文档库 最新最全的文档下载
当前位置:文档库 › 浅谈蓖麻油的改性及其应用研究进展

浅谈蓖麻油的改性及其应用研究进展

浅谈蓖麻油的改性及其应用研究进展
浅谈蓖麻油的改性及其应用研究进展

浅谈蓖麻油的改性及其应用研究进展

本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!

前言

随着环境问题的日益严峻,世界石油资源的紧缺和石油价格的不断上涨,开发利用生物降解性好的可再生资源制备化工产品,已成为化工领域各行各业共同关注的焦点。蓖麻,大戟科蓖麻属植物,其主要产地在印度、巴西以及中国,是一年或多年生草本植物,种子椭圆形,含油量在42%~48%,用于制备可生物降解的润滑油、媒染剂、药物等。源于蓖麻的蓖麻油是一种天然的脂肪酸甘油三酸酯,脂肪酸中90%是蓖麻油酸(9-烯基-12-羟基十八酸),还有10%不含羟基的油酸和亚油酸,是自然界中唯一含有羟基的植物油。蓖麻油的羟基平均官能度为左右,碘值为82~90 mg(I2)/g,属于不干性油,皂化值170~190mg(KOH)/g,羟基值155~165 mg(KOH)/g。

由于蓖麻油结构中含有烯烃双键、酯基、羟基等活性基团,因而可以通过酯化、氢化、环氧化、脱氢、脱水、醇解及酯交换等一系列化学反应,制备出各种适用的原材料。然后,再通过深度加工制成聚合物材

料,如:表面涂料、弹性材料、泡沫保温材料、过滤材料等。目前,蓖麻油及其衍生物被广泛应用于生物柴油、紫外光固化涂料、润滑剂、皮革加工助剂、泡沫塑料、水性聚氨酯等诸多领域。

1 蓖麻油的改性

琥珀酸酯化改性

蓖麻油因其羟基值较高,工业上利用蓖麻油酸分子位于12 位碳原子上羟基的有关反应进行改性。蓖麻油的琥珀酸酯化反应是通过蓖麻油分子中羟基与不饱和酸酐发生酯化,增加其亲水性。

该反应是一个复杂的反应过程,首先是马来酸酐开环同蓖麻油上的仲羟基发生酯化,此步反应较易进行,且没有副产物生成。另外,在条件允许的情况下,马来酸酐开环后,生成的羧基还会继续同蓖麻油上的羟基进一步酯化,即马来酸酐发生双酯化反应,此时就会有副产物水生成。因此,可以通过生成水分的多少来判断马来酸酐的双酯化程度。鲍利红等研究了催化剂对马来酸酐与蓖麻油反应的影响,发现催化剂对反应起着决定性作用,它的加入有利于马来酸酐的双酯化。

等在无催化剂条件下优化了蓖麻油的琥珀酸酯化反应条件,得出最佳反应条件:顺丁烯二酸酐和蓖

麻油反应的摩尔比为3∶1,125 ℃条件下搅拌反应4 h。该反应进度可通过检测反应过程中体系的酸值和黏度系数来衡量。

氢化改性

由于在蓖麻酸的碳链上含有不饱和双键(—CH=CH—),在加压和催化剂作用下,与氢气混合,就会发生加成反应,使碳键饱和。但由于蓖麻酸甘三酯包含有三蓖麻酸甘-11、二蓖麻酸甘-11 和一蓖麻酸甘三酯三种饱和度不同的分子结构,这三者与催化剂吸附的强弱、先后次序有很大差别,氢化速率不同,因此,对蓖麻油的一个特定官能团进行选择性氢化,可得到不同的产品,如:12-羟基硬脂酸酯、硬脂酸酯、蓖麻烯醇、l2-酮基硬脂酸甘油酯等。

已有研究表明,以DM-2 型镍催化剂催化蓖麻油氢化,在低氢气压强(~ MPa)的条件下,温度在100~120 ℃时,反应时间为90~120min,亦能得到质量合格产品。

催化剂是氢化反应条件中重要的影响因素之一,通过改变催化剂浓度或用量,可控制蓖麻油氢化程度和氢化反应速率。等通过实验证明在沸石中混合5%镍催化剂更有利于提高加氢反应效率;另外,通过改变催化剂组分或组成比例,可控制氢化反应方向,增加

氢化蓖麻油产物种类。等发现在有机/水两相溶液中,钌配合物可作为蓖麻油氢化反应的高效催化剂,促进催化反应的进行。

硫酸化改性

硫酸化蓖麻油又称太古油、土耳其红油、三蓖麻酸甘油酯硫酸酯钠盐等。硫酸化蓖麻油是蓖麻油经硫酸酯化、中和等得到的产物,是一种优良的阴离子表面活性剂。由于有极好的柔软性、平滑性和润湿浸透性,在真丝针织工艺中常用作生丝浸泡剂和脱油剂,纺织匀染助剂及皮革加脂剂,也用于造纸、橡胶和金属加工等方面。

蓖麻油的硫酸化是蓖麻油化学改性常用的方法之一,通常采用硫酸化剂与蓖麻油的羟基发生硫酸酯化反应,生成蓖麻油硫酸酯盐。王学川等以氨基磺酸作为蓖麻油的硫酸酯化剂,优选了反应条件。并提出氨基磺酸与蓖麻油的反应原理为酸分子的某种转化,氨基磺酸分解释放出SO3,SO3 即硫酸酐与脂肪醇发生酯化反应,生成硫酸酯。

环氧化改性

环氧化蓖麻油具有优越的性能,早在上世纪80 年代国外就有合成及应用方面的报道。国内的相关研究起步较晚,但目前已经引起人们广泛关注。环氧化

蓖麻油用作聚氯乙烯的稳定剂,使用效果可与环氧化大豆油媲美。它是酚醛树脂闭孔发泡理想的表面活性剂,也是钢材、铝材拉伸、冲压理想特压油的重要组分。

蓖麻油的环氧化方法分为均相催化法和多相催化法。均相催化法制备环氧蓖麻油的反应原理为:在H+存在下,有机酸被过氧化氢预氧化为过氧化有机酸,过氧化有机酸再与蓖麻油中的不饱和双键反应,生成环氧蓖麻油。反应式如下:

(1)环氧化剂(过氧酸)的合成反应:RCOOH+H2O2=RCOOOH+H2OH

(2)植物油的环氧化反应:R1CH=CHR2+RCOOOH→R1CH—CHR2+RCOOHO 均相催化法生产环氧蓖麻油的方法主要有溶剂法和无溶剂法。由于溶剂法所用溶剂为苯及苯的同系物,对环境污染严重,且生产流程长,设备多,三废处理量大,产品质量差,因此基本被淘汰。无溶剂法主要工艺是以甲酸或乙酸在酸催化剂作用下与过氧化氢反应生成环氧化剂,将环氧化剂滴加到蓖麻油中,反应完毕后经碱洗、水洗、减压蒸馏,最后得到环氧化产品。

龚旌采用均相催化法在无溶剂条件下制备环氧蓖

麻油,考察有机酸(甲酸、乙酸和丙烯酸)和催化剂(磷酸、硫酸和硫酸铵)种类对环氧化反应的影响后,发现用乙酸作为环氧化剂,磷酸作为催化剂环氧化效果最佳。侯宾等制备环氧蓖麻油也采用了类似方法,并优化了合成条件。

氧化改性

蓖麻油分子支链上存在大量双键,很容易发生加成反应。蓖麻油的氧化主要是发生在双键上,氧化形成三羟基硬脂酸或形成环氧键。蓖麻油经氧化后,呈淡黄色或暗琥珀色,黏度提高,与其它配料的混合能力增强。

艾买提江·萨伍提等以蓖麻油为原料,经臭氧氧化法制备甘油三酸酯多元酸,优化条件为:m(蓖麻油)∶m(乙酸)为l∶4,臭氧化反应温度10~15℃,臭氧化反应时间2 h,氧化裂解温度90~95 ℃,氧化裂解时间h,此时产率达83%。

脱水改性

蓖麻油的主要成分蓖麻油酸(9-烯基-12-羟基十八酸)分子中的羟基可以和相邻碳原子上的氢原子发生分子内消除反应生成双键,即可和11-碳上的氢消除生成共轭双键,也可和13-碳上的氢消除生成非共轭双键。蓖麻油脱水后,羟基值降低,碘值升高,由不干

性油变成半干性油或干性油。其脱水后制得的干性油因分子中含有较多的双键成为油漆和涂料的理想原料。等研究了蓖麻油脱水反应的动力学,得到最佳反应温度。

其他改性

E. Pomier 等结合酶、薄膜和超临界二氧化碳设计了一种新型反应器(示意图见图4),并用于蓖麻油的改性。此改性方法是通过活性薄膜上的固定化酶与蓖麻油的界面反应改性蓖麻油,同时降低蓖麻油的黏度。该法解决了普通改性方法需在高温下进行及溶剂难去除的问题。

等将蓖麻油在超声条件下进行酯交换反应,研究了超声频率、催化剂浓度和甲醇的摩尔比等对酯交换速率的影响。G. Perin等采用蓖麻油与甲醇或乙醇反应、醇油摩尔比为6∶1、用10%的酸性硅胶或氧化铝作为催化剂,通过微波催化醇解提高了反应生成脂肪酯的效率和产率。

除上述方法外,蓖麻油的改性还包括脱氢、脱氧、裂解等化学反应。蓖麻油经过不同的化学改性后,应用领域拓宽,可用于生物柴油、紫外光固化涂料、胶粘剂、润滑剂、表面活性剂、水性聚氨酯等。

2 蓖麻油及其衍生物的应用

用作皮革加工助剂

随着人们对皮革制品的要求越来越高,皮革加工助剂的开发已朝着多功能、系列化的方向发展。

蓖麻油作为一种天然可再生植物油被作为一种经济、高效的交联剂而被广泛使用。以其合成的水性聚氨酯的交联度高,乳液性能好,成膜耐热性好,模量低,柔软且具有潜在的生物降解性。蓖麻油基水性聚氨酯用于皮革涂饰时,显示有良好的增塑作用,涂膜紧实而柔软,耐低温性优良,适合作高档服装革的涂饰。范浩军等采用蓖麻油作为交联剂组分改性聚氨酯,得到了乳液及成膜性能均较好的皮革涂饰材料。用蓖麻油作交联剂组分改性聚氨酯,可降低成本,提高成膜抗张强度,赋予涂层良好的耐寒、耐水性能,涂层紧实柔软,平滑光亮,特别适宜于轻软革的涂饰。

鲍利红等以马来酸酐改性蓖麻油、脂肪族二异氰酸酯为主要原料,通过调节羧基的质量分数、软段和硬段摩尔比、马来酸酐改性蓖麻油和PEG-1000 的质量比,合成了11 种不同组成的水性耐光性聚氨酯复鞣剂乳液。该系列聚氨酯复鞣剂产品复鞣成革耐光性好,成革丰满、弹性好、抗张强度提高,同时具有提高染料上染率的功能。蓖麻油分子结构中除含有烃基、酯键,还含有三个活性羟基和不饱和双键,可发生多

种化学反应。郑顺姬等首先利用蓖麻油与马来酸酐酯化生成蓖麻油马来酸酐单酯,再利用分子结构中的不饱和双键与丙烯酸类单体共聚,得到两亲结构的共聚物大分子。其具有较好的复鞣填充效果,还能对胶原纤维起到润滑、柔软作用,是一种性能良好的皮革复鞣加脂剂。赵永丽等利用蓖麻油与甲醇发生酯交换反应,再与阳离子醚化剂ETA 发生醚化反应合成一种蓖麻油的阳离子性改性物,并以此为主要成分与其它非离子表面活性剂复配成具有良好加脂和渗透性能的皮革加脂剂。

制备水性聚氨酯

三官能度蓖麻油可作为交联剂,二官能度蓖麻油可用于代替部分聚醚(酯)或扩链剂。蓖麻油组分中长链非极性脂肪酸链使涂膜具有良好的疏水作用,同时给予高分子链良好的应力松弛,因而赋予涂层良好的柔软性和耐曲挠性以及耐寒性。

甘厚磊等采用蓖麻油、甘油和甲苯二异氰酸酯合成出端—NCO 的蓖麻油基聚氨酯预聚体,研究表明蓖麻油基聚氨酯预聚体的—NCO含量在%~%时,体系在-18~40 ℃能固化成膜,且成膜物具有较好热学性能和力学性能。S. Thakur 等对蓖麻油超支化聚氨酯涂层的物理机械性能与热学性能检测后表明,可用于做高

档层膜材料。

Luo Zhenyang 等以聚四甲基醚二醇、甲苯二异氰酸酯和环氧化蓖麻油合成聚氨酯预聚体,考察了预聚体的粒径、防水性、热学性能以及机械性能。发现预聚体的粒径主要取决于环氧蓖麻油的浓度。此外,随着环氧蓖麻油用量的增加,聚氨酯膜的防水性、热学性能和机械性能都有所提高。H. Yeganeh 等首先利用蓖麻油作为多羟基组分与异氰酸酯反应合成聚氨酯预聚体,再以该预聚体、聚乙烯、2,4-甲苯二异氰酸酯和1,4-丁二醇为单体,甲苯二异氰酸酯二聚物为交联剂制备水性聚氨酯。对所得产品的热学性能和物理机械性能进行测定,证明能够满足工业要求。

其他应用

蓖麻油及其衍生物因其独特的结构特点和优良的性能,还被广泛应用于胶粘剂、包装材料、热稳定剂、表面活性剂、医学等领域。

3 结束语

蓖麻油作为世界十大油脂和四大非食用油脂之一,是油脂市场重要的组成部分。蓖麻油凭借着它独特的结构、广泛的来源和富有潜力的工业价值,被众多的行业所青睐。近年来,国内外有关蓖麻油开发和利用的报道较多,对于蓖麻油应用领域的拓展具有重

要的意义。

以蓖麻油为原料的精细化学品,不仅可用于包装、涂料、机械、皮革等领域,而且可成为生物能源品种,代替矿物油和石化燃料用于生物燃料等领域,有着更广阔的发展空间。

本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!

改性沥青的研究进展

改性沥青的研究进展 黄 彬,马丽萍,许文娟 (昆明理工大学环境科学与工程学院,昆明650093) 摘要 为了得到性能更优良的改性沥青,越来越多的材料被用作改性沥青改性剂,同时新的评价标准和方法及其他领域的新化学分析方法也被用来更完整准确地评价改性沥青的性能。总结了国内外改性沥青的研究现状及进展,从改性机理、性能影响因素及评价方法等方面来介绍各种改性沥青的概况,并概述了改性沥青的发展方向。 关键词 改性沥青 改性剂 机理 发展Rsearch Development of Modif ied Asphalt HUAN G Bin ,MA Liping ,XU Wenjuan (Faculty of Environmental Science and Engineering ,Kunming University of Science and Technology ,Kunming 650093) Abstract More materials ,as modifier ,are used to improve the properties of modified asphalt.Besides ,the new evaluation standards and methods ,new chemical analysis methods are used to evaluate the properties more com 2pletely and accurately.The situation and development of modified asphalt research at home and abroad are summa 2rized.From the aspcts of modification mechanism ,influencing factors and evaluation methods ,various modified as 2phalts are introduced ,and the development trend of modified asphalt technology is illustrated in the paper. K ey w ords modified asphalt ,modifier ,mechanism ,development  黄彬:女,1986年生,硕士研究生,主要研究方向为固体废物资源化 E 2mail :binbin_huang @https://www.wendangku.net/doc/ff3244152.html, 马丽萍:女,1966年生,教 授,主要研究方向为工业废气污染控制、固废综合开发利用 E 2mail :lipingma22@https://www.wendangku.net/doc/ff3244152.html, 0 前言 普通道路沥青由于自身的组成和结构决定了其感温性能差,弹性和抗老化性能差,高温易流淌,低温易脆裂。而且在过去的10年中,车轴负荷增加、车流量增加、气候条件恶劣,难以满足高级公路的使用要求,必须对其改性以改善使用性能。在沥青或沥青混合料中加入天然或合成的有机或无机材料,熔融或分散在沥青中与沥青发生反应或裹覆在沥青集料表面,可以改善或提高沥青路面性能。 1 改性沥青的分类 在沥青的改性材料中,高分子聚合物是应用最广泛、研究最集中的一种。其他改性材料还有两大类:矿物质填料和添加剂。矿物质填料,如硅藻土、石灰、水泥、炭黑、硫磺、木质素、石棉和炭棉等,对沥青进行物理改性,可提高沥青抗磨耗性、内聚力和耐候性。添加剂,包括抗氧化剂和抗剥落剂,如有机酸皂、胺型或酚型抗氧化剂或阴、阳离子型或非离子型表面活性剂,可提高沥青粘附性、耐老化或抗氧化能力。聚合物改性沥青(PMA 、PMB ),按照改性剂的不同一般可分为3类:①热塑性橡胶类,即热塑性弹性体,主要是嵌段共聚物,如SBS 、SIS 、SE/BS ,是目前世界上最为普遍使用的道路沥青改性剂,并以SBS 最多;②橡胶类,如NR 、SBR 、CR 、BR 、IR 、EP 2DM 、IIR 、SIR 及SR 等,以胶乳形式使用,其中SBR 应用最为广泛;③树脂类,如EVA 、PE 、PVC 、PP 及PS 。 2 各种改性沥青及其发展现状 通过SCI 和EI 分别检索近15年来改性沥青在交通、建筑、材料、能源及环境等学科方面研究的文献情况,检索结果如图1、图2及表1、表2所示。根据表1、表2数据和图1、图2情况可以看出,近几年国内外对改性沥青的研究越来越多,尤其以SBS 和胶粉最为突出,出现了多种新型改性剂。下面 将分别介绍各种改性沥青及其发展现状。 图1 SCI 检索统计表 Fig.1 SCI search results 2.1 矿物质材料改性沥青 矿物质材料作改性剂的研究较少,主要为硅藻土、纳米 碳酸钙、矿渣粉、白炭黑等,可与基质沥青形成均匀、稳定的 共混体系以改善沥青性能[1] 。

相容剂马来酸酐

相容剂又称增容剂,是指借助于分子间的键合力,促使不相容的两种聚合物结合在一体,进而得到稳定的共混物的助剂,这里是指高分子增容剂。 目前比较好的相容剂通常以马来酸酐接枝,马来酸酐单体和其它单体比较极性比较强, 相容效果比较好。 马来酸酐接枝相容剂 马来酸酐接枝相容剂通过引入强极性反应性基团,使材料具有高的极性和反应性,是一种高分子界面偶联剂、相容剂、分散促进剂。 中文名称顺丁烯二酸酐 英文名称Maleic anhydride 顺酐; 失水苹果酸酐; 马来酐; MA; 马来酸酐; 乙基钾黄药; 戊基中文别名 钠黄药; 戊基黄原酸钠; 顺丁烯二酸酐(顺酐); 顺丁烯二酸酐 2,5-Furandione; cis-Butenedioic anhydride; Sodium 英文别名 n-amylxanthate; MaleicAnhydride; MA CAS号108-31-6 EINECS号203-571-6 分子式C4H2O3 分子量98.06 InChI InChI=1/C4H2O3/c5-3-1-2-4(6)7-3/h1-2H 熔点52-55℃ 密度 1.48 沸点200℃ 闪点102℃

水融性 79 g/100 mL (25℃) 物化性质 性状 斜方晶系无色针状或片状结晶体。 熔点 52.8℃ 沸点 202℃ 相对密度 1.480 闪点 110℃ 溶解性 溶于水生成顺丁烯二酸。溶于乙醇并生成酯。 用途 用作生产1,4-丁二醇、γ-丁内酯、四氢呋喃、琥珀酸、不饱和聚 酯树脂、醇酸树脂等的原料,也用于医药和农药 安全术语 S22:; S26:; S36/37/39:; S45:; 风险术语 R22:; R34:; R42/43:; 危险品标志 C :Corrosive; 上游 苯、二甲苯、石油液化气 下游 十二烯基丁二酸、反丁烯二酸、酒石酸、丁二酸酐、N,N'-(亚甲基 二苯基)双马来酰亚胺、酒石酸钾钠、酒石酸氢钾、马来酰肼、γ- 丁内酯、马拉硫磷、水溶性环氧树脂、甲基丙烯酸环氧酯树脂MFE-3、 醇酸树脂、不饱和聚酯树脂、不饱和聚酯树脂(189型) 分子结构 产品用途 1.主要用于生产不饱和聚酯树脂、醇酸树脂、农药马拉硫磷、高效 低毒农药4049、长效碘胺的原料。也是涂料、马来松香、聚马来酐、 顺酐-苯乙烯共聚物。也是生产油墨助剂、造纸助剂、增塑剂和酒 石酸、富马酸、四氢呋喃等的有机化工原料;

苯丙乳液的合成及其改性

广州大学化学化工学院 本科学生综合性、设计性实验报 告 实验课程高分子合成实验 实验项目苯丙乳液的合成及其改性 专业应用化学班级10应化 学号73 姓名邓亚中 指导教师宋建华 开课学期2012 至2013 学年 2 学期时间2013 年 5 月9 日

反应就终止了,这称为第三阶段。 乳液聚合技术重要的特征为分隔效应,即聚合增长中心被分隔在为数众多的聚合场所内, 这一特征使得乳液聚合过程具有较高的聚合速度以及产物分子量高等优点, 同时还使生产工艺乃至产品结构和性能易于控制和调整,通过聚合工艺来实现聚合物结构和性能的优化。 乳液聚合方法及聚合产物也存在自身的缺点。例如,自由基碎片及乳化剞的存在使得乳液聚合产物不能高于高纯领域;与本体聚合相比,乳液聚合的反应器有效容积量由于分散介质的存在而被降低。 (2)本课题的聚合机理:使用含乙烯基的有机硅烷改性苯丙乳液,是直接利用乙烯基有机硅氧烷单体中的双键和苯丙乳液单体进行自由基聚合,其分子结构较小,相对聚有机硅氧烷大单体来说更容易与苯丙乳液共聚,因此使用较少的用量就可以达到改性要求。乙烯基三乙氧基硅烷(VTES )对苯丙乳液进行改性,一方面可通过烷氧基的水解缩合反应形成交联结构,提高共聚物的强度,改进性能;另一方面, 共聚物中未反应完的 Si-OH 基可与无机基材表面的羟基等作用,形成氢键或化学键,提高与被粘表面的粘接强度。 3.实验装置与材料 (1)实验设备 三口烧瓶、冷凝管、恒压滴液漏斗、电动搅拌器、恒温浴、温度计、玻璃棒、烧杯、分析天平 (2)实验药品 设备装置图 药品名称 分子量 规格 用量 苯丙乳液 苯丙乳液改 性 十二烷基硫 酸钠 1.7g 3.4g JS86 1.7g 3.4g 丙烯酸 甲基丙烯酸 甲酯 丙烯酸丁酯 苯乙烯 氨水 -- -- 适量 适量 有机硅 (KH-570) -- -- -- 乙二醇 -- 过硫酸钾 1.5g 1.5g

改性沥青现状及发展前景

改性沥青现状及发展前景 1、改性沥青应用现状 普通道路石油沥青,由于原油成分及炼制:工艺等原因,其含蜡量较高,导致其具有温度敏感性强,与石料的粘附性差,低温延度小等缺点。用其铺筑的沥青路面,夏季较软,易出现明显车辙壅包等病害;冬季较脆,易出现低温开裂等病害;混合料的抗疲劳性能,抗老化性能较差。同时,由于经济的快速发展,普通沥肯混合料已不能满足高等级道路和特殊地点的重交通,大轴载,快速安全运输的需要。 1.1 改性沥青的应用背景和现状 据相关资料,20世纪60年代以前,沥青路面仅用于城市道路和专用公路,沥青材料主要是煤沥青和用进口原油提炼的石油沥青。20世纪70年代前后,在全国范围内曾采用渣油吹氧稠化,掺配特立尼达(TLA)或阿尔巴尼亚稠沥青等改性的方法,提高结合料稠度,配制成200号沥青铺筑以表面处治为主的沥青面层。1985年国内开展 了沥青中掺丁苯,氯丁橡胶,废轮胎粉等改性沥青和掺金属皂等改善混合料性能的研究试验工作,取得了成功的经验。1992年NovophaltPE现场改性技术的引入,对改性沥青的推广应用起到了促进作用,使改性沥青从研究试验逐步发展到生产应用。 1.2影响改性沥青应用的因素 生产施工工艺在聚合物改性沥青的大规模应用中起到了关

键性的作用。无论是聚合物改性,物理改性还是采用不同的沥青加工工艺都会增加较大的工程成本,在国内经济不发达地区的应用会受到一定的制约。 2、改性沥青的研究现状 目前国内的研究重点在新的改性剂和沥青改性剂的加工工艺上还有一部分研究是面向工程应用的,即研究在沥青集料改性剂确定的情况下,找出合适的级配,最佳沥青用量和改性剂用量以满足实际工程的要求。我国研究改性沥青已有多年的历史,也取得了丰富的成果,但至今仍有两个问题没有很好地解决: (1)没有形成对改性沥青和改性性能统一的评价标准; (2)国内没有形成统一的研究体系。 改性沥青的研究是一项长期的复杂的系统工作,要想取得突破性成果必须综合各研究机构的优势,形成统一的研究体系,比如美国l987年~l992年的大型系统工程SHRP计划等等。而相对于国内,研究工作往往由各高等院校,科研院所独立完成,没有统一的研究规划,配套工作滞后。另外由于各部门的利益关系,沥青改性的关键技术往往是秘而不宣的,在一定程度上造成人财物的巨大浪费。 3、改性沥青的应用前景 由于普通沥青已不能适应现代化路面的要求,性能良好的改性沥青必将在高等级路面中起到越来越重要的作用 3.1 SBS改性沥青将获得更广泛的应用 研究表明,SBS改性的优越性突出表现在具有双向改性作用,

SBS改性沥青的性能与应用

SBS改性沥青的性能与应用 摘要:我国高速公路建设自改革开放以来,经历了从无到有,从起步到建设成高速公路网的翻天覆地变化。与此同时,传统的普通沥青已经很难适应现代对公路的高标准要求,而改性沥青的研制与应用则较好地解决了这一问题。本文主要通过介绍SBS改性沥青在高温、低温条件下的抗车辙、抗裂性能,与水稳定性,抗滑能力等内容,比较得出其对于传统沥青在工程、经济、社会各方面的优越性,探究了加强对SBS改性沥青的学习,开展对SBS改性沥青深入的研究与推广其广泛应用的长远意义。 关键词:SBS改性沥青;改性沥青性能;改性沥青应用;沥青施工;工程效益;应用前景 1 前言 随着交通流量的增长、车载质量的增加以及高温和低温的作用,为适应道路路面的使用性能的要求,保证路面良好的使用状态,延长路面的使用寿命,就必须探寻更高性能的路面材料。SBS改性沥青混凝土具有很好的高温抗车辙能力,低温抗裂能力,改善了沥青的水稳定性,提高了路面的抗滑能力,增强了路面的承载能力,提高了沥青的抗氧化能力,是比较优良的路面材料。自上世纪40年代以来,国内外学者对各类改性沥青的性能进行了大量的研究工作,改性沥青技术得到了越来越多的重视。现有研究结果表明,与其他改性沥青相比,SBS(苯乙烯一丁二烯一苯乙烯)改性沥青的综合性能[1]更为突出,SBS改性沥青必将在未来很长的一段时间内得到更深入的研究和更广泛的应用。 2 SBS改性沥青简介 SBS属于苯乙烯类热塑性弹性体,是苯乙烯—丁二烯—苯乙烯三嵌段共聚物,SBS改性沥青是以基质沥青为原料,加入一定比例的SBS改性剂,通过剪切、搅拌等方法使SBS均匀地分散于沥青中,同时,加入一定比例的专属稳定剂,形成SBS共混材料,利用SBS良好的物理性能对沥青做改性处理。在良好的设计配合比和施工条件下,用SBS改性沥青铺筑的沥青混凝土路面有着传统沥青路面无法比拟的优越性能,具有很好的耐高温、抗低温能力以及较好的抗车辙能力和抗疲劳能力,并极大地改善沥青的水稳定性,提高了路面的抗滑性能。

纤维改性沥青混合料研究进展

龙源期刊网 https://www.wendangku.net/doc/ff3244152.html, 纤维改性沥青混合料研究进展 作者:刘哲 来源:《中国科技纵横》2015年第24期 【摘要】通过对纤维改性沥青混合料研究历史及现状的调研,总结了纤维改性沥青混合 料的主要影响因素以及纤维改性沥青混合料的作用机理;阐述了纤维种类、长度、添加量以及界面粘结对沥青混合料性能的影响情况,不同因素的变化会影响沥青混合料的不同性能;总结了纤维在沥青混合料中的吸附、稳定、桥接以及加筋作用。 【关键词】纤维改性沥青混合料作用机理 1 概述 纤维作为一种新型的增强材料,被广泛的用作复合材料增强体,应用于航空航天、电子机械等尖端领域[1-3],由于纤维具有高模量、高强度、高长径比以及较强的吸附能力,在道路沥青及沥青混合料中也多有应用。多年来,国内外对纤维改善沥青及其混合料性能进行了大量研究,并根据实际需求,开发出了一系列适用于道路沥青改性的路用纤维,主要包括木质素纤维、矿物纤维、聚合物纤维以及新兴的玄武岩纤维等。本文主要针对道路纤维在沥青混合料中的应用进行调研,分析了纤维对混合料性能影响的主要作用机理及影响因素,对其未来发展进行了展望。 2纤维改性沥青混合料的主要影响因素 2.1 纤维种类及性能 按处理方式划分,纤维可分为天然纤维和化学合成纤维,不同种类的纤维具有不同的性能,包括强度、模量、吸持沥青量、长径比以及表面形貌等等,而这些因素都会对沥青混合料性能产生影响。李智慧[4]等考察了聚丙烯腈纤维、聚酯纤维以及木质素纤维等三类不同的增 强体对沥青混合料性能的影响,同时分析了三类纤维的常规技术性能,建立了纤维性能与外掺纤维沥青混合料路用性能之间的关系。结果表明,掺加聚丙烯腈纤维和聚酯纤维的沥青混合料性能相当,而木质素纤维混合料性能稍差;纤维的种类还影响着其对沥青混合料的主要作用机理。对外掺纤维沥青混合料路用性能影响程度最大的纤维性质因素是抗拉强度与极限拉伸应变,其次是熔融温度,吸持沥青量也有一定程度影响,纤维直径影响最小,在纤维形状特征因素中纤维长度的影响程度大于纤维直径与长径比。T.Serkan[5]采用聚酯纤维对石油沥青进行改性处理,石油沥青混合料的马歇尔稳定度增加而流值降低,同时抗车辙及抗疲劳性能增加,表明聚酯纤维有效提高了石油沥青混合料的路用性能;F.M.Nejad等[6]使用碳纤维增强沥青混凝土,结果显示,碳纤维的加入有效提升了沥青混凝土的强度和抗老化性能。此外,有不少学者采用不同种类的纤维对沥青混合料进行混杂改性,取得了良好的效果[7-8]。

苯丙乳液的合成及其改性

广州大学化学化工学院 令狐采学 本科学生综合性、设计性实验报告实验课程高分子合成实验 实验项目苯丙乳液的合成及其改性 专业应用化学班级 10应化 学号 1005100073 姓名邓亚中 指导教师宋建华 开课学期 2012 至 2013 学年 2 学期时间2013 年 5 月 9 日 一、实验方案设计

使表面活性剂的分配不平衡,导致溶解在水相中的表面活性剂移过来,胶束中的进入水中,以建立新的平衡。 随着聚合反应的行进,胶束最终全部消失。从此时起不再有在胶束内形成的聚合物了。这就是说,反应体系中的聚合物颗粒数从此开始恒定了。这称为第一阶段。 在这阶段以后,聚合反应的速度就受控于单体从单体液滴经水相移向成长中聚合物颗粒的速度了,在这阶段中,总的反应速度是加速的,因为成长中的聚合物颗粒是在不断地增加着的。 随着自由基不断地在水相中产生,低聚物自由基也不断地产生,不断进入聚合物颗粒。如果进入的是一个正在链增长的聚合物颗 1粒,由于自由基的高反应性,那么两个自由基相互反应会立即使链终止,待另一个低聚自由基再次进入后使链增长重新开始。这样,从整个体系统计地说,有一半颗粒处于链增长状态,另一半处于链终止状态。这样反复地进行,直至液滴中单体耗尽,这称为第二阶段。在这阶段中由于颗粒数基本上是恒定的,所以反应速度也基本上是恒定。 液滴中单体耗尽后,聚合反应只在残存于聚合物颗粒中的单体上进行,而这些单体也逐渐减少,所以反应速度就逐渐减慢了,直至这些单体耗尽,于是聚合反应就终止了,这称为第三阶段。 乳液聚合技术重要的特征为分隔效应,即聚合增长中心被分隔在为数众多的聚合场所内, 这一特征使得乳液聚合过程具有较高的聚合速度以及产物分子量高等优点, 同时还使生产工艺乃至产品结构和性能易于控制和调整,通过聚合工艺来实现聚合物结构和性能的优化。 乳液聚合方法及聚合产物也存在自身的缺点。例如,自由基碎片及乳化剞的存在使得乳液聚合产物不能高于高纯领域;与本体聚合相比,乳液聚合的反应器有效容积量由于分散介质的存在而被降低。 (2)本课题的聚合机理:使用含乙烯基的有机硅烷改性苯丙乳液,是直接利用乙烯基有机硅氧烷单体中的双键和苯丙乳液单体进行自由基聚合,其分子结构较小,相对聚有机硅氧烷大单体来说更容易与苯丙乳液共聚,因此使用较少的用量就可以达到改性要求。乙烯基三乙氧基硅烷(VTES )对苯丙乳液进行改性,一方面可通过烷氧基的水解缩合反应形成交联结构,提高共聚物的强度,改进性能;另一方面, 共聚物中未反应完的 Si-OH 基可与无机基材表面的羟基等作用,形成氢键或化学键,提高与被粘表面的粘接强度。 3.实验装置与材料 (1)实验设备 三口烧瓶、冷凝管、恒压滴液漏斗、电动搅拌器、恒温浴、温度计、玻璃棒、烧杯、分析天平 (2)实验药品 设备装置图 药品名称 分子量 规格 用量 苯丙乳液 苯丙乳液改性 十二烷基硫 酸钠 288.38 A.R 1.7g 3.4g JS86 1.7g 3.4g 丙烯酸 1.4ml 1.4ml 甲基丙烯酸 甲酯 6.6ml 6.6ml 丙烯酸丁酯 128.17 A.R 15.6ml 15.6ml 苯乙烯 104.14 A.R 15.7ml 15.7ml 氨水 -- -- 适量 适量 有机硅 (KH-570) -- -- -- 1.44ml 乙二醇 62.07 A.R -- 0.4ml 过硫酸钾 170.32 A.R 1.5g 1.5g

SBS改性沥青机理研究进展

S BS改性沥青机理研究进展 李双瑞,林 青,董声雄 (福州大学化学化工学院,福州 350002) 摘要:介绍了沥青的特性、苯乙烯2丁二烯2苯乙烯三嵌段共聚物(S BS)的性能,分析了S BS与基质沥青之间 的溶胀性和相容性问题,着重论述了S BS改性沥青机理的研究进展,指出机理主要分为物理共混和化学改性两 类:物理共混———S BS微粒受到沥青组分中油分的作用发生溶胀而均匀分散在沥青中,S BS与沥青之间没有发 生化学作用,只是一种分子间作用力;化学改性———加入添加剂使沥青和S BS之间发生加成、交联或接枝等化 学反应,形成较强的共价键或离子键,改善沥青的化学性质。提出化学改性是提高S BS改性沥青路用性能的重 要手段。 关键词:苯乙烯-丁二烯-苯乙烯嵌段共聚物;S BS改性沥青;改性机理 采用聚合物对道路沥青进行改性是提高和改善沥青混合料路用性能的一种重要措施[1~6]。近年来,在聚合物改性材料中,苯乙烯2丁二烯2苯乙烯三嵌段共聚物(S BS)以其优异的性能,成为世界上使用最为广泛的沥青改性剂[7~12]。对S BS改性沥青路用性能的研究[13~17]表明:采用S BS对沥青改性后,改性沥青的低温柔性和高温性能明显提高,温度敏感性大大降低。关于S BS改性沥青的机理,国内外科技人员进行了大量的研究,但并没有形成统一的理论。本文根据国内外相关文献,介绍了沥青和S BS的性能以及S BS在沥青中的溶胀性和相容性问题,着重论述了S BS改性沥青机理的研究进展。 1 沥青的特性 沥青是由多种化学成分极其复杂的烃类所组成。这些烃类为一些带有不同长短侧链的高度缩合的环烷烃和芳香烃,以及这些烃类的非金属元素衍生物[18]。按生产来源划分,沥青主要可分为地沥青(包括天然沥青与石油沥青)、焦油沥青、煤沥青、页岩沥青等。道路中各国目前生产和最常用的是石油沥青。石油沥青是原油加工的重质产品[19]。石油沥青的组分极为复杂,通常用溶剂将沥青通过色层分析法分成饱和分、芳香分、胶质和沥青质四个组分[18]。Hubbard2Stanfield法将沥青划分为油分、树脂和沥青质3个组分[19]。 油分是石油沥青中最轻的馏分,含量在45%~60%。油分是石油沥青可以流动的主要原因,其含量越多,软化点越低,粘度越小,使沥青具有柔软性和抗裂性。树脂的含量在15%~30%。树脂的存在使石油沥青有一定的可塑性、可流动性和粘结性,直接决定着石油沥青的延伸度和粘结力。沥青质是固体无定形物质,含量在5%~30%。沥青质是高分子化合物,它是石油沥青中分子量最高的组分,决定着石油沥青的塑性状态界限、自固态变为液态的程度、粘滞性、温度稳定性、硬度和软化点。此外,石油沥青中还含有一定数量的沥青酸、沥青酸酐、碳化物和似碳物。 沥青的主要结构为胶体结构,即以沥青质为核,表面层被树脂浸润包裹,而树脂又溶于油分中,形成沥青胶团,无数胶团彼此通过油质结合成胶体结构。当沥青中沥青质含量适当,并有较多的树脂作为保护物质时,它所组成的胶团之间有一定的吸引力,这种结构称之为溶胶-凝胶结构。大多数优质的路用沥青都属于这种胶体结构,具有粘弹性和触变性。当沥青质含量较高时,胶粒相互缠结,粘度大、塑性小、 基金项目:中法先进科技合作项目(PRAMX02208); 作者简介:李双瑞(1977-),女,河南南阳人,博士研究生,从事沥青材料改性的研究; 联系人,E2mail:sxdong2004@https://www.wendangku.net/doc/ff3244152.html,.

蒙脱土DK

纳米塑料中用作纳米无机相材料的蒙脱土(MMT),是我国丰产的一类天然粘土矿物,是一种层状硅酸盐。其结构片层是纳米尺度的,包含有三个亚层,在两个硅氧四面体亚层中间加含一个铝氧八面体亚层,亚层之间通过共用氧原子以共价键连接,结合极为牢固。整个结构片层厚约1NM,长宽约100NM,由于铝氧八面体亚层中的部分铝原子被低价原子取代,片层带有负电荷,过剩的负电荷靠游离于层间的NA+、CA2+和MG2+等阳离子平衡,因此容易与烷基季胺盐或其他有机阳离子进行离子交换反应生成有机化蒙脱土,有机化蒙脱土成亲油性,并且层间的距离增大,因此有机蒙脱土能进一步与单体或聚合物熔体反应,在单体聚合或聚合物熔体混合的过程中剥离为纳米尺度的结构片层,均匀分散到聚合物基体中,从而形成纳米塑料。 一种纳米蒙脱土水相插层的制备方法,包括:将纳米蒙脱土在水中高速搅拌,超声,形成稳定的悬浮体系后静置水化;然后在50~85℃下搅拌,加入插层剂的 水溶液,高速搅拌,再超声;加入水溶性高分子表面活性剂——聚乙烯醇,在50~85℃下搅拌;离心,冷冻干燥,得到疏松装的层间距大于1.9纳米的蒙脱土?本发明提供的方法是在水相中,使用水溶性高分子表面活性剂——聚乙烯醇(PVA)对蒙脱土进行插层的新方法?该方法摈弃了现有技术中使用的DMF(N,N-二甲基甲酰胺(DMF))够直接得到疏松的粉末,从而改善了产品的储存性能,以及再次使用时的分散性能,便于批量生产?储存和运输;而且本发明的方法更为简单,成本也进一步降低? X射线衍射特征: 表面亲水性: DK5>DK2> DK1N>DK3>DK1>DK4

实验室DK3:DK3纳米有机化蒙脱土(采用十六烷基二甲基苄基溴化铵对蒙脱土进行有机改性,DK3-OMMT),浙江丰虹黏土化工有限公司;

马来酸酐接枝ABS及其应用(精)

马来酸酐接枝ABS 及其应用 陈玉胜张祥福张勇张隐西 (上海交通大学高分子材料研究所,上海200240 摘要 采用熔融法研究了马来酸酐(M AH 接枝ABS 。结果表明:马来酸酐接枝率随 M AH 添加量或引发剂过氧化二异丙苯(DCP 的添加量的增加而提高,但是添加量过多时,接技率增加速率变慢;ABS 接枝马来酸酐后,冲击性能明显下降,但拉伸性能变化不大;马来酸酐接枝改性ABS ,增容ABS/PC 合金共混物,可提高合金的缺口抗冲击强度达1.5~2.5倍。关键词:马来酸酐接枝丙烯睛/丁二烯/苯乙烯共聚物增容聚碳酸酯 0前言 收稿日期:2000201204 在共混中采用反应增容方法促进溶解度参数不匹配的聚合物共混,已越来越受到人们关注。这种方法的本质特性是在加工过程中使共混组分之间发生化学反应,生成接枝或嵌段聚合物,该聚合物作为共混增容剂使组分间良好地分散和增强界面结合[1]。因此这种方法最基本的要求是共混聚合物组分分子链中应含具有反应活性的功能基团,如环氧基团、酸酐基团、磺酸基团等。这些基团的特点是与氨基、羟基等基团的反应活性高,并且无低分子物生成。 ABS 是通用工程塑料,综合性能好,常与 其它聚合物共混制备合金。在与其它聚合物(如尼龙、聚碳酸酯共混过程 中,ABS 与它们之间的相容性是合金获得优良综合性能的关键。国内外已有报道采用马来酸酐接枝改性ABS 作为增容剂,用以改善ABS 系列合金间

的相容性[2,3]。本研究在H AAKE 转矩流变 仪上,采用马来酸酐熔融接枝改性ABS ,考察了影响接枝反应的主要因素、接枝产物力学性能变化以及接枝产物增容ABS/PC 合金的应用前景。 1实验部分 1.1原料 ABS 树脂,牌号PA -747S ,台湾奇美实 业股份有限公司产品; PC 树脂,Lexan141,美国GE 塑料树脂(中国公司产品, 马来酸酐(M AH ,化学纯,上海山海科技研究所; 过氧化二异丙苯(DCP :化学纯。其中PC 、ABS 树脂在使用前均在90℃干燥8h ,以除去吸收的水分1.2主要仪器和设备 转距流变仪,H AAKE RC -90型,德国H AAKE 公司; 双螺杆挤出机,SH L -35型,上海化工机械四厂; 红外光谱仪,Perkin -Elmer 1000型,美 第14卷第5期2000年5月 中国塑料 CHINA P LASTICS V ol14N o 5 May 2000

有机硅改性苯丙乳液的制备及其性能研究

有机硅改性苯丙乳液的制备及其性能研究 与我们所学苯丙乳液的制备的比较和讨论 我们所做实验是以苯乙烯、丙烯酸、丙烯酸丁酯和甲基丙烯酸甲酯为原料来合成苯丙乳液;而我所介绍的实验是以苯乙烯、丙烯酸、丙烯酸丁酯和乙烯基三乙氧基硅烷为原料合成有机改性苯丙乳液。以这两个实验作对比,讨论聚合工艺、聚合温度、乙烯基三乙氧基硅烷的加入量和加入方式、乳化剂用量和配比对乳液综合性能的影响。 苯乙烯/丙烯酸酯共聚乳液广泛用作建筑涂料、地面涂料、金属表面涂料、粘合剂和胶粘剂等。由于自身化学性质的影响,其涂膜的耐水性、耐候性、抗老化、拉伸强度等存在一定缺陷,使其应用受到一定得限制。有机硅具有优良的防水、耐高低温、耐紫外线和红外辐射、耐氧化降解等性能。有机硅改性苯丙乳液产生三维网状交联结构,可明显提高涂层的耐候性、耐水性、保光性、弹性和耐久性等,作为性能优越的建筑内外墙涂料及木器漆的基料受到人们的青睐,应用前景十分广阔。 一、硅苯丙共聚乳液的合成的聚合工艺 预乳化法——即先用复合乳化剂形成预乳化液,再把乙烯基三乙氧基硅烷(DB-151)混入剩余的预乳化液中;滴加单体法——将DB-151混入剩余的混合单体中;后加有机硅单体法——同样采用滴加单体法,

但DB-151是在其它单体滴完后再加入。 二、乳液的性能测试及结构表征 分别测定固含量、吸水率、钙离子稳定性、冻融稳定性、稀释稳定性、贮存稳定性、黏度、单体转化率、红外光谱(IR)分析以及X 射线衍射(XRD)分析等来检验其各种性能和结构。 结果与讨论 ⑴聚合工艺对乳液主要性能指标的影响 表一看出,采用聚合工艺1、2时,乳液是我性能优于采用聚合工艺3时的性能。 ⑵反应温度对乳液性能的影响 反应温度对引发剂的引发效率、聚合速率、聚合物的摩尔质量影响较大。温度过高,引发剂速率快,聚合反应男与控制,会导致乳液爆聚,从而破坏乳液的稳定性;温度太低,则反应速度太慢。 表2采取聚合工艺2进行实验。

马来酸酐接枝物原理与特性

马来酸酐接枝物原理与特性 不同于物理共混增韧,马来酸酐接枝物兼具极性基团醛基和烯烃非极性链段,能够通过与聚合物、填料之间的化学键合,很好地实现强度和韧性的完美结合,具有广阔的应用前景。 概述 马来酸酐接枝物是一种以马来酸酐为单体,在合适的温度条件下与其他材料进行接枝而得到的聚合物。通常,接枝方法主要有溶液法、熔融法、辐射法和固相法等。其中,熔融法是最常用也是最重要的方法。 由于兼具马来酸酐提供的极性基团醛基和烯烃非极性链段,马来酸酐接枝物可被广泛应用于PA、PP和PE等材料的改性,电线电缆母料,木塑行业,包胶TPE以及热熔胶等行业,主要起偶联相容的作用。作用原理 在马来酸酐接枝物中,酸酐基团在高温和螺杆剪切的作用下,能够与极性基团(-NH2、-OH)发生广义的脱水反应并形成化学键,从而将不相容的极性和非极性物质进行化学偶联。 以马来酸酐接枝物增韧PA为例。PA具有优异的力学性能,但低

温下的韧性差,而烯烃具有良好的加工和低温韧性。然而,由于PA 属于极性聚合物,烯烃属于非极性聚合物,两者之间很难相容。此时,若采用马来酸酐接枝物,则能很好地实现两者的结合(其反应原理如图1所示)。在用于其他用途时,马来酸酐接枝物的作用原理也类似。 图1马来酸酐接枝物和PA反应图 优质马来酸酐接枝物的判断 在判断优质马来酸酐接枝物时,需要考虑的几个关键因素包括:气味、接枝率、黄变指数以及反应后期是否分离未接枝马来酸酐等。需要注意的是,在接枝反应中,接枝率普遍偏低,这是因为许多加入的马来酸酐并没有接枝到主链上去。未接枝的马来酸酐大部分以聚马来酸酐的形式存在于反应体系中,因此,接枝反应后的产物如不作分离,最终得到的将是含有接枝物和聚马来酸酐的混合物。也就是说,马来酸酐在分离前和分离后测试的接枝率有很大的偏差。

改性沥青的研究现状分析

-144-科学技术创新2019.13 改性沥青的研究现状分析 戚春华赵玉芳高明星 (内蒙古农业大学,内蒙古呼和浩特010()10) 摘要:为了适应交通量的迅猛发展、车辆重载以及复杂的气候变化,对路面材料的性能提出更高的要求,普通沥青已无法满足,必须对沥青进行改性,研发出具有良好路用性能的改性沥青,满足现代道路发展的需要。对改性沥青的起源与发展进行总结分析,归纳现有研究存在的不足以及改性沥青的发展应解决的问题结果表明:多聚磷酸、SBS、环氧树脂、硅藻土、纳米材料等将是今后制备复合改性沥青的重要材料;对改性沥青改性机理认识不足、改性材料与沥青的相容性问题以及改性沥青的存储稳定性问题是制约改性沥青推广应用的重要原因。 关键词:改性沥青;改性材料;制备工艺;发展 中图分类号:U414文献标识码:A文章编号:2096-4390(2019)13-0144-02 近年来,随着交通量的迅猛发展,车辆重载以及复杂的气候变化.对公路路面材料的性能提出了更高的要求。普通沥青路面表面平整无接缝,行车振动小,噪声低,开放交通快,养护简便等优点,但也存在感温性能差,弹性和耐老化性能差,高温易流淌和低温易脆裂等缺点。基于普通沥青路面存在的缺点难以满足现代道路的使用要求,必须对其进行改性研究,使其满足现代道路建设的要求。目前有些改性沥青的制备工艺已经相当成熟,对各种新型材料的使用也进行了大量研究.然而对改性沥青的改性机理的研究还缺少深刻的认识。 本文通过对改性沥青的起源与发展进行分析总结,归纳现有研究存在的不足以及改性沥青的发展应解决的关键问题。 1改性沥青的组成成分研究 研究发现每种改性剂都有各自的优缺点,比如橡胶改性沥青制备工艺简单,稳定性差,不易贮存,多聚磷酸价格低廉,对沥青高温和老化性能的改善效果较为明显,低温性能较差,SBR改性沥青制备工艺简单,价格低廉,但高温稳定性差,多用于高寒高海拔地区,SBS改性沥青的弹性、低温性能、耐老化等性能均有所提高,对于高寒地区来说,低温性能稍显不足,多用于炎热地区,环氧树脂改性沥青能提高沥青材料的粘附力、拉伸强度以及断裂延伸率,有很高的强度,优良的温度稳定性,且高温条件下抗变形能力较好,制备工艺复杂,施工较难。近年来国内外学者开始研究如何将两种或者多种改性剂对沥青进行复合改性,综合其优点.进一步提高改性效果。 张忠明叭黄成武回等人以橡胶粉和SBS为改性剂,通过不同的室内制备工艺制备复合改性沥青,并对制备出的复合改性沥青的性能进行比较研究,为室内制备复合改性沥青(转下页) 接,当检测车在对道路进行检测的时候,将采集到的数据上传到云端与之前对该条道路检测所采集到的数据进行比对,可以分析出该道路路面在最近几年的破损变化速率。将该速率与当地的气候水文条件以及车流量进行分析。 4.2智能检测设备数据共享化 对于路面管理系统本身而言,目前各个地区已经建立的路面管理系统之间彼此是孤立的,没有任何联系,成为“信息孤岛”。 在数据进行共享之前,要将各个地区的评价指标进行标准化处理,由于各个地区路面所处的环境条件是不一样的,交通量和路面结构类型也是不同。评价指标的标准化是相当困难的。 一旦完成智能检测设备数据的共享化,我相信我国的路面力学理论、路面设计施工方法都会有飞跃式的进步。 5结论 随着智能检测设备的发展,尽管我们已经取得了许多方面的成就,比如图像分析处理技术,高精度的图像采集技术以及地理信息技术,但仍然有着广阔的发展空间等待着我们去探索。集成化的智能检测设备,标准化的检测指标,完备的云端数据库以及一些交通运输附属产业都等待着我们进一步的研究。我相信今后中国的交通事业会在新“互联网+”时代蓬勃发展。 参考文献 [1]邢荣军.高速公路路面破损自动识别与智能评价[D].重庆:重庆交通大学,2011,4. [2]喻翔.高速公路路面养护管理系统决策优化研究[D].成都:西南交通大学,2005,5. ⑶庞明宝,魏连雨.系统工程与交通[M].天津:天津人民出版社. 2003. [4]徐东云,张雷,兰荣娟.城市交通拥堵的背景变换分析[J].城市问题,2009⑶. [5|龚建江.公路设计与管理中的工程数据库研究[J].绿色交通. 2018,2,20⑷. 作者简介:朱瑞峰(1995,10,31-),男,汉族,四川省,学历:在读研究生,研究方向:道路规划与线形设计理论与方法。

蒙脱土的研究与应用综述

作者简介:彭琪琪(1999-),女,汉族,安徽淮北人,山东科技大学化学与环境工程学院生物工程专业2016级本科生 。 彭琪琪 (山东科技大学,山东青岛266590) 摘要:蒙脱土(MMT )是一种层状硅酸盐矿物质,具有较大的比表面积,强烈的吸水性,良好的阳离子交换能力和吸附性能。蒙脱土 可作为载体,用于吸附以及增强材料的物理性能。为扩大蒙脱土应用范围,可将蒙脱土进行相应的改性。蒙脱土可用于制备良好的纳 米复合材料广泛应用于污水处理、石油、药品、汽车制造等方面[1] 。本文对近十年关于蒙脱土的研究进行综述,有利于进一步开展蒙脱土的研究与应用。关键词:蒙脱土;改性;复合材料;性能中图分类号:TD985文献标识码:A 文章编号:1671-1602(2019)15-0137-01蒙脱土(M M T )是一种硅酸盐片层状矿物,来源丰富,具有较大的比表面积,强烈的吸水性、膨胀性、分散性,良好的阳离子交换性能和吸附能力。M M T 分子中具有紧密堆积的四面体和八面体亚层,是不规则片层且高度有序的特殊晶体。M M T 片层内多为无机成分,因此其具有良好的热稳定性[2]。M M T 的这些优良性能决定了其在工业生产中的重要地位和广泛的应用前景。M M T 纳米复合材料近年来成为社会热点,M M T 纳米复合材料的高热稳定性、高模量、高强度、高气体阻隔性和低的膨胀系数等均是其广受关注的原因[3]。 1MMT 的改性 蒙脱土具有亲水疏油性,且对聚合物相容性较差,限制了其应用。所以在实际应用的过程中往往会对蒙脱土进行改性,提高其吸附性能和离子交换能力,扩大应用范围[4]。 对蒙脱土的改性主要分为三类,有机改性、无机改性和有机-无机复合改性,其中有机改性的M M T 是纳米复合材料应用的关键。有机改性能够使得M M T 表面疏水化,使其有利于应用于有机相。陈际帆等人[5]采用C T A B 对M M T 进行有机复合改性,增大了蒙脱土层间距,提高了M M T 在聚氯乙烯(P V C )基体中的分散均匀性,并且明显提高了P V C /M M T 玻璃化转变温度,改善了力学性能。王文涛[6]使用有机改性M M T 以机械混炼插层法制备天然橡胶/蒙脱土纳米复合材料,复合材料的交联密度、力学性能、热稳定性和气体阻隔性等因为蒙脱土的有机改性而得到显著提高。 无机改性包括酸化改性、无机盐改性和 钠化改性三类[7]。无机改性可以增强蒙脱土的吸附性能和离子交换能力。有机-无机复合改性是一种新型的蒙脱土改性方法,它同时具备有机改性和无机改性的优点。 2MMT 的吸附性能 M M T 在层间以及外表面有吸附位点,吸附性能良好,但是其在水中分散能力强,分 离困难。因此,常用另一种吸附性良好的物质对蒙脱土进行包埋,相互弥补,相互配合,发挥彼此的最佳功效,实现“1+1>2”的作用。 2018年,宋美娟等人[8] 采用明胶(G E )作为包埋剂,制造出环境友好、具有优良的污水处理能力的G E /M M T 复合材料,在吸附结晶紫(C V )的实验中,当C V 浓度为800m g/L ,吸附剂用量为20m g 时,吸附量最高可达197.17m g/g 。谷娜等人[9]制备了复合P H M B -磁性蒙脱土,采用静电作用吸附絮凝藻细胞,减少水体污染。 3MMT 的物理性能优化 蒙脱土是一种良好的中孔载体材料,孔径分布均匀可调控,具有耐水性及耐SO 2等特点,物理性质优良,化学性质稳定。蒙脱土是一种良好的“增效剂”,可增强材料的应用效果和使用寿命。张涛[10]曾以钛白粉掺杂蒙脱土制备脱硝催化剂,催化剂的比表面积和孔体积随着蒙脱土添加量的增加而增大,并且蒙脱土的加入提高了脱硝效率,增强了催化剂的机械强度和磨损强度。与之类似的是,汪飞等[11]人利用蒙脱土制备疏水缔合双交联自修复水凝胶,提高了水凝胶的拉伸长度、断裂伸长率以及对能量的耗散。 4结论 综上所述,蒙脱土是工业生产的重要原料,具有良好的应用潜能和发展前景[12]。虽然我国蒙脱土资源丰富,但是对于蒙脱土的开发仍处于初级阶段,蒙脱土的应用范围也有待扩展。因此,我们应加强对于蒙脱土化学结构的理论研究,为开拓蒙脱土的应用范围打下基础。参考文献: [1]梁云,贾德民.蒙脱土的改性研究进展[J].化工矿物与加工,2004,33(2):1-5. [2]杨科,王锦成,郑晓昱.蒙脱土的结构、性能及其改性研究现状[J].上海工程技术大学学报,2011,25(1):65-70. [3]林一凡,潘太军.蒙脱土的有机化改性及插层剂的选择[J].化工科技,2010,18(01):24-27. [4]李娜,马建中,鲍艳.蒙脱土改性研究进展[J].化学研究,2009(1):98-103. [5]陈际帆,周少奇.表面活性剂和硅烷偶联剂有机复合改性蒙脱土的制备及性能表征[J].应用化工,2009,38(06):827-831+835. [6]王文涛.天然橡胶/蒙脱土纳米复合材料的阻隔性及相关性能研究[D].华南理工大学,2010.[7]张亨.蒙脱土的改性方法及阻燃应用的研究进展[J].上海塑料,2013(03):15-20. [8]宋美娟,王煦漫,张彩宁.明胶/蒙脱土复合材料对结晶紫的吸附性能[J].纺织高校基础科学学报,2018,v.31;No.120(02):15-20. [9]谷娜,秦会会,高金龙.复合PHMB-磁性蒙脱土去除铜绿微囊藻的研究[J].应用化工,2018,v.47;No.317(07):77-80+84. [10]张涛.钛白粉掺杂蒙脱土蜂窝式脱硝催化剂的 制备及催化性能[J].石油炼制与化工,2018,v.49(07):53-56. [11]汪飞,叶瑾,东为富.蒙脱土/疏水缔合双交联自 修复凝胶的制备及性能研究[J].化工新型材料,2018,v.46;No.550(07):183-187. [12]赵保林,那平,刘剑锋.改性蒙脱土的研究进展[J]. 化学工业与工程,2006,23(5):453-457. ACADEMIC AND DISCUSSION -137-

国内苯丙乳液改性的研究进展情况

刘都宝,鲍俊杰,纪学顺,许戈文 ( 安徽大学化学化工学院,安徽省绿色高分子材料重点实验室,合肥230039) 摘要:介绍了有机硅改性苯丙乳液和环氧改性苯丙乳液以及聚氨酯改性苯丙乳液、纳米 SiO 2 改性苯丙乳液等的发展情况,并简要地对苯丙乳液改性的未来方向作了展望。 关键词:苯丙乳液;改性;进展 0 前言 苯丙共聚乳液是苯乙烯与丙烯酸酯或官能团丙烯酸酯类单体进行乳液聚合的产物 , 它广泛应用于建筑涂料、金属表面乳胶涂料、地面涂料、纸张黏合剂、胶黏剂、皮革涂饰及油墨等方面,其用量与日俱增。苯丙乳液具有无毒无味、不燃不爆、污染小、与颜料粘结强度高等优点 ; 且通用性和适用性强,作为主要成膜物所配制的乳胶涂料有粘结强度高、施工简便快捷等优点。但在耐水性、耐磨性、抗老化性、耐候性等方面由于其自身化学性质所致,限制了其应用 [1 ~2] 。近年来随着聚合理论和技术的不断完善和发展,苯丙乳液的改性受到了广 泛的重视。苯丙乳液的改性主要从以下两个方面进行:一是引入一些功能型的单体对苯丙乳液进行改性,得到高性能的共聚乳液;二是采用新的乳液聚合方法来改善苯丙乳液的性能,在研究过程中通常是这两个方面的相互结合,共同提高苯丙乳液的性能。 1 有机硅改性的苯丙乳液 1.1 改性原理 有机硅对苯丙乳液的改性是指将有机硅通过化学反应和苯丙乳液技术结合起来,用来制备高性能的硅苯丙乳液,其乳液产品广泛应用于涂料改性、塑料改

性、橡胶补强等领域。特别是由其配制的有机硅改性苯丙乳胶作为一种高性能建 筑涂料倍受关注。聚硅氧烷分子主链结构 Si-O 键能很高,分子体积大,内聚 能密度低,使得它具有特殊的耐温、耐候性和较低的玻璃化温度及表面张力等,其乳液在织物整理、皮革涂饰、涂料等行业的应用越来越广泛,但较高的成本和较低的强度又使其应用受到限制。因而将有机硅氧烷、羟基硅油和苯丙乳液这两类极性相差很大的聚合物结合在一起,可以得到兼具二者优异性能的新型乳液材 料,这在理论研究和实际应用中都有重要的意义 [3 ~ 4] 。可以提高苯丙乳液及涂料的性能;提高涂膜的硬度,拉伸强度、透气性、耐磨性、粘附力、耐水性及耐紫外光照射性等 [5 ~ 8] ,从而为制造高档外墙乳胶涂料提供优良的乳液原料。近年来,有关有机硅 / 苯丙乳液共聚的研究逐渐增多,而且随着乳 液聚合技术的不断创新,许多新的乳液聚合方法也运用到有机硅苯丙共聚乳液中来。 1.2 改性方法及应用 目前,有机硅对苯丙乳液的改性方法一般分为两种:物理改性法和化学改 性法。物理改性法有:一是将有机硅氧烷单体作为附着力促进剂和偶联剂直接加入到苯丙乳液中进行改性;二是先将有机硅氧烷制成有机硅乳液,再将它与苯丙乳液冷拼共混进行改性。化学改性是指通过化学反应将有机硅和苯丙聚合物分子间形成化学键。化学改性明显提高两相之间的相容性,在一定程度上控制了有机硅分子链表面迁移和有机硅的微观形态,从而比简单物理共混的乳液性能优越, 具有更好的发展前景 [9] 。石秀凤等对苯丙乳液分别进行有机硅 A (硅氧烷单体)和有机硅 B (大分子的聚硅氧烷)改性的研究表明 [10] 硅氧烷单体改性的苯丙涂料与苯丙涂料相比,其耐紫外光和耐沾污性有所提高,而且效果很明显。漆膜的这两个性能随有机硅 A 用量的增加而逐步提高;而用大分子的聚硅氧烷改性的苯丙涂料与苯丙涂料相比,有机硅 B 的引入,提高了硅丙乳液的耐热性和耐紫外光老化性,但是这两个性能并不是随有机硅 B 用量的增大而大步提高。王秀霞等对苯丙乳液进行机硅改性的研究表明 [11] 以含乙烯基质量分数为 13% 的羟基硅油与苯丙乳液共聚所得的乳液带蓝色荧光 , 乳胶粒径为 70 ~ 100 nm , 粒径分布窄 , 乳液具有良好的钙离子稳定性、贮存稳定性

相关文档