文档库 最新最全的文档下载
当前位置:文档库 › 实验七 比例求和运算及微积分电路

实验七 比例求和运算及微积分电路

实验七  比例求和运算及微积分电路
实验七  比例求和运算及微积分电路

微积分的基本运算

第4章微积分的基本运算 本章学习的主要目的: 1.复习高等数学中有关函数极限、导数、不定积分、定积分、二重积分、级数、方程近似求解、常微分方程求解的相关知识. 2.通过作图和计算加深对数学概念:极限、导数、积分的理解. 3.学会用MatLab软件进行有关函数极限、导数、不定积分、级数、常微分方程求解的符号运算; 4.了解数值积分理论,学会用MatLab软件进行数值积分;会用级数进行近似计算. 1 有关函数极限计算的MatLab命令 (1)limit(F,x,a) 执行后返回函数F在符号变量x趋于a的极限 (2)limit(F,a) 执行后返回函数F在符号变量findsym(F)趋于a的极限 (3)limit(F) 执行后返回函数F在符号变量findsym(F)趋于0的极限 52

53 (4)limit(F,x,a,’left’) 执行后返回函数F 在符号变量x 趋于a 的左极限 (5)limit(F,x,a,’right’) 执行后返回函数F 在符号变量x 趋于a 的右极限 注:使用命令limit 前,要用syms 做相应符号变量说明. 例7 求下列极限 (1)42 20 x cos lim x e x x -→- 在MatLab 的命令窗口输入: syms x limit((cos(x)-exp(-x^2/2))/x^4,x,0) 运行结果为 ans =-1/12 理论上用洛必达法则或泰勒公式计算该极限: 方法1 =-+-=---=-- - →- →-→2 2 222 20 x 3 22 x 4 2 20 x 12cos lim 4) (sin lim cos lim x x e e x x x e x x e x x x x x 12112112)2(2 lim 1211cos lim 222 220x 2 2 22220 x -=--+=--++-- →- - →x x x e x x x x x e e x 方法2 4 42 224420x 4 2 20 x ))(2) 2()2(1()(!421lim cos lim x x o x x x o x x x e x x +-+---++-=-→- →

东南大学高等数学数学实验报告上

Image Image 高等数学数学实验报告 实验人员:院(系) ___________学号_________姓名____________实验地点:计算机中心机房 实验一 1、 实验题目: 根据上面的题目,通过作图,观察重要极限:lim(1+1/n)n =e 2、 实验目的和意义 方法的理论意义和实用价值。 利用数形结合的方法观察数列的极限,可以从点图上看出数列的收敛性,以及近似地观察出数列的收敛值;通过编程可以输出数列的任意多项值,以此来得到数列的收敛性。通过此实验对数列极限概念的理解形象化、具体化。 三、计算公式 (1+1/n)n 四、程序设计 五、程序运行结果 六、结果的讨论和分析 当n足够

Image Image 大时,所画出的点逐渐接近于直线,即点数越大,精确度越高。对于不同解题方法最后均能获得相同结果,因此需要择优,从众多方法中尽可能选择简单的一种。程序编写需要有扎实的理论基础,因此在上机调试前要仔细审查细节,对程序进行尽可能的简化、改进与完善。 实验二一、实验题目 制作函数y=sin cx的图形动画,并观察参数c对函数图形的影响。 二、实验目的和意义 本实验的目的是让同学熟悉数学软件Mathematica所具有的良好的作图功能,并通过函数图形来认识函数,运用函数的图形来观察和分析函数的有关性态,建立数形结合的思想。三、计算公式:y=sin cx 四、程序设计五、程序运行结果 六、结果的讨论和分析 c的不同导致函数的区间大小不同。 实验三 一、实验题目 观察函数f(x)=cos x的各阶泰勒展开式的图形。 二、实验目的和意义 利用Mathematica计算函数的各阶泰勒多项式,并通过绘制曲线图形,来进一步掌握泰勒展开与函数逼近的思想。 三、计算公式

比例求和运算电路知识讲解

比例求和运算电路

实验八 比例求和运算电路 —、实验目的 1、掌握用集成运算放大器组成比例、求和电路的特点及性能。 2、学会上述电路的测试和分析方法。 二、实验原理 1、比例运算放大电路包括反相比例,同相比例运算电路,是其他各种运算电路的基础,我们在此把它们的公式列出: 反相比例放大器 10R R V V A F i f -== 1R r if = 同相比例放大器 1 01R R V V A F i f +== ()id Od r F A r +=1 式中Od A 为开环电压放大倍数F R R R F +=11 id r 为差模输入电阻 当0=F R 或∞=1R 时,0=f A 这种电路称为电压跟随器 2、求和电路的输出量反映多个模拟输入量相加的结果,用运算实现求和运算时,可以采用反相输入方式,也可以采用同相输入或双端输入的方式,下面列出他们的计算公式。 反相求和电路 22110i F i F V R R V R R V ?+?-= 若 21i i V V = ,则 ()210i i F V V R R V += 双端输入求和电路 ?? ? ??-'=∑∑21120i i F V R R V R R R R V 式中: F R R R //1=∑ 32//R R R ='∑ 三、实验仪器 l 、数字万用表 2、示波器 3、信号发生器 4、集成运算放大电路模块 四、预习要求 1、计算表8-l 中的V 0和A f 2、估算表8-3的理论值 3、估算表8- 4、表8-5中的理论值 4、计算表8-6中的V 0值 5、计算表8-7中的V 0值

五、实验内容 1、电压跟随器 实验电路如图8-l所示. 图8-l电压跟随器 按表8-l内容实验并测量记录。 V i (V)-2 -0.5 0 0.5 0.98 V (V) R L =∞ R L = 5K1 4,96 2、反相比例放大器 实验电路如图8-2所示。 图8-2反相比例放大器 (l) 按表8-2内容实验并测量记录. 直流输入电压U i (mV)30 100 300 9803000 输出电压U 理论估算 (mV) 实测值(mV)10800 误差 (2) 按表8-3要求实验并测量记录. 测试条件理论估算值实测值 ΔU R L 开路,直流输入信号

最新实验7微积分基本运算

实验7微积分基本运 算

实验7 微积分基本运算 一、实验目的 学会用MATLAB 软件求高等数学中函数的极值、微分、积分的方法. 二、实验内容与要求 1.函数的的极限 格式:limit(F,x,a) %计算符号表达式F=F(x)的极限值,当x →a 时; limit(F,x,a,’right ’) %计算符号表达式F 的右极限,当x →a +时。 limit(F,x,a,’left ’) %计算符号函数F 的左极限,当x a -→时。 【例1.61】 >> syms x a t h n; >> L1=limit((cos(x)-1)/x) %缺省状态下,计算当x →0时的极限值 error!!!!!!!!! >> L2=limit(1/x^3,x,0,'right') >> L3=limit(1/x,x,0,'left') >> L4=limit((log(x+h)-log(x))/h,h,0) >> v=[(1+a/x)^x,exp(-x)]; >> L5=limit(v,x,inf,'left') >> L6=limit((1+2/n)^(3*n),n,inf) 计算结果为: L1 = L2 = Inf L3 = -Inf L4 = 1/x L5 = [ exp(a), 0] L6 = exp(6) 2.求单变量函数的极值 格式:fmin(F,a,b) %计算在区间a-b 上函数F 取最小值时的x 的值. 说明:在5.3及5.3以上版本命令fmin 已改fminbnd,常用格式如下. X=fminbnd(F,a,b) %计算在区间a-b 上函数F 取最小值时的x 的值. [x,fval]=fminbnd(F,a,b)%计算在区间a-b 上函数F 的最小值fval 和对应 的x 值。 【例1.62】 求函数f(x)=3226187x x x --+在区间(-2,4)的极小值,并作图.

微积分电路实验报告器件实验

示波器的使用及微分、积分电路实验报告 一、实验目的 1、熟练掌握示波器、函数信号发生器、及面包板的使用方法 2、能够准确解读示波器的图像,读出实验所需数据 3、了解微分、积分电路的原理,能够做出简单的微分、积分电路,并 解释其波形 二、实验仪器 双踪示波器、函数信号发生器、面包板、电阻、电容,数字万用表 三、实验原理 微、积分电路原理 所谓的微分及积分电路实际上就是在电路分析中的一阶电路,简单的微、积分电路,可利用电阻和电容、脉冲信号组成。 如图: 其中脉冲信号为矩形波,电阻两端电压输出为微分形式,电容两端输出为积分形式。所以微、积分电路其实为同一电路,只是不同部分电压的输出不同。

因为实验中,函数信号为最小值0V ,最大值5V ,所以我们也以此来计算电容、电阻两端电压变化情况。 因为dq i dt =,而对于电容又有q=Cu ; 所以电容两端有du i C dt =,则根据欧姆定理及基尔霍夫定律(KVL ): c c s du RC u u dt +=; 上式可变为 1 ()c s c du u u dt RC =- 即 1c s c du dt u u RC =-,可变为()1 s c s c d u u dt u u RC --=-, 两端积分,可得1 ln()s c u u t k RC --= + 积分常数可由初始条件加以确定: 当一个信号周期开始,电容两端电压先是从0V 变为5V ,再变为0V 。 所以是两个过程,第一个过程,(0)0c u V = 则,t =0时,可知ln s k u =-; 所以1 ln()ln s c s u u u t RC --=- ,即1ln s c s u u t u RC -=- 两边取反对数,得1t s c RC s u u e u --=,即:1()(1)t RC c s u t u e -=- 而R c s u u u +=,所以1t RC R s u u e - = 第二个过程,(0)c s u u =,则,t =0时,可知s c u u -趋近于0,不能直接算出k 值,所以可以将电容看做一个以电压源0()c u t 与一个初始电压为0的电容的串联,所以10()()()c c u t u t u t =+。 而1()u t 看做零状态响应:110() ()(1)t RC c u t u t e - =--

最新实验六比例求和运算及其微积分电路

实验六比例求和运算及其微积分电路

实验六 比例求和运算及微积分电路 实验内容及步骤 1 .搭接电压跟随器并验证其跟随特性。 U1 UA741CP 3 2 4 76 5 112V VEE -12V VCC VEE XFG1 XSC1 A B Ext Trig + + _ _ +_ R15.1kΩ2 1 仿真图如上 输出输入波形重合,其跟随特性得以验证. 实测数据显示Uo=Ui,验证运放性能良好。 2 .测量反相比例电路的比例系数。

由图:为反相比例放大,输入电压为10mv,输出电压为100mv,且输出波形与输入波形反相,放大倍数10。 理论值:Uo=-Rf/Ri*Ui=-10Ui,反相比例系数为-10. 实测数据如下: Uo/mv 10 15 20 Ui/v 0.11 0.165 0.22

分析,Uo与Ui反相,反相比例电路的比例系数为-10. 3 .测量同相比例放大器的比例系数及上限截止频率。 仿真图如下: 输入输出波形如下 由图:Ui=10mv,Uo=100mv,且输入输出同相,放大系数约为10倍。实测数据如下: Ui/mv 10 20 30 40 50 60 Uo/v 0.11 0.22 0.33 0.43 0.545 0.66

Au 11 11 11 10.5 10.9 11 所以实际放大倍数约为11,与理论值接近。 测量截止频率:首先将函数发生器的输入电压幅值调为20mv,此时观察示波器输出约为0.22v,然后调节函数发生器的调频旋钮,随着频率增大,当 Uo=0.22*0.707=0.15554v时,对应电压即为上限截止频率,fh=94.78khz. 4 .测量反相求和电路的求和特性。

1比例求和运算电路

实验报告(1) 学院: 课程名称: 实验项目:比例、求和运算电路专业班级: 小组成员: 姓名: 学号: 指导老师:

学生实验报告 一、实验目的 1.掌握运算放大器组成比例求和电路的特点性能及输出电压与输入电压的函数关系。 2.学会上述电路的测试和分析方法。 二、实验仪器及设备 示波器、TB型模拟电路实验仪和⑤号实验板等。 三、实验电路原理 集成运算放大器是具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元件组成输入和负反馈电路时,可以实现各种特定的函数关系。 四、实验内容及步骤 每个比例、求和运算电路实验,都应先进行以下两项: 1.按电路图接好线后,仔细检查,确保正确无误。 将各输入端接地,接通电源,用示波器观察是否出现自激振荡。若有自激振荡,则需更换集成运算放大电路。

2. 调零:各输入端仍接地,调节调零电位器,使输出电压为零(用示波器测量) ⑴ 反相比例放大器 实验电路如图J5-1所示 图J5-1 反相比例放大器 预习要求: 分析图J5-1反相比例放大器的主要特点(包括反馈类型),求出表J5-1的理论估算值。 表J5-1 实验内容: 在5号实验模板上按图J5-1“反相比例放大器”连好线,并接上电源线,做表J5-1中的内容。 将反相比例放大器的输入端接DC 信号源的输出,将DC 信号源的转换开关置于合适位置,调节电位器,使i V 分别为表J5-1中所列各值,分别测出o V 的值,填在该表中。 ⑵ 同相比例放大器

实验电路如图J5-2所示。 预习要求: ①分析图J5-2同相比例放大器的主要特点(包括反馈类型),求出表J5-2各理论估算值。 ②熟悉实验任务,自拟实验步骤,并做好实验记录准备工作。 图J5-2同相比例放大器 表J5-2 ⑶电压跟随器 实验电路如图J5-3所示 预习要求: ①分析图J5-3电路的特点,求出表J5-3中各理论估算值。 ②熟悉实验任务,自拟实验步骤,并做好实验记录准备工作。

仿真实验一-RC微分积分电路

一、RC 一阶微积分电路仿真实验 一、电路课程设计目的 1、测定RC 一阶电路的积分、微分电路; 2、掌握有关微分电路和积分电路的概念。 二、仿真电路设计原理 1.RC 电路的矩形脉冲响应 若将矩形脉冲序列信号加在电 压初值为零的RC 串联电路上, 电路的瞬变过程就周期性地发 生了。显然,RC 电路的脉冲响 应就是连续的电容充放电过程。 如图所示。 若矩形脉冲的幅度为U ,脉宽为 tp 。电容上的电压可表示为: 电阻上的电压可表示为: 21010 0)(0)1()(t t t e U t u t t e U t u t t ≤≤?=≤≤-=--K Λττ 即当 0到t1时,电容被充电;当t1到t2 时,电容器经电阻R 放电。 2110 )(0)(t t t e U t u t t e U t u t R t R ≤≤?-=≤≤?=--K Λττ (也可以这样解释:电容两端电压不能突变,电流可以,所以反映在图中就是电阻两端的电压发生了突变。) 2.RC 微分电路 取RC 串联电路中的电阻两端为输出端,并选择适当的电路参数使时间常数τ<

上式说明,输出电压uo(t)近似地与输入电压ui(t)成微分关系,所以这种电路称微分电路。 3.RC 积分电路 如果将RC 电路的电容两端作为输出端,电路参数满足τ>>tp 的条件,则成为积分电路。由于这种电路电容器充放电进行得很慢,因此电阻R 上的电压ur(t)近似等于输入电压ui(t),其输出电压uo(t)为: ????≈?=?==dt t u RC dt R t u C dt t i C t u t u R R C C )(1)(1)(1)()(0 上式表明,输出电压uo(t)与输入电压ui(t)近似地成积分关系。 4.时间常数 RC 电路中,时间常数τ=R*C ; RL 电路中,时间常数τ=L/R 。 三、仿真实验电路搭建与测试 1、一阶RC 微分电路: 1u c u

5.2 微积分基本公式-习题

1.设函数0 cos x y tdt = ?,求'(0)y ,'()4 y π。 【解】由题设得'()cos y x x =, 于是得 '(0)cos01y ==,'()cos 4 4 2 y ππ == 。 2.计算下列各导数: ⑴20x d dx ?; 【解】20x d dx ?2)x =2= ⑵ 1t d dt dx ; 【解】1t d dt dx 1 ()t d dt dx =-=-=。 ⑶ cos 2 sin cos()x x d t dt dx π?; 【解】cos 2sin cos()x x d t dt dx π?0cos 2 2sin 0[cos()cos()]x x d t dt t dt dx ππ=+?? 》 0cos 22 sin 0cos()cos()x x d d t dt t dt dx dx ππ= +?? sin cos 2200 [cos()]cos()x x d d t dt t dt dx dx ππ=-+?? 22cos(sin )(sin )cos(cos )(cos )d d x x x x dx dx ππ=-+ 22cos(sin )cos cos[(1sin )](sin )x x x x ππ=-+-- 22cos(sin )cos cos(sin )sin x x x x πππ=--- 22cos(sin )cos cos(sin )sin x x x x ππ=-+ 2cos(sin )(sin cos )x x x π=-。 ⑷2ln 1 x x d dt dx t ?。 【解】 2ln 1x x d dt dx t ?21ln 11 1[]x x d dt dt dx t t =+?? 21ln 111x x d d dt dt dx t dx t =+?? …

(整理)学生微积分运算命令与例题

求极限运算 命令形式1:Limit(f) 功能:计算()x f lim 0 x → , 其中f 是符号函数。 命令形式2: Limit(f,x,a) 功能:计算()x f lim a x →,其中f 是符号函数。 命令形式3: Limit(f,x,inf) 功能:计算()x f lim x ∞ →,其中f 是符号函数。 命令形式4: Limit(f,x,a,’right ’) 功能:计算()x f lim a x +→,其中f 是符号函数。 命令形式5: Limit(f,x,a,’left ’) 功能:计算()x f lim -a x →,其中f 是符号函数。 注意:在左右极限不相等或左右极限有一个不存在时,Matlab 的默认状态为求右极限。 例4:求极限() )11 ln 1( lim 2 21 --+→x x x x 解:Matlab 命令为: syms x ↙ y=(1/(x*(log(x))^2))-1/(x-1)^2; limit(y,x,1,'right')↙ ans = 1/12 此极限的计算较难,用Matlab 很容易得结果。 例6:求极限3 1 0)sin 1tan 1( lim x x x x ++→ 解:Matlab 命令为: syms x ↙ y=(1+tan(x))/(1+sin(x))^(1/x^3);↙ limit(y)↙ ans = 0 导数与微分 6.2.1 一元函数的导数与微分 导数是函数增量与自变量增量之比的极限,即x x f x x f x f x ?-?+=→?) ()(lim )(0 ' .在 Matlab 中求函数的导数及其他一些类似运算均由diff 命令来完成. 用差分法求导数的数值解 用差分法求导数比较粗略,误差较大,尽量少采用差份法取计算数值微分,具体指令为:

比例求和运算电路

实验八 比例求和运算电路 —、实验目的 1、掌握用集成运算放大器组成比例、求和电路的特点及性能。 2、学会上述电路的测试和分析方法。 二、实验原理 1、比例运算放大电路包括反相比例,同相比例运算电路,是其他各种运算电路的基础,我们在此把它们的公式列出: 反相比例放大器 10R R V V A F i f -== 1R r if = 同相比例放大器 1 01R R V V A F i f +== ()id Od r F A r +=1 式中Od A 为开环电压放大倍数F R R R F +=11 id r 为差模输入电阻 当0=F R 或∞=1R 时,0=f A 这种电路称为电压跟随器 2、求和电路的输出量反映多个模拟输入量相加的结果,用运算实现求和运算时,可以采用反相输入方式,也可以采用同相输入或双端输入的方式,下面列出他们的计算公式。 反相求和电路 22 110i F i F V R R V R R V ?+?-= 若 21i i V V = ,则 ()210i i F V V R R V += 双端输入求和电路 ??? ??-'=∑∑21120i i F V R R V R R R R V 式中: F R R R //1=∑ 32//R R R ='∑ 三、实验仪器 l 、数字万用表 2、示波器 3、信号发生器 4、集成运算放大电路模块

四、预习要求 1、计算表8-l中的V0和A f 2、估算表8-3的理论值 3、估算表8- 4、表8-5中的理论值 4、计算表8-6中的V0值 5、计算表8-7中的V0值 五、实验内容 1、电压跟随器 实验电路如图8-l所示. 图8-l电压跟随器按表8-l内容实验并测量记录。 表 8-1 V i(V)-2 -0.5 0 0.5 0.98 V0(V)R L=∞ R L= 5K1 4,96 2、反相比例放大器 实验电路如图8-2所示。 图8-2反相比例放大器(l) 按表8-2内容实验并测量记录. 表8-2

微积分电路 实验报告

模拟电路实验报告 微积分电路

一.实验目的 1.微积分电路的工作原理及计算方法。 2.微积分电路的测试分析方法。 二.实验仪器 数字万用表 信号发生器 示波器 交流毫伏表 直流稳压电源 三.实验原理 实验原理可以构成积分和微分运算电路: 微分电路的运算关系:u 。=-RC dt du i 积分电路的运算关系:u 。=-RC 1 i u dt 四.实验内容 1.积分电路 连接积分电路,检查无误后接通+12v 和-12v 直流电源。 ①取ui=-1v,用示波器观察波形u 。,并测量运放输出电压的正向饱和电压值。(即为积分带最大时,为11.118v ) ②取ui=1v,测量运放的负向饱和电压值。(为-11.118v ) 由于波形上下波动很快,所以无法在实验实测其饱和电压值。 ③将电路中的积分电容改为0.1uF ,ui 分别输入1KHz 幅值为2v 的方波和正弦信号,观察u i 和u 。的大小及相位关系,并记录波形,计算电路的有效积分时间。

a. 输入1KHz 的方波时(记录为幅值) b. 输入1KHz 的方波时(记录为幅值) 有效积分时间:31010?==RC τ6101.0-??=0.001s ④改变电路的输入信号的频率,观察ui 和u 。的相位,幅值关系。(输入为正弦波) 随着频率变大,幅值变小,相位不变。 2.微分电路 在输入端串联滑动变阻,改进微分电路,滑动变阻器可以减少电路反馈滞后与内部滞后产生自激引起的失真。

①输入正弦波信号,f=500Hz,有效值为1v,用示波器观察Ui和U。的波形并测量输出电压值。(记录为幅值) 仿真值:ui=1.4V u。=4.3V 实验值:ui=1.4V u。=4.5V 此时滑动变阻为1k欧姆,波形无失真。 ②改变正弦波频率(20Hz——40Hz),观察Ui和U。的相位,幅值变化的情况并记录。(记录为幅值) 随着频率的增大,幅值也在增大,相位没有变化。 ③输入方波,f=200Hz,U=±5v,用示波器观察U。波形,并重复上述实验。 实验:输入方波,f=200Hz,U=±5v,滑动变阻为45k欧姆。 ④输入三角波,f=200Hz,U=±2v,用示波器观察U。波形,重复上述实验。 仿真波形为:输出为4v. 实验:输入方波,f=200Hz,U=±5v,滑动变阻为45k欧姆。 3.积分——微分电路: 在输入端串联滑动变阻,改进微分电路,滑动变阻器可以减少电路反馈滞后与内部滞后产生自激引起的失真。

实验七比例求和运算及微分运算电路

实验七比例求和运算及微分运算电路 一.实验目的 1.掌握集成运算放大器的特点,性能及使用方法。 2.掌握比例求和电路,微积分电路的测试和分析方法。 3.掌握各电路的工作原理和理论计算方法。 二.实验仪器 1.GOS-620模拟示波器 2.GFG-8250A信号发生器 3.台式三位半数字万用表 4.指针式交流毫伏表 5.SPD3303C直流电源 三.实验内容及步骤 1.搭接电压跟随器并验证其跟随特性,测量2-3组数据进行验证。 2.测量反向比例电路的比例系数,测量其计算值与理论值进行比较

理论值:Uo=-(R F/Ri)*Ui,ui=7mV,uo=-70mV 实际值: uo=7mV,ui=69mV 3.测量同相比例放大器的比例系数及上限截止频率 理论值:uo=-(1+RF/Ri)*ui,ui=6.9mV,uo=75.9mV 实际值:ui=6.9mV,uo=76mV 4.测量反相求和电路的求和特性,注意多路输入信号可通过电阻分压法获取 仿真值如下图所示, Ui1=3.185mV,Ui2=1.706mV,Uo=48.899mV, 满足输入与输出运算关系: Uo=-[(RF /R1)*Ui1+( RF /R2)*Ui2]

5.验证双端输入求和的运算关系

6.积分电路 如图所示连接积分运算电路,检查无误后接通±12V直流电源 ①取ui=-1V,用示波器观察波形uo,并测量运放输出电压值的正向饱和电压值 正向饱和电压值为11V ②取ui=1V,测量运放的负向饱和电压值。注意±1V的信号源可用1Hz交流信号代替 反向饱和电压值为-11V ③将电路中的积分电容改为0.1uF,ui分别输入1kHz幅值为2V的方波和正弦波信号, 观察ui和uo的大小及相位关系并记录波形,计算电路的有效积分时间。 Ui=1.414V,Uo=222.157mV

微积分公式与运算法则

微积分公式与运算法则 1.基本公式 (1)导数公式(2)微分公式 (xμ)ˊ=μxμ-1d(xμ)=μxμ-1dx (a x)ˊ=a x lnad(a x)=a x lnadx (loga x)ˊ=1/(xlna)d(loga x)=1/(xlna)dx (sinx)ˊ=cosxd(sinx)=cosxdx (conx)ˊ=-sinxd(conx)=-sinxdx (tanx)ˊ=sec2xd(tanx)=sec2xdx (cotx)ˊ=-csc2xd(cotx)=-csc2xdx (secx)ˊ=secx·tanxd(secx)=secx·tanxdx (cscx)ˊ=-cscx·cotxd(cscx)=-cscx·cotxdx (arcsinx)ˊ=1/(1-x2)1/2d(arcsinx)=1/(1-x2)1/2dx (arccosx)ˊ=-1/(1-x2)1/2d(arccosx)=-1/(1-x2)1/2dx (arctanx)ˊ=1/(1+x2)d(arctanx)=1/(1+x2)dx (arccotx)ˊ=-1/(1+x2)d(arccotx)=-1/(1+x2)dx (sinhx)ˊ=coshxd(sinhx)=coshxdx (coshx)ˊ=sinhxd(coshx)=sinhxdx 2.运算法则(μ=μ(x),υ=υ(x),α、β∈R)(1)函数的线性组合积、商的求导法则 (αμ+βυ)ˊ=αμˊ+βυˊ(μυ)ˊ=μˊυ+μυˊ(μ/υ)ˊ=(μˊυ-μυˊ)/υ2

(2)函数和差积商的微分法则 d(αμ+βυ)=αdμ+βdυ d(μυ)=υdμ+μdυ d(μ/υ)=(υdμ-μdυ)/υ2 3.复合函数的微分法则 设y=f(μ),μ=ψ(x),则复合函数y=f[ψ(x)]的导数为 dy/dx=fˊ[ψ(x)]·ψˊ(x) 所以复合函数的微分为 dy=fˊ[ψ(x)]·ψˊ(x)dx 由于fˊ[ψ(x)]=fˊ(μ),ψˊ(x)dx=dμ,因此上式也可写成dy=fˊ(μ)dμ 由此可见,无论μ是自变量,还是另一变量的可微函数,微分形式dy=fˊ(μ)dμ保持不变,这一性质称为微分形式不变性。

实验10 符号计算基础与符号微积分(第7章)

实验10 符号计算基础与符号微积分 (第7章 MATLAB 符号计算) 一、实验目的 二、实验内容 1. 利用符号表达式求值 已知x=6,y=5,利用符号表达式求 z = 提示:定义符号常数x=sym(‘6’),y=sym(‘5’)。 程序及运行结果(建议在命令窗口输入命令并运行): 2. 分解因式 (1) x 4-y 4 (2) 5135 程序及运行结果(建议在命令窗口输入命令并运行): 《数学软件》课内实验 王平

3. 化简表达式 21212 483(1)sin cos cos sin (2) 21x x x ββββ++-+ 4. 符号矩阵运算 已知 12010100100,010,001101a b c P P A d e f g h k ???? ?? ??????===?????? ???????????? 完成下列运算: (1) B=P 1·P 2·A 。 (2) B 的逆矩阵并验证结果。 (3) 包括B 矩阵主对角线元素的下三角阵。 (4) B 的行列式值。 5. 用符号方法求下列极限或导数 sin tan 301(1)2(1)1cos(2)(1)lim (2)lim ,',''sin x x x x x e e x y y y x x +→→-+---=求 3222(4),,, cos ln x a t dA d A d A A dx dt dxdt t x x ??=???? 已知分别求 程序及运行结果(建议在命令窗口输入命令并运行): 2222 0,1 (5)(,)(2),, x y xy x y y f f x y x x e x x y ---==??=-???已知求 6. 用符号方法求下列积分 48(1) (2)1dx x x ++?

微积分基本公式

微积分公式

tan -1 x = x-33x +55x -7 7 x +…+)12()1(12+-+n x n n + … (1+x)r =1+r x+!2)1(-r r x 2+! 3)2)(1(--r r r x 3 +… -1

实验六 比例求和运算及其微积分电路

实验六 比例求和运算及微积分电路 实验内容及步骤 1 .搭接电压跟随器并验证其跟随特性。 仿真图如上 输出输入波形重合,其跟随特性得以验证. 实测数据显示Uo=Ui,验证运放性能良好。 2 .测量反相比例电路的比例系数。

由图:为反相比例放大,输入电压为10mv,输出电压为100mv,且输出波形与输入波形反相,放大倍数10。 理论值:Uo=-Rf/Ri*Ui=-10Ui,反相比例系数为-10. 实测数据如下: 分析,Uo与Ui反相,反相比例电路的比例系数为-10. 3 .测量同相比例放大器的比例系数及上限截止频率。 仿真图如下:

输入输出波形如下 由图:Ui=10mv,Uo=100mv,且输入输出同相,放大系数约为10倍。 实测数据如下: 所以实际放大倍数约为11,与理论值接近。 测量截止频率:首先将函数发生器的输入电压幅值调为20mv,此时观察示波器输出约为0.22v,然后调节函数发生器的调频旋钮,随着频率增大,当Uo=0.22*0.707=0.15554v时,对应电压即为上限截止频率,fh=94.78khz. 4 .测量反相求和电路的求和特性。

分析:输入Ui1=20mv,Ui2=10mv,输出Uo=2.5v,且输出与输入反相。理论值:Uo=-(R3/R2*Ui1+R3/R1*Ui2)=-(10*Ui1+10*Ui2) 5 .验证双端输入求和电路的运算关系。

输入输出波形: 输入电压Ui2为20mv,Ui1为10mv,输出Uo为100mv。 理论值:Uo=Rf/R1(Ui2-Ui1)=10(Ui2-Ui1) ∵实验值Uo与理论值Uo接近,∴双端输入求和电路的运算关系为Uo=Rf/R1(Ui2-Ui1) 6 .积分电路 按照图7-8(a )连接积分电路,检查无误后接通±12V 直流电源。

高等数学实验报告matlab

西安交通大学 高等数学 实验报告 班级 组员与学号 2013年

实验名称:学生成绩管理 一、实验目的 二、实验内容 三、详细编程 clear for i=1:10 a{i}=89+i; b{i}=79+i; c{i}=69+i; d{i}=59+i; end c=[d,c]; Name=input('please input name:'); Score=input('please input score:'); n=length(Score); Rank=cell(1,n); S=struct('Name',Name,'Score',Score,'Rank',Rank); for i=1:n switch S(i).Score case 100 S(i).Rank='满分'; case a S(i).Rank='优秀'; case b S(i).Rank='良好'; case c S(i).Rank='及格'; otherwise S(i).Rank='不及格'; end end disp(['学生姓名 ','得分 ','等级']);

for i=1:n disp([S(i).Name,blanks(6),num2str(S(i).Score),blanks(6),S(i).Rank]); end s=0; for i=1:n s=S(i).Score+s; end averscore=s/n; t=S(1).Score; for i=1:(n-1) if(S(i).ScoreS(i+1).Score) m=S(i+1).Score; end end disp(['平均成绩']); disp([averscore]); disp(['最高分']); disp(t); disp(['最低分']); disp(m); 四、实验结果

(完整版)7.微积分基本定理练习题

7、微积分基本定理 一、选择题 1.??0 1(x 2 +2x )d x 等于( ) A.13 B.23 C .1 D.43 2.∫2π π(sin x -cos x )d x 等于( ) A .-3 B .-2 C .-1 D .0 3.自由落体的速率v =gt ,则落体从t =0到t =t 0所走的路程为( ) A.13gt 20 B .gt 2 0 C.12gt 20 D.16gt 20 4.曲线y =cos x ? ????0≤x ≤3π2与坐标轴所围图形的面积是( ) A .4 B .2 C.5 2 D .3 5.如图,阴影部分的面积是( ) A .2 3 B .2- 3 C.323 D.35 3 6.??0 3|x 2 -4|d x =( ) A.213 B.223 C.233 D.25 3 7.??241 x d x 等于( ) A .-2ln2 B .2ln2 C .-ln2 D .ln2 8.若??1a ? ?? ??2x +1x d x =3+ln2,则a 等于( ) A .6 B .4 C .3 D .2 9.(2010·山东理,7)由曲线y =x 2 ,y =x 3 围成的封闭图形面积为( ) A.112 B.14 C.13 D.7 12 10.设f (x )=??? ?? x 2 0≤x <12-x 1

A.34 B.45 C.5 6 D .不存在 [解析] ??02f (x )d x =??01x 2 d x +??1 2(2-x )d x , 二、填空题 11.从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分 的概率为________. 12.一物体沿直线以v =1+t m/s 的速度运动,该物体运动开始后10s 内所经过的路程是________. 13.求曲线y =sin x 与直线x =-π2,x =5 4 π,y =0所围图形的面积为________. 14.若a =??02x 2 d x ,b =??02x 3 d x ,c =??0 2sin x d x ,则a 、b 、c 大小关系是________. 三、解答题 15.求下列定积分: ①??0 2(3x 2+4x 3 )d x ; ② sin 2 x 2 d x . 17.求直线y =2x +3与抛物线y =x 2 所围成的图形的面积. 18.(1)已知f (a )=??0 1(2ax 2 -a 2 x )d x ,求f (a )的最大值; (2)已知f (x )=ax 2 +bx +c (a ≠0),且f (-1)=2,f ′(0)=0,??0 1f (x )d x =-2,求a ,b ,c 的值.

实验四比例求和运算电路实验报告

实验四 比例求和运算电路 一、实验目的 1.掌握用集成运算放大器组成比例、求和电路的特点及性能。 2.学会上述电路的测试和分析方法。 二、实验仪器 1.数字万用表 2.信号发生器 3.双踪示波器 其中,模拟电子线路实验箱用到直流稳压电源模块,元器件模组以及“比例求和运算电路”模板。 三、实验原理 (一)、比例运算电路 1.工作原理 a .反相比例运算,最小输入信号min i U 等条件来选择运算放大器和确定外围电路元件参数。 如下图所示。 A V i V o R 100k Ω R 1 10k Ω R 2 10k Ω A B 输入电压i U 经电阻R 1加到集成运放的反相输入端,其同相输入端经电阻R 2接地。输出电压O U 经R F 接回到反相输入端。通常有: R 2=R 1F o 1i u u u u -=---???????==-==1i i if 1F i o uf R i u R R R u u A A V i V o 100k Ω R 1 10k Ω R 210k ΩA B i U O U o F u R R R u ?+=-11i o F u u R R R =?+111F i o uf R R 1u u A +==∞==i i if i u R 1212i i o F u u u R R R +=- 1212()F F o i i R R u u u R R =-+12()F o i i R u u u R =-+压跟随电路 实验电路如图1所示。按表1内容进行实验测量并记录。 理论计算: 得到电压放大倍数:

即:Ui=U+=U-=U 图1 电压跟随器 直流输入电压Vi(v)-201 输出电 压Vo(v) Rl=∽ Rl= 从实验结果看出基本满足输入等于输出。 2、反相比例电路 理论值:(Ui-U-)/10K=(U--UO)/100K且U+=U-=0故UO=-10Ui。 实验电路如图2所示: 图2:反向比例放大电路 (1)、按表2内容进行实验测量并记录. 表2:反相比例放大电路(1) (2)、按表3进行实验测量并记录。 测试条件被测量理论估算实直流输入电压输入 Vi(mv)3010 30 10 00 30 00输出电 压 Vo(v) 理论值 实测值 误差

相关文档
相关文档 最新文档