by Chu &Tre?ers (1981)(–15km s ?1).

The presence of the outer optical nebula close to the in-ner border of the H i shell and the morphological agreement between the RCW 118and the H i emission,along with the agreement between the systemic velocity of the H i struc-ture and the velocity of the ionized gas indicate that the H i feature is related to RCW 118.

Figure 4displays two pro?les showing the H i column

density versus the galactic longitude for b =–0?36′

(thin

line )and the galactic latitude for l =347?25′

(thick line ).

d (K p c )

LSR velocity (km/s)

?200

?150

?100

?50

50

100

Figure 2.Top panel:Average H i brightness temperature spec-trum versus LSR velocity,corresponding to an area of 1?×1?centered at the position of WR 85.Bottom panel:Kinematical distance versus LSR velocity plot obtained from the analytical ?t to the circular galactic rotation model by Brand &Blitz (1993)for l =347?.

This plot clearly shows that the WR star is projected onto a minimun in the H i emission distribution.The neutral shell is identi?ed with arrows.The wide line shows that although most of the neutral gas near b =0?is linked to the Sagittar-ius arm,it is unconnected to the H i feature shown in Fig 3.

We analyzed is some detail the H i gas distribution in the

close environs of the 9.′

3optical ring.The top panel of Fig.5displays the neutral gas emission distribution for the velocity interval –29.3to –27.6km s ?1(in grey scale and coutour lines),while the bottom panel shows an overlay of the optical image (grey scale)and the H i emission distribution (contour lines).The ?gure reveals the presence of neutral gas emission closely bordering the inner semi-circular optical ring.The morphological correlation between the H i emission and the border of the inner nebula suggests that the ionized and the neutral material are related.Some correlation between the inner optical ring and neutral hydrogen is also detected at velocities spanning the range –27.6to –25.2km s ?1.This

4J.Vasquez,C.Cappa and N.

McClure-Gri?ths

Figure 3.Top panel:H i column density distribution surrounding WR 85within the velocity interval –28.0to –16.5km s ?1.The grayscale corresponds to (1.2-1.7)×1021cm ?2and the contour lines are 1.2,1.4,1.5and 1.6×1021cm ?2.The star symbol indi-cates the position of the WR star.Bottom panel:Overlay of the shassa H αimage of the nebula and the same H i contours of the top panel.H αunits are arbitrary.

H i gas is also shown as the H i peaks interior to the H i

shell detected about 10′far from the star in the pro?les in Fig.4.

The velocity interval at which the correlation between the inner ring and the H i cloud is better detected suggests that the inner optical nebula is located on the approaching section of the expanding shell associated with RCW 118.3.2

Radio continuum emission

Figure 6displays an overlay between the radio continuum emission at 2.4GHz (contour lines)and the H i column den-sity distribution (greyscale).Within the region of interest,

the ?gure shows a radio source centered at (l,b )=(347?32′

,

–0?29′

),coincident with the brightest section of RCW 118and with the inner optical ring located close to the star.Weak radio emission can also be detected toward higher negative galactic latitudes and lower galactic longitudes,co-

Figure 4.Pro?les showing the H i column density within the velocity interval –28.0to –16.5km s ?1versus galactic longitude

obtained at b =–0?36′

(thin line)and versus galactic latitude at l =347?25′(thick line).The x-axis is referred to the stellar position.

incident with fainter regions of RCW 118.The positional coincidence between both the radio source and the weak ra-dio emission,and RCW 118suggests that the emission at 2.4GHz originates in the ionized nebular gas.

An image at 4.85GHz can be obtained from the PMN Survey (Condon,Broderick &Seielstadet 1995).However,the presence of extended areas lacking radio data within the region of interest does not make this image useful.The presence of weak radio emission in this region is also evident at 4.85GHz in the survey by Haynes,Caswell &Simonset (1978).

3.3Molecular and IR emission

The left panel of Figure 7shows the CO(J=1→0)line emis-sion distribution within the velocity range –32.5to –24.7km s ?1taken from the Dame et al.(2001)survey.The stellar position is indicated by the star.A region of low molecu-lar emission,~1?30′×0?45′in size,centered near (347?25′,–0?36′)is evident in the image.The right panel of the ?g-ure displays an enlargement of the molecular void showing an overlay of the CO emission distribution (thick contour lines)and the H i column density image of Fig.3(grayscale and thin contour lines).

The image on the right shows the clear correspondence between the H i structure and the higher galactic longitude

section of the CO cavity (l >347?00′

).Note that the CO maxima are external to the H i shell,suggesting that some strati?cation in the gas density is present.The section of the

molecular cavity at l <347?00′

,which is wider in galactic latitude,is not linked to the interstellar bubble.

The hires iras images at 12,25,60and 100μm do not show any structure connected either to the optical or to the H i and CO shells.Only an IR emission gradient probably

H i bubble around WR 85and RCW 1185

G A L A C T I C L A T .

GALACTIC LONG.

347 40

3020-00 2535

45G A L A C T I C L A T .

GALACTIC LONG.

347 40

3020-00 25

35

45Figure 5.Top panel:H i emission distribution within the velocity interval –29.3to –27.6km s ?1in grey scale and contour lines.The grey scale corresponds to 45to 90K.The contour lines are 45,50,53,55K.The cross marks the position of the WR star.Bottom panel:Overlay of the shassa H αimage and the same H i contours of the top panel.

linked to the galactic plane is present in the images at 60and 100μm.

Figure 6.Overlay of the radio continuum image at 2.4GHz (con-tour lines)and the H i column density distribution (grayscale).The star marks the position of WR 85.Contour lines are 0.04,0.09,0.1,0.27,0.29and 0.32Jy.

4THE H i BUBBLE RELATED TO WR 85AND RCW 1184.1

The distance

The kinematical distance d k to the H i structure was esti-mated from the analytical ?t to the circular galactic rotation model Brand &Blitz (1993).

This model predicts that gas at v sys =–21km s ?1should be located at 2.7±0.7kpc or 14±1kpc.The uncer-tainties in the quoted values were estimated by assuming the presence of non-circular motions of ≈6km s ?1.The near kinematical distance estimate is compatible with the kine-matical distance of the ionized gas (d k =2.0kpc)derived using the same model.

Bearing in mind the available photometric data for WR 85and the intrinsic color and absolute magnitude cor-responding to a WN 6star from van der Hucht (2001),the spectrophotometric distance estimate is d ≈2.2±0.9kpc,where the uncertainty in the stellar distance corresponds to the error in the absolute magnitude (±0.9mag).This dis-tance estimate is consistent with the near kinematical dis-tance derived from H i data.

van der Hucht (2001)suggests the existence of an OB companion to WR 85.However,the absence of OB absorp-tion lines in the spectrum of WR 85(Gamen,private com-munication)suggests that the OB companion would be at least 2.5mag weaker than the WR star.Consequently,a correction factor to the apparent magnitude of WR 85has not been taken into account.

Bearing in mind these values and the distances derived by di?erent authors (see §1),we adopted d k =2.8±1.1kpc for both the optical and the H i structures.The uncertainty in the adopted distance is 40%.

The agreement in position,velocity and distance among the WR star,RCW 118and the H i feature suggests that the H i structure is associated with the outer optical ring nebula.

6J.Vasquez,C.Cappa and N.McClure-Gri?ths

Table2.Physical parameters of the HI bubble

The presence of a central star characterized by a strong mass ?ow inside the H i structure and the optical nebula suggests that the stellar wind of the WR star and its massive progen-itor may have had an important role in shaping the nebula. We therefore interpret the H i structure as the neutral gas counterpart of the optical interstellar bubble.

4.2Main parameters of the interstellar bubble

around WR85

The physical parameters of the H i bubble are summarized in Table2.The centroid of the structure was de?ned taking into account the position of the maxima in the shell.

The velocity range corresponds to the velocity inter-val where the structure is detected.The systemic velocity was de?ned in§3.1The expansion velocity was estimated as v exp=(v2?v1)/2+1.6km s?1and represents a lower limit to the true expansion velocity.The extra1.6km s?1allows for the presence of H i in the undetected caps of the expand-ing shell.Because of its small column density,these caps are di?cult to identify in the fore-and background emission.

The cavity was de?ned following the contour line corre-sponding to1.4×1021cm?2(see Fig.3).The angular radius of the shell corresponds approximately to the outer border of the envelope.It can be clearly established for b<–0?25′, while confussion with fore-and background gas precludes the identi?cation of the shell near b<–0?10′.The size of the bubble was estimated through the maxima in the shell.

The H i mass de?ciency in the cavity and the H i mass in the shell were obtained from the column density image shown in Fig.3.The swept-up neutral mass associated with the H i bubble was derived as a mean value between the mass de?ciency in the cavity and the mass in the shell assuming a10%He abundance.

Bearing in mind an error of40%in the adopted dis-tance,uncertainties in radii and masses are about40%and 80%,respectively.

Evolutionary models of interstellar bubbles allow an es-timate of the dynamical age as t d=0.50×106R/v exp yr (McCray1983),corresponding to the momentum conserv-ing stage of an interestellar bubble,where R is the radius of the bubble(pc),v exp is the expansion velocity(km s?1) and the constant is the deceleration parameter,which cor-responds to a mean value between the energy and the mo-mentum conserving cases.The derived dynamical age t d=1.1×106yr,is larger than the duration of the WN phase of

a massive star(t W N=0.3×106yr for a rotating star of40 M⊙,Meynet&Maeder2003)and suggests that the O-type star progenitor of the present WR star has contributed in the formation of the bubble.

A rough estimate of the ionized mass M i and the elec-tron density n e related to RCW118were obtained from the radio continuum image at2.4GHz(Fig.6)using the classi-cal expressions by Mezger&Henderson(1967)for the case of a spherical H ii region.We derived the?ux density by assuming that the strong radio source at347?32′,–0?29′and part of the weak radio emission towards higher negative galactic latitudes and lower galactic longitudes are related to RCW118.For a?ux density S2.4=12Jy,and assuming an electron temperature of104K,and a?lling factor f= 0.35-0.45,we derived M i=2100–2400M⊙and n e=13–15cm?3.The?lling factor was estimated from the optical image and corresponds to an ionized shell of about13′in radius and4′in thickness.We assume that about50-70% of the shell surface is covered by gas.Uncertainties in the ionized masses and electron densities are about80%.We have also assumed that He is singly ionized.

Taking into account the neutral atomic and the ion-ized masses,the total mass in the interstellar bubble is M s~3000M⊙.The average ambient density estimated by distributing the total mass within a volume of21pc in radius is~3cm?3.

It is not clear whether part of the molecular mate-rial that encircles both the H i and H ii shells participates in the expansion.An estimate of the amount of molecular gas can be obtained from Fig.7by applying the empiri-cal relation between W CO(= T mb dv)and the H2column density N H

2

=(1.1±0.2)×1020×W CO cm?2(K km s?1)?1, obtained fromγ-ray studies of molecular clouds in the IV galactic quadrant(Slane et al.1999).The total H2mass is estimated to be6800M⊙.

4.3The energetics

An estimate of the mechanical luminosity L w(=˙M V2w/2) of the stellar wind of WR85can be obtained by assuming a typical mass loss rate˙M=2×10?5M⊙yr?1for the WN phase(Cappa et al.2004)and a terminal velocity V w=1430 km s?1(Rochowicz&Nieldzieski1995).For the previous main sequence O-type star phase,we adopted˙M=2×10?6 M⊙yr?1and a terminal velocity V w=1000km s?1(Prinja, Fullerton&Crowther1996).Mechanical luminosities corre-sponding to the WR and the O-type star phases turn out to be L W R=1.3×1037erg s?1and L O=6.3×1035erg s?1.As-suming a typical lifetime for the WN phase t W N=0.3×106 yr(Meynet&Maeder2003)and for the O-type phase t O =3×106yr(Conti&Vacca1990),the total stellar wind mechanical energy transferred to the ISM is E w=1.8×1050 erg.A similar value(1.2×1050erg)is derived asuming that the stellar wind of the WR star and the previous O-type star phase have blown the gas bubble during0.3×106and 0.8×106yr,respectively.These lifetimes are compatible with the derived dynamical age.Taking into account the large un-certainty in the dynamical age,we believe that the derived E w-values can be considered as the lower and upper limits to the true stellar wind energy.

The kinetic energy E k(=M s V2exp/2)in the interstellar

H i bubble around WR85and RCW118

7

Figure7.Left panel:.Mean brightness temperature corresponding to the CO emission distribution within the velocity interval–32.5to –24.7km s?1.The grey scale corresponds to0.2to1.7K.The contour lines are0.3,0.5and0.9K.The cross marks the position of the WR star.The triangles mark the location of iras protostellar candidates(see text).Right panel:Enlargement of the central region of the image on the left showing an overlay of the H i(grayscale and thin contour lines)and the CO(thick contour lines)emissions.The star symbol indicates the stellar position.The triangles mark the location of iras protostellar candidates.

bubble derived taking into account the expansion velocity from Table2and the swept-up atomic neutral and ionized masses,is E k=8.3×1048erg.If the molecular material also participates in the expansion,E k=8.8×1048erg.

The ratio?(=E k/E W)is in the range0.005-0.03. These values indicate that the central star is capable of blow-ing the interstellar bubble.The?gure derived for WR85is similar to the ones obtained for most of the H i interstellar bubbles found around O-and WR-stars.These values sup-port the interpretation that bearing in mind the standard energy conserving model by Weaver et al.(1977),the ob-served stellar wind energy appears to be too high for the observed bubble dynamics,as pointed out by Cooper et al. (2004),and suggest that the bubbles are most probably in the momentum conserving stage.However,the drain of en-ergy from the bubble through the patchy envelope can not be ruled out.

The ambient density obtained by distributing the total mass within the volume of the bubble(see§4.2)is compat-ible with the value derived for the momentum conserving case(~3cm?3).

The SNR G347.3-0.5is seen projected onto the same area.The derived distance to the SNR,d=6kpc,based on molecular line information(Slane et al.1999),precludes any relation between the SNR and RCW118and the H i shell. 5CONDITIONS FOR STAR FORMATION

The high velocity mass?ow produces a drastic change in the physical conditions of the surrounding ISM.Shock fronts linked to stellar winds from massive stars may induce star formation in the high density regions of the neutral shells, where material has accumulated and conditions for star for-mation may have been favoured.Then,it is important to analyze the presence of star formation indicators in the neu-tral shells.

Since protostellar candidates can be identi?ed as in-frared sources in the iras Point Source Catalogue,we per-formed a search for iras point sources projected onto a re-gion of3?in size centered at the stellar position whose en-ergy distributions are compatible with protostellar objects according to the criteria listed by Junkes,F¨u rst&Reich (1992).The IR sources found in our search are indicated by triangles in Fig.7(left panel).Only the ones within an area of1?in radius centered at the WR position(triangles with numbers)are listed in Table3,which shows the source number,its iras number identi?cation,and the?uxes in the four iras bands.

It is clear from the left panel of the?gure that most of the sources are projected onto regions of strong CO emission or close to the galactic plane.The triangles in the right panel of Fig.7mark the position of iras point sources.This panel shows the close correspondence between the IR sources2,3, 6,14,15,17and18,and the molecular and H i shells linked to RCW118,suggesting that sequential star formation may be occuring in some sections of the neutral envelope,where conditions for stellar formation might have been developed. We note that the distances to these sources are unknown. 6SUMMARY

We have analyzed21cm line data belonging to the Southern Galactic Plane Survey searching for an H i bubble related to WR85and its ring nebula RCW118.The main results of our search can be summarized as follows:

(i)The H i data allowed the identi?cation of a cavity in the neutral gas distribution surrounded by a slowly expanding shell.The structure was detected at velocities spanning the

8J.Vasquez,C.Cappa and N.McClure-Gri?ths

Table3.Protostellar candidates within a region of1?in radius

centered on WR85

#l b iras F(12μm)F(25μm)F(60μm)F(100μm)

designation

(?′)(?′)(Jy)(Jy)(Jy)(Jy)(Jy)

interval–28.0to–16.5km s?1,and has a systemic velocity of–21±5km s?1.The cavity can also be identi?ed in the CO emission distribution at similar velocities.

(ii)The ring nebula RCW118appears projected onto the inner border of the H i shell.

(iii)The systemic velocity of the H i structure is similar to the velocity of the ionized gas in RCW118.

(iv)WR85is seen in projection onto the central part of the H i cavity and close to its geometrical center.

(v)The coincidence,within errors,of the kinematical dis-tance to the H i structure and the stellar distance strongly suggests that the WR star is placed within the cavity. (vi)The morphological coincidence between the inner op-tical nebula and the H i emission at about–28km s?1sug-gests that the9.′3nebula is located on the approaching part of the expanding shell.The WR star,which appears closely related to the inner nebula,is also probably located near the approaching part of the shell.

(vii)The CO emission distribution reveals the presence of a molecular shell almost encircling the HI envelope. (viii)The position of the iras protostellar candidates pro-jected onto the molecular shell,suggests that star formation might be occuring in the region.However,additional studies should be performed to investigate this point.

(ix)The stellar wind of WR85is capable of blowing the observed ionized and neutral structure.

The bulk of evidence(i)to(ix)strongly indicates that the H i structure is the neutral gas counterpart of the optical bubble and shows the action of the stellar winds on the surrounding material.

Adopting a distance of2.8±1.1kpc,the neutral inter-stelar bubble has a linear radius of~21pc.Taking into account an expansion velocity of9±2km s?1,its dynamical age is1.1×106yr,suggesting that both the present WR star and its massive stellar progenitor have contributed in shap-ing the bubble.The associated neutral and ionized masses are3000M⊙,which indicates that the bubble evolved in a medium with an average ambient density of3cm?3. ACKNOWLEDGMENTS

We acknowedge the referee Dr A.P.Marston for many sug-gestions that improved the?nal presentation of this pa-per.We thank Dr.T.Dame for making available to us the CO data,and Dr.R.Gamen for allowing us to use infor-mation on WR85in advance of publication.This project was partially?nanced by the Consejo Nacional de Inves-tigaciones Cient′??cas y T′e cnicas(CONICET)of Argentina under project PIP607/98and FCAG,UNLP under projects 11/G049and11/G072,and Agencia Nacional de Promoci′o n Cienf′??ca y Tecnol′o gica(ANPCYT)under project PICT 14018/03.The Digitized Sky Survey(DSS)was produced at the Space Telescope Science Institute under US Govern-ment grant NAGW-2166.

REFERENCES

Brand J.,Blitz L.1993,A&A,275,67

Cappa C.,Goss W.M.,van der Hucht K.A.,2004,AJ, 127,2885

Cappa C.,Arnal M.,Cichowolski S.,Goss W.M.,Pineault S.2003,IAU Symp.212,A Massive star Odyssey,from Main Sequence to Supernova,p.596

Cappa C.,Goss W.M.,Pineault S.,2002,AJ,123,3348 Chu Y.-H.,Tre?ers R.R.,Kwitter K.1983,ApJS,53,937 Chu,Y.-H.,Tre?ers,R.R.1981,ApJ,250,615

Condon J.J.,Broderick J.J.,Seielstad G.A.,1995,ADIL, JC,6

Conti P.S.,Vacca W.D.1990,AJ,100,431

H i bubble around WR85and RCW1189 Cooper R.L.,Guerrero M.A.,Chu Y.-H.,Rosie Chen C.

-H.,Dunne B.C.,2004,ApJ,605,751

Dame T.M.,Hartmann D.,Thaddeus P.2001,ApJ,547,

792

Duncan,A.R.,Stewart R.T.,Haynes R.F.,Jones K.L.

1995,MNRAS,277,36

Gaustad J.E.,McCullough P.R.,Rosing W.,Van Buren

D.2001,PASP,113,1326

Garc′?a-Segura,G.,Mac Low,M.-M.1995,ApJ,455,145

Georgelin,Y.M.,Georgelin,Y.P.1976,A&A,49,57

Haynes R.F.,Caswell J.L.,Simons L.W.J,1978,AuJPA,

45,1

Heckathorn,J.N.,Bruhweiler F.C.,Gull T.R.1982,ApJ,

252,230

Hunter S.D.,Digel S.W.,de Geus E.J.,Kanback G.,1994,

ApJ,436,216

van der Hucht K.2001,New astronomy Rev.,45,135

Junkes N.,F¨u rst E.,Reich W.,1992,A&AS,261,289

Lamers H.J.G.L.M.,Leitherer C.,1993,ApJ,412,771

Lazendic J.S.,Slane P.O.,Gaensler B.M.,Reynolds S.

P.,Plucinsky P.P.,Hughes,J.P.,2004,ApJ,602,271

Leitherer C,Chapman J.M.,Koribalski B.,1997,ApJ,481,

898

Marston A.P.,Yocum D.R.,Garc′?a-Segura G.,Chu,Y.-H.

1994a,ApJS,93,229

Marston A.P.,Yocum D.R.,Garc′?a-Segura G.,Chu,Y.-H.

1994b,ApJS,95,151

Mathis J.S.,Cassinelli J.P.,van der Hucht K.A.,Prusti

T.,Wesselius P.R.,Williams P.1992,ApJ,384,197

McClure-Gri?ths N.M.,Dickey J.M.,Gaensler B.M.,

Green A.J.,Haverkorn M.,Strasser S.,2005,ApJ,in

press.

McCray R.,1983,HiA,6,565

Meynet G.,Maeder A.2003,A&A,404,975

Mezger P.G.,Henderson A.P.,1967,ApJ,147,471

Mo?at A.F.J.,Fitzgerald M.P.1977,A&A,54,263

Pfe?ermann E.,Aschenbach B.,1996,rftu.proc.,267

Prinja R.K.,Barlow M.J.,Howarth I.D.,1990,ApJ,361,

607

Prinja R.K.,Fullerton A.W.,Crowther P.A.,1996,A&A,

331,264

Rochowicz K.,Nieldzieski A.,1995,AcA,45,307

Slane P.,Gaensler B.M.,Dame T.M.,Hughes J.P.,Plu-

cinsky P.P.,Green A.,1999,ApJ,525,357

Weaver R.,McCray R.,Castor J.,Shapiro,P.,Moore R.,

1977,ApJ,218,377

交换机的配置命令

网络互连设备 1、交换机基本配置命令 (1)用户模式Switch> (2)特权模式Switch>enable Switch# (3)特权模式退回到用户模式:disable (4)下一级模式退回到上一级:exit (5)某个模式直接退回到特权模式:end (6)配置交换机名称命令hostname <交换机> (7)进入交换机端口模式命令 模式:switch(config)# 命令:interface <端口类型> <端口号> 交换机常见的端口类型:ethernet、fastethernet、gigabitethernet以及VLAN 接口等。端口号一般采用插槽号/端口号,如0/1。 (8)进入交换机的某个端口模式switch(config-if)# 显示交换机端口状态命令switch# show interface <端口类型> <端口号> (9)进入控制台线路模式模式:switch(config)# 命令:line console <编号> 参数:编号是配置口的编号,从0开始编号。结果:进入控制台模式 switch(config-line)#。 (10)配置控制台口令模式:switch(config-line)# 命令:password <密码> 参数:密码支持字母和数字。 启用密码认证模式:switch(config-line)# 命令:login (11)配置进入特权模式口令模式:switch(config)# 命令:enable password|secret <密码> 参数:password表示密码以明文形式存放,secret表示密码以密文形式存放。密码支持字母和数字。 (12)为之前设置的口令加密模式:switch(config)# 命令:service password-encryption 结果:将之前设置的所有口令加密。 (13)配置交换机的登录标语模式:switch(config)# 命令:banner motd %<标语>%参数:标语应该是警示性的文字,不识别中文。结果:下次进入某个需要输入密码的模式时将会显示该提示。 (14)禁止干扰信息模式:控制台模式命令:logging synchronous 结果:下次弹出日志信息时会强制回车。 2、交换机系统帮助命令 (1)显示系统信息命令Switch> show version (2)显示交换机当前配置命令show running-config (3)显示交换机已保存的配置命令show startup-config (4)保存现有配置命令copy running-configu startup-config (5)清除已保存的配置erase startup-config (6)了解在某模式下有哪些命令时,可以输入“?” (7)某个命令只记得一部分时,可以在记得的部分后输入“?”(无空格)(8)清楚某单词后可输入的命令时,可在此单词后输入“? ”(中间有空格)。(9)将命令补充完整。输入能唯一识别某个命令关键字的一部分后,可以按键盘上的TAB键可以将该关键字补充完整。

锐捷交换机常用配置基础命令

一、交换机基本配置 1、交换机命名: 在项目实施的时候,建议为处于不同位置的交换机命名,便于记忆,可提高后期管理效率。 switch(config)#hostname ruijie //ruijie为该交换机的名字 2、交换机配置管理密码: 配置密码可以提高交换机的安全性,另外,telnet登录交换机的时候,必须要求有telnet管理密码。 switch (config)#enable secret level 1 0 rg //配置telnet管理密码为rg,其中1表示telnet密码,0表示密码不加密 switch (config)#enable secret level 15 0 rg //配置特权模式下的管理密码rg,其中15表示为特权密码3、交换机配置管理IP switch (config)#interface vlan 1 //假设管理VLAN为VLAN 1 switch (config-if)#ip address 192.168.1.1 255.255.255.0 //给管理VLAN配置管理IP地址 switch (config-if)#no shutdown //激活管理IP,养成习惯,无论配置什么设备,都使用一下这个命令 4、交换机配置网关: switch(config)#ip default-gateway 192.168.1.254 //假设网关地址为192.168.1.254,此命令用户二层设备。通过以上几个命令的配置,设备便可以实现远程管理,在项目实施时(尤其是设备位置比较分散)特别能提高效率。 二、接口介质类型配置 锐捷为了降低SME客户的总体拥有成本,推出灵活选择的端口形式:电口和光口复用接口,方便用户根据网络环境选择对应的介质类型。 但光口和电口同时只能用其一,如图1,如使用了光口1F,则电口1不能使用。 1、接口介质类型的转换: Switch(config)#interface gigabitethernet 0/25-28

小学语文教师工作现状调查报告

小学语文教师工作现状调查报告 一、概况: 我校现共有语文教师48人,男教师10人,女教师38人。 二、我校语文教师优势分析: 1.从教师的来源上来说,作为百年老校,我校语文教师大多是来自 优秀的毕业生分配和乡镇中心小学优秀教师的选拔,他们专业对口,有良好的基本功素养,乐于接受先进的教育教学理念,他们能够比较熟练地驾驭课堂,教师的个性鲜明,有较强的事业心和工作责任感。 2、从教师年龄与教龄上来说,教师队伍呈中年化趋势,所有语文教 师都已经五年教龄以上,绝大部分教师具有十年以上的教龄,各位教师已经基本掌握了教学的基本规律和语文的学科特点,在工作中能够勤恳地工作,并较好地具有了自己的教学理念,慢慢朝着形成自己独特教学风格的方向发展。 3、从学历层次上来说,我校教师重视自己的学历培训,教师的学历 层次较高、教学功底扎实。一线教师20.83%具有专科以上学历,本 科以上学历达到77.08%左右,硕士为2.08%,他们具有较为扎实的专业基本功和业务素质。 4、从教师培训上来说,我校作为科研基地校与实验校,教师参与省 市县级的机会比多,接触与接受新教育教学理念与课标要求的机会多,我校采用了外出培训申报制,即想要参与培训的教师采用申报的方式获得合适的机会。而且我校承担市县级学校交流、县级研训活动、学

科现场会等比较频繁,二次传递式培训比较到位,教师成长的平台搭建优良,这也是我校教师成长的一大优势。 我校的校本研训时间固定,主题明确,而且常规语文教研课的开展也比较教师参加研训的机会多,培训面比较广。 而且,随着教学条件的改善,每位教师都熟练掌握网络技术,网络平台为教师的自我学习提供了更多的途径。 5、从管理方式上来说,我校学科教学要求明晰,具有较好的操作性,而且督查机制也比较到位,期末的评定办法公平,管理人性化,不以分数论成败,鼓励教师走科学的语文教学之路,为教师的自我发挥提供了较为宽松的氛围。 三、我校语文教师的劣势及其原因分析: 1、职业倦怠感。 由于社会因素与教育制度的影响,有些教师经过努力和奋斗,取得了一定的成绩,但是虽然身处本地最好的小学,但他们在职业上上升的空间不大,而且由于缺乏相应的流动机制,不少教师有一种小富即安、几十年如一日的倦怠。在成绩面前,有的教师并不是朝着更高目标的奋进,而是原地踏步,进取感不强,所以在工作中就容易出现敷衍塞责、得过且过的情况。比如有的教师对工作缺乏主动性和积极性,工作停留在服从和听从的层面,对学校安排的工作是能推则推、能拖则拖,敷衍了事,得过且过,教师对自身的专业素养提高的欲望不强。随着课改的不断推荐,不少年龄比较大的教师对新的教学方式难以接

实验三 交换机配置方式及基本命令的熟悉文档

实验三交换机配置方式及基本命令的熟悉 【实验目的】 通过对交换机设备的几种配置手段、配置模式和基本配置命令的认识,获得交换机的基本使用能力。 【实验任务】 1、认识交换机的配置方式。 2、按照给出的参考拓扑图构建逻辑拓扑图。 3、按照给出的配置参数表配置各个设备。 4、练习交换机的一些基本命令。 建议实验学时:2学时。 【实验背景】 在前面的实验中我们已经接触了Cisco的路由器运行的Cisco互联网络操作系统(ISO,Internetwork Operating System),熟悉了Cisco IOS软件内置的命令行界面(CLI,command-line interface)。同样,交换机可以通过一个菜单驱动程序的界面,或者通过命令行界面(CLI),或者在交换机配置了IP地址后通过Telnet远程登录、web登录的方式对交换机来进行配置。 交换机除了可以通过Console端口与计算机直接连接外,还可以通过交换机的普通端口进行连接。如果是堆叠型的,也可以把几台交换机一起进行配置,因为实际上这个时候它们是一个整体,这时通过普通端口对交换机进行管理时,就不再使用超级终端了,而是以Telnet 虚拟终端或Web浏览器的方式实现与被管理交换机的通信。前提是在本地配置方式中已为交换机配置好了IP地址,我们可通过IP地址与交换机进行通信,不过要注意,只有是网管型的交换机才具有这种管理功能。实际上最常用的Catalyst交换机OS被称为Catalyst OS、CatOS,其最大的特点是基于set 命令。但我们常用的是与路由器的IOS相类似的基于IOS 的Catalyst OS。下面简单介绍交换机的各种命令模式以及各种常用的命令。 表4.1交换机的各种命令模式的访问方式、提示符、退出方法及其描述

实验二 交换机配置方式及基本命令的熟悉

实验二交换机的配置方式及基本命令的熟悉 【实验目的】 通过对交换机设备的几种配置手段、配置模式和基本配置命令的认识,获得交换机的基本使用能力。 【实验任务】 1、认识交换机的的配置方式; 2、按照给出的参考拓扑图构建逻辑拓扑图; 3、按照给出的配置参数表配置各个设备; 4、练习交换机的一些基本命令。 【实验背景】 在前面的实验中我们已经接触了Cisco的路由器运行的Cisco互联网络操作系统(ISO,Internetwork Operating System),熟悉了Cisco ISO软件内置的命令行界面(CLI,command-line interface )。同样,交换机可以通过一个菜单驱动程序的界面,或者通过命令行界面〔CLI〕,或者在交换机配置了IP地址后通过Telnet远程登录、web登录的方式对交换机来进行配置。 交换机除了可以通过Console端口与计算机直接连接外还可以通过交换机的普通端口进行连接。如果是堆叠型的,也可以把几台交换机一起进行配置,因为实际上这个时候它们是一个整体,这时通过普通端口对交换机进行管理时,就不再使用超级终端了,而是以Telnet 虚拟终端或Web浏览器的方式实现与被管理交换机的通信。前提是在本地配置方式中已为交换机配置好了IP地址,我们可通过IP地址与交换机进行通信,不过要注意,只有是网管型的交换机才具有这种管理功能。实际上最常用的Catalyst交换机OS被称为Catalyst OS、Catos,其最大的特点是基于set命令。但我们常用的是与路由器的IOS相类似的基于IOS的Catalyst OS。下面简单介绍交换机的各种命今模式以及各种常用的命令。 表3.1 交换机的各种命令模式的访问方式、提示符、退出方法及其描述

华为交换机基本配置命令29908

华为交换机基本配置命令 一、单交换机VLAN划分 命令命令解释 system 进入系统视图 system-view 进入系统视图 quit 退到系统视图 undo vlan 20 删除vlan 20 sysname 交换机命名 disp vlan 显示vlan vlan 20 创建vlan(也可进入vlan 20) port e1/0/1toe1/0/5 把端口1-5放入VLAN 20 中 5700系列 单个端口放入VLAN [Huawei]intg0/0/1 [Huawei]port link-typeaccess(注:接口类型access,hybrid、trunk) [Huawei]port default vlan 10 批量端口放入VLAN [Huawei]port-group 1 [Huawei-port-group-1]group-member ethernet G0/0/1 to ethernet G0/0/20 [Huawei-port-group-1]port hybrid untagged vlan 3 删除group(组)vlan 200内的15端口 [Huawei]intg0/0/15 [Huawei-GigabitEthernet0/0/15]undo port hybrid untagged vlan 200 通过group端口限速设置 [Huawei]Port-group 2 [Huawei]group-member g0/0/2 to g0/0/23 [Huawei]qos lr outbound cir 2000 cbs 20000 disp vlan 20 显示vlan里的端口20 int e1/0/24 进入端口24 undo port e1/0/10 表示删除当前VLAN端口10 disp curr 显示当前配置 return 返回 Save 保存 info-center source DS channel 0 log state off trap state off通过关闭日志信息命令改变DS模块来实现(关闭配置后的确认信息显示) info-center source DS channel 0 log state on trap state on 通过打开日志信息命令改变DS模块来实现(打开配置后的确认信息显示)

小学语文教师工作要求

小学语文教师工作要求 工作量要求: 根据泰州市义务教育学校教师工作量的标准,语文教师周课时数为16-20课时。 业务要求: 1、学习课程标准,阅读全套教材,钻研整册课文,明确本学期的总体教学目标,能从目标、内容、实施和评价等角度制定学期教学计划。 2、认真备课,备课流程清晰,内容具体,重点突出,45岁以下的教师不得备简案,一学期符合学校备课样式要求的备课课时不少于总课时的75%。 3、认真上课,必须遵循先备课后上课的原则,关注课堂常规,重视学生良好学习行为习惯的养成,加强听说读写能力的训练,合理利用生成资源。 4、认真布置和批改作业,必须根据语文训练的要求,分层设置作业、做到适度适量,形式多样,禁止体罚式的重复抄写,作业批改要符合学校规定的要求,对学生订正的作业要及时复批。 5、认真做好学生阅读指导工作,加强晨读,对教材中要求学生熟练朗读和背诵的课文,要指导和督促学生按时按质完成,同时要组织学生有计划地阅读一些课外书籍,努力培养学生良好的读书习惯。 6、认真做好读写结合,低年级每周要进行一次有计划的写话训练,中高年级每两周写一篇与课文要求相对应的作文,每周写一篇小作文,要指导学生写好日记、周记和读后感。教师要认真写好下水文,为学生写话和写作进行示范。作文批改要符合规范要求,眉批、总批和面批要有机结合。教师语言准确、规范、字迹工整。中高年级要做好作后评讲。 7、关心所有学生特别是学困生,因材施教,做好培优补差工作。 8、能熟练地运用多媒体开展教学活动,每学期不得少于1次运用现代化教学手段授课。

9、认真参加年级组及中心教研组活动,做到准时参加,积极参与,主动承担任务。 10、45岁以下教师每学期上好一节优质课,并按要求及时上交优质课教案。 11、认真写好教学反思。(全学期不少于两篇,40岁以下的教师每单元不少于一篇高质量的教后记) 12、按时、按量、按质上交语文教学有关的报表及计划总结、案例论文等,参加区级以上教研活动要及时上交一份心得体会的文章。 教学实绩: 在学校组织的统一知识测试中,同轨年级平均分的差距必须在可说理的允许范围内,优秀率的差距不超过30%,及格率的差距不超过10%。

配置H3C交换机常用命令

H3C交换机常用步骤和命令 1.进入命令行sys 2.给交换机命名: sysname fuwuqi2 3.创建所属vlan: vlan 114 4.描述vlan 114 及分配情况: description fuwuqi2 5.把24个口划分到vlan114中: port e 1/0/1 to e 1/0/24 6.退出: quit 7.进入vlan 114: vlan 114 8.查看千兆口信息: dis int g 9.把25,26两个千兆口加到vlan 114中: port g 1/0/25 to g 1/0/26 10.退出: quit 11.进入vlan114 : int vlan 114 12.查看本接口信息dis this 13.退出quit 14.进入vlan 114虚接口下(可以配置管理地址):interface vlan-interface 114 15.配置管理地址ip address 111.115.76.98 27 16.查看信息dis this 17.退出quit 18.配置默认路由ip route-static 0.0.0.0 0.0.0.0 111.115.76.97(分别是目 的地址子网掩码网关) 19.建立一个登陆交换机的用户名local-user fuwuqi2 20.设置登陆密码password cipher fuwuqi2_2918 21.设置用户管理等级0-3,3是超级管理员authorization-attribute level 3 22.设置用“telnet”方式登陆service-type telnet 23.退出quit 24.打开telnet服务telnet server enable 25.设置0-5共6个用户可同时远程登陆user-interface vty 0 5 26.设置用户登陆方式,scheme是用户名+密码authentication-mode scheme 27.查看当前配置信息dis this 28.查看当前所有配置dis cur 29.保存配置信息save 30.查看交换机上有哪些VLAN dis vlan 31.查看各交换机端口状态及vlan情况: dis brief int 32.将某个端口加入到某个vlan中:sys Vlan 111 Port eth 1/0/1 33.查看当前各端口流量情况: dis int 34.查看交换机上mac地址:dis mac-address 物理地址 35.查看CPU占用:dis cup 36.静态IP与MAC地址绑定(不与端口绑定): sys arp static 192.168.11.204 0005-5d02-f2b3 查询:dis arp 192.168.11.204 取消:undo arp 192.168.11.204

思科交换机-常用命令及配置

思科交换机-常用命令及配置 switch> 用户模式 1:进入特权模式enable switch> enable switch# 2:进入全局配置模式configure terminal switch> enable switch#configure terminal switch(conf)# 3:交换机命名hostname name 以cisco001 为例 switch> enable switch#c onfigure terminal switch(conf)#hostname cisco001 cisco001(conf)# 4:配置使能口令(未加密)enable password cisco 以cisco 为例switch> enable switch#configure terminal cisco001(conf)# enable password cisco 5:配置使能密码(加密)enable secret ciscolab 以cicsolab 为例switch> enable switch#configure terminal switch(conf)# enable secret ciscolab

6:设置虚拟局域网vlan 1 interface vlan 1 switch> enable switch#configure terminal switch(conf)# interface vlan 1 switch(conf)# ip address 192.168.1.1 255.255.255.0 配置交换机端口ip 和子网掩码 switch (conf-if)#no shut 激活端口 switch (conf-if)#exit switch (conf)#ip default-gateway 192.168.254 设置网关地址 7:进入交换机某一端口interface fastehernet 0/17 以17 端口为例 switch> enable switch#configure terminal switch(conf)# interface fastehernet 0/17 switch(conf-if)# 8:查看命令show switch> enable switch# show version 察看系统中的所有版本信息 show interface vlan 1 查看交换机有关ip 协议的配置信息 show running-configure 查看交换机当前起作用的配置信息 show interface fastethernet 0/1 察看交换机1 接口具体配置和统计信息 show mac-address-table 查看mac 地址表

华三华为交换机-路由器配置常用命令汇总

H3C交换机配置命令大全 1、system-view 进入系统视图模式 2、sysname 为设备命名 3、display current-configuration 当前配置情况 4、language-mode Chinese|English 中英文切换 5、interface Ethernet 1/0/1 进入以太网端口视图 6、port link-type Access|Trunk|Hybrid 设置端口访问模式 7、undo shutdown 打开以太网端口 8、shutdown 关闭以太网端口 9、quit 退出当前视图模式 10、vlan 10 创建VLAN 10并进入VLAN 10的视图模式 11、port access vlan 10 在端口模式下将当前端口加入到vlan 10中 12、port E1/0/2 to E1/0/5 在VLAN模式下将指定端口加入到当前vlan中 13、port trunk permit vlan all 允许所有的vlan通过 H3C路由器配置命令大全 1、system-view 进入系统视图模式 2、sysname R1 为设备命名为R1 3、display ip routing-table 显示当前路由表 4、language-mode Chinese|English 中英文切换 5、interface Ethernet 0/0 进入以太网端口视图 6、ip address 192.168.1.1 255.255.255.0 配置IP地址和子网掩码 7、undo shutdown 打开以太网端口 8、shutdown 关闭以太网端口

小学语文教师工作心得体会【精选】

最近发表了一篇名为《小学语文教师工作心得体会》的,感觉写的不错,希望对您有帮助,这里给大家转摘到。 小学语文教师工作心得体会 我现在是一个在xx小学从事了三年教育工作的语文老师,这三年以来让我对自己的工作也是有了一定的心得体会,有了自己独到的见解,所以我的教学方式也是跟平常的语文老师是有一定的出入的,但是我可以肯定的是,我的这些对语文教学工作的理解都是正确的,从我每年的教学成绩就可以得到证实。 一、现代文阅读理解和古诗词解析 在我看在每张试卷必定会出现的现代文阅读理解和古诗词解析两道大题,是有共通之处的,是可以一起学习的,我每个学期一讲到这一点,我就会二者并为一节课讲解,从的结构、段落的组成、作者的思想分析,这三点来进行剖析,可以直观的让学生知道这二者的联系,用一节课的时间同时教会他们现代文阅读理解和古诗词解析,我是我现在能做到的,这样既能让学生们更为浅显的听懂,还能最大的节省教学时间,提高教学效率。 二、文言文和古诗词 这一块一向都是学生们公认的语文难点之一,为什么在我看来那么顺口优美有意境的古诗词和文言文在他们眼里就变得那么的厌恶,读起来那么的拗口呢,我一直花时间在这方面,想解决这个困难,我不想跟其他老师那样只能为了老师强制的要学生们在一定的时间里死记硬背完。 我在教文言文的时候,进行反向教学,别的老师都是先教他们一句一句读文言文, TOP100 排行然后再进行全文阅读,最后进行翻译。而我现在都是先让他们直接从翻译开始学,应该说是翻译完再经过我梳理的,变得就像是我们现在所学的课文一般,通俗易懂,我要做的就是先让他们知道这篇是在讲什么,作者写这篇的时候是个什么心情,他为何会发出这样的感慨,他们看一遍就能清楚的知道。毕竟这已经是他们可以看懂的了,然后再让他们去看文言文,就能轻而易举的知道每句文言文是什么意思,要背诵下来自然也会轻松很多。 三、课堂的氛围 可能在大家的心目中,语文的课堂是枯燥乏味的,是没有一点生气,但是我想说的是其实恰恰相反,语文的确都是长长的课文,但是能不能把课堂氛围调动起来,全看老师的。他们都还是小学生,只要能提起他们对课堂的兴趣,很轻松的就能提高成绩。比如说在上六年级语文下册其中的一篇课文“桃花心木”,我就会让学生一个个的站起来富有感情的进行阅读,一个人进行旁白阅读,一个人对种树人的句子进行阅读,当学生在读的时候,语速或者停顿的地方不对的时候,我也会加以提示改正他们。就像是在演情景剧一样,让整个班级的都有身临其境的感觉,我在上课的时候,几乎是没有人开小差,睡觉的,这就是看老师自己能不能让课堂的氛围起来了。 这是我从事的教学工作语文的第一个学期,在做小学的语文老师的这一个学期,我也是

华为交换机常用命令配置介绍

华为交换机配置命令 华为QuidWay交换机配置命令手册: 1、开始 建立本地配置环境,将主机的串口通过配置电缆与以太网交换机的Console口连接。 在主机上运行终端仿真程序(如Windows的超级终端等),设置终端通信参数为:波特率为9600bit/s、8位数据位、1位停止位、无校验和无流控,并选择终端类型为VT100。 以太网交换机上电,终端上显示以太网交换机自检信息,自检结束后提示用户键入回车,之后将出现命令行提示符(如)。 键入命令,配置以太网交换机或查看以太网交换机运行状态。需要帮助可以随时键入"?" 2、命令视图 (1)用户视图(查看交换机的简单运行状态和统计信息):与交换机建立连接即进入 (2)系统视图(配置系统参数)[Quidway]:在用户视图下键入system-view (3)以太网端口视图(配置以太网端口参数)[Quidway-Ethernet0/1]:在系统视图下键入interface ethernet 0/1 (4)VLAN视图(配置VLAN参数)[Quidway-Vlan1]:在系统视图下键入vlan 1 (5)VLAN接口视图(配置VLAN和VLAN汇聚对应的IP接口参数)[Quidway-Vlan-interface1]:在系统视图下键入interface vlan-interface 1 (6)本地用户视图(配置本地用户参数)[Quidway-luser-user1]:在系统视图下键入local-user user1 (7)用户界面视图(配置用户界面参数)[Quidway-ui0]:在系统视图下键入user-interface 3、其他命令 设置系统时间和时区clock time Beijing add 8 clock datetime 12:00:00 2005/01/23 设置交换机的名称[Quidway]sysname TRAIN-3026-1[TRAIN-3026-1] 配置用户登录[Quidway]user-interface vty 0 4 [Quidway-ui-vty0]authentication-mode scheme 创建本地用户[Quidway]local-user huawei [Quidway-luser-huawei]password simple huawei [Quidway-luser-huawei] service-type telnet level 3 4、VLAN配置方法 『配置环境参数』 SwitchA端口E0/1属于VLAN2,E0/2属于VLAN3 『组网需求』 把交换机端口E0/1加入到VLAN2 ,E0/2加入到VLAN3 数据配置步骤 『VLAN配置流程』 (1)缺省情况下所有端口都属于VLAN 1,并且端口是access端口,一个access端口只能属于一个vlan; (2)如果端口是access端口,则把端口加入到另外一个vlan的同时,系统自动把该端口从原来的vlan中删除掉; (3)除了VLAN1,如果VLAN XX不存在,在系统视图下键入VLAN XX,则创建VLAN XX并进入VLAN视图;如果VLAN XX已经存在,则进入VLAN视图。

交换机配置和设备常用命令

常用命令等 1、连接交换机并设置软件连接交换机/路由器等: 如果设备管理器里边没有端口选项则说明USB-COM驱动未安装好;到这里记录下COM口的端口号,我这里是COM4。 打开securecrt软件:打开crt解压到的目录点软件启动

在弹出的窗口中点击下图中的按钮 按照下图中选择选项:

选择完成后点击确定按钮后敲击回车,如窗口中显示XXXXX>则说明设备连接成功。 2、配置5750交换机步骤 A、第一步删除5750交换机现有配置,复制下边命令并粘贴到crt命令行内: en ruijie delete config.text y reload y B、重新配置5750交换机: en

conf t hos btjx-zhl-25750-2 vlan 101 exit int vlan 101 ip add 192.168.101.252 255.255.255.0 exit ip route 0.0.0.0 0.0.0.0 192.168.101.254 enable sec ruijie lin vty 0 4 pass ruijie exit rldp enable int r g0/1 – 22 sw mo acc sw acc vlan 101 rldp port loo shutdown-port exit int r g0/23 – 24 me fi sw mo tr int g0/24

des btjx-zhl-25750-1 exit err re int 1800 end wr wr 此配置是11日没有拆下来的交换机的配置: 此配置是11日拆除下来的5750交换机的配置(需要增加部分配置) 上边配置的5750交换机23口24口都是级联口5750-1-24口接86,5750-1-23连接5750-2-24口 3、2952交换机配置,修改级联口部分: en ruijie conf t int g0/49 sw mo tr int g0/51 sw mo tr

小学语文老师个人简历大全

小学语文老师个人简历大全 姓名: 性别:女 民族:汉族 出生年月:1983年9月10日 婚姻情况:未婚 身高:160cm 体重:44kg 户籍:安徽安庆 现所在地:广东广州 自我评价: 本人系本科毕业生,已工作2年多,特别是在文字构造方面有较强的功底,在大学期间创办《沁心苑》文学社并任社长一职。毕业后先后在小学和高中任教,受到学生和领导的一致好评.本人具有良好的思想品质,善于与人沟通,善于与人协作,能独立完成工作,本人思想开放,工作热情高,易于接受新事物,有吃苦耐劳的精神,期待着伯乐的出现,立志用平生所学为贵单位贡献力量。 毕业学校:淮北煤炭师范学院 学历:本科 专业名称:汉语言文学 毕业年份:2006年 工作年限:二年以上

求职意向 职位性质:全职 欲从事岗位:中小学类-初中语文教师;中小学类-高中语文教师; 工作地区:广东广州; 待遇要求:3000元/月不需要提供住房 到职时间:三天内 教育经历 时间所在学校学历 2002年9月-2006年7月淮北煤炭师范学院本科 工作经历 工作地点1:南京市景明佳园小学 时间范围:2006年9月-2007年7月 担任职位:中小学类-小学语文教师 工作描述: 刚走上工作岗位的生涯至今历历在目.走上讲台的老练,上课的行云流水让我不禁感谢大学时艰辛地付出.一份耕耘一份收获!!一年来班主任这个角色使我更坚信了教师这个职业的神圣,使我更坚信了此生我就爱上了你—-教师.我将为此付出毕生!! 工作地点2:桐城市石河高中 时间范围:2007年9月-2008年12月 担任职位:中小学类-高中语文教师 工作描述:

从小学到中学,角色的转变更使我如鱼得水,欢乐畅游.这个平台的设立更使我觉得知识的重要,于是我认真备课,精心教学,虚心请教,刻 苦钻研.果然出彩了,一年来我带的两个高一班每次测试都高居榜首.我和同学紧紧地拥在一起,他们笑得是那样舒心,那样洒脱.我更乐不思蜀.我快走了,他们都不舍,都哭,都闹,最后静了,含着泪"拥有并不就是最 幸福的,还是我们默默地祝福你,你的顺利就是我们的幸福,下一个不管是谁接替,我们还是努力,因为你永远烙在了我们的心里".我无语,无奈—-但还是默默祝福就象他们祝福我一样.

H C交换机常用配置命令

H3C交换机常用配置命令 一、用户配置 system-view [H3C]super password H3C 设置用户分级密码 [H3C]undo super password 删除用户分级密码 [H3C]localuser bigheap 123456 1 Web网管用户设置,1(缺省)为管理级用户,缺省admin,admin [H3C]undo localuser bigheap 删除Web网管用户 [H3C]user-interface aux 0 只支持0 [H3C-Aux]idle-timeout 2 50 设置超时为2分50秒,若为0则表示不超时,默认为5分钟 [H3C-Aux]undo idle-timeout 恢复默认值 [H3C]user-interface vty 0 只支持0和1 [H3C-vty]idle-timeout 2 50 设置超时为2分50秒,若为0则表示不超时,默认为5分钟 [H3C-vty]undo idle-timeout 恢复默认值 [H3C-vty]set authentication password 123456 设置telnet密码,必须设置 [H3C-vty]undo set authentication password 取消密码 [H3C]display users 显示用户 [H3C]display user-interface 显示用户界面状态 二、系统IP设置 [H3C]vlan 20 [H3C]management-vlan 20 [H3C]interface vlan-interface 20 创建并进入管理VLAN [H3C]undo interface vlan-interface 20 删除管理VLAN接口 [H3C-Vlan-interface20]ip [H3C-Vlan-interface20]undo ip address 删除IP地址 [H3C-Vlan-interface20]ip [H3C-Vlan-interface20]undo ip gateway [H3C-Vlan-interface20]shutdown 关闭接口 [H3C-Vlan-interface20]undo shutdown 开启 [H3C]display ip 显示管理VLAN接口IP的相关信息 [H3C]display interface vlan-interface 20 查看管理VLAN的接口信息

cisco交换机常用配置命令

3、常用配置命令 3.1 把端口加入到vlan Switch>en Password: Switch #conf t /*进入配置模式*/ Enter configuration commands, one per line. End with CNTL/Z. Switch (config)#inter f 0/1 /*进入端口*/ Switch (config-if)#switchport access vlan X /*把端口加入到vlan X*/ Switch (config-if)#end Switch #wr /*保存*/ Building configuration... [OK] Switch # 3.2 添加新vlan(在核心交换机上写) Switch>en Password: Switch #conf t /*进入配置模式*/ Enter configuration commands, one per line. End with CNTL/Z. Switch (config)#Vlan X /*添加新Vlan*/ Switch (config-vlan)#inter vlan X /*进入Vlan*/ Switch (config-if)#ip address x.x.x.x 255.255.255.0/*设置vlan ip地址*/ Switch (config-if)#no shut 3.3 配置trunk,透传vlan Switch>en Password: Switch #conf t /*进入配置模式*/ Enter configuration commands, one per line. End with CNTL/Z. Switch (config)#inter fast 0/x /*进入级联端口*/ Switch (config-if)#switchport mode trunk /*修改端口模式*/ Switch (config-if)# switchport trunk allowed vlan all /*设置允许通过的vlan*/ 保存 删除命令:所有的命令前面加no。

小学语文教师个人工作总结

小学语文教师个人工作总结 逝者如斯夫,不舍昼夜。一个学期的工作已经结束,这个学期我担任五年级语文兼班主任工作,一年来,我认真履行教师职责。下面我就从以下几方面谈谈自己的工作。 一、语文教学工作。 在教学中,我刻苦钻研、虚心求教,不断改进自己的教学方式,培养学生良好的学风和学习习惯,帮助学生提高学习质量,培养学生自学和独立思考的能力,在语文教学中渗透思想品德教育。为了让学生掌握最好的学习方法,我在备课中,根据大纲要求,从班级的特点出发,着重突破教学难点,抓住教学重点,创设种种情景,千方百计调动学生的积极性。一切从学生出发,使学生成为学习的主体,务必让每一位学生在一堂课中都能有所收获。因此,在教学中,我总是鼓励学生多讲,多练,大面积铺开,鼓励学习有困难的学生发言,激发他们的学习热情,学习兴趣和求知欲,培养学生的创造力,提高学生的语文素养。 对于学困生的辅导和转化,我赋予教师真诚的爱,暗中给他们鼓励,扬其所长,让他们也体会到学习的兴趣。除此之外,我还组织学生“结对子”,建立学习互助小组,让他们共同进步,既培养了同学之间的团结友爱,也树立了良好的班风、学风。 在不断提倡课程改革的今天,我着力于培养学生的创新能力和实践能力。在这种教学思想的指引下,我也努力探索,大胆尝试,逐渐摸索出了一套适合自己教学的方法,并在教学实践中得到了学生的喜欢以及老师们的肯定。 二、班主任工作方面 在坚持教好书的同时,我从未放弃过育好人。我觉得,做一个班主任也许不难,但要做一个好班主任就很难了。根据我在班主任工作中的经验,我努力做到了两个字:“爱”和“严”,这使我在班主任工作中取得了较好的成绩,既改变了一大批后进生,又培养了一批优秀的学生。 1、有一颗爱心,这是做好工作的前提。 爱学生,就必须善于走进学生的情感世界,就必须把学生当作朋友,去感受他们的喜怒哀乐。爱学生,要以尊重和依赖为前提,要做到严中有爱。我经常从小处着手,从学生关心的事寻求最佳教育时机,给学生春风沐浴般的教育。带着一颗“爱心”去工作,可以让学生觉得你是真心地关心他,缩短了师生之间的距离,同时,他们犯了什么错误,也就容易接受你的教育,很快地加以改正。这种爱,有对学生思想形成的正确引导,更有对学生生活上实实在在的关心。 2、细心、耐心、诚心这是做好工作的基础。

华为的交换机基本配置命令

华为的交换机基本配置命令很多,在此,yjbys小编为大家带来的是最新交换机的配置命令,希望对同学们考试有帮助! 1、配置文件相关命令 [Quidway]display current-configuration 显示当前生效的配置 [Quidway]display saved-configuration 显示flash中配置文件,即下次上电启动时所用的配置文件 reset saved-configuration 檫除旧的配置文件 reboot 交换机重启 display version 显示系统版本信息 2、基本配置 [Quidway]super password 修改特权用户密码 [Quidway]sysname 交换机命名 [Quidway]interface ethernet 1/0/1 进入接口视图 [Quidway]interface vlan 1 进入接口视图 [Quidway-Vlan-interfacex]ip address 10.1.1.11 255.255.0.0 配置VLAN的IP地址 [Quidway]ip route-static 0.0.0.0 0.0.0.0 10.1.1.1 静态路由=网关 3、telnet配置 [Quidway]user-interface vty 0 4 进入虚拟终端 [S3026-ui-vty0-4]authentication-mode password 设置口令模式 [S3026-ui-vty0-4]set authentication-mode password simple xmws123 设置口令 [S3026-ui-vty0-4]user privilege level 3 用户级别 4、端口配置 [Quidway-Ethernet1/0/1]duplex {half|full|auto} 配置端口工作状态 [Quidway-Ethernet1/0/1]speed {10|100|auto} 配置端口工作速率 [Quidway-Ethernet1/0/1]flow-control 配置端口流控 [Quidway-Ethernet1/0/1]mdi {across|auto|normal} 配置端口平接扭接 [Quidway-Ethernet1/0/1]port link-type {trunk|access|hybrid} 设置端口工作模式 [Quidway-Ethernet1/0/1]undo shutdown 激活端口 [Quidway-Ethernet1/0/2]quit 退出系统视图 5、链路聚合配置

相关文档