文档库 最新最全的文档下载
当前位置:文档库 › 可靠性设计分析试题B

可靠性设计分析试题B

可靠性设计分析试题B
可靠性设计分析试题B

1.判断题(共20分,每题2分)

(1)()系统优化权衡的核心是效能、寿命周期费用两个概念之间的权衡。

(2)()产品的故障密度函数反映了产品的故障强度。

(3)()对于含有桥联的可靠性框图,在划分虚单元后得到的可靠性框图应是一个简洁的串、

并联组合模型。

(4)()提高机械零件安全系数,就可相应提高其静强度可靠度。

(5)()相似产品可靠性预计法要求新产品的预计结果必须好于相似的老产品。

(6)()并非所有的故障都经历潜在故障再到功能故障这一变化过程。

(7)()故障树也是一种可靠性模型。

(8)()事件树中的后续事件是在初因事件发生后,可能相继发生的非正常事件。

(9)()电子元器件是能够完成预定功能且不能再分割的电路基本单元。

(10)()与电子产品相比,机械产品的失效主要是耗损型失效。

2.填空题(共20分,每空1分)

(1)系统效能是系统

、及的综合反映。

(2)产品可靠性定义的要素为、和。

(3)可靠性定量要求的制定,即对定量描述产品可靠性的

及其。

(4)应力分析法用于

阶段的故障率预计。

(5)在进行FMEA之前,应首先规定FMEA从哪个产品层次开始到哪

个产品层次结束,这种规定的FMEA层次称为,一般将最顶层的约定层次称为。

(6)故障树构图的元素是和。

(7)事件的风险定义为与的乘积。

(8)PPL的含义是。

(9)田口方法将产品的设计分为三次:

、和。3.简答题(20分)

(1)(10分)画出典型产品的故障率曲线,并标明:

1)故障阶段;

2)使用寿命;

3)计划维修后的故障率变化情况。

(2)(10分)什么是基本可靠性模型?什么是任务可靠性模型?举例说明。

4.(10分)题图4(a)、(b)两部分是等价的吗?请说明理由。当表决器可靠度为1,组成单元的故障率均为常值 时,请推导出三中取二系统的可靠度和MTBCF表达式。

题图4

5.(10分)四个寿命分布为指数分布的独立单元构成一个串联系统,每个单元的MTBF分别

为:300、500、250和150小时。若要求新系统的MTBF为10小时,试按比例将MTBF分至各单元,并计算新系统各单元工作10小时时的系统可靠度。

6.(20分)已知某系统故障的故障树如下图所示,其元件MTBF均为2000小时,服从指数

分布。

1)求出最小割集(10分);

2)预计该系统工作100小时的可靠度(10分)。

机械可靠性设计发展及现状

编订:__________________ 审核:__________________ 单位:__________________ 机械可靠性设计发展及现 状 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-1230-100 机械可靠性设计发展及现状 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 随着科学技术的发展和对产品质量要求的不断提高,产品的可靠性也越来越成为产品竞争的焦点。产品的可靠性是设计出来的,生产出来的,管理出来的。可靠性设计是使产品的可靠性要求在设计中得以落实的技术。可靠性设计决定了产品的固有可靠性。 所谓可靠性是指“产品在规定时间内,在规定的使用条件下,完成规定功能的能力或性质”。可靠性的概率度量称为可靠度。长期以来,随着电子技术的发展和电子产品可靠性理论的成熟,电子产品可靠性的相对稳定,电子产品的可靠性试验技术已经发展的相对成熟;机械可靠性试验技术则由于存在理论难题而发展相对较慢。为了机械可靠性的切实发展,美国可靠性分析中心一直坚持鼓励其组织机构广泛收集机械产品可靠性数据。同时美国可靠性分析中心在提到的

可靠性设计的主要内容

可靠性设计的主要内容 1、研究产品的故障物理和故障模型 搜集、分析与掌握该类产品在使用过程中零件材料的老化、损伤和故障失效等(均为受许多复杂随机因素影响的随机过程)的有关数据及材料的初始性能(强度、冲击韧性等)对其平均值的偏离数据,揭示影响老化、损伤这一复杂物理化学过程最本质的因素,追寻故障的真正原因。研究以时间函数形式表达的材料老化、损伤的规律,从而较确切的估计产品在使用条件下的状态和寿命。用统计分析的方法使故障(失效)机理模型化,建立计算用的可靠度模型或故障模型,为可靠性设计奠定物理数学基础,故障模型的建立,往往以可靠性试验结果为依据。 2、确定产品的可靠性指标及其等级 选取何种可靠性指标取决于产品的类型、设计要求以及习惯和方便性等。而产品可靠性指标的等级或量值,则应依据设计要求或已有的试验,使用和修理的统计数据、设计经验、产品的重要程度、技术发展趋势及市场需求等来确定。例如,对于汽车,可选用可靠度、首次故障里程、平局故障间隔里程等作为可靠性指标,对于工程机械则常采用有效度。 3、合理分配产品的可靠性指标值

将确定的产品可靠性指标的量值合理分配给零部件,以确定每个零部件的可靠性指标值,后者与该零部件的功能、重要性、复杂程度、体积、重量、设计要求与经验、已有的可靠性数据及费用等有关,这些构成对可靠性指标值的约束条件。采用优化设计方法将产品(系统、设备)的可靠性指标值分配给各个零部件,以求得最大经济效益下的各零部件可靠性指标值最合理的匹配。 4、以规定的可靠性指标值为依据对零件进行可靠性设计 即把规定的可靠性指标值直接设计到零件中去,使它们能够保证可靠性指标值的实现。

机械可靠性设计复习题

A C D B E 0.90.90.9 0.9 0.9 1、 可靠度和失效率如何计算?失效率与可靠度有何关系? 2、 在可靠性的的定义中“规定时间”,“规定功能”分别指的是什么? 3、 可靠度、失效概率、失效率、平均寿命、可靠寿命、它们的定义是什么? 4、 机械系统的逻辑图与结构图有什么区别,零件之间的逻辑关系有哪几种? 5、 试写出串联系统、并联系统的可靠度计算式。 6、 什么是割集?什么是最小割集? 7、 什么是故障树分析?故障树符号常用的分为哪几类? 8、 在建立故障树时应注意哪几个方面的问题? 9、 在可靠性工程中应力的含义是什么?强度的含义是什么? 10、从广泛的意义上讲可靠性试验的含义是什么?它主要包括那些个方面? 11、加速寿命试验根据应力施加的方式可分? 1、一个系统由五个单元组成,其可靠性逻辑框图如图所示.求该系统可靠度和画出故障树。并求出故障树的最小割集与最小路集。 解:最小割集A,B C,D,E A,E B,C,D R=1-(1-0.9x0.9)(1-0.9[1-0.1x0.1])=0.8929 2、抽五个产品进行定时截尾的可靠性寿命试验,截尾时间定为100小时,已知在试验期间产品试验结果如下:t 150=小时,和t 270=小时产品失效,t 330=小时有一产品停止试验,计算该产品的点平均寿命值? 解:总试验时间 350100)35(307050=?-+++=n T 小时 点平均寿命 MTTF=1752 350=小时 3、一个机械电子系统包括一部雷达,一台计算机,一个辅助设备,其MTBF 分别为83小时,167小时和500小时,求系统的MTBF 及5小时的可靠性? 解: 5002.01002.0006.0012.01500 1167183111 ==++=++==λMTBF 小时 02.0=λ, %47.90)5(1.0502.0===-?-e e R

通用的可靠性设计分析方法

通用的可靠性设计分析方法 1.识别任务剖面、寿命剖面和环境剖面 在明确产品的可靠性定性定量要求以前,首先要识别产品的任务剖面、寿命剖面和环境剖面。 (1)任务剖面“剖面”一词是英语profile的直译,其含义是对所发生的事件、过程、状态、功能及所处环境的描述。显然,事件、状态、功能及所处环境都与时间有关,因此,这种描述事实上是一种时序的描述。 任务剖面的定义为:产品在完成规定任务这段时间内所经历的事件和环境的时序描述。它包括任务成功或致命故障的判断准则。 对于完成一种或多种任务的产品,均应制定一种或多种任务剖面。任务剖面一般应包括:1)产品的工作状态; 2)维修方案; 3)产品工作的时间与程序; 4)产品所处环境(外加有诱发的)时间与程序。 任务剖面在产品指标论证时就应提出,它是设计人员能设计出满足使用要求的产品的最基本的信息。任务剖面必须建立在有效的数据的基础上。 图1表示了一个典型的任务剖面。 (2)寿命剖面寿命剖面的定义为:产品从制造到寿命终结或退出使用这段时间内所经历的全部事件和环境的时序描述。寿命剖面包括任务剖面。 寿命剖面说明产品在整个寿命期经历的事件,如:装卸、运输、储存、检修、维修、任务剖面等以及每个事件的持续时间、顺序、环境和工作方式。 寿命剖面同样是建立产品技术要求不可缺少的信息。 图2表示了寿命剖面所经历的事件。

(3)环境剖面环境剖面是任务剖面的一个组成部分。它是对产品的使用或生存有影响的环境特性,如温度、湿度、压力、盐雾、辐射、砂尘以及振动冲击、噪声、电磁干扰等及其强度的时序说明。 产品的工作时间与程序所对应的环境时间与程序不尽相同。环境剖面也是寿命剖面和任务剖面的一个组成部分。 2.明确可靠性定性定量要求 明确产品的可靠性要求是新产品开发过程中首先要做的一件事。产品的可靠性要求是进行可靠性设计分析的最重要的依据。 可靠性要求可以分为两大类:第一类是定性要求,即用一种非量化的形式来设计、分析以评估和保证产品的可靠性;第二类是定量要求,即规定产品的可靠性指标和相应的验证方法。 可靠性定性要求通常以要求开展的一系列定性设计分析工作项目表达。常用的可靠性定性设计工作项目见表1。

系统可靠性设计与分析

可靠性设计与分析作业 学号:071130123 姓名:向正平一、指数分布的概率密度函数、分布函数、可靠度函数曲线 (1)程序语言 t=(0:0.01:20); Array m=[0.3,0.6,0.9]; linecolor=['r','b','y']; for i=1:length(m); f=m(i)*exp(-m(i)*t); F=1-exp(-m(i)*t); R=exp(-m(i)*t); color=linecolor(i); subplot(3,1,1); title('指数函数概率密度函数曲线'); plot(t,f,color); hold on subplot(3,1,2); title('指数函数分布函数函数曲线'); plot(t,F,color); hold on subplot(3,1,3); title('指数指数分布可靠度函数曲线 plot(t,R,color); hold on end (3)指数分布的分析 在可靠性理论中,指数分布是最基本、最常用的分布,适合于失效率为常数 的情况。指数分布不但在电子元器件偶然失效期普遍使用,而且在复杂系统和整 机方面以及机械技术的可靠性领域也得到使用。 有图像可以看出失效率函数密度f(t)随着时间的增加不断下降,而失效率随 着时间的增加在不断的上升,可靠度也在随着时间的增加不断地下降,从图线的 颜色可以看出,随着m的增加失效率密度函数下降越快,而可靠度的随m的增加 而不断的增加,则失效率随m的增加减小越快。 在工程运用中,如果某零件符合指数分布,那么可以适当增加m的值,使零 件的可靠度会提升,增加可靠性。 二、正态分布的概率密度函数、分布函数、可靠性函数、失效率函数曲线 (1)程序语言 t=-10:0.01:10; m=[3,6,9]; n=[1,2,3]; linecolor=['r','b','y'];

可靠性设计的基本概念与方法

4.6 可靠性设计的基本概念与方法 一、结构可靠性设计概念 1.可靠性含义 可靠性是指一个产品在规定条件下和规定时间内完成规定功能的能力;而一个工业产品(包括像飞机这样的航空飞行器产品)由于内部元件中固有的不确定因素以及产品构成的复杂程度使得对所执行规定功能的完成情况及其产品的失效时间(寿命)往往具有很大的随机性,因此,可靠性的度量就具有明显的随机特征。一个产品在规定条件下和规定时间内规定功能的概率就称为该产品的可靠度。作为飞机结构的可靠性问题,从定义上讲可以理解为:“结构在规定的使用载荷/环境作用下及规定的时间内,为防止各种失效或有碍正常工作功能的损伤,应保持其必要的强刚度、抗疲劳断裂以及耐久性能力。”可靠度则应是这种能力的概率度量,当然具体的内容是相当广泛的。例如,结构元件或结构系统的静强度可靠性是指结构元件或结构系统的强度大于工作应力的概率,结构安全寿命的可靠性是指结构的裂纹形成寿命小于使用寿命的概率;结构的损伤容限可靠性则一方面指结构剩余强度大于工作应力的概率,另一方面指结构在规定的未修使用期间内,裂纹扩展小于裂纹容限的概率.可靠性的概率度量除可靠度外,还可有其他的度量方法或指标,如结构的失效概率F(c),指结构在‘时刻之前破坏的概率;失效率^(().指在‘时刻以前未发生破坏的条件下,在‘时刻的条件破坏概率密度;平均无故障时间MTTF(MeanTimeToFailure),指从开始使用到发生故障的工作时间的期望值。除此而外,还有可靠性指标、可靠寿命、中位寿命,对可修复结构还有维修度与有效度等许多可靠性度量方法。 2..结构可靠性设计的基本过程与特点 设计一个具有规定可靠性水平的结构产品,其内容是相当丰富的,应当贯穿于产品的预研、分析、设计、制造、装配试验、使用和管理等整个过程和各个方面。从研究及学科划分上可大致分为三个方面。 (1)可靠性数学。主要研究可靠性的定量描述方法。概率论、数理统计,随机过程等是它的重要基础。 (2)可靠性物理。研究元件、系统失效的机理,物理成固和物理模型。不同研究对象的失效机理不同,因此不同学科领域内可靠性物理研究的方法和理论基础也不同. (3)可靠性工程。它包含了产品的可靠性分析、预测与评估、可靠性设计、可靠性管理、可靠性生产、可靠性维修、可靠性试验、可靠性数据的收集处理和交换等.从产品的设计到产品退役的整个过程中,每一步骤都可包含于可靠性工程之中。 由此我们可以看出,结构可靠性设计仅是可靠性工程的其中一个环节,当然也是重要的环节,从内容上讲,它包括了结构可靠性分析、结构可靠性设计和结构可靠性试验三大部分。结构可靠性分析的过程大致分为三个阶段。 一是搜集与结构有关的随机变量的观测或试验资料,并对这些资料用概率统计的方法进行分析,确定其分布概率及有关统计量,以作为可靠度和失效概率计算的依据。

机械可靠性设计发展及现状.docx

机械可靠性设计发展及现状 随着科学技术的发展和对产品质量要求的不断提高,产品的可靠性也越来越成为产品竞争的焦点。产品的可靠性是设计出来的,生产出来的,管理出来的。可靠性设计是使产品的可靠性要求在设计中得以落实的技术。可靠性设计决定了产品的固有可靠性。 所谓可靠性是指“产品在规定时间内,在规定的使用条件下,完成规定功能的能力或性质”。可靠性的概率度量称为可靠度。长期以来,随着电子技术的发展和电子产品可靠性理论的成熟,电子产品可靠性的相对稳定,电子产品的可靠性试验技术已经发展的相对成熟;机械可靠性试验技术则由于存在理论难题而发展相对较慢。为了机械可靠性的切实发展,美国可靠性分析中心一直坚持鼓励其组织机构广泛收集机械产品可靠性数据。同时美国可靠性分析中心在提到的关于将来安全相关技术发展备选课题,在可靠性领域中把机械可靠性作为三大课题( 另外两个是加速试验和软件可靠性) 之一。机械可靠性试验技术是机械可靠性技术中一个关键的问题,因此被广泛关注。 机械可靠性试验的发展 自1946 年Freuenthal在国际上发表“结构的安全度”一文以来,可靠性问题开始引起学术界和工程界的普遍关注与重视。上世纪60 年代,对机械可靠性问题引起了各国广泛重视并开始对其进行了系统研究,其中美国、前苏联、日本、英国等国家对机械产品可靠性进行了深入研究,并在机械产品可靠性理论研究和实际应用方面取得了相当进展: 1.1.20世纪40年代,德国在V-1火箭研制中,提出了火箭系统的可靠性等于所有元器件可靠度乘积的理论,即把小样本问题转化为大样本问题进行研究。 1.2.1957年6月4日,美国的“电子设备可靠性顾问委员会”发布了《军用电子设备可靠性报告》,提出了可靠性是可建立的、可分配的及可验证的,从而为可靠性学科的发展提出了初步框架。 1.3.3.20世纪50年代至60年代,美国、苏联相继把可靠性应用于航天计划,于是机械系统的可靠性研究得到发展,如随机载荷下机械结构和零件的可靠性,机械产品的可靠性设计、试验验证等。 1.4.日本于20世纪50年代后期将可靠性技术推广到民用工业,设立了可靠性研究机构和可靠性工程控制小组,大大提高了日本产品的可靠度。 NASA 在六十年代中期便开始了机械部件的应力验证和利用应力强度干涉模型进行可靠性概率设计的研究。1974年美国和日本成立了结构可靠性分析方法研究组,澳大利亚、瑞典

(完整版)机械优化设计试卷期末考试及答案

第一、填空题 1.组成优化设计的数学模型的三要素是 设计变量 、目标函数 和 约束条件 。 2.可靠性定量要求的制定,即对定量描述产品可靠性的 参数的选择 及其 指标的确定 。 3.多数产品的故障率随时间的变化规律,都要经过浴盆曲线的 早期故障阶段 、 偶然故障阶段 和 耗损故障阶段 。 4.各种产品的可靠度函数曲线随时间的增加都呈 下降趋势 。 5.建立优化设计数学模型的基本原则是在准确反映 工程实际问题 的基础上力求简洁 。 6.系统的可靠性模型主要包括 串联模型 、 并联模型 、 混联模型 、 储备模型 、 复杂系统模型 等可靠性模型。 7. 函数f(x 1,x 2)=2x 12 +3x 22-4x 1x 2+7在X 0=[2 3]T 点处的梯度为 ,Hession 矩阵为 。 (2.)函数()22121212,45f x x x x x x =+-+在024X ??=????点处的梯度为120-?? ????,海赛矩阵为2442-???? -?? 8.传统机械设计是 确定设计 ;机械可靠性设计则为 概率设计 。 9.串联系统的可靠度将因其组成单元数的增加而 降低 ,且其值要比可靠 度 最低 的那个单元的可靠度还低。 10.与电子产品相比,机械产品的失效主要是 耗损型失效 。 11. 机械可靠性设计 揭示了概率设计的本质。 12. 二元函数在某点处取得极值的充分条件是()00f X ?=必要条件是该点处的海赛矩阵正定。 13.对数正态分布常用于零件的 寿命疲劳强度 等情况。 14.加工尺寸、各种误差、材料的强度、磨损寿命都近似服从 正态分布 。 15.数学规划法的迭代公式是 1k k k k X X d α+=+ ,其核心是 建立搜索方向, 模型求解 两方面的内容。 17.无约束优化问题的关键是 确定搜索方向 。 18.多目标优化问题只有当求得的解是 非劣解 时才有意义,而绝对最优解存在的可能性很小。 19.可靠性设计中的设计变量应具有统计特征,因而认为设计手册中给出的数据

机械设备可靠性分析论文

机械设备可靠性分析摘要:机械的可靠性设计在机械设计中具有重要的作用,它对机械是否能够稳定的工作起决定性的作用。本文主要介绍了机械可靠性设计的特点,机械可靠性设计的流程,以及在机械可靠性设计中的常用的可靠性分析方法和设计技术,最后结合最近的机械可靠性的发展,介绍了机械可靠性设计的发展趋势,从而对可靠性技术在机械领域的应用和发展有一个全面的、客观的认识。 引言:随着科学技术的发展,对产品的要求不断提高,不仅要具有好的性能,更要具有高的可靠性水平。采用可靠性设计弥补了常规设计的不足,使得设计方案更加贴近生产实际。所谓可靠性是指“产品在规定时间内,在规定的使用条件下,完成规定功能的能力或性质”。可靠性的概率度量称为可靠度。可靠性工程的诞生已近半个世纪的历史, 以电子产品可靠性设计为先导的可靠性工程迄今发展得比较成熟, 已形成一门独立的学科。相比之下, 机械产品的可靠性设计与研究则起步较晚。所谓机械可靠性,是指机械产品在规定的使用条件下、规定的时间内完成规定功能的能力。由于工程材料特性的离散性以及测量、加工、制造和安装误差等因素的影响,使机械产品的系统参数具有固有的不确定性,因此考虑这种固有随机性的可靠性设计技术至关重要。据有关方面统计,产品设计对产品质量的贡献率可达70%~80%,可见设计决定了产品的固有质量特性(如:功能、性能、寿命、安全性和可靠性等),赋予了产品“先天优劣”的本质特性。上世纪60年代, 对机械可靠性问题引起了广泛的重视并开始对其进行了系统研究。虽然国内外都投入了研究力量, 取得了一定的进展,但终因机械产品可靠性涉及的领域太多、可靠性研究的范围大、基础性数据缺乏等原因,机械可靠性设计在工程实际中应用得并不广泛。本文简要介绍了可靠性技术在机械领域中的应用,主要介绍了一些在机械产品设计中应用的较为成熟的可靠性技术和可靠性设计方法,并且结合当今可靠性工程学科的发展,指出了可靠性技术在机械领域中的发展和趋势。 正文:机械产品的可靠性要受到诸多因素的影响,从产品的设计、制造、试验,到产品使用和维护,都会涉及到可靠性间题,也就是说它贯穿于产品的整个寿命周期之内。如何使产品在整个寿命周期内失效率最小,有效度高,维修性好,经济效益大,经济寿命长,是我们对产品进行可靠性设计的根本目的。机械产品的可靠性设计并不是一种崭新的设计方法, 而是在传统机械设计的基础上引入以概率论和数理统计为基础的可靠性设计方法。这样的设计可以更科学合理地获得较小的零件尺寸、体积和重量, 同时也可使所设计的零件具有可预测的寿命和失效率, 从而使产品的设计更符合工程实际。 目前在机械工程中可靠性设计主要应用在产品的设计、制造、使用和维修等方面。现代生产的经验表明,在设计、制造和使用的三个阶段中,设计决定了产品的可靠性水平,即产品的固有可靠性,而制造和使用的任务是保证产品可靠性指标的实现。可靠性试验数据是可靠性设计的基础,但是试验不能提高产品的可靠性,只有设计才能决定产品的固有可靠性。图1所示为三者的关系。 图1 机械产品与可靠性关系框图 机械产品的设计,它包括整机产品的设计和零部件的设计。整机产品可将其作为一个系统进行设计,设计的方式主要有两种,第一种是根据零部件的可靠性预测结果,计算产品系统的可靠性指标,这就是系统的可靠性预测,其结果满足指标要求即可。如果不能满足要求,就要按第二种方式

实现机械工程的可靠性优化设计参考文本

实现机械工程的可靠性优化设计参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

实现机械工程的可靠性优化设计参考文 本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 自改革开放之后,中国的工程机械行业得到了前所未 有的发展,经过30多年的不懈努力,机械工程制造业取得 了巨大的发展成果,在国民经济中占有很大的比重。在机 械工程行业里面,对其可靠性进行优化设计是十分必要 的。在本文中,深入探讨了工程机械可靠性优化设计中的 问题,以便参考。 现代社会,科学技术的发展已不可同日而语,人们不 仅对多功能产品的强烈需求,还希望多功能产品的各项能 力非常突出。以提高产品的功能可靠性为目的,促使了产 品产品的可靠性优化设计应运而生,从其概念的产生到如 今,得到了迅速发展和广泛使用。在开展工程机械产品的

设计时,需要把可靠性理论和技术融合起来,并依据具体的要求,可以优先考虑产品的可靠性;在延误开发时间,增加成本和性能的前提下,使工程机械产品的设计尽量满足可靠性的要求。由于可靠性设计是一个跨多学科,多技术的新兴技术,所以可靠性的设计涉及诸多问题。 1.机械工程设计的可靠性常用方法 1.1.鲁棒设计方法 这种设计方法主要是降低产品的敏感性。使产品的性能不会因为制造期间在变异或是使用环境的变化而变得不稳定,并且让产品在额定的使用期限内,不会因为产品的结构发生变化,参数变动,系统老化等问题而影响到工作的设计方法。该方法是基于统计分析为基础由日本的机械设计师田口玄一提出的,它根据产品的可用性对用户造成多大的经济损失来判断设计的可靠,这是它的基本原理,其中的损失通常是可靠的用户流失的可用性正比于产品的

机械设计考试试题及答案汇总

考试科目: 机 械 设 计 考试时间: 120分钟 试卷总分 100分 题号 一 二 三 四 五 总分 得分 评卷 教师 一、简答题 (本大题共4小题,总计26分) 1、 齿轮强度计算中,有哪两种强度计算理论?分别针对哪些失效?若齿轮传动为闭式软齿面传动,其设计准则是什么? (6分) 齿面的接触疲劳强度和齿根的弯曲疲劳强度的计算,齿面的接触疲劳强度针对于齿面的疲劳点蚀失效和齿根的弯曲疲劳强度针对于齿根的疲劳折断。 齿轮传动为闭式软齿面传动,其设计准则是按齿面的接触疲劳强度设计,校核齿根的弯曲疲劳强度。 2、连接螺纹能满足自锁条件,为什么还要考虑防松?根据防松原理,防松分哪几类?(8分) 因为在冲击、振动、变载以及温度变化大时,螺纹副间和支承面间的摩擦力可能在瞬间减小或消失,不再满足自锁条件。这种情况多次重复,就会使联接松动,导致机器不能正常工作或发生严重事故。因此,在设计螺纹联接时,必须考虑防松。根据防松原理,防松类型分为摩擦防松,机械防松,破坏螺纹副关系防松。 3、联轴器和离合器的功用是什么?二者的区别是什么?(6分) 得 分

联轴器和离合器的功用是联接两轴使之一同回转并传递转矩。二者区别是:用联轴器联接的两轴在工作中不能分离,只有在停机后拆卸零件才能分离两轴,而用离合器可以在机器运转过程中随时分离或接合两轴。 4、链传动产生动载荷的原因是什么?为减小动载荷应如何选取小链轮的齿数和链条节距?(6分) 小链轮的齿数不宜过小和链条节距不宜过大。 二、选择题 (在每题若干个选项中选出正确的选项填在横 线上。 本大题共12小题,总计24分) 1、当两个被联接件之一太厚,不易制成通孔且需要经常拆卸时,往往采用 B 。 A .螺栓联接 B .双头螺柱联接 C .螺钉联接 2、滚动轴承中,为防止轴承发生疲劳点蚀,应进行 A 。 A. 疲劳寿命计算 B. 静强度计算 C. 极限转速验算 3、阿基米德蜗杆的 A 参数为标准值。 A. 轴面 B. 端面 C. 法面 4、一对相啮合的圆柱齿轮的Z 1<Z 2 , b 1>b 2,其齿面接触应力的大小为 A 。 得 分

机械可靠性设计

机械可靠性设计 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

机械可靠性设计概述 专业:机械设计制造及其自动化 班级:机制(2)班 组员: 黄佳辉 芦朝晖

摘要 可靠性就是产品在规定的时间和规定的条件下完成规定功能的能力,无论任何产品或是零件能否在复杂多变的环境下发挥其应有的功能是至关重要的,目前几乎所以的机器在设计制造的过程中都必须考虑其可靠性,可靠性设计已经变得越来越重要,怎样合理的采用科学的可靠性设计方法使机器能够在要求的工作环境下不会失效损坏是设计中必须考虑的重要问题,只有这样才能提高和稳定产品的可靠性。 关键词:可靠性发展趋势设计方法意义原理 正文 机械可靠性设计的目的就是确保其设计的机械零件能够在规定的工作时间,规定的条件下完成规定的功能。机械产品是在综合学科交叉作用下的高新技术的衍生物, 其主要功效就是实现产品运行过程中的安全性、可靠性[1] 。一个产品如果无法保证其 运作的稳定性,将会极大的威胁到人生安全,而且稳定性也是对产品质量的一种保证。 一机械可靠性设计研究发展状况 国内主要的可靠性研究机构有中国赛宝实验室(CEPREI,工业和信息化部电子第五 研究所)、摩尔实验室(MORLAB)等。中国赛宝实验室是中国唯一专业进行电子产品质量与可靠性研究的权威机构。可靠性研究分析中心(RAC)是中国赛宝实验室的核心技术部门,是按国际标准ISO17025管理和运行的实验室,主要开展电子产品失效分析、破坏性物理分析、电子制造技术服务、电子产品污染控制技术项目等。 经过多年的建设和发展,分析中心在电子材料、元器件、封装、组装和电子辅料的质量与可靠性方面,具有完善的检测、分析和试验能力;开展有毒有害物质(RoHS)、环境评估与监测、ODS替代技术检测等方面的技术服务,是目前国内最先进、综合技术能力最强的电子制造技术支持实验室和环保检测实验室。 摩尔实验室中的可靠性实验室主要实验为:气候环境实验、机械环境实验、高温可靠性实验。环境试验室拥有一批国际、国内着名的专业环境试验设备制造商生产的气候环境试验设备;设备技术先进、性能稳定、功能齐全,可编程控制,自动绘制试验曲线;可按IEC、ISO等国际标准和国家标准(GB)、行业标准、企业标准,以及客户的要求进行高温、低温、恒温恒湿、交变湿热、温度变化、温度/湿度组合循环、低气压等气候环境试验。环境试验室还拥有面积40余平方米的具有国内领先水平的大型淋雨试验室,配备了可编程控制、不锈钢材料的垂直淋雨、摆管淋雨、花洒淋雨、防

机械可靠性习题汇总

第一章 机械可靠性设计概论 1、为什么要重视和研究可靠性? 可靠性设计是引入概率论与数理统计的理论而对常规设计方法进行发展和深化而形成的一种新的现代设计方法。1)工程系统日益庞大和复杂,是系统的可靠性和安全性问题表现日益突出,导致风险增加。2)应用环境更加复杂和恶劣3)系统要求的持续无故障任务时间加长。4)系统的专门特性与使用者的生命安全直接相关。5)市场竞争的影响。 2、简述可靠性的定义和要点? 可靠性定义为:产品在规定的条件下和规定的时间区间内完成规定功能的能力。主要分为两点:1)可靠度,指产品在规定条件下和规定时间内,完成规定功能的概率。1)失效率,定义为工作到时可t 时尚未失效的产品,在时刻t 以后的单位时间内发生失效的概率。 第二章 可靠性的数学基础 1、某零件工作到50h 时,还有100个仍在工作,工作到51h 时,失效了1个,在第52h 内失效了3个,试求这批零件工作满50h 和51h 时的失效率)50(-λ、)51(- λ 解:1)1,100)(, 1)(=?==?t t t n n s f 01.01 1001 )50(=?= - λ 2)2,100)(, 3)(=?==?t t t n n s f 015.02 1003 )51(=?= - λ 2、已知某产品的失效率1 4 103.0)(--- ?==h t λλ。可靠度函数t e t R λ-=)(,试求可靠度 R=99.9%的相应可靠寿命t 0.999、中位寿命t 0.5和特征寿命1-e t 解:可靠度函数 t e t R λ-=)( 故有 R t R e R t λ-=)( 两边取对数 t t R R R λ-=)( ln 则可靠度寿命 =?- =-=-h R t t 4 999.0999.010 3.0999 .0ln ) (ln λ 33h 中位寿命 =?- =- =-h R t t 4 5.0999.0103.05 .0ln ) (ln λ 23105h 特征寿命 =?- =- =--h R e t 4 1 999.010 3.03679 .0ln ) (ln λ 33331h

机械可靠性设计发展及现状详细版

文件编号:GD/FS-3657 (安全管理范本系列) 机械可靠性设计发展及现 状详细版 In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities. 编辑:_________________ 单位:_________________ 日期:_________________

机械可靠性设计发展及现状详细版 提示语:本安全管理文件适合使用于平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 随着科学技术的发展和对产品质量要求的不断提高,产品的可靠性也越来越成为产品竞争的焦点。产品的可靠性是设计出来的,生产出来的,管理出来的。可靠性设计是使产品的可靠性要求在设计中得以落实的技术。可靠性设计决定了产品的固有可靠性。 所谓可靠性是指“产品在规定时间内,在规定的使用条件下,完成规定功能的能力或性质”。可靠性的概率度量称为可靠度。长期以来,随着电子技术的发展和电子产品可靠性理论的成熟,电子产品可靠性的相对稳定,电子产品的可靠性试验技术已经发展的相对成熟;机械可靠性试验技术则由于存在理论难题而发展相对较慢。为了机械可靠性的切实发展,美国

可靠性分析中心一直坚持鼓励其组织机构广泛收集机械产品可靠性数据。同时美国可靠性分析中心在提到的关于将来安全相关技术发展备选课题,在可靠性领域中把机械可靠性作为三大课题( 另外两个是加速试验和软件可靠性) 之一。机械可靠性试验技术是机械可靠性技术中一个关键的问题,因此被广泛关注。 机械可靠性试验的发展 自1946 年Freuenthal在国际上发表“结构的安全度”一文以来,可靠性问题开始引起学术界和工程界的普遍关注与重视。上世纪60 年代,对机械可靠性问题引起了各国广泛重视并开始对其进行了系统研究,其中美国、前苏联、日本、英国等国家对机械产品可靠性进行了深入研究,并在机械产品可靠性理论研究和实际应用方面取得了相当进展: 1.1.20世纪40年代,德国在V-1火箭研制中,

机械可靠性设计单元测试题

机械可靠性设计单元测试题(1) 1.将某规格的轴承50个投入恒定载荷下运行,其失效时的运行时间及失效数如下表所示,试求该规格轴承工作到和250h 时的故障密度()250f 和可靠度()250R 。 2.某系统的平均无故障工作时间为1000h ,若该系统2000h 的工作期内需要有备件更换。现有4个备件,问系统能达到的可靠度是多少? 3.对95个某型号的溢流阀做寿命试验,在完成110小时试验时失效5个溢流阀。若其失效率为常数,试计算其平均寿命和可靠度()350R 。 4.某零件的故障率为: 5.133) 6.0102(105)(-??=--x x λ 试求故障密度函数和可靠度函数。 5.描述某元件的物理量x 为随机变量,它的均值600=u ,标准差50=σ。故障密度函数()x f 图形具有关于轴线x=u 对称且x 轴为()x f 的渐近线,当x=u 时()x f 为最大值,σ-=u x 处图形凹凸性发生改变。求随机变量500=x 时累积概率分布()x F 为多少?

机械可靠性设计单元测试题(2) 1.已知一拉杆的拉伸载荷()P P P σ,=()2000,30000P N ,拉杆材料屈服极限()s s s σσσσ,=()2.12,1076s σMPa ,拉杆直径()d d d σ,=()02.0,4.6d mm 。试计算此杆的可靠度。 2.拉杆承受的轴向载荷()P P P σ,=()1500 ,80000P N ,拉杆直径()d d d σ,=()8.0,35d mm ,拉杆长度()L L L σ,=()64,6400 L mm ,弹性模量()E E E σ,=()3200,210000 E MPa 。试计算拉杆伸长量λ的分布值()λσλλ,。 3.工程师想设计一种新零件,根据应力分析得知,零件中的拉应力服从正态分布,其均值为241.2 MPa ,标准差为27.6 MPa 。制造过程中产生的残余压应力也服从正态分布,其均值为68.9 MPa ,标准差为10.4MPa 。由零件的强度分析可知,强度服从正态分布,均值为344.6 MPa ,但对影响强度因素产生的变化尚不消楚。试问,为确保零件的可靠度不低0.999,强度的标准差的最大值为多少? 4.已知强度r 和应力s 是对数正态分布的,并具有下列参数MPa r 150=,MPa s 100=,MPa r 15=σ。试问强度的最大允许标准差为多大,方能使可靠度不低于0.999。 5.已知一零件强度服从正态分布,其均值为100MPa ,标准差为10MPa ,作用于零件上的工作应力为指数分布,其均值为50MPa ,试求零件的可靠度。 6.已知在一种发动机零件中的应力是正态分布的,其均值为350MPa ,标准差为40MPa 。材料强度的分布也是正态分布的,其均值加820 MPa ,标准差加80 MPa 。试计算此零件的可靠度。假设材料的热处理不好,且环境温度有较大变化,使零件强度的标准差增大到150MPa ,试求零件的可靠度。

机械可靠性设计

基于鞍点估计的机械零部件可靠性灵敏度分析 摘要 对机械结构来说,可靠性指标一般随材料特性、几何参数、工作环境等不确定性因素变化而减弱,所以结构的可靠度、灵敏度就显得尤为重要,对机械零部件可靠性灵敏度的分析也是亟不可待。 本文利用鞍点估计技术可以无限逼近非正态变量空间中线性极限状态函数概率分布的特点,能有效解决统计资料或实验数据较少而难以确定设计变量的分布规律的问题。将可靠性设计理论、灵敏度分析技术与鞍点逼近理论相结合,以前面可靠性数学模型为基础,系统地推导了基于鞍点估计的可靠性灵敏度公式,讨论了基于鞍点估计法的机械零部件可靠性灵敏度计算问题,为进一步分析机械零部件的可靠性稳健设计奠定了理论基础。 关键词:不确定性鞍点灵敏度可靠性 第一章绪论 1.1机械可靠性设计理论研究进展 很早以来人们就广泛采用“可靠性”这一概念来定性评价产品的质量问题,这只是靠人们的经验评定产品可靠还是不可靠,并没有一个量的标准来衡量;从基于概率论的随机可靠性到基于模糊理论的模糊可靠性再到非概率可靠性以及最近提出的结构系统概率-模糊-非概率混合可靠性,表明定量衡量产品质量问题的理论方法从产生到现在已有了长足的发展;对于复杂结构的复杂参数由单纯的概率非概率可靠性分析方法发展到可靠性灵敏度分析的各种分析方法,使得这一理论日续丰富和完善,并深入渗透到各个学科和领域。可靠性当今已成为产品效能的决定因素之一,作为一个与国民经济和国防科技密切相关的科学,未来的科技发展中也必将得到广泛的研究和应用。 20世纪初期把概率论及数理统计学应用于结构安全度分析,已标志着结构可靠性理论研究的初步开始。20世纪40年代以来,机械可靠性设计理论有了长足的发展,目前为止己

软件可靠性设计与分析

软件可靠性分析与设计 软件可靠性分析与设计 软件可靠性分析与设计的原因?软件在使用中发生失效(不可靠会导致任务的失败,甚至导致灾难性的后果。因此,应在软件设计过程中,对可能发生的失效进行分析,采取必要的措施避免将引起失效的缺陷引入软件,为失效纠正措施的制定提供依据,同时为避免类似问题的发生提供借鉴。 ?这些工作将会大大提高使用中软件的可靠 性,减少由于软件失效带来的各种损失。 Myers 设计原则 Myers 专家提出了在可靠性设计中必须遵循的两个原则: ?控制程序的复杂程度

–使系统中的各个模块具有最大的独立性 –使程序具有合理的层次结构 –当模块或单元之间的相互作用无法避免时,务必使其联系尽量简单, 以防止在模块和单元之间产生未知的边际效应 ?是与用户保持紧密联系 软件可靠性设计 ?软件可靠性设计的实质是在常规的软件设计中,应用各种必须的 方法和技术,使程序设计在兼顾用户的各种需求时, 全面满足软件的可靠性要求。 ?软件的可靠性设计应和软件的常规设计紧密地结合,贯穿于常规 设计过程的始终。?这里所指的设计是广义的设计, 它包括了从需求分析开始, 直至实现的全过程。 软件可靠性设计的四种类型

软件避错设计 ?避错设计是使软件产品在设计过程中,不发生错误或少发生错误的一种设计方法。的设计原则是控制和减少程序的复杂性。 ?体现了以预防为主的思想,软件可靠性设计的首要方法 ?各个阶段都要进行避错 ?从开发方法、工具等多处着手 –避免需求错误 ?深入研究用户的需求(用户申明的和未申明的 ?用户早期介入, 如采用原型技术 –选择好的开发方法

?结构化方法:包括分析、设计、实现 ?面向对象的方法:包括分析、设计、实现 ?基于部件的开发方法(COMPONENT BASED ?快速原型法 软件避错设计准则 ? (1模块化与模块独立 –假设函数C(X定义了问题X 的复杂性, 函数E(X定义了求解问题X 需要花费的工作量(按时间计,对于问题P1和问题P2, 如果C(P1>C(P2,则有 E(P1> E(P2。 –人类求解问题的实践同时又揭示了另一个有趣的性质:(P1+P2>C(P1 +C(P2 –由上面三个式子可得:E(P1+ P2> E(P1+E(P2?这个结论导致所谓的“分治法” ----将一个复杂问题分割成若干个可管理的小问题后更易于求解,模块化正是以此为据。 ?模块的独立程序可以由两个定性标准度量,这两个标准分别称为内聚和耦合。耦合衡量不同模块彼此间互相依赖的紧密程度。内聚衡量一个模块内部各个元素彼此结合的紧密程度。 软件避错设计准则 ? (2抽象和逐步求精 –抽象是抽出事物的本质特性而暂时不考虑它们的细节 ?举例

最新可靠性设计试卷(机械一组)

2016可靠性设计试卷(机械一组) 一、选择题(每个2分,共15题) 1、以下哪个不是可靠性工程重要性的主要表现:(B) A、高科技的需要 B、文化实力的需要 C、经济效益的需要 D、政治声誉的需要 2、指数分布的一个重要性质是:(A) A、无记忆性 B、线性 C、有记忆性 D、非线性 3、某电子设备有同型号电阻5个,同型号电容10个,同型号电感3个,电位器1个,同型号二极管2个,晶体管1个。该型号的电阻MTBF(平均故障间隔时间)为10000h,该型号的电容MTBF为6000h,该型号的电感MTBF为8000h,电位器MTBF为4000h,该型号的二极管MTBF为5000h,晶体管MTBF为5000h,用产品相似估计法预计的该电子设备的MTBF为:(C) A、0.003h B、0.001h C、294.84h D、960h 4、对可靠性实验叙述错误的是()。答案:A A、可靠性实验是实验室的实验 B、环境应力筛选试验不能提高产品固有可靠性,但通过改进设计和工艺等可以提高产品的可靠性水平 C、可靠性增长试验是通过发现故障、分析和纠正故障以及对纠正措施的有效性而进行验证以提高产品可靠性水平的过程 D、可靠性测定试验的目的是通过试验测定产品的可靠性水平 5、可靠性的主要指标有()答案:D A、可靠度与不可靠度 B、故障密度函数 C、故障率 D、以上都是

6、可靠性研究的重点在于延长()答案:B A、早期工作期 B、正常工作期 C、损耗时期 D、磨合时期 7、寿命试验的用途有哪些?()答案:D A、可靠性测定 B、可靠性验证 C、可靠性鉴定 D、以上都是 8、FMEA(故障模式影响分析)是一种______C_____的失效因果关系的分析程序,旨在不漏掉一个后果严重的故障模式。FMEA是一种___________分析手段。它使用统计表格来进行分析,可不使用数学工具。 A、自上而下定量 B、自下而上定量 C、自下而上定性 D、自上而下定性 9、设有一可修复的电子产品工作10000h,累计发生4次故障,则该产品的MTBF 约为_________。答案:A A、2500h B、2000h C、2400h D、9600h 10、产品可靠性与________无关。答案:A A、规定概率 B、规定条件 C、规定时间 D、规定功能 11、评定产品基本可靠性时应统计的故障是________。答案:B A、发生在任务期间的故障 B、寿命期间的所有故障 C、修理时发生的故障 D、危机任务完成的故障

机械可靠性设计复习题

1. 简述正态分布曲线特点? 2. 威布尔分布的形状参数和尺寸参数不变,位置参数变化时,威布尔曲线将如何变化?并 说明其变化代表了产品可靠性的特点? 3. 强度与应力均服从正态分布时,零件的可靠度如何确定? 4. 简述AGREE 分配法的方法? 5. 什么是割集、最小割集、路集、最小路集? 6. 为了考核某电机厂的产品质量,经随机抽样,选出80台电机,在给定的条件下进行可 靠性试验,记录数据见下表。 试求:① 该产品工作1500小时的可靠度观测值; ② 该产品工作1500小时的累积失效概率观测值; ③ 该产品在1000~1500小时内的平均失效概率密度观测值; 7. 某汽车零件,其应力与强度均服从正态分布,即(μS ,σS )=(912,31.8)MPa , ( μδ,σδ)=(1076,42.2)MPa ,求该零件的可靠度R 。 8. 松螺栓联结,M12螺栓(车制d 1=10.106mm ),材料Q235,4.6级(强度MPa S 5.272=, 变异系数06.0=S ν),设螺栓允许的偏差d d 015.0±=?,承受载荷F=(7000±700)N ,求此时的可靠度。 9. 系统由3个子系统串联而成,第一个子系统由单元1、2、3组成2/3表决子系统,第二 个子系统由单元4、5串联组成,第三个子系统由单元6、7、8并联,设每个单元的可靠度相同,R=0.95,求系统的可靠度。 10. 系统可靠性逻辑框图如下所示,求(1)系统故障树;(2)求系统的最小割集。(8分)

1. 用图解法求21x x 、,使目标函数()524212221+--+=x x x x X F 最大和最小,并满足 约束条件: ()()()()00 220 42413122211≥=≥=≤--=≤-+=x X g x X g x x X g x x X g 2. 何谓梯度?它具有什么性质? 3. 何谓函数极值点?它存在的条件是什么? 4. 迭代法的基本思想是什么?常用的终止准则有哪些? 5. 复合形法的基本思想是什么? 6. 函数()1422+-=x x X F 在初始区间[0.5,2]上为单峰函数,利用黄金分割法求得42 7.1,073.111==b a ,对应的函数值为6353.0,9893.021-=-=F F ,试继续迭代运算,求函数极小值点,精度值6.0=ε 7. 目标函数()22212122x x x x X F ++=,由点[]T k X 2,1=出发,沿负梯度方向作一维搜索,求最优步长因子k α

相关文档
相关文档 最新文档